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1. [10] Let X3,..., X, be independent random variables with pdfs

1
—, —i0—-1)<x; <i(0+1
S| 0)= 20 0 Vs m oD,
0, otherwise,
where 8 > 0. Find a two-dimensional sufficient statistic for 6.

Solution:
The sample density is given by

n n

[T 16) =TT 557 (00— 1) <2 < (6 + 1),

i=1 i=1
where I(-) is the indicator function.

This can be rewritten as

[l 0= (3) e 2 0 -) (s 5 2001) (1)

i=1 i=1
90(T'(2)) h(x)
Thus, by the factorization theorem, the statistic
Xi Xi
T(X)= <min =% max l)

1<i<n 4 1<i<n 1

is sufficient for 6.
2. [20] For each of the following distributions let X1, ..., X, be a random sample. Find a minimal
sufficient statistic for 6.
(a) Location exponential: f(z | §) = e~ (=9 0 <z <00, —00<b<o0.

(b) Cauchy: f(z|0) = m, —00 <z < 00, —00 < 6 < 0.

Solution:



(a)

Location exponential.
Here
Fa|6) = e 016 < ),

so the joint density is

f(z]0)= exp{—Z(aﬁi — 0)} HI(H <x;) = erﬁnHI(g < miinx,-> .

=1 =1

Thus )

f(z|0) S LD 3 1(6 < mlnla;,)

fly]8) I(6 < min; y;)
The exponential factor is free of 8, so the ratio is independent of @ iff the indicator ratio
does not depend on #, which happens exactly when min; x; = min; y;. Therefore

T(X) =min(Xy,...,X,)

is a minimal sufficient statistic for 6.

Cauchy.
For the Cauchy location family

1
f(x‘g)zw(1+(x_0)2)a

a sample X1q,..., X, has joint density

1o () Ui —am

=1

—0 < x,0 < o0,

Using the likelihood-ratio characterization, two samples x = (z1,...,2,) and y = (y1,...,Yn)
belong to the same equivalence class iff

f(e]6) o L+ (g 6)?
U SEae=r:

is independent of 6.
Let

PO) =T+ @ -07%). QO =[]0+ @i—0)?).

i=1 i=1
The ratio is independent of § exactly when P(#) and Q(0) are proportional. The complex
roots of 14 (x —0)? (as a polynomial in #) are § = x4 i, so the roots of P are y; i and the
roots of ) are x; 4. Two polynomials are proportional iff their multisets of roots coincide,
hence we must have

{y1,-.,ynt =A{x1,..., 2}
up to permutation. So the likelihood ratio is constant in 6 only when the samples differ at
most by a permutation.
Thus the equivalence classes are “same observations up to ordering”. Any one-to-one func-
tion of these classes is a minimal sufficient statistic. A convenient choice is the vector of
order statistics,
T(Xy,...,X,) = (X(l),X(Q),...,X(n)),

which is therefore a minimal sufficient statistic for 6.



3. [20] Let X3,..., X, be a random sample from the Uniform(#, 0 + 1) distribution, where —oo <
< 0.

(a)
(b)

Find a minimal sufficient statistic for 6.

Show that this minimal sufficient statistic is not complete.

Solution:

(a)

Minimal sufficient statistic.
The density of a single observation is

flz|0)=I0<z<6+1),

so for a sample x = (x1,...,x,) the joint density is

Fal0)=J]100 <z <0+1)=1(6 <z, 2m <0+1),
i=1
where T (1) = min; z; and T(p) = Max; T;.

Let  and y be two samples. Then

f@]o) 10 <z@y, zpm <0+1)

fl0)  1(0 <yay, ym) <0+1)°

This ratio is independent of 8 iff the numerator and denominator are simultaneously 0 or 1
for all 8, which occurs exactly when

) =ya) and Ty = Yn)-

Thus ratio is constant of 6 iff they have the same pair (z(1), z(,)). By the likelihood-ratio
characterization of minimal sufficiency, a minimal sufficient statistic is

Show that T is not complete.
Write R = X(,,) — X(1), the sample range. Note that R = g(T') is a function of 7.
Because X; ~ Uniform(0, 6 + 1), the shifted variables

U; = X; — 0 ~ Uniform(0, 1), i=1,...,n,
are independent of 6. Then
R =X =Xy = (Un) +0) = (Un) +0) = Uy = Uy,

so the distribution of R does not depend on 6.
For the order statistics of a Uniform(0, 1) sample,

1 n

E[U(1)]=n+l, E[U(n)]ZnJrl,

hence
n 1 _ n—1

n+l n+1 n+1’

E(R) = ElUm) — Uyl =



which is a constant (independent of 6).
Now define

—1 -1
n _ ¥ n
n—+1

9(T(X)) = 9(X0), X(n)) = R~

Then for every 0,

n—l_
n+1

)

Eplg(T(X))] = Eo(R) —

but g(7'(X)) is not almost surely zero (the range is nondegenerate).

Thus there exists a nonzero function of the minimal sufficient statistic whose expectation
is 0 for all 0, so T(X) = (X(1), X(n)) is not complete.

4. [30] Let X1, ..

., Xy, be a random sample from a normal distribution. Denote S; =Y " ; X; and

Sy =", X2. Prove the following statements.

(a) In the N(p,p) family, the statistic (S1,52) is sufficient but not minimal sufficient for pu.

(b) In the N(u,p) family, the statistic S is minimal sufficient for p.

(c) In the N(p,u?) family, the statistic (S, S2) is minimal sufficient for .

Solution:
Write

Sy = Zn:X Sy = anxf.
i=1 =1

We first work in the general normal family N(u,o?), then specialize to the three subfamilies.

For X; ~ N(u,c?),

77'0'2 202

failwod) = — exp{—w}.

For a sample z = (x1,...,2,),

f@ | p,0%) = (2mo?) ="/ exp{—l Z(fvi - u)2} :

Expand the quadratic:

Hence

n

S (wi—p)? = a7 —2u) @i+ np’ = Sa(z) — 2uS1(x) + np’.
i=1 i=1

i=1

2
f(a | p,0%) = (2m0®) /2 exp{:zsl(x) - ﬁsz(w) - ng} :

For two samples = and y, set AS; = S1(z) — S1(y), AS2 = Sa(z) — Sa2(y). Then

fa|p,0)

fl@lpo®) Hoag L
fly|po?) exp{02 A5 50 ASZ} ’ *)

This is the key likelihood-ratio formula used in all parts.



(a) and (b)

Family N(u,pu), > 0.

2

Here 0“ = p, so substituting into (%) gives

flx|pp) 1
fylmmp) eXp{(Asl) B %ASZ}'

(b) Minimal sufficiency of Sa = ZX 2 The expression above is constant as a function of
 if and only if the coefficient of 1/p is zero, i.e.

ASQ =0 = 52(1') = Sg(y)

Thus the equivalence classes defined by the likelihood ratio are indexed by Sa, so S3 is a
minimal sufficient statistic for u.
To see that 59 is also sufficient, note that the joint density in this family can be written as

@ ) = (2m) ™ expl —5-Sala) = T exi{Si (o).

The bracketed factor depends on x only through S2(z) and u, while exp{Si(z)} is free of
. By the factorization criterion, So is sufficient for .

(a) (S1,S2) sufficient but not minimal. From the general density above (before specializing
02), we see that (57, S2) is sufficient in any normal family, hence it is sufficient in N (u, p).
But S alone is minimal sufficient (part (b)) and S is a function of (51, S2), whereas (51, S2)
is not a function of Sy alone (different samples can share the same Sy but have different
S1). Therefore (Si,S2) cannot be minimal. So in the N(u, ) family, (51, S2) is sufficient
but not minimal sufficient.

Family N (p, p?), p > 0.

Now 02 = p?. Substituting into (*) gives

Sl | pp?) 1 RS
I A Vi T &

For this to be constant in g > 0 we must have both coefficients zero:
ASl =0 and ASQ = 0,

that is, S1(xz) = S1(y) and S2(x) = S2(y). Therefore the equivalence classes are indexed by

(51,52), and
T(X) = (S1,52) = (ZX“ZX2>

is a minimal sufficient statistic for x in the N(u, 4?) family.

5. [20] Let Xq,..., X, be a random sample from the inverse Gaussian distribution with pdf

A\ V2 Az —p)?
f(x‘/%)\)— (27TCCS> exp{_m}a 0<.’E<OO,

where > 0 and A > 0. Show that the statistics



are sufficient and complete for (u, \).

Solution:
For one observation, the pdf is

A \Y2 Az — p)?
f(l‘ | Hy )\) == <27rx3) eXp{—M} N x> 0.

Expand the exponent:

Mz — p)? A A
Coulr 2u2’

B 2 ﬁ a 2u
So we can rewrite
P | A = e, A) () exp{w( A) H(a)},

with

h(z) = 232, t(m):<1f$>’ w(j, ) = _2;2 , C(u,)\):<2);r>1/26xp<:>.
2

For a sample X1, ..., X,, the joint density is

flze, .o zn |y A) = e(p, A)™ Hh(mz) exp{w(u, NE Zt(xl)} .

i=1

By the factorization theorem, the statistic

T=(T1,T): (ZXZX>

is sufficient for (u, A). By the completeness theorem for exponential families, this statistic is also
complete. Now consider the statistic in the problem,

I 1 n
Ivx e
= X 1 1
=1 7’ X
We can write X and + dlrectly as functions of 17, T5:
n X Ty — = T2 _
X T

Thus (X, %) is a direct function of the complete sufficient statistic T' = (T3, 7T3). A function of

a complete sufficient statistic is again complete and sufficient. Therefore (X, %) is a complete

sufficient statistic for (i, A).
6. [50] Let X1,..., X, be iid. with pdf

f(z]0) =021, 0<z<1,0<6<o0.



(a) Find the MLE of #, and show that its variance tends to 0 as n — oo.

(b) Find the method of moments estimator of 6.

Solution:

(a) MLE of # and its variance.
The joint density is

The log-likelihood is

0(0) =log L(0;z) = nlogh+ (6 — 1) Zloga:i.
i=1

Differentiate:

Setting this derivative equal to 0 gives

%—FZlogxi:O — f=-
i=1

The second derivative,

shows that this is indeed the MLE.
To find its variance, set Y; = —log X;. Then for 0 < x < 1,

fri(y) = e, y >0,

so Y; has an exponential distribution with rate 6. Hence

n n
S
i=1 i=1
has a gamma distribution with shape n and rate 6 (can be proved via MGF method)
GTL
fr(t) = =——t"le % >0,

We have § = n/T, so we need E(1/T) and E(1/T?). Using the gamma moments

1 oo " T(n-1) 0
<T> T(n) /0 ¢ Tn) 61 — n_1

and

| o[ 0" T(n—2) 62
El=—)=_~— n—3 _—0t — . _
<T2> F(n)/o re

7



Therefore

and

A 1
Var(d) = n*Var <T> =n?

A short simplification gives

Var(0) = CEECER
As n — oo, ,
Var(f) = =12 =) 62 — 0,

so the variance of the MLE tends to zero.

(b) Method of moments estimator.
The given density is that of a Beta(#, 1) distribution. Thus

6

B(X) = 5=

The sample mean X is the method of moments estimator of E(X), so we set

0
X=——
0+1

and solve for 6:

™
Il
I

XO0+1)=0 = X0+X=0 = X=01-X) =

Equivalently, in terms of the sum ) Xj,

n

>

=1

n .
n — ZXZ
=1

et}

Thus 6 = X /(1 — X) is the method of moments estimator of .

7. [20] Let Xy,..., X, be a sample from a population with double exponential (Laplace) pdf
1
f(a:|9):§e_|x_9‘, —o00 < <00, —00 < 0 < oo.

Find the MLE of 6. (Hint: Consider the cases of even n and odd n separately, and express the
MLE in terms of the order statistics.)

Solution:
Let z(;) < -+ < x(,) denote the order statistics of the sample.



The likelihood function is

LO|x)= H %e’m’a' =2""exp <— Z |x; — 0]) .
i=1

i=1

Maximizing L is equivalent to minimizing
n
S(O) = |z — 6.
=1

For T(;

5) < 0 < x4y (with the conventions z gy = —00, Z(,11) = 00), we have

0 — x; < g
|z — 0l = wap b=
x(i)—H, 1>7+ 1.

Thus, for z(;) <0 < z(j11),

n J n
SO) =l — 0l =D (0 —2@) + > (w5 —0)
=1 =1 =741

i n
= jb — Zl’(i) + Z T — (n—j)0
=1

i=j+1

7 n
i=1 i=j+1
So, on each interval [x(;), Z(j4+1)], S(0) is a linear function of ¢ with slope 2j — n.

-If 5 < n/2, then 2j —n < 0 and S(0) is decreasing in 6 on that interval. - If j > n/2, then
2j —n >0 and S(0) is increasing in € on that interval.

Case 1: n even

If n is even, say n = 2m, then 2j —n = 0 when j = n/2 = m. Hence for z(,,) < 6 < x(,41) we
have slope 0, so S(f) is constant on [x(,), Z(m+1)]- For j < m the function decreases up to x(y,),
and for j > m it increases after x(,,41). Thus any ¢ in the interval

[2m)> Tnsn)] = [Ey2), Twj240)]
minimizes S(6) and is therefore an MLE. A common choice is the midpoint

§ = T2 T /241
5 .




Case 2: n odd

If n is odd, say n = 2m — 1, then 2j — n = 0 has no integer solution. For j < m the slope
2j —n < 0 and S(0) is decreasing, while for j > m the slope is positive and S(#) is increasing.
Thus S(0) attains its minimum at the unique point

0 = T(m) = T((n+1)/2);

the sample median.
In summary, the MLE of @ is any median of the sample:
-Ifnis odd, § = T((nt1)/2)- - 1f n is even, any 6 e [T(n/2)s T(n/2+1)] is an MLE (often the

midpoint of this interval is chosen).

8. [20] Let X be an observation from the pdf

o]
f(z]0)= <g> (1—e)k 2 =-101,0<0<1.

(a) Find the MLE of 6.

(b) Define the estimator
2, =1,
T(X) =
0, otherwise.
Show that T'(X) is an unbiased estimator of 6.
(c) Find a better estimator than 7'(X) (in the sense of having smaller variance for all § and

strictly smaller for some ), and prove that it is better.

Solution:
First note that

PX=0)=(1-0), FR(X=1)=0 BX=-1=1
and these probabilities sum to 1.
(a) MLE of 6.
For a single observation X = z, the likelihood is
1-6, z=0,

L(Qaf):f(xw):{ep r=1lorzx=-1

- If 2 = 0, the likelihood L(#) = 1 — ¢ is decreasing in # on [0,1], so it is maximized at
0 =0.-1If v = 1, then L(0) = 0/2 is increasing in 6 on [0, 1], so it is maximized at 6 = 1.

Thus the MLE is
R 0, X=0,
0 =
1, X ==1,

which can be written compactly as

f=1I(X|=1)=I(X+#0).

10



(b) T(X) is unbiased.
By definition,

2, X=1
T(X) — ) Y
0, X=0o0r X =-1
Thus 9
ET(X)]=2P(X=1)=2- 3= 6.
Hence T'(X) is an unbiased estimator of 6.
(c) A better estimator and proof.
Consider the estimator
- 1, X=4+1
TX)=I(X#0)=< " ’
(X) = I(X #0) {07 .

(This is the indicator that X is nonzero.)

Its expectation is

Ey[T(X)] = Py(X #0) = Pp(X = 1) + Py(X = —1)

so T(X) is also an unbiased estimator of .

Now compare variances.
For T'(X),

SO

Using Ey[T(X)] = 6 from part (b),
Varg(T) = Eg[T?] — (Eo[T))* = 20 — 6> = 6(2 - 0).

For T'(X), since it is an indicator,

Eo[T(X)?] = Eg[T(X)] =,

hence
Varg(T) =60 — 6% =0(1 — ).
For all 6 € [0, 1],
Varg(T) — Varg(T) =02 —0) —0(1 —0) =0[(2—0) — (L - 0)] =6 >0,

with strict inequality for 8 > 0. Therefore

Varg(T) < Varg(T) for all 0,

and Varg(T) < Varg(T) for every 6 > 0.
Thus T(X) = I(X # 0) is a better unbiased estimator of § than T'(X).

11



9. [30] Let X1,..., Xy beiid. with
X; ~ N(6,0?), i=1,...,N,
where o2 is known and @ is unknown. Denote X = % Zf\i ».a

(a) Assume the prior § ~ N(u,02). Show that the posterior density can be written, up to a
constant factor, as

> (i = 0)% + (0 - u)2] }

=1

(b) Under the assumptions in part (a), find the MAP estimator of 6.

1 10— d]
p(0) = %eXp<—b > ,

and suppose that o2 = 2b%. Show that, up to an additive constant, the negative log-
posterior can be written as

(¢c) Now assume the prior density

N 1
L(0) = 5 (X - 0)* + 510 —d.

(d) Under the assumptions in part (c), find the MAP estimator of # by minimizing L(#), and

show that o o
A X — 2Nb, X —d> Néb
Onap = X+ X-d<-3,
d, otherwise.
Solution:

v N
Let X = £ 570, X,

(a) By Bayes’ formula, the posterior density is

p(a‘xlvaw]v):/oo

The likelihood is

and the prior is




Therefore the numerator of the posterior is

N
p(@1,...,zy | 0)p(0) = (2mo?)~(NF/2 exp{—z; [Z(xi —0)> + (0

=1

The denominator

/OO p(z1,..., 2N | w)p(u) du

—0o0
is just a normalization constant (it depends on the data but not on 6).
multiplicative constant,

1 N
p(0 | x1,...,2N) x exp{—%‘2 [Z(xz —0)%+ (0 - ,u)2] } ,

which is the desired form.

Define
N

LO)= 5 lzm 0+ (0 m?]

i=1

(the negative log-posterior, up to an additive constant). Then

do

Setting this equal to 0 gives

_ . NX +p
N+1)Y-NX—-—pu=0 = 6 =
v+ 1) p MAP =
Also
d2L_N+1>O
a2 o2 ’

so this is indeed the minimizer of L(#), i.e. the MAP estimator.
The negative log-likelihood (ignoring constants) is

)

Hence, up to a

N
%:ﬁ lzz(em)m(eu)l :%[(NJrl)G—NXf,u].
i=1

1 & 1 &
—logp(z1,..., 2N | 0) TZ 72(%—9)2,
i=1 i=1
since 02 = 2b%. Using
N N
» (207 => (- X)* + N(X - 0),
i=1 i=1

the first term does not depend on 6, so up to an additive constant,

N

—logp(z1,...,xn | 0) = 472()’( _ 9)2.

The prior density is



so (up to an additive constant)
1
—logp(6) = |6 —dl.

Therefore, up to an additive constant, the negative log-posterior is

N

L(6) = -5

_ 1
X—9)2+5\9—d|.

We minimize
L(9) = @(X —-0)° + 5\9 —d.
Case 1: > d. Then |0 —d| =6 — d, so

N 1

_ v P2 Z(p_
L(9) = 0 (X —0)"+ b(9 d),
and il N 1
- a0y
Set this to zero: N . o
N xogals _x_ 2
2b2( 0) + 2 0 = 0 I

This solution is valid in this case if § > d, i.e. X —d > %b.
Case 2: § < d. Then |§ —d| =d — 6, so
L(9) = @(X —0)* + E(d_ 0),
and dL N 1
b _Nix_g-L
de 2b2( ) b
Setting this to zero yields

N  _ 1 _ 2b
X -y =0 = TN
This belongs to this case if § < d, i.e. X —d < —QNZ’.

Case 3: If o o
LS G P
N — d= N’

then neither of the previous two interior solutions satisfies its inequality. In this situation
the derivative of L(6) changes sign at § = d, and L(0) is minimized at 6 = d.

Combining the three cases, the MAP estimator is

_22 2b

X-Z, X—d>=
N’ N
2b 2b

éMAPZ X+2Z X_de-Z=2
—l—N, < N

d, otherwise.
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