
Stochastic Processes

Week 10 (Version 1.0)

Sampling Methods

Hamid R. Rabiee

Fall 2024



Overview

• Random Sampling

• Monte Carlo Principle

• Monte Carlo Markov Chain

• Metropolis Hasting

• Gibbs Sampling

• Monte Carlo & Nonparametric Bayesian 

models
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Random Sampling

•  - “very large” sample set.

•  - probability distribution over .



Goal: Sample points x at random from 

distribution .

x
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The Probability Distribution

Typically,

Z

)x(w
)x( =

w:→R+ is an easily-

computed weight function

Z=Σx w(x) is an unknown 

normalization factor
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Example: Permutation of N Distinct Object

•  - all N! permutations of N distinct objects.

•  - uniform distribution [x w(x)=1].



Goal: pick a permutation uniformly at random. 

…
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Why Sampling? 

• The use of samples allows us to conduct studies 

with more manageable data and in a timely 

manner. 

• Randomly drawn samples do not have much bias 

if they are large enough, but achieving such a 

sample may be expensive and time-consuming.

• We often need to compute statistics of “typical” 

configurations: estimating mean of a stochastic 

process or mean energy, …

• Estimating the statistics of a posterior density 

function in Bayesian inference.

6/44



Example: Estimating the Mean of f(X)

• Want to compute E[f(X)] for function f().

• Standard method for approximating E[f(X)]  is to 
generate many independent sample values of X 
and compute sample mean of f(X).

• Only useful in “trivial” cases where X  can be 
generated directly.

• Many practical problems have non-trivial 
distribution for X 

– E.g., state in nonlinear/non-Gaussian state-
space model, Bayesian inference, …
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The Monte Carlo Principle

• p(x): a target density defined over a high-dimensional space 

(samples, the space of all possible configurations of a system 

under study)

• The idea of Monte Carlo techniques is to draw a set of (iid) 

samples {x
(i)

} for i = 1, … , N, from p(x) in order to 

approximate p(x) with the empirical distribution:

• Using these samples, we can approximate integrals I(f) with 

tractable sums that converge (as the number of samples grows) 

to I(f):
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The Monte Carlo Core Concept

• The idea behind Monte Carlo sampling is to use randomness to 

approximate deterministic values. 

• For example, If you want to estimate the value of a definite 

integral: 

• you can approximate this integral using Monte Carlo sampling 

by:

• where xi are random samples drawn uniformly from [a,b]. 
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Steps & Benefits of Monte Carlo Sampling

Steps in Monte Carlo Sampling:

• Define the Problem: Represent the problem in terms of probabilities or 

expectations.

• Generate Samples: Draw random samples from the relevant distribution 

or space.

• Compute Function Values: Evaluate the target function for each sample.

• Aggregate Results: Combine the results (e.g., averaging, summing) to 

estimate the desired quantity.

Benefits of Monte Carlo Sampling

• Scalability: Works well in high-dimensional problems.

• Flexibility: Can handle complex, irregularly shaped domains or 

distributions.

• Accuracy: Improves with the number of samples, based on the law of 

large numbers.
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Example of Monte Carlo Sampling

Example: Estimating π Using Monte Carlo

• Imagine a circle inscribed in a square. The area of the circle 

(πr2) and the area of the square (4r2) give:

To estimate π:

1. Generate random points within the square.

2. Count how many points fall inside the circle.

3. Use the ratio of points in the circle to total points to estimate 

π:
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Importance Sampling

• Importance sampling is a statistical technique for 

estimating properties of a particular distribution using 

samples from a different distribution. 

• It is commonly used in situations where direct sampling 

from the target distribution is difficult or when some areas 

of the distribution contribute more significantly to the 

desired out

Key Concepts

1. Target Distribution (p(x)): The distribution you want to 

analyze or estimate properties for, such as mean or 

variance.

2. Proposal Distribution (q(x)): The distribution from which 

samples are drawn because it is easier to sample from than 

the target distribution. 12/44



Importance Sampling

Core Idea

• Instead of sampling directly from p(x), you sample from 

q(x) and reweight the samples to reflect their importance 

relative to p(x). The weights correct for the fact that q(x) is 

not the target distribution.
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Importance Sampling

• Estimating an Expectation

• Suppose you want to estimate the expectation of a function 

f(x) under the target distribution p(x):

• If sampling directly from p(x) is difficult, but you can 

sample from q(x), the expectation can be rewritten as:

• This implies:
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Importance Sampling

where:

• xi∼q(x)

•                      are the importance weights.

• Normalized Weights to ensure stability and better 

convergence:

Applications

• Monte Carlo Integration: Estimate integrals where direct 

evaluation is difficult.

• Bayesian Inference: Approximating posterior distributions 

in cases with complex likelihoods.

• Reinforcement Learning: Adjusting for the difference 

between behavior and target policies.
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Importance Sampling

Challenges

• Choice of Proposal Distribution: q(x) must adequately 

cover the regions where p(x) is significant. Poor choices 

can lead to large variances in the estimates.

• Weight Calculation: Large differences between p(x) and 

q(x) can result in extreme weights, leading to numerical 

instability.

Tips

• Ensure q(x) has heavier tails than p(x) to avoid zero 

weights.

• Normalize weights to improve stability.
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Sequential Monte Carlo

• Advantages of Sequential Sampling: 

– Real time processing

– Dealing with non-stationarity

– Not having to store the data

• Goal: Estimate the distribution of ‘hidden’ 

trajectories:

– We observe yt at each time t:

– We have a model:

• Initial distribution:

• Dynamic model:

• Measurement model:

where),|( :1:0 tt yxp
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• Can define a proposal distribution:

• Then the importance weights are:

• Simplifying the choice for proposal distribution:
Then:

‘fitness’

Sequential Monte Carlo
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Sequential Monte Carlo
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‘proposed’

‘weighted’

‘re-sampled’

‘proposed’

---------

‘weighted’





Sequential Monte Carlo
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Three uses of Monte Carlo methods

1. For solving problems of probabilistic inference 
involved in developing computational models

2. As a source of hypotheses about how the mind 
might solve problems of probabilistic inference 

3. As a way to explore people’s subjective 
probability distributions
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Applications of Monte Carlo Sampling

• Computer vision

• Speech & audio enhancement

• Web statistics estimation

• Regression & classification

• Bayesian networks

• Genetics & molecular biology

• Robotics, etc.

• …
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Markov Chain Monte Carlo

• Basic idea: Construct a Markov chain that will 

converge to the target distribution and draw 

samples from that chain.

• Just uses something proportional to the target 

distribution (good for Bayesian inference!).

• Can work in state spaces of arbitrary (including 

unbounded) size (good for nonparametric Bayes).
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Variables x(t+1) independent of all previous 

variables given immediate predecessor x(t)

Markov Chains

x x x x x x x x

Transition matrix

T = P(x(t+1)|x(t))
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An example: Card Shuffling

• Each state x(t) is a permutation of a deck of 

cards (there are 52! permutations)

• Transition matrix T indicates how likely one 

permutation will become another

• The transition probabilities are determined by 

the shuffling procedure:

– Riffle Shuffle

– Overhand

– One Card
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Convergence of Markov Chains

• Why do we shuffle cards?

• Convergence to a uniform distribution takes 

only 7 riffle shuffles…

• Other Markov chains will also converge to a 

stationary distribution, if certain simple 

conditions are satisfied (called “ergodicity”)

– e.g. every state can be reached in some number of 

steps from every other state
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Modern Monte Carlo methods

• Sampling schemes for distributions with large state 
spaces known up to a multiplicative constant

• Two approaches:

– Importance Sampling (particle filters)

– Markov Chain Monte Carlo
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Markov chain Monte Carlo

• States of chain are variables of interest

• Transition matrix chosen to give target 

distribution as stationary distribution

x x x x x x x x

Transition matrix

T = P(x(t+1)|x(t))
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The Markov Chain Monte Carlo (MCMC)

• Design a Markov Chain on finite state space:

   such that when simulating a trajectory of 

states from it, it will explore the state space 

spending more time in the most important 

regions (i.e. where p(x) is large)
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Stationary distribution of a MC

• Suppose you browse 

the Web for an 

infinitely long time, no 

matter where you 

started:

• What is the probability 

of being at page xi.

  =>PageRank (Google)

T= −− )|(),...,|( )1()()1()1()( iiii xxTxxxp

)()(..),()()...))((( )1()1( xpxptsxpxx n === TTTTT 
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Google vs. MCMC

• Google: given T, finds p(x)

• MCMC: given p(x), finds T

– But it also needs a ‘proposal (transition) 

probability distribution’ to be specified.

• Q: Do all MCs have a stationary distribution?

• A: No.

)()( xpxp =T
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Conditions for existence of a unique 

stationary distribution

• Irreducibility

– The transition graph is connected (any state can be 

reached)

• Aperiodicity

– State trajectories drawn from the transition don’t get 

trapped into cycles

• MCMC samplers are irreducible and aperiodic 

MCs that converge to the target distribution

• These 2 conditions are not easy to impose directly
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Reversibility

• Reversibility (also called ‘detailed balance’) 
is a sufficient (but not necessary) condition 
for p(x) to be the stationary distribution.

• It is easier to work with this condition.
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MCMC Algorithms

• Metropolis-Hastings algorithm

• Metropolis algorithm

– Mixtures and blocks

• Gibbs sampling

• Sequential Monte Carlo & Particle Filters
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Metropolis-Hastings Algorithm

• Transitions have two parts:

– proposal distribution: q(x(t+1)|x(t))

– acceptance: take proposals with probability

     A(x(t),x(t+1)) = min( 1,                            )
P(x(t+1)) q(x(t)|x(t+1))

P(x(t)) q(x(t+1)|x(t))

35/44



Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 0.5

p(x)
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Metropolis-Hastings algorithm

p(x)

40/44



Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 1

p(x)
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Examples of M-H simulations with q(x) a Gaussian

with variance 
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The Metropolis-Hastings and the Metropolis 

algorithm as a special case

Obs. The target distrib p(x) in only needed up to normalization.
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The Metropolis-Hastings Tutorial Clip
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Gibbs Sampling

• Component-wise proposal q(x):

Where the notation means:

• In this case, the acceptance probability is                          

                                      =1 

Gibbs sampling is a computationally convenient

Bayesian inference algorithm that is a special

case of the Metropolis–Hasting's algorithm.
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Gibbs Sampling

Particular choice of proposal distribution

  For variables x = x1, x2, …, xn

   Draw xi
(t+1) from P(xi|x-i)

x-i = x1
(t+1), x2

(t+1),…, xi-1
(t+1)

, xi+1
(t)

, …, xn
(t)

(this is called the full conditional distribution)
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Gibbs sampling

(MacKay, 2002)

X1 X2

X1 X2



Gibbs sampling algorithm
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The Promise of Particle Filters

• People need to be able to update probability 
distributions over large hypothesis spaces as more 
data becomes available

• Particle filters provide a way to do this with 
limited computing resources: 

– Maintain a fixed finite number of samples

• Not just for dynamic models:

– Can work with a fixed set of hypotheses, although this 
requires some further tricks for maintaining diversity

49/44



The Magic of MCMC Methods

• Since we only ever need to evaluate the relative 

probabilities of two states, we can have huge 

state spaces (much of which we rarely reach)

• In fact, our state spaces can be infinite

– Common with nonparametric Bayesian models

• But… the guarantees it provides are asymptotic

– Making algorithms that converge in practical 

amounts of time is a significant challenge
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• Associated demos & further papers: 
http://www.robots.ox.ac.uk/~misard/condensation.html.

• Nando de Freitas’ MCMC papers & sw
http://www.cs.ubc.ca/~nando/software.html.
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Next Weeks:

I hope you enjoyed this course!

Have a good Final Exam!

52/44


	Slide 1: Stochastic Processes
	Slide 2
	Slide 3: Random Sampling
	Slide 4: The Probability Distribution
	Slide 5: Example: Permutation of N Distinct Object
	Slide 6: Why Sampling? 
	Slide 7: Example: Estimating the Mean of f(X)
	Slide 8: The Monte Carlo Principle
	Slide 9: The Monte Carlo Core Concept
	Slide 10: Steps & Benefits of Monte Carlo Sampling
	Slide 11: Example of Monte Carlo Sampling
	Slide 12: Importance Sampling
	Slide 13: Importance Sampling
	Slide 14: Importance Sampling
	Slide 15: Importance Sampling
	Slide 16: Importance Sampling
	Slide 17: Sequential Monte Carlo
	Slide 18: Sequential Monte Carlo
	Slide 19: Sequential Monte Carlo
	Slide 20
	Slide 21: Three uses of Monte Carlo methods
	Slide 22: Applications of Monte Carlo Sampling
	Slide 23: Markov Chain Monte Carlo
	Slide 24: Markov Chains
	Slide 25: An example: Card Shuffling
	Slide 26: Convergence of Markov Chains
	Slide 27: Modern Monte Carlo methods
	Slide 28: Markov chain Monte Carlo
	Slide 29: The Markov Chain Monte Carlo (MCMC)
	Slide 30: Stationary distribution of a MC
	Slide 31: Google vs. MCMC
	Slide 32: Conditions for existence of a unique stationary distribution
	Slide 33: Reversibility
	Slide 34: MCMC Algorithms
	Slide 35: Metropolis-Hastings Algorithm
	Slide 36: Metropolis-Hastings algorithm
	Slide 37: Metropolis-Hastings algorithm
	Slide 38: Metropolis-Hastings algorithm
	Slide 39: Metropolis-Hastings algorithm
	Slide 40: Metropolis-Hastings algorithm
	Slide 41: Metropolis-Hastings algorithm
	Slide 42
	Slide 43: The Metropolis-Hastings and the Metropolis algorithm as a special case
	Slide 44: The Metropolis-Hastings Tutorial Clip
	Slide 45: Gibbs Sampling
	Slide 46: Gibbs Sampling
	Slide 47: Gibbs sampling
	Slide 48: Gibbs sampling algorithm
	Slide 49: The Promise of Particle Filters
	Slide 50: The Magic of MCMC Methods
	Slide 51: References & Resources
	Slide 52

