

In the name of GOD.

Sharif University of Technology

Stochastic Process

Fall 2025

Hamid R. Rabiee

Homework 4

Estimation Theory

Deadline : 1404/10/05

1. [10] Let X_1, \dots, X_n be independent random variables with pdfs

$$f(x_i | \theta) = \begin{cases} \frac{1}{2i\theta}, & -i(\theta - 1) < x_i < i(\theta + 1), \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 0$. Find a two-dimensional sufficient statistic for θ .

2. [20] For each of the following distributions let X_1, \dots, X_n be a random sample. Find a minimal sufficient statistic for θ .

(a) Location exponential: $f(x | \theta) = e^{-(x-\theta)}, \quad \theta < x < \infty, -\infty < \theta < \infty$.
(b) Cauchy: $f(x | \theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \quad -\infty < x < \infty, -\infty < \theta < \infty$.

3. [20] Let X_1, \dots, X_n be a random sample from the $\text{Uniform}(\theta, \theta + 1)$ distribution, where $-\infty < \theta < \infty$.

(a) Find a minimal sufficient statistic for θ .
(b) Show that this minimal sufficient statistic is not complete.

4. [30] Let X_1, \dots, X_n be a random sample from a normal distribution. Denote $S_1 = \sum_{i=1}^n X_i$ and $S_2 = \sum_{i=1}^n X_i^2$. Prove the following statements.

(a) In the $N(\mu, \mu)$ family, the statistic (S_1, S_2) is sufficient but not minimal sufficient for μ .
(b) In the $N(\mu, \mu)$ family, the statistic S_2 is minimal sufficient for μ .
(c) In the $N(\mu, \mu^2)$ family, the statistic (S_1, S_2) is minimal sufficient for μ .

5. [20] Let X_1, \dots, X_n be a random sample from the inverse Gaussian distribution with pdf

$$f(x | \mu, \lambda) = \left(\frac{\lambda}{2\pi x^3} \right)^{1/2} \exp \left\{ -\frac{\lambda(x-\mu)^2}{2\mu^2 x} \right\}, \quad 0 < x < \infty,$$

where $\mu > 0$ and $\lambda > 0$. Show that the statistics

$$\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \quad \text{and} \quad \frac{1}{\hat{X}} = \frac{n}{\sum_{i=1}^n \frac{1}{X_i} - \frac{1}{\bar{X}}}$$

are sufficient and complete for (μ, λ) .

6. [50] Let X_1, \dots, X_n be i.i.d. with pdf

$$f(x | \theta) = \theta x^{\theta-1}, \quad 0 \leq x \leq 1, \quad 0 < \theta < \infty.$$

- (a) Find the MLE of θ , and show that its variance tends to 0 as $n \rightarrow \infty$.
- (b) Find the method of moments estimator of θ .

7. [20] Let X_1, \dots, X_n be a sample from a population with double exponential (Laplace) pdf

$$f(x | \theta) = \frac{1}{2} e^{-|x-\theta|}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

Find the MLE of θ . (Hint: Consider the cases of even n and odd n separately, and express the MLE in terms of the order statistics.)

8. [20] Let X be an observation from the pdf

$$f(x | \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|}, \quad x = -1, 0, 1, \quad 0 \leq \theta \leq 1.$$

- (a) Find the MLE of θ .
- (b) Define the estimator

$$T(X) = \begin{cases} 2, & x = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Show that $T(X)$ is an unbiased estimator of θ .

- (c) Find a better estimator than $T(X)$ (in the sense of having smaller variance for all θ and strictly smaller for some θ), and prove that it is better.

9. [30] Let X_1, \dots, X_N be i.i.d. with

$$X_i \sim N(\theta, \sigma^2), \quad i = 1, \dots, N,$$

where σ^2 is known and θ is unknown. Denote $\bar{X} = \frac{1}{N} \sum_{i=1}^N X_i$.

- (a) Assume the prior $\theta \sim N(\mu, \sigma^2)$. Show that the posterior density can be written, up to a constant factor, as

$$p(\theta | x_1, \dots, x_N) \propto \exp \left\{ -\frac{1}{2\sigma^2} \left[\sum_{i=1}^N (x_i - \theta)^2 + (\theta - \mu)^2 \right] \right\}.$$

- (b) Under the assumptions in part (a), find the MAP estimator of θ .
- (c) Now assume the prior density

$$p(\theta) = \frac{1}{2b} \exp \left(-\frac{|\theta - d|}{b} \right),$$

and suppose that $\sigma^2 = 2b^2$. Show that, up to an additive constant, the negative log-posterior can be written as

$$L(\theta) = \frac{N}{4b^2} (\bar{X} - \theta)^2 + \frac{1}{b} |\theta - d|.$$

(d) Under the assumptions in part (c), find the MAP estimator of θ by minimizing $L(\theta)$, and show that

$$\hat{\theta}_{\text{MAP}} = \begin{cases} \bar{X} - \frac{2b}{N}, & \bar{X} - d > \frac{2b}{N}, \\ \bar{X} + \frac{2b}{N}, & \bar{X} - d < -\frac{2b}{N}, \\ d, & \text{otherwise.} \end{cases}$$