
In the name of GOD.

Stochastic Process

Fall 2025
Sharif University of Technology Hamid R. Rabiee

Homework 4 Estimation Theory Deadline : 1404/10/05

1. [10] Let X1, . . . , Xn be independent random variables with pdfs

f(xi | θ) =


1

2iθ
, −i(θ − 1) < xi < i(θ + 1),

0, otherwise,

where θ > 0. Find a two-dimensional sufficient statistic for θ.
Solution:
The sample density is given by

n∏
i=1

f(xi | θ) =
n∏

i=1

1

2iθ
I
(
−i(θ − 1) ≤ xi ≤ i(θ + 1)

)
,

where I(·) is the indicator function.
This can be rewritten as

n∏
i=1

f(xi | θ) =
(

1

2θ

)n

I

(
min
1≤i≤n

xi
i

≥ −(θ − 1)

)
I

(
max
1≤i≤n

xi
i

≤ θ + 1

)
︸ ︷︷ ︸

gθ(T (x))

(
n∏

i=1

1

i

)
︸ ︷︷ ︸

h(x)

.

Thus, by the factorization theorem, the statistic

T (X) =

(
min
1≤i≤n

Xi

i
, max
1≤i≤n

Xi

i

)
is sufficient for θ.

2. [20] For each of the following distributions let X1, . . . , Xn be a random sample. Find a minimal
sufficient statistic for θ.

(a) Location exponential: f(x | θ) = e−(x−θ), θ < x < ∞, −∞ < θ < ∞.

(b) Cauchy: f(x | θ) = 1

π
(
1+(x−θ)2

) , −∞ < x < ∞, −∞ < θ < ∞.

Solution:
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(a) Location exponential.
Here

f(x | θ) = e−(x−θ)I(θ < x),

so the joint density is

f(x | θ) = exp

{
−

n∑
i=1

(xi − θ)

}
n∏

i=1

I(θ < xi) = e−
∑

xi+nθ I

(
θ < min

i
xi

)
.

Thus
f(x | θ)
f(y | θ)

= e−
∑

xi+
∑

yi
I(θ < mini xi)

I(θ < mini yi)
.

The exponential factor is free of θ, so the ratio is independent of θ iff the indicator ratio
does not depend on θ, which happens exactly when mini xi = mini yi. Therefore

T (X) = min(X1, . . . , Xn)

is a minimal sufficient statistic for θ.
(b) Cauchy.

For the Cauchy location family

f(x | θ) = 1

π
(
1 + (x− θ)2

) , −∞ < x, θ < ∞,

a sample X1, . . . , Xn has joint density

f(x | θ) =
(
1

π

)n n∏
i=1

1

1 + (xi − θ)2
.

Using the likelihood–ratio characterization, two samples x = (x1, . . . , xn) and y = (y1, . . . , yn)
belong to the same equivalence class iff

f(x | θ)
f(y | θ)

=
n∏

i=1

1 + (yi − θ)2

1 + (xi − θ)2

is independent of θ.
Let

P (θ) =

n∏
i=1

(
1 + (yi − θ)2

)
, Q(θ) =

n∏
i=1

(
1 + (xi − θ)2

)
.

The ratio is independent of θ exactly when P (θ) and Q(θ) are proportional. The complex
roots of 1+(x−θ)2 (as a polynomial in θ) are θ = x± i, so the roots of P are yi± i and the
roots of Q are xi± i. Two polynomials are proportional iff their multisets of roots coincide,
hence we must have

{y1, . . . , yn} = {x1, . . . , xn}
up to permutation. So the likelihood ratio is constant in θ only when the samples differ at
most by a permutation.
Thus the equivalence classes are “same observations up to ordering”. Any one-to-one func-
tion of these classes is a minimal sufficient statistic. A convenient choice is the vector of
order statistics,

T (X1, . . . , Xn) =
(
X(1), X(2), . . . , X(n)

)
,

which is therefore a minimal sufficient statistic for θ.
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3. [20] Let X1, . . . , Xn be a random sample from the Uniform(θ, θ + 1) distribution, where −∞ <
θ < ∞.

(a) Find a minimal sufficient statistic for θ.
(b) Show that this minimal sufficient statistic is not complete.

Solution:

(a) Minimal sufficient statistic.
The density of a single observation is

f(x | θ) = I(θ < x < θ + 1),

so for a sample x = (x1, . . . , xn) the joint density is

f(x | θ) =
n∏

i=1

I(θ < xi < θ + 1) = I
(
θ < x(1), x(n) < θ + 1

)
,

where x(1) = mini xi and x(n) = maxi xi.
Let x and y be two samples. Then

f(x | θ)
f(y | θ)

=
I
(
θ < x(1), x(n) < θ + 1

)
I
(
θ < y(1), y(n) < θ + 1

) .
This ratio is independent of θ iff the numerator and denominator are simultaneously 0 or 1
for all θ, which occurs exactly when

x(1) = y(1) and x(n) = y(n).

Thus ratio is constant of θ iff they have the same pair (x(1), x(n)). By the likelihood–ratio
characterization of minimal sufficiency, a minimal sufficient statistic is

T (X) =
(
X(1), X(n)

)
.

(b) Show that T is not complete.
Write R = X(n) −X(1), the sample range. Note that R = g(T ) is a function of T .
Because Xi ∼ Uniform(θ, θ + 1), the shifted variables

Ui = Xi − θ ∼ Uniform(0, 1), i = 1, . . . , n,

are independent of θ. Then

R = X(n) −X(1) = (U(n) + θ)− (U(1) + θ) = U(n) − U(1),

so the distribution of R does not depend on θ.
For the order statistics of a Uniform(0, 1) sample,

E[U(1)] =
1

n+ 1
, E[U(n)] =

n

n+ 1
,

hence
E(R) = E[U(n) − U(1)] =

n

n+ 1
− 1

n+ 1
=

n− 1

n+ 1
,
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which is a constant (independent of θ).
Now define

g
(
T (X)

)
= g
(
X(1), X(n)

)
= R− n− 1

n+ 1
= X(n) −X(1) −

n− 1

n+ 1
.

Then for every θ,
Eθ

[
g(T (X))

]
= Eθ(R)− n− 1

n+ 1
= 0,

but g(T (X)) is not almost surely zero (the range is nondegenerate).
Thus there exists a nonzero function of the minimal sufficient statistic whose expectation
is 0 for all θ, so T (X) = (X(1), X(n)) is not complete.

4. [30] Let X1, . . . , Xn be a random sample from a normal distribution. Denote S1 =
∑n

i=1Xi and
S2 =

∑n
i=1X

2
i . Prove the following statements.

(a) In the N(µ, µ) family, the statistic (S1, S2) is sufficient but not minimal sufficient for µ.
(b) In the N(µ, µ) family, the statistic S2 is minimal sufficient for µ.
(c) In the N(µ, µ2) family, the statistic (S1, S2) is minimal sufficient for µ.

Solution:
Write

S1 =

n∑
i=1

Xi, S2 =

n∑
i=1

X2
i .

We first work in the general normal family N(µ, σ2), then specialize to the three subfamilies.
For Xi ∼ N(µ, σ2),

f(xi | µ, σ2) =
1√
2πσ2

exp
{
−(xi − µ)2

2σ2

}
.

For a sample x = (x1, . . . , xn),

f(x | µ, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
.

Expand the quadratic:
n∑

i=1

(xi − µ)2 =

n∑
i=1

x2i − 2µ

n∑
i=1

xi + nµ2 = S2(x)− 2µS1(x) + nµ2.

Hence
f(x | µ, σ2) = (2πσ2)−n/2 exp

{
µ

σ2
S1(x)−

1

2σ2
S2(x)−

nµ2

2σ2

}
.

For two samples x and y, set ∆S1 = S1(x)− S1(y), ∆S2 = S2(x)− S2(y). Then

f(x | µ, σ2)

f(y | µ, σ2)
= exp

{
µ

σ2
∆S1 −

1

2σ2
∆S2

}
. (∗)

This is the key likelihood–ratio formula used in all parts.
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(a) and (b) Family N(µ, µ), µ > 0.
Here σ2 = µ, so substituting into (∗) gives

f(x | µ, µ)
f(y | µ, µ)

= exp
{
(∆S1)−

1

2µ
∆S2

}
.

(b) Minimal sufficiency of S2 =
∑

X2
i . The expression above is constant as a function of

µ if and only if the coefficient of 1/µ is zero, i.e.

∆S2 = 0 ⇐⇒ S2(x) = S2(y).

Thus the equivalence classes defined by the likelihood ratio are indexed by S2, so S2 is a
minimal sufficient statistic for µ.
To see that S2 is also sufficient, note that the joint density in this family can be written as

f(x | µ, µ) = (2πµ)−n/2 exp
{
− 1

2µ
S2(x)−

nµ

2

}
exp{S1(x)}.

The bracketed factor depends on x only through S2(x) and µ, while exp{S1(x)} is free of
µ. By the factorization criterion, S2 is sufficient for µ.
(a) (S1, S2) sufficient but not minimal. From the general density above (before specializing
σ2), we see that (S1, S2) is sufficient in any normal family, hence it is sufficient in N(µ, µ).
But S2 alone is minimal sufficient (part (b)) and S2 is a function of (S1, S2), whereas (S1, S2)
is not a function of S2 alone (different samples can share the same S2 but have different
S1). Therefore (S1, S2) cannot be minimal. So in the N(µ, µ) family, (S1, S2) is sufficient
but not minimal sufficient.

(c) Family N(µ, µ2), µ > 0.
Now σ2 = µ2. Substituting into (∗) gives

f(x | µ, µ2)

f(y | µ, µ2)
= exp

{
1

µ
∆S1 −

1

2µ2
∆S2

}
.

For this to be constant in µ > 0 we must have both coefficients zero:

∆S1 = 0 and ∆S2 = 0,

that is, S1(x) = S1(y) and S2(x) = S2(y). Therefore the equivalence classes are indexed by
(S1, S2), and

T (X) = (S1, S2) =

(
n∑

i=1

Xi,

n∑
i=1

X2
i

)
is a minimal sufficient statistic for µ in the N(µ, µ2) family.

5. [20] Let X1, . . . , Xn be a random sample from the inverse Gaussian distribution with pdf

f(x | µ, λ) =
(

λ

2πx3

)1/2

exp
{
−λ(x− µ)2

2µ2x

}
, 0 < x < ∞,

where µ > 0 and λ > 0. Show that the statistics

X̄ =
1

n

n∑
i=1

Xi and 1

X̂
=

n
n∑

i=1

1

Xi
− 1

X̄
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are sufficient and complete for (µ, λ).
Solution:
For one observation, the pdf is

f(x | µ, λ) =
(

λ

2πx3

)1/2

exp
{
−λ(x− µ)2

2µ2x

}
, x > 0.

Expand the exponent:

−λ(x− µ)2

2µ2x
= − λ

2x
+

λ

µ
− λx

2µ2
.

So we can rewrite
f(x | µ, λ) = c(µ, λ)h(x) exp

{
w(µ, λ)>t(x)

}
,

with

h(x) = x−3/2, t(x) =

(
x

1/x

)
, w(µ, λ) =

− λ

2µ2

−λ

2

 , c(µ, λ) =

(
λ

2π

)1/2

exp
(
λ

µ

)
.

For a sample X1, . . . , Xn, the joint density is

f(x1, . . . , xn | µ, λ) = c(µ, λ)n
n∏

i=1

h(xi) exp

{
w(µ, λ)>

n∑
i=1

t(xi)

}
.

By the factorization theorem, the statistic

T = (T1, T2) :=

(
n∑

i=1

Xi,

n∑
i=1

1

Xi

)

is sufficient for (µ, λ). By the completeness theorem for exponential families, this statistic is also
complete. Now consider the statistic in the problem,

X̄ =
1

n

n∑
i=1

Xi,
1

X̂
=

n
n∑

i=1

1

Xi
− 1

X̄

.

We can write X̄ and 1
X̂

directly as functions of T1, T2:

X̄ =
T1

n
,

1

X̂
=

n

T2 −
1

X̄

=
n

T2 −
n

T1

.

Thus (X̄, 1
X̂
) is a direct function of the complete sufficient statistic T = (T1, T2). A function of

a complete sufficient statistic is again complete and sufficient. Therefore (X̄, 1
X̂
) is a complete

sufficient statistic for (µ, λ).

6. [50] Let X1, . . . , Xn be i.i.d. with pdf

f(x | θ) = θxθ−1, 0 ≤ x ≤ 1, 0 < θ < ∞.
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(a) Find the MLE of θ, and show that its variance tends to 0 as n → ∞.
(b) Find the method of moments estimator of θ.

Solution:

(a) MLE of θ and its variance.
The joint density is

L(θ;x) =
n∏

i=1

θxθ−1
i = θn

n∏
i=1

xθ−1
i .

The log-likelihood is

`(θ) = logL(θ;x) = n log θ + (θ − 1)

n∑
i=1

logxi.

Differentiate:
d

dθ
`(θ) =

n

θ
+

n∑
i=1

logxi.

Setting this derivative equal to 0 gives

n

θ̂
+

n∑
i=1

logxi = 0 =⇒ θ̂ = − n
n∑

i=1

logXi

.

The second derivative,
d2

dθ2
`(θ) = − n

θ2
< 0,

shows that this is indeed the MLE.
To find its variance, set Yi = − logXi. Then for 0 < x < 1,

fYi(y) = θe−θy, y > 0,

so Yi has an exponential distribution with rate θ. Hence

T =

n∑
i=1

Yi = −
n∑

i=1

logXi

has a gamma distribution with shape n and rate θ (can be proved via MGF method)

fT (t) =
θn

Γ(n)
tn−1e−θt, t > 0.

We have θ̂ = n/T , so we need E(1/T ) and E(1/T 2). Using the gamma moments

E

(
1

T

)
=

θn

Γ(n)

∫ ∞

0
tn−2e−θt dt =

θn

Γ(n)
· Γ(n− 1)

θn−1
=

θ

n− 1
,

and
E

(
1

T 2

)
=

θn

Γ(n)

∫ ∞

0
tn−3e−θt dt =

θn

Γ(n)
· Γ(n− 2)

θn−2
=

θ2

(n− 1)(n− 2)
.
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Therefore
E(θ̂) = nE

(
1

T

)
= n

θ

n− 1
=

n

n− 1
θ,

and

V ar(θ̂) = n2V ar

(
1

T

)
= n2

[
E

(
1

T 2

)
−
(
E

(
1

T

))2
]
= n2

[
θ2

(n− 1)(n− 2)
− θ2

(n− 1)2

]
.

A short simplification gives

V ar(θ̂) =
n2 θ2

(n− 1)2(n− 2)
.

As n → ∞,

V ar(θ̂) =
n2

(n− 1)2(n− 2)
θ2 −→ 0,

so the variance of the MLE tends to zero.
(b) Method of moments estimator.

The given density is that of a Beta(θ, 1) distribution. Thus

E(X) =
θ

θ + 1
.

The sample mean X̄ is the method of moments estimator of E(X), so we set

X̄ =
θ

θ + 1

and solve for θ:

X̄(θ + 1) = θ =⇒ X̄θ + X̄ = θ =⇒ X̄ = θ(1− X̄) =⇒ θ̃ =
X̄

1− X̄
.

Equivalently, in terms of the sum
∑

Xi,

θ̃ =

n∑
i=1

Xi

n−
n∑

i=1

Xi

.

Thus θ̃ = X̄/(1− X̄) is the method of moments estimator of θ.

7. [20] Let X1, . . . , Xn be a sample from a population with double exponential (Laplace) pdf

f(x | θ) = 1

2
e−|x−θ|, −∞ < x < ∞, −∞ < θ < ∞.

Find the MLE of θ. (Hint: Consider the cases of even n and odd n separately, and express the
MLE in terms of the order statistics.)
Solution:
Let x(1) ≤ · · · ≤ x(n) denote the order statistics of the sample.
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The likelihood function is

L(θ | x) =
n∏

i=1

1

2
e−|xi−θ| = 2−n exp

(
−

n∑
i=1

|xi − θ|

)
.

Maximizing L is equivalent to minimizing

S(θ) =

n∑
i=1

|xi − θ|.

For x(j) ≤ θ ≤ x(j+1) (with the conventions x(0) = −∞, x(n+1) = ∞), we have

|x(i) − θ| =

{
θ − x(i), i ≤ j,

x(i) − θ, i ≥ j + 1.

Thus, for x(j) ≤ θ ≤ x(j+1),

S(θ) =
n∑

i=1

|x(i) − θ| =
j∑

i=1

(θ − x(i)) +
n∑

i=j+1

(x(i) − θ)

= jθ −
j∑

i=1

x(i) +

n∑
i=j+1

x(i) − (n− j)θ

= (2j − n)θ −
j∑

i=1

x(i) +

n∑
i=j+1

x(i).

So, on each interval [x(j), x(j+1)], S(θ) is a linear function of θ with slope 2j − n.
- If j < n/2, then 2j − n < 0 and S(θ) is decreasing in θ on that interval. - If j > n/2, then
2j − n > 0 and S(θ) is increasing in θ on that interval.
—

Case 1: n even

If n is even, say n = 2m, then 2j − n = 0 when j = n/2 = m. Hence for x(m) ≤ θ ≤ x(m+1) we
have slope 0, so S(θ) is constant on [x(m), x(m+1)]. For j < m the function decreases up to x(m),
and for j > m it increases after x(m+1). Thus any θ in the interval

[x(m), x(m+1)] = [x(n/2), x(n/2+1)]

minimizes S(θ) and is therefore an MLE. A common choice is the midpoint

θ̂ =
x(n/2) + x(n/2+1)

2
.
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Case 2: n odd

If n is odd, say n = 2m − 1, then 2j − n = 0 has no integer solution. For j < m the slope
2j − n < 0 and S(θ) is decreasing, while for j ≥ m the slope is positive and S(θ) is increasing.
Thus S(θ) attains its minimum at the unique point

θ̂ = x(m) = x((n+1)/2),

the sample median.
—
In summary, the MLE of θ is any median of the sample:
- If n is odd, θ̂ = x((n+1)/2). - If n is even, any θ̂ ∈ [x(n/2), x(n/2+1)] is an MLE (often the
midpoint of this interval is chosen).

8. [20] Let X be an observation from the pdf

f(x | θ) =
(
θ

2

)|x|
(1− θ)1−|x|, x = −1, 0, 1, 0 ≤ θ ≤ 1.

(a) Find the MLE of θ.
(b) Define the estimator

T (X) =

{
2, x = 1,

0, otherwise.

Show that T (X) is an unbiased estimator of θ.
(c) Find a better estimator than T (X) (in the sense of having smaller variance for all θ and

strictly smaller for some θ), and prove that it is better.

Solution:
First note that

Pθ(X = 0) = (1− θ), Pθ(X = 1) =
θ

2
, Pθ(X = −1) =

θ

2
,

and these probabilities sum to 1.

(a) MLE of θ.
For a single observation X = x, the likelihood is

L(θ | x) = f(x | θ) =

{
1− θ, x = 0,

θ/2, x = 1 or x = −1.

- If x = 0, the likelihood L(θ) = 1 − θ is decreasing in θ on [0, 1], so it is maximized at
θ̂ = 0. - If x = ±1, then L(θ) = θ/2 is increasing in θ on [0, 1], so it is maximized at θ̂ = 1.
Thus the MLE is

θ̂ =

{
0, X = 0,

1, X = ±1,

which can be written compactly as

θ̂ = I(|X| = 1) = I(X 6= 0).
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(b) T (X) is unbiased.
By definition,

T (X) =

{
2, X = 1,

0, X = 0 or X = −1.

Thus
Eθ[T (X)] = 2Pθ(X = 1) = 2 · θ

2
= θ.

Hence T (X) is an unbiased estimator of θ.
(c) A better estimator and proof.

Consider the estimator

T̃ (X) = I(X 6= 0) =

{
1, X = ±1,

0, X = 0.

(This is the indicator that X is nonzero.)
Its expectation is

Eθ[T̃ (X)] = Pθ(X 6= 0) = Pθ(X = 1) + Pθ(X = −1) =
θ

2
+

θ

2
= θ,

so T̃ (X) is also an unbiased estimator of θ.
Now compare variances.
For T (X),

T (X)2 =

{
4, X = 1,

0, X = 0,−1,

so
Eθ[T (X)2] = 4Pθ(X = 1) = 4 · θ

2
= 2θ.

Using Eθ[T (X)] = θ from part (b),

V arθ(T ) = Eθ[T
2]−

(
Eθ[T ]

)2
= 2θ − θ2 = θ(2− θ).

For T̃ (X), since it is an indicator,

Eθ[T̃ (X)2] = Eθ[T̃ (X)] = θ,

hence
V arθ(T̃ ) = θ − θ2 = θ(1− θ).

For all θ ∈ [0, 1],

V arθ(T )− V arθ(T̃ ) = θ(2− θ)− θ(1− θ) = θ
[
(2− θ)− (1− θ)

]
= θ ≥ 0,

with strict inequality for θ > 0. Therefore

V arθ(T̃ ) ≤ V arθ(T ) for all θ,

and V arθ(T̃ ) < V arθ(T ) for every θ > 0.
Thus T̃ (X) = I(X 6= 0) is a better unbiased estimator of θ than T (X).
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9. [30] Let X1, . . . , XN be i.i.d. with

Xi ∼ N(θ, σ2), i = 1, . . . , N,

where σ2 is known and θ is unknown. Denote X̄ = 1
N

∑N
i=1Xi.

(a) Assume the prior θ ∼ N(µ, σ2). Show that the posterior density can be written, up to a
constant factor, as

p(θ | x1, . . . , xN ) ∝ exp

{
− 1

2σ2

[
N∑
i=1

(xi − θ)2 + (θ − µ)2

]}
.

(b) Under the assumptions in part (a), find the MAP estimator of θ.
(c) Now assume the prior density

p(θ) =
1

2b
exp
(
−|θ − d|

b

)
,

and suppose that σ2 = 2b2. Show that, up to an additive constant, the negative log-
posterior can be written as

L(θ) =
N

4b2
(X̄ − θ)2 +

1

b
|θ − d|.

(d) Under the assumptions in part (c), find the MAP estimator of θ by minimizing L(θ), and
show that

θ̂MAP =


X̄ − 2b

N
, X̄ − d >

2b

N
,

X̄ +
2b

N
, X̄ − d < −2b

N
,

d, otherwise.

Solution:
Let X̄ = 1

N

∑N
i=1Xi.

(a) By Bayes’ formula, the posterior density is

p(θ | x1, . . . , xN ) =
p(x1, . . . , xN | θ) p(θ)∫ ∞

−∞
p(x1, . . . , xN | u) p(u) du

.

The likelihood is

p(x1, . . . , xN | θ) =
N∏
i=1

1√
2πσ2

exp
{
−(xi − θ)2

2σ2

}
,

and the prior is

p(θ) =
1√
2πσ2

exp
{
−(θ − µ)2

2σ2

}
.

12



Therefore the numerator of the posterior is

p(x1, . . . , xN | θ) p(θ) = (2πσ2)−(N+1)/2 exp

{
− 1

2σ2

[
N∑
i=1

(xi − θ)2 + (θ − µ)2

]}
.

The denominator ∫ ∞

−∞
p(x1, . . . , xN | u) p(u) du

is just a normalization constant (it depends on the data but not on θ). Hence, up to a
multiplicative constant,

p(θ | x1, . . . , xN ) ∝ exp

{
− 1

2σ2

[
N∑
i=1

(xi − θ)2 + (θ − µ)2

]}
,

which is the desired form.
(b) Define

L(θ) =
1

2σ2

[
N∑
i=1

(xi − θ)2 + (θ − µ)2

]
(the negative log-posterior, up to an additive constant). Then

dL

dθ
=

1

2σ2

[
2

N∑
i=1

(θ − xi) + 2(θ − µ)

]
=

1

σ2

[
(N + 1)θ −NX̄ − µ

]
.

Setting this equal to 0 gives

(N + 1)θ −NX̄ − µ = 0 ⇒ θ̂MAP =
NX̄ + µ

N + 1
.

Also
d2L

dθ2
=

N + 1

σ2
> 0,

so this is indeed the minimizer of L(θ), i.e. the MAP estimator.
(c) The negative log-likelihood (ignoring constants) is

− log p(x1, . . . , xN | θ) = 1

2σ2

N∑
i=1

(xi − θ)2 =
1

4b2

N∑
i=1

(xi − θ)2,

since σ2 = 2b2. Using

N∑
i=1

(xi − θ)2 =
N∑
i=1

(xi − X̄)2 +N(X̄ − θ)2,

the first term does not depend on θ, so up to an additive constant,

− log p(x1, . . . , xN | θ) = N

4b2
(X̄ − θ)2.

The prior density is

p(θ) =
1

2b
exp
(
−|θ − d|

b

)
,
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so (up to an additive constant)

− log p(θ) = 1

b
|θ − d|.

Therefore, up to an additive constant, the negative log-posterior is

L(θ) =
N

4b2
(X̄ − θ)2 +

1

b
|θ − d|.

(d) We minimize
L(θ) =

N

4b2
(X̄ − θ)2 +

1

b
|θ − d|.

Case 1: θ > d. Then |θ − d| = θ − d, so

L(θ) =
N

4b2
(X̄ − θ)2 +

1

b
(θ − d),

and
dL

dθ
= − N

2b2
(X̄ − θ) +

1

b
.

Set this to zero:
− N

2b2
(X̄ − θ) +

1

b
= 0 ⇒ θ = X̄ − 2b

N
.

This solution is valid in this case if θ > d, i.e. X̄ − d > 2b
N .

Case 2: θ < d. Then |θ − d| = d− θ, so

L(θ) =
N

4b2
(X̄ − θ)2 +

1

b
(d− θ),

and
dL

dθ
= − N

2b2
(X̄ − θ)− 1

b
.

Setting this to zero yields

− N

2b2
(X̄ − θ)− 1

b
= 0 ⇒ θ = X̄ +

2b

N
.

This belongs to this case if θ < d, i.e. X̄ − d < −2b
N .

Case 3: If
−2b

N
≤ X̄ − d ≤ 2b

N
,

then neither of the previous two interior solutions satisfies its inequality. In this situation
the derivative of L(θ) changes sign at θ = d, and L(θ) is minimized at θ = d.

Combining the three cases, the MAP estimator is

θ̂MAP =


X̄ − 2b

N
, X̄ − d >

2b

N
,

X̄ +
2b

N
, X̄ − d < −2b

N
,

d, otherwise.
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