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Markov Property
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• A discrete process has the Markov property if

given its value at time t, the value at time t+1 is

independent of values at times before t.

That is:

𝑃𝑟 𝑋𝑡+1 = 𝑥𝑡+1 𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋1 = 𝑥1
= 𝑃𝑟 𝑋𝑡+1 = 𝑥𝑡+1 𝑋𝑡 = 𝑥𝑡

For all t, xt+1, xt, 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1.



Stationary Property

• A Markov Process is called stationary if:

Pr 𝑋𝑡+1 = 𝑢|𝑋𝑡 = 𝑣 = Pr 𝑋1 = 𝑢|𝑋0 = 𝑣 for all t.

• The evolution of stationary processes don’t change over 

time. 

• For defining the complete joint distribution of a 

stationary Markov Process it is sufficient to define 

Pr 𝑋1 = 𝑢|𝑋0 = 𝑣 and Pr 𝑋0 = 𝑣 for all u and v.

• We will mainly consider stationary Markov processes

here.
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Markov Process Types
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• There exist two types of Markov processes based 

on domain of 𝑋𝑡 values:

• Discrete

• Continuous

• Discrete Markov processes are called “Markov 

Chains” (MC).



Markov Process Types
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Type of Parameter

State Space Discrete                  Continuous

Discrete-Time            Continuous-Time

Discrete Markov Chain         Markov Chain

Continuous Discrete-Time           Continuous-Time

Markov Process         Markov Process

• In this course we will focus on stationary MCs.



Example (Coin Tossing Game)

• Consider a single player game in which at every 

step a biased coin is tossed and according to the 

result, the score will be increased or decreased by 

one point.

• The game ends if either the score reaches 100 

(winning) or -100 (losing).

• Score of the player at each step 𝑡 ≥ 0 is a random 

variable and the sequence of scores as the game 

progresses forms a random process 𝑋0, 𝑋1, … , 𝑋𝑡.
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Example (Coin Tossing Game)

• It is easy to verify that X is a stationary Markov chain: At 

the end of each step the score solely depends on the current 

score 𝑠𝑐 and the result of tossing the coin (which is 

independent of time and previous tosses).

• Stating this mathematically (for 𝑠𝑐 ∉ {−100,100}):
𝑃𝑟 𝑋𝑡+1 = 𝑠 𝑋𝑡 = 𝑠𝑐 , 𝑋𝑡−1 = 𝑠𝑡−1, … , 𝑋0 = 0

= ቐ
𝑝 ; 𝑠 = 𝑠𝑐 + 1
1 − 𝑝 ; 𝑠 = 𝑠𝑐 − 1
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑃𝑟 𝑋𝑡+1 = 𝑠 𝑋𝑡 = 𝑠𝑐 = 𝑃𝑟 𝑋1 = 𝑠 𝑋0 = 𝑠𝑐

• If value of p was subject to change in time, the process would 

not be stationary (in the formulation we would have 𝑝𝑡
instead of p).
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Independent of t 

and 𝑠0, … , 𝑠𝑡−1



Transition matrix

• According to the Markov property and stationary 

property, at each time step the process moves 

according to a fixed transition matrix:

𝑃 𝑋𝑡+1 = 𝑗 𝑋𝑡 = 𝑖 = 𝑝𝑖𝑗

• Stochastic matrix: Rows sum up to 1.

Double stochastic matrix: Rows and columns sum 

up to 1.

9



State Graph

• It is convenient to visualize a stationary Markov Chain 

with a transition diagram:

• A node represents a possible value of 𝑋𝑡 (state). At 
each time t, we say the process is in state 𝑠 if 𝑋𝑡=s.

• Each edge represents the probability of going from one 

state to another (we omit edges with zero weight).

• We should also specify the vector of initial 

probabilities 𝜋 = 𝜋1, … , 𝜋𝑛 where 𝜋𝑖 = Pr(𝑋0 = 𝑖).

• A stationary discrete process could be described as a person 

walking randomly on a graph (considering each step to 

depend only on the state he/she is currently in). The 

resulted path is called a “Random Walk”.
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Example

• The transition diagram of the coin tossing game is:

• We modeled winning and losing by states which when we get 

into, we never get out.

• Note that if the process was not stationary we were not able to 

visualize it in this way: For example consider the case that p is 

changing in time.

11

-100 -99 -98 99 100

p p p p

1-p 1-p 1-p 1-p

11



Example 1 (Modeling Weather)

• Example: Assume each day is sunny or rainy. If a day is 

rainy, the next day is rainy with probability 𝛼 (and sunny 

with probability 1 − 𝛼). If the day is sunny, the next day is 

rainy with probability 𝛽 (and sunny with probability 1 −
𝛽).

S = {rainy, sunny}, 𝑃 =
𝛼 1 − 𝛼
𝛽 1 − 𝛽
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Examplem 2 (Modeling Weather)

13

Suppose that whether or not it rains today depends on previous 

weather conditions through the last two days. 

Suppose that:

• if it has rained for the past two days, then it will rain 

tomorrow with probability 0.7

• if it rained today but not yesterday, then it will rain tomorrow 

with probability 0.5

• if it rained yesterday but not today, then it will rain tomorrow 

with probability 0.4

• if it has not rained in the past two days, then it will rain 

tomorrow with probability 0.2.



Examplem 2 (Modeling Weather)
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If we let the state at time n depend only on whether or 

not it is raining at time n, then the preceding model is 

not a Markov chain. 

We can transform this model into a Markov chain by 

saying that the state at any time is determined by the 

weather conditions during both that day and the 

previous day:

state 0 if it rained both today and yesterday,

state 1 if it rained today but not yesterday,

state 2 if it rained yesterday but not today,

state 3 if it did not rain either yesterday or today.



Example 2 (Modeling Weather)

t-1 t t+1 (p(R))

𝑆0 R R 0.7

𝑆1 S R 0.5

𝑆2 R S 0.4

𝑆3 S S 0.2

𝑆0 0.7 0 0.3 0
𝑆 0.5 0 0.5 0
𝑆2 0 0.4 0 0.6
𝑆 0 0.2 0 0.8

1

3

𝑆0 𝑆1 𝑆2 𝑆3
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The Chapman-Kolmogorov Equation

• Define the n-step transition 𝑝𝑖𝑗
(𝑛)

as the probability that 

starting from state i, the process stops at state j after n time 

steps:

𝑝𝑖𝑗
(𝑛)

= P{Xn+m= j | Xm= i}

• Then the Chapman-Kolomogorov equation is given by:

𝑝𝑖𝑗
(𝑛+𝑚)

= σ𝑘=0
∞ 𝑝𝑖𝑘

(𝑛)
𝑝𝑘𝑗
(𝑚)

• Corollary 1: 𝑃(𝑛) can be calculated by:  𝑃(𝑛) = 𝑃𝑛

• Corollary 2: If the process starts at time 0 with 

distribution 𝜋 on the states then after n steps the 

distribution is 𝜋𝑃𝑛.
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The Chapman-Kolmogorov Equation



𝑃(2) = 𝑃(1+1) = 𝑃 1 𝑃(1) = 𝑃 ⋅ 𝑃 = 𝑃2

𝑃(𝑛) = 𝑃(𝑛 −1+1) = 𝑃 𝑛−1 𝑃(1) = 𝑃𝑛−1𝑃 = 𝑃𝑛

𝑃(1) =
0.7 0.3
0.4 0.6

𝑃(2) = 𝑃2 =
0.61 0.39
0.52 0.48

𝑃(4) = 𝑃2𝑃2 =
0.57 0.43
0.57 0.43
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The Chapman-Kolmogorov Equation

• Corollary 1: 𝑃(𝑛) can be calculated by:  𝑃(𝑛) = 𝑃𝑛



Example 2 (Modeling Weather)

𝑆0 𝑆1 𝑆2 𝑆3  

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

𝑆0

𝑆1

𝑆2

𝑆3

• If Monday and Tuesday 

are raining, what is the 

probability of raining on 

Thursday?

𝑃2 = 𝑃2 =

0.7 0 0.3 0 2 0.49 0.12 0.21 0.18
0.5 0 0.5 0 = 0.35 0.2 0.15 0.3
0 0.4 0 0.6 0.2 0.12 0.2 0.48
0 0.2 0 0.8 0.1 0.16 0.1 0.64

19

Since rain on Thursday is equivalent to the process being in 

either state 0 or state 1 on Thursday, the desired probability is 

given by P2
00 + P2

01 = 0.49 + 0.12 = 0.61.



Absorbing Markov Chain

• An absorbing state is one in which the probability that the 

process remains in that state once it enters the state is 1 

(i.e., 𝑝𝑖𝑖 = 1).

• A Markov chain is absorbing if it has at least one absorbing 

state, and if from every state it is possible to go to an 

absorbing state (not necessarily in one step). 

• An absorbing Markov chain will eventually enter one of the 

absorbing states and never leave it.

• Example: The 100 and -100 states in coin tossing game 

(Note: After playing long enough, the player will either win 

or lose with probability 1.

20
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Absorption Theorem

• In an absorbing Markov chain the probability that the 

process will be absorbed is 1. 

• Proof: From each non-absorbing state 𝑠𝑗 it is possible to

reach an absorbing state starting from 𝑠𝑗. Therefore there

exists p and m, such that the probability of not absorbing

after m steps is at most p, in 2m steps at most 𝑝2, etc.

• Since the probability of not being absorbed is 

monotonically decreasing, we have:

lim
𝑛→∞

P(not absorbed after n steps) = 0

21



Classification of States

• Accessibility: State j is said to be accessible from state i if 

starting in i it is possible that the process will ever enter 

state j:  (𝑃𝑛)𝑖𝑗> 0.

• Communication: Two states i and j that are accessible to 

each other are said to communicate.

• Every node communicates with itself:

p𝑖𝑖
0
= P 𝑋0 = 𝑖 𝑋0 = 𝑖 = 1

• Communication is an equivalence relation: It divides 

the state space up into a number of separate classes in 

which every pair of states communicate.

• The Markov chain is said to be irreducible if it has only 

one class.
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Transient and Recurrent states

• For any state i we let 𝑓𝑖 denote the probability that, starting in 

state i, the process will ever reenter state i:

𝑓𝑖 = Pr ∃𝑛: 𝑋𝑛 = 𝑖 𝑋0 = 𝑖)

• State i is said to be recurrent if  f𝑖 = 1 and transient if  f𝑖 < 1.

• Theorem 1: State i is recurrent if and only if, starting in state i, 

the expected number of time periods that the process is in state i

is infinite:

• Corollary 1: A transient state will only be visited a finite number 

of times.

Proof: 𝐸 𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 𝑋0 = 𝑖

= 

𝑘=1

∞

𝑘 × 𝑃𝑟(𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 = 𝑘|𝑋0 = 𝑖)

= …+∞× 𝑝𝑟𝑜𝑏 𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 = ∞|𝑋0 = 𝑖 < ∞

⇒ 𝑝𝑟𝑜𝑏 𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 = ∞|𝑋0 = 𝑖 = 0
23



Transient and Recurrent states

• Theorem 2: State i is recurrent iff

σ𝑛=1
∞ (𝑃𝑛)

𝑖𝑖
= ∞.

(Look at the reference book for proof).

• Corollary 2: A finite state Markov chain has at 

least one recurrent state.

If all states are transient there will be a finite 

number of steps that after that the process should 

not be in any state (which is a contradiction).
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Ergodic States

• If state i is recurrent, then it is said to be positive 

recurrent if, starting in i, the expected time until the 

process returns to state i is finite.

• In a finite-state MC, all recurrent states are positive 

recurrent. 

• State i is said to have period d(i) if  𝑝𝑛 𝑖𝑖=0 

whenever n is not divisible by d, and d is the largest 

integer with this property.

• Equivalently: 𝑑 = gcd 𝑛: Pr 𝑋𝑛 = 𝑖 𝑋0 = 𝑖 > 0}

• A state with period 1 is said to be aperiodic.

• We call an MC aperiodic if all its states are 

aperiodic.
25



Ergodic States

• A state i is said to be ergodic if it is aperiodic and 

positive recurrent.

• Period, recurrence and positive recurrence are all 

class properties. They are shared between states of 

a class.
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Example
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𝐶𝑙𝑎𝑠𝑠𝑒𝑠: 1 , 2,3 , 4,5 , 6 , 7,8
𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒𝑠: 6,7,8

𝐴𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒𝑠: 6
𝐸𝑟𝑔𝑜𝑑𝑖𝑐 𝑠𝑡𝑎𝑡𝑒𝑠: 6
𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑠𝑡𝑎𝑡𝑒𝑠: 2, 3, 7, 8: 𝑃𝑒𝑟𝑖𝑜𝑑 2
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Example
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As time goes to infinity, what is the probability of 

being in each class?

Answer: 

• The process will be in transient classes 

{1},{2,3},{4,5} with probability 0. 

• Problem is symmetric for entering classes {6} and 

{7,8} as their only input edge is one from 5 with 

equal probabilities 0.25, and once it enters them, 

there is no way out.

• Therefore, at infinity probability of being in each 

of these two classes is 0.5.



Example
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If the process is absorbed in {7,8} (which could be 

considered as an absorbing super state) what will 

happen after that?

Answer:

• It will alternate between 7 and 8 to the end. 

Therefore, at time 𝑡 → ∞ probability of being in 7 

(or 8) will depend on the parity of t. In general 

finding the exact behavior of non-ergodic states as 

𝑡 → ∞ is not easy. 



Steady State

30

Theorem: For an irreducible ergodic Markov chain lim
𝑛→∞

𝑃𝑛 𝑖𝑗

exists and is independent of 𝑖. Furthermore, letting:

𝜋𝑗
∗ = lim

𝑛→∞
𝑃𝑛 𝑖𝑗

Then 𝜋∗ = 𝜋1
∗, … 𝜋𝑑

∗ 𝑡 is unique nonnegative solution of:

𝜋∗ = 𝜋∗𝑃



𝑗=1

𝑑

𝜋𝑗 = 1

• If the ergodicity condition is removed, lim
𝑛→∞

𝑃𝑛 𝑖𝑗 does not 

exist in general, but the given equations yet have a unique 

solution 𝜋∗ = 𝜋1
∗, … 𝜋𝑑

∗ 𝑡 in which 𝜋𝑗
∗ will be equal to the long 

run proportion of time that the Markov chain is in state j.



Example
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• Consider the weather  model example discussed before. We 

want to see how will the weather be when time goes to 

infinity:

𝑃 =
𝛼 1 − 𝛼
𝛽 1 − 𝛽

൞

𝜋0
∗ = 𝛼𝜋0

∗ + 𝛽𝜋1
∗

𝜋1
∗ = 1 − 𝛼 𝜋0

∗ + 1 − 𝛽 𝜋1
∗

𝜋0
∗ + 𝜋1

∗ = 1

• Which yields that 𝜋0
∗ =

𝛽

1+𝛽−𝛼
and 𝜋1

∗ =
1−𝛼

1+𝛽−𝛼
.

• Exercise: In each of the following cases investigate the 

existence of solution and its meaning:

• 1) 𝛼=0 and 𝛽 = 1
• 2) 𝛼=1 and 𝛽 = 0

One of these equations

is redundant. (why?)



Introduction to Hidden 

Markov Models



• Set of states: 

• Process moves from one state to another generating a 

sequence of states :    

• Markov chain property:  probability of each subsequent state 

depends only on what was the previous state:

• To define a Markov model, the following probabilities have to be 

specified: transition probabilities                               and initial 

probabilities

Markov Models

},,,{ 21 Nsss 

 ,,,, 21 ikii sss

)|(),,,|( 1121   ikikikiiik ssPssssP 

)|( jiij ssPa 
)( ii sP
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Rainy Sunny

0.70.3

0.2 0.8

• Two states : ‘Rainy’ and ‘Sunny’.

• Transition probabilities: P(‘Rainy’|‘Rainy’)=0.3 , 

P(‘Sunny’|‘Rainy’)=0.7 , P(‘Rainy’|‘Sunny’)=0.2, 

P(‘Sunny’|‘Sunny’)=0.8

• Initial probabilities: say P(‘Rainy’)=0.4 , P(‘Sunny’)=0.6 .

Example of Markov Model
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Hidden Markov models.
• Set of states: 

•Process moves from one state to another generating a 

sequence of states :

• Markov chain property:  probability of each subsequent state 

depends only on what was the previous state:

• States are not visible, but each state randomly generates one of M 

observations (or visible states)

• To define hidden Markov model, the following probabilities  

have to be specified: matrix of transition probabilities A=(aij), 

aij= P(si | sj) , matrix of observation probabilities B=(bi (vm )), 

bi(vm )= P(vm | si) and a vector of initial probabilities  =(i),  

i = P(si) . Model is represented by M=(A, B, ).

},,,{ 21 Nsss 

 ,,,, 21 ikii sss

)|(),,,|( 1121   ikikikiiik ssPssssP 

},,,{ 21 Mvvv 
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Low High

0.70.3

0.2 0.8

SunnyRainy

0.6 0.6
0.4 0.4

Example of Hidden Markov Model

36

Hidden States



• Two states : ‘Low’ and ‘High’ atmospheric pressure.

• Two observations : ‘Rainy’ and ‘Sunny’.

• Transition probabilities: P(‘Low’|‘Low’)=0.3 , 

P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2, 

P(‘High’|‘High’)=0.8

• Observation probabilities : P(‘Rainy’|‘Low’)=0.6 , 

P(‘Sunny’|‘Low’)=0.4 , P(‘Rainy’|‘High’)=0.4 , 

P(‘Sunny’|‘High’)=0.3 .

• Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .

Example of Hidden Markov Model

37



• Suppose we want to calculate a probability of a sequence 

of observations in our example,  {‘Sunny’,’Rainy’}.

• Consider all possible hidden state sequences: 

P({‘Sunny’,’Rainy’} ) = P({‘Sunny’,’Rainy’} , 

{‘Low’,’Low’}) + P({‘Sunny’,’Rainy’} , {‘Low’,’High’}) + 

P({‘Sunny’,’Rainy’} , {‘High’,’Low’}) + 

P({‘Sunny’,’Rainy’} , {‘High’,’High’}) 

where first term is : 

P({‘Sunny’,’Rainy’} , {‘Low’,’Low’})= 

P({‘Sunny’,’Rainy’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) = 

P(‘Sunny’|’Low’)P(‘Rainy’|’Low’) P(‘Low’)P(‘Low’|’Low)

= 0.4*0.4*0.6*0.4*0.3

Calculation of observation sequence probability

38



Evaluation problem. Given the HMM  M=(A, B, ) and  the 

observation sequence  O=o1 o2 ... oK , calculate the probability that 

model M has generated sequence  O .

• Decoding problem. Given the HMM  M=(A, B, ) and  the 

observation sequence  O=o1 o2 ... oK , calculate the most likely 

sequence of hidden states si that produced this observation sequence 

O.

• Learning problem. Given some training observation sequences  

O=o1 o2 ... oK and general structure of HMM (numbers of hidden 

and visible states), determine HMM parameters M=(A, B, ) 
that best fit training data. 

O=o1...oK denotes a sequence of observations ok{v1,…,vM}.

Main issues using HMMs :

39



• Typed word recognition, assume all characters are separated.

• Character recognizer outputs probability of the image being 

particular character, P(image|character).

0.5

0.03

0.005

0.31z

c

b

a

Word recognition example(1).

Hidden state                   Observation
40



• Hidden states of HMM = characters.

• Observations = typed images of characters segmented from the 

image         . Note that there is an infinite number of 

observations

• Observation probabilities = character recognizer scores.     

•Transition probabilities will be defined differently in two 

subsequent models. 

Word recognition example(2).

   )|()( ii svPvbB  

v
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• If  lexicon is given, we can construct separate HMM models 

for each lexicon word.

Amherst a m h e r s t

Buffalo b u f f a l o

0.5 0.03

• Here recognition of word image is equivalent to the problem 

of evaluating few HMM models.

•This is an application of Evaluation problem.

Word recognition example(3).

0.4 0.6
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• We can construct a single HMM for all words.

• Hidden states = all characters in the alphabet.

• Transition probabilities and initial probabilities are calculated 

from language model.

• Observations and observation probabilities are as before.

a m

h e

r

s

t

b v

f

o

• Here we have to determine the best sequence of hidden states, 

the one that most likely produced word image.

• This is an application of Decoding problem.

Word recognition example(4).
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• The structure of hidden states is chosen.

• Observations are feature vectors extracted from vertical slices.

• Probabilistic mapping from hidden state to feature vectors: 

1. use mixture of Gaussian models

2. Quantize feature vector space.

Character recognition with HMM example.
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•Evaluation problem. Given the HMM  M=(A, B, ) and  the 

observation sequence  O=o1 o2 ... oK , calculate the probability that 

model M has generated sequence O.

• Trying to find probability of observations O=o1 o2 ... oK by 

means of considering all hidden state sequences (as was done in 

example) is impractical: 

NK hidden state sequences - exponential complexity.

• Use Forward-Backward HMM algorithms for efficient 

calculations.

• Define the forward variable k(i) as the joint probability of the 

partial observation sequence o1 o2 ... ok  and that the hidden state at 

time k is si : k(i)= P(o1 o2 ... ok , qk= si ) 

Evaluation Problem.

45



s1

s2

si

sN

s1

s2

si

sN

s1

s2

sj

sN

s1

s2

si

sN

a1j

a2j

aij

aNj

Time=     1                                         k                    k+1                                  K

o1                                          ok ok+1                                 oK =   Observations

Trellis representation of an HMM
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• Initialization:

1(i)= P(o1  , q1= si ) = i bi (o1) , 1<=i<=N.

• Forward recursion:

k+1(i)= P(o1 o2 ... ok+1 , qk+1= sj ) = 

i P(o1 o2 ... ok+1 , qk= si , qk+1= sj ) = 

i P(o1 o2 ... ok , qk= si) aij bj (ok+1 ) = 

[i k(i) aij ] bj (ok+1 ) ,     1<=j<=N, 1<=k<=K-1.

• Termination:

P(o1 o2 ... oK) = i P(o1 o2 ... oK , qK= si) = i K(i)

• Complexity : 

N2K operations.

Forward recursion for HMM
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• Define the backward variable k(i) as the joint probability of the 

partial observation sequence ok+1 ok+2 ... oK given  that the hidden 

state at time k is si : k(i)= P(ok+1 ok+2 ... oK |qk= si )
• Initialization:

K(i)= 1 , 1<=i<=N.

• Backward recursion:

k(j)= P(ok+1 ok+2 ... oK | qk= sj) = 

i P(ok+1 ok+2 ... oK , qk+1= si | qk= sj ) = 

i P(ok+2 ok+3 ... oK | qk+1= si) aji bi (ok+1 ) = 

i k+1(i) aji bi (ok+1 ) ,     1<=j<=N, 1<=k<=K-1.

• Termination:

P(o1 o2 ... oK) = i P(o1 o2 ... oK , q1= si) = 

i P(o1 o2 ... oK |q1= si) P(q1= si) = i 1(i) bi (o1) i

Backward recursion for HMM
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•Decoding problem. Given the HMM  M=(A, B, ) and  the 

observation sequence  O=o1 o2 ... oK , calculate the most likely 

sequence of hidden states si that produced this observation sequence.

• We want to find the state sequence Q= q1…qK which maximizes  

P(Q | o1 o2 ... oK ) , or equivalently P(Q , o1 o2 ... oK ) .

• Brute force consideration of all paths takes exponential time. Use 

efficient Viterbi  algorithm instead.

• Define variable  k(i)  as the maximum probability of producing 

observation sequence o1 o2 ... ok  when moving along any hidden 

state sequence q1… qk-1 and getting into qk= si .

k(i) = max P(q1… qk-1 , qk= si , o1 o2 ... ok)  

where max is taken over all possible paths q1… qk-1 .

Decoding problem
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• General idea:

if best path ending in qk= sj goes through qk-1= si then it     

should coincide with best path ending in qk-1= si .

s1

si

sN

sjaij

aNj

a1j

qk-1                          qk

• k(i) = max P(q1… qk-1 , qk= sj , o1 o2 ... ok) = 

maxi [ aij bj (ok ) max P(q1… qk-1= si , o1 o2 ... ok-1) ]

• To backtrack best path keep info that predecessor of sj was si.

Viterbi algorithm (1)
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• Initialization:

1(i) = max P(q1= si , o1) = i bi (o1) , 1<=i<=N.

•Forward recursion:

k(j) = max P(q1… qk-1 , qk= sj , o1 o2 ... ok) = 

maxi [ aij bj (ok ) max P(q1… qk-1= si , o1 o2 ... ok-1) ] = 

maxi [ aij bj (ok ) k-1(i) ] ,     1<=j<=N, 2<=k<=K.

•Termination: choose best path ending at time K

maxi [ K(i) ]

• Backtrack best path.

This algorithm is similar to the forward recursion of evaluation 

problem, with  replaced by max and additional backtracking.

Viterbi algorithm (2)
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•Learning problem. Given some training observation sequences  

O=o1 o2 ... oK and general structure of HMM (numbers of 

hidden and visible states), determine HMM parameters M=(A, 

B, ) that best fit training data, that is maximizes P(O |M) . 

• There is no algorithm producing optimal parameter values.

• Use iterative expectation-maximization algorithm to find local 

maximum of  P(O |M) (Baum-Welch  algorithm).

Learning problem (1)
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Expectation Maximization (EM)

Iteratively finding maximum likelihood using partial 

observation.

X: observed data

Z: unobserved data: (latent)

𝜃: Model parameters
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E-Step (Expectation)

𝑄 𝜃 𝜃(𝑡) =Expected latent log likelihood of 𝜃

𝑄 𝜃 𝜃(𝑡) = 𝐸[𝐿(𝜃;𝑋;𝑍)]

M-Step (Maximization)

𝜃(𝑡+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄 𝜃 𝜃(𝑡)
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• If training data has information about sequence of hidden states 

(as in word recognition example), then use maximum likelihood 

estimation of parameters:

aij= P(si | sj) =
Number of transitions from state sj to  state si

Number of transitions out of state sj

bi(vm )= P(vm | si)=
Number of times observation vm occurs in state si

Number of times in state si

Learning problem (2)
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General idea:

aij= P(si | sj) =
Expected number of transitions from state sj to  state si

Expected number of transitions out of state sj

bi(vm )= P(vm | si)=
Expected number of times observation vm occurs in state si

Expected number of times in state si

i = P(si) = Expected frequency in state si at time k=1. 

Baum-Welch algorithm
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• Define variable k(i,j) as  the probability of being in state si at 

time k and in state sj at  time k+1, given the observation 

sequence o1 o2 ... oK . 

k(i,j)= P(qk= si ,qk+1= sj |o1 o2 ... oK) 

k(i,j)=
P(qk= si , qk+1= sj , o1 o2 ... ok)

P(o1 o2 ... ok)
=

P(qk= si , o1 o2 ... ok) aij bj (ok+1 ) P(ok+2  ... oK | qk+1= sj ) 

P(o1 o2 ... ok)
=

k(i) aij bj (ok+1 ) k+1(j) 

i j k(i) aij bj (ok+1 ) k+1(j)

Baum-Welch algorithm: expectation step(1)
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• Define variable k(i) as  the probability of being in state si at 

time k, given the observation sequence o1 o2 ... oK . 

k(i)= P(qk= si |o1 o2 ... oK) 

k(i)=
P(qk= si , o1 o2 ... ok)

P(o1 o2 ... ok)
=

k(i) k(i) 

i k(i) k(i)

Baum-Welch algorithm: expectation step(2)
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•We calculated  k(i,j) = P(qk= si ,qk+1= sj |o1 o2 ... oK) 

and      k(i)= P(qk= si |o1 o2 ... oK) 

• Expected number of transitions from state si to state sj =

=  k  k(i,j)

• Expected number of transitions out of state si = k  k(i)

• Expected number of times observation vm occurs in state si =

= k  k(i) , k is such that ok= vm

• Expected frequency in state si at time k=1 :  1(i) . 

Baum-Welch algorithm: expectation step(3)
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aij  = 
Expected number of transitions from state sj to  state si

Expected number of transitions out of state sj

bi(vm ) = 
Expected number of times observation vm occurs in state si

Expected number of times in state si

i = (Expected frequency in state si at time k=1)  = 1(i). 

=
k  k(i,j)

k  k(i)

=
k  k(i,j)

k,ok= vmk(i)

Baum-Welch algorithm: maximization step
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Next Week:

Sampling

Have a good day!


