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1. Question 1.
Let Y ∈ {0, 1} satisfy

P(Y = 0) = α, P(Y = 1) = 1− α, α ∈ (0, 1) known.

Assume µ is known and

X | Y = 0 ∼ N (0, σ2), X | Y = 1 ∼ N (µ, σ2).

• Suppose (Xi, Yi), i = 1, . . . , n, are i.i.d. Write the likelihood and derive the MLE of σ2.

2. Question 2.
Let X1, . . . , Xn be i.i.d. Gamma(α, β) with shape α > 0 and scale β > 0. You are given

E[X] = αβ, Var(X) = αβ2.

Define the sample raw moments

m1 =
1

n

n∑
i=1

Xi, m2 =
1

n

n∑
i=1

X2
i .

Using the method of moments based on m1,m2, derive estimators α̂ and β̂ in terms of m1 and
m2.

3. Question 3.
Suppose X1, . . . , Xn are i.i.d. observations from a parametric family, and let A(X) and B(X)
be two estimators of a parameter θ. Assume that

Varθ(A) < Varθ(B) for all θ.

Does this imply that A(X) is preferred in the sense of UMVUE or that it attains the Cramér–
Rao lower bound? Explain.

4. Solution 1.
Let

S0 = {i : Yi = 0}, S1 = {i : Yi = 1}, n0 = |S0|, n1 = |S1|, n = n0 + n1.
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Likelihood (up to constant factors):

L(σ2) =
∏
i∈S0

1√
2πσ

e−X2
i /(2σ

2)
∏
i∈S1

1√
2πσ

e−(Xi−µ)2/(2σ2).

Log-likelihood (up to constants):

ℓ(σ2) = −n

2
log(σ2)− 1

2σ2

( ∑
i∈S0

X2
i +

∑
i∈S1

(Xi − µ)2
)
.

Let
A =

∑
i∈S0

X2
i +

∑
i∈S1

(Xi − µ)2.

Derivative:
∂ℓ

∂σ2
= − n

2σ2
+

A

2(σ2)2
.

Setting equal to zero gives

σ̂2 =
A

n
=

1

n

∑
i∈S0

X2
i +

∑
i∈S1

(Xi − µ)2

 .

Second derivative:
∂2ℓ

∂(σ2)2
=

n

2(σ2)2
− A

(σ2)3
= − n

2(σ2)2
< 0,

so the solution maximizes ℓ(σ2).

5. Solution 2.
From Var(X) = E[X2]− (E[X])2, we have

E[X2] = Var(X) + (E[X])2 = αβ2 + (αβ)2 = α(α+ 1)β2.

Method of moments matches raw moments:
m1 = E[X] = αβ, m2 = E[X2] = α(α+ 1)β2.

From m1 = αβ, β = m1
α . Substitute into the second equation:

m2 = α(α+ 1)
(m1

α

)2
=

α+ 1

α
m2

1.

Thus
m2

m2
1

= 1 +
1

α
=⇒ α̂ =

m2
1

m2 −m2
1

.

Finally,

β̂ =
m1

α̂
=

m2 −m2
1

m1
.

6. Solution 3.
Even if an estimator A(X) has strictly smaller variance than another estimator B(X) for all pa-
rameter values, it is not automatically preferred in the context of UMVUE or the Cramér–Rao
lower bound. This is because both UMVUE and CRLB are defined only among unbiased esti-
mators. If A(X) is biased, it is excluded from consideration regardless of its variance. Therefore,
variance alone does not determine optimality; unbiasedness is a necessary condition.
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