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Introduction to Optimal Frequentist Estimator

• In the Frequentist's point of view, an optimal 

estimator is both unbiased and minimum variance.

• How can we obtain an estimator መ𝜃 that is unbiased?

– Given any biased estimator ෠𝜃b with bias b, then we can 

remove the bias to obtain an unbiased estimator 
෠𝜃 from ෠𝜃b, i. e. ෠𝜃 = ෠𝜃b – b.

• How can we obtain a minimum variance estimator 
መ𝜃mv from an unbiased estimator?

– We need to obtain a lower bound on variance of an 

unbiased estimator and make sure ෠𝜃mv achieves that 

bound.
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Score and Fisher Information 

• The score s() is defined as the gradient of the log-

likelihood function with respect to the parameter .

• When evaluated at a particular value of the 

parameter vector, the score indicates the sensitivity 

of the log-likelihood function to 

infinitesimal changes to the parameter values.

5

𝑠 𝜃 =
𝜕 log 𝐿 𝜃 𝑥

𝜕𝜃
 = 

𝜕 log 𝑓(𝑥|𝜃) 
𝜕𝜃
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Score and Fisher Information 

• The mean of score s():

Although s() is a function of  it also depends on 

the observations X, at which the likelihood function 

is evaluated, and the expected value of the score, 

evaluated at the parameter value , is zero.

6



7

Score and Fisher Information 

• We can interchange the derivative and integral by 

using Leibniz integral rule:

• If we repeatedly sample from some distribution, and 

repeatedly calculate its score, then the mean value of 

the scores would tend to zero asymptotically.
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Score and Fisher Information 

• The Fisher Information is defined as the variance 

of score. It is a way of measuring the amount 

of information that an observable random 

variable X carries about an unknown parameter θ of 

a distribution that models X. 

• The Fisher information is not a function of a 

particular observation, as the random 

variable X has been averaged out.
8
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Score and Fisher Information 

• If log f(x|θ) is twice differentiable with respect to θ, 

and under certain regularity conditions, the Fisher 

information may also be written as:

• The regularity conditions are as follows:

– The partial derivative of f(X|θ) with respect to θ exists.

– The integral of f(X|θ) can be differentiated under the 

integral sign with respect to θ.

– The support of f(X|θ) does not depend on θ. 
9
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Why the two equations to compute Fisher Information are Equal?

Let                   
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Cramer-Rao Lower Bound

• The Cramer–Rao bound (CRB) expresses a lower 

bound on the variance of unbiased estimators of a 

deterministic (fixed, though unknown) parameter θ, 

stating that the variance of any such estimator is at 

least as high as the inverse of the Fisher information.

• An unbiased estimator which achieves this lower 

bound is said to be efficient.

• Suppose θ is an unknown deterministic parameter 

which is to be estimated from n independent 

observations of x, each from a distribution according 

to some probability density function 𝑓(𝑥|𝜃). 
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Cramer-Rao Lower Bound

• The variance of any unbiased estimator ෠𝜃 of θ is bounded by 

the reciprocal of the Fisher information I(θ):

• The efficiency of an unbiased estimator ෠𝜃 measures how close 

this estimator's variance comes to this lower bound; estimator 

efficiency is defined as:

• The Cramer–Rao lower bound gives:
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The Fisher information on n iid random variables is equal to n 

times Fisher information of one of them:
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Example:
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Example continued:
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Example:
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Example continued:
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Rao-Blackwell Theorem

• The Rao-Blackwell theorem uses sufficiency to characterize the 

transformation of an arbitrary estimator into an estimator that is 

optimal by the mean-squared-error (MSE) criterion.

• Recall: 𝑥 and 𝑦 are random variables:

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝑣𝑎𝑟 𝑋 = 𝑣𝑎𝑟 𝐸 𝑋|𝑌 + 𝐸 𝑣𝑎𝑟 𝑋|𝑌

Rao-Blackwell Theorem:

Let 𝑤 be an unbiased estimator for 𝜃, and let 𝑇 be a sufficient 

statistic for 𝜃: 

Define 𝜙 𝑇 = 𝐸 𝑤|𝑇 , then: 𝐸 𝜙 𝑇 = 𝜃

and    𝑣𝑎𝑟 𝜙 𝑇 ≤ 𝑣𝑎𝑟𝜃(𝑤).
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Rao-Blackwell Theorem

Proof:

1  𝜙 𝑇 = Eθ w T  is an estimator because T is sufficient

⟹ conditional dist. of X given T does not depend on θ

and w is a function of X only:

𝐸𝜃 𝜙 𝑇 = 𝐸𝜃 𝐸 𝑤 𝑇 = 𝐸𝜃 𝑤 = 𝜃

2  𝑉𝑎𝑟𝜃 𝑤 = 𝑉𝑎𝑟𝜃 𝐸 𝑤 𝑇 + 𝐸𝜃 𝑉𝑎𝑟 𝑤 𝑇

= 𝑉𝑎𝑟𝜃 𝜙 𝑇 + 𝐸𝜃 𝑉𝑎𝑟 𝑤 𝑇

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

≥ 𝑉𝑎𝑟𝜃 𝜙 𝑇
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UMVUE

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 1

Median 𝑥1, … , 𝑥𝑛  is unbiased.

However, it can’t be UMVUE since it is not sufficient 

statistics (i.e. sufficient statistics is ത𝑋).

Theorem:

If 𝑤 is an UMVUE of 𝜃, then 𝑤 is unique.
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UMVUE

Proof:
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UMVUE

Theorem: 

Let 𝑇 be a complete sufficient statistic for a parameter 𝜃 and 

let 𝜙(𝑇) be any unbiased estimator based only on 𝑇.

Then 𝜙(𝑇) is the unique 𝑈𝑀𝑉𝑈𝐸 for 𝜃.

2 strategies for finding 𝑼𝑴𝑽𝑼𝑬′𝒔:

(1) Let 𝑇 be a complete sufficient statistics for 𝜃, find a 

function of 𝑇, 𝜙(𝑇), such that 𝐸𝜃 𝜙 𝑇 = 𝜃.

(2) Let 𝑇 be a sufficient statistics and 𝑤 be any unbiased 

estimator for 𝜃, compute 𝜙 𝑇 = E(w|T) 
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UMVUE Examples

Example:  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛(𝜃)

  We know ത𝑋 is the 𝑈𝑀𝑉𝑈𝐸 (CRB attained)

  Showed 𝑇 = σ 𝑋𝑖 is a complete suff. Stat. for 𝜃.

  𝐸 𝑇 = 𝑛𝜃 ⟹ 𝜙 𝑇 =
𝑇

𝑛
 

Example: 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 𝛿2

  Showed  𝑇 = 𝑇1, 𝑇2 = (σ 𝑋𝑖 , σ 𝑋𝑖
2) is a complete suff. stat. for 𝑁 𝜇, 𝛿2  

  Consider ത𝑋, 𝑆2 =
𝑇1

𝑛
,

1

𝑛−1
𝑇2 −

𝑇1
2

𝑛
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UMVUE

Example: 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑝(𝜆)

  Interested in estimating 𝜃 = 𝑒−𝜆 = 𝑃𝜆(𝑋 = 0)

  σ 𝑥𝑖  ~𝑝(𝑛, 𝜆)   is a  complete sufficient statistic and:

σ 𝑥𝑖

𝑛
 𝑖𝑠 𝑡ℎ𝑒 𝑈𝑀𝑈𝑉𝐸 𝑓𝑜𝑟𝜆.
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UMVUE
𝐺𝑢𝑒𝑠𝑠 𝑒− ത𝑋

𝑊 𝑋 =  ቊ
1 𝑋 = 0
0 𝑋 > 0

𝐸𝜆 𝑤 = 𝑒−𝜆  → 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝜆 𝑤|𝑇 :

𝜙 𝑡 = 𝐸 𝑤 𝑇 = 𝑡 = 𝑃𝜆 𝑋1 = 0| ෍

𝑖

𝑛

𝑋𝑖 = 𝑡

=
𝑃𝜆 𝑋1 = 0, σ𝑖

𝑛 𝑋𝑖 = 𝑡

𝑃𝜆 σ𝑖
𝑛 𝑋𝑖 = 𝑡

=
𝑃𝜆 𝑋1 = 0)𝑃𝜆(σ𝑖

𝑛 𝑋𝑖 = 𝑡

𝑃𝜆 σ𝑖
𝑛 𝑋𝑖 = 𝑡

𝑋𝑖~𝑃 𝜆  ෍

𝑖=2

𝑛

𝑋𝑖~𝑃 𝑛 − 1 𝜆  ෍

𝑖=1

𝑛

𝑋𝑖~𝑃(𝑛𝜆)
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UMVUE

⟹ 𝜙 𝑡 =
𝑒−𝜆 𝑒− 𝑛−1 𝜆×

𝑛−1 𝜆 𝑡

𝑡!

𝑒−𝑛𝜆×
𝑛𝜆 𝑡

𝑡!

∴ 𝜙 𝑡 =
𝑛 − 1

𝑛

𝑡

= 1 −
1

𝑛

𝑡

 𝑖𝑠 𝑈𝑀𝑈𝑉𝐸 𝑜𝑓 𝑒−𝜆

𝑊𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒: 𝜙 𝑡 =
𝑛−1

𝑛

𝑡
= 1 −

1

𝑛

𝑛
1

𝑛
σ 𝑥𝑖

𝑎𝑠 𝑛 → ∞, 𝜙 𝑡 → 𝑒− ത𝑋
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Bayes estimation

Bayes estimation

- Frequentists or classical estimation regards the parameter 𝜃 as 

an unknown but fixed.

- Bayes: regards 𝜃 as random variable, with prior distribution 

𝜋(𝜃). 

▪ Observe data 𝑥1, … , 𝑥𝑛

▪ Update the prior into a posterior distribution; 𝜋(𝜃|𝑋). 

▪ 𝜋 𝜃 𝑋 =
𝑓(𝑋,𝜃)

𝑚(𝑋)
=

𝑓 𝑋|𝜃 𝜋 𝜃  

𝑚 𝑋

     𝑚 𝑥 = ׬ 𝑓 𝑋|𝜃 𝜋 𝜃 𝑑𝜃 = 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡. 𝑜𝑓 𝑋
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Bayes estimation

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜃 ,  𝜃 ~ 𝛽𝑒𝑡𝑎 𝛼, 𝛽 , 

find the posterior:

The likelihood function:

Let                         then:

Prior distribution:

Posterior distribution:
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Bayes estimation

Simplify posterior distribution:

which is recognized to be a Beta distribution:

where S in the number of successes and n – S is the number of failures.

Note: we could also drive this using the Gamma distribution since:

The Beta function serves as the normalization constant for the Beta distribution.                          

33



Bayes estimation

Alternatively,  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜃 ,  𝜃 ~ 𝛽𝑒𝑡𝑎(𝛼, 𝛽)

                                                                       

  𝜋 𝜃 𝑋  ~𝛽𝑒𝑡𝑎(σ 𝑋𝑖 + 𝛼 , 𝑛 − σ 𝑋𝑖 + 𝛽)
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Bayes estimation

Finding the posterior:

(a) Calculate  𝜋 𝜃 𝑓 𝑋|𝜃

(b) Factor into piece depending on 𝜃 and piece not depending on 

𝜃.

(c) Drop piece not depending on 𝜃, multiply and divide by 

constants.

(d)  𝜋(𝜃|𝑋) is 𝑘(𝑋) times what is left.

        choose 𝑘(𝑋) s.t.    ׬ 𝜋 𝜃 𝑋  𝑑𝜃 = 1

35



Bayes estimation

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 𝛿2 ,  𝛿2 𝑘𝑛𝑜𝑤𝑛

 

𝑓 𝑥 𝜇 = 2Π𝛿2 −
𝑛
2𝑒

−
1

2𝛿2σ 𝑥𝑖−𝜇 2

𝛱(𝜇) = 𝑁 𝜇0, 𝛿0
2

𝜋 𝜇 𝑓 𝑥 𝜇 =
1

2𝜋𝛿2

𝑛
1

2𝜋
𝑒

−
1

2𝑠2 ෌ 𝑥𝑖−𝜇 2

𝑒
−

1

2𝛿0
2 𝜇−𝜇0

2

𝛼 exp −
1

2𝛿0
2 𝜇 − 𝜇0

2 −
1

2𝛿2 ෎ 𝑥𝑖 − 𝑥
‾ 2

−
1

2𝛿2
𝑛(𝑥

‾
− )𝜇 2

= exp −
1

2

𝜇 − 𝜇0
2

𝛿0
2 +

𝑛(𝑥
‾

− )𝜇 2

𝛿2
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Bayes estimation

= exp −
1

2

𝜇 − 𝜇0
2

𝛿0
2 +

𝑛(𝑥
‾

− )𝜇 2

𝛿2

=
−1

2
𝑎𝜇2 − 2𝑏𝜇 =

−1

2
𝑎 𝜇 −

𝑏

𝑎

2

= exp −
1

2

1

𝛿0
2 +

𝑛

𝛿2
𝜇2 − 2𝜇

𝜇0

𝛿0
2 +

𝑛 ‾𝑥

𝛿2
+

𝜇𝛿2

𝛿0
2 +

𝑛 ‾𝑥2

𝛿2

𝑎 =
1

𝛿0
2 +

𝑛

𝛿2

𝑏 =
𝜇𝑐

𝛿0
2 +

𝑛𝑥
‾

𝛿2
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Bayes estimation
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Bayes estimation

Bayes estimator:

(1) Maximum A Posteriori (MAP) Estimator:

In Bayesian statistics, a maximum a posteriori 

probability (MAP) estimate is an estimate of an unknown 

quantity, that equals the mode of the posterior distribution.

39



Bayes estimation

Bayes estimator:

(1) Maximum Aposteriori (MAP) Estimator:
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Bayes estimation

(2) Bayes Minimum Loss (Risk) Estimator:

▪ Define a loss function 𝐿(𝜃, ෠𝜃)

     𝐿 𝜃, ෠𝜃 = 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑛𝑔 𝜃 𝑏𝑦 ෠𝜃

▪ Minimize expected loss:

     min ׬𝛩
𝐿 𝜃, ෠𝜃 𝜋 𝜃 𝑋  𝑑𝜃           

      then ෠𝜃 ~ Bayes minimum loss (Risk) estimator:
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Bayes estimation

(1) 𝐿 𝜃 − መ𝜃 = 𝜃 − መ𝜃
2
   squared error loss

    

(2) 𝐿 𝜃 − መ𝜃 = |𝜃 − መ𝜃|     absolute error loss

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 𝛿2

Posterior is normal with   mean:

And variance:                          using squared loss criterion.
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Bayes estimation

Note: 

(3) good prior info:

Let 𝛿0
2 → 0 ⇒ 𝐸(𝜇 ∣ 𝑥) → 𝜇0

(2) prior information:

Let 𝛿0
2 → ∞

𝜇 ∼ 𝑁 𝜇0, ∞  ⇒ 𝐸(𝜇 ∣ 𝑥) ⟶ ‾𝑥

(1) as 𝑛 ⟶ ∞, α → 1
⇒ 𝐸(𝜇 ∣ 𝑥) ⟶ ‾𝑥

43
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Conjugate Prior

In Bayesian probability theory, if the posterior 

distribution p(θ | x) is in the same probability distribution 

family as the prior probability distribution (θ), the prior and 

posterior are then called conjugate distributions, and the 

prior is called a conjugate prior for the likelihood 

function p(x | θ).

Examples:

Conjugate Prior Likelihood Posterior

Beta Bernoulli Beta

Gamma Poisson Gamma

Normal Normal Normal
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Problems with Bayes Estimator

choice of prior:

• subjective

• non informative priors

Prior:     𝜋 𝛾 = 1 ∀𝛾                                           

Posterior:   𝑁( ത𝑋,
𝜎2

𝑛
)

What can we do when we do not have the prior?
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Jeffreys Prior

Jeffreys Prior: is a non-informative (objective) prior 

distribution for a parameter space; its density function is 

proportional to the square root of the determinant of 

the Fisher information matrix:

Example:  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛 𝜃

log 𝑓 𝑋 𝜃 = 𝑥𝑙𝑜𝑔𝜃 + 1 − 𝑥 log(1 − 𝜃)

𝜕

𝜕𝜃
log 𝑓 𝑋 𝜃 =

𝑥

𝜃
−

1 − 𝑥

1 − 𝜃
 →  

𝜕2

𝜕𝜃2 log 𝑓 𝑋 𝜃 =
−𝑥

𝜃2 +
1 − 𝑥

(1 − 𝜃)2

𝐸𝜃

𝜕2

𝜕𝜃2 log 𝑓 𝑋 𝜃 = −
1

𝜃
 −

1

1 − 𝜃
= −

1

𝜃(1 − 𝜃)

𝜋 𝜃 ∝ (
1

𝜃 1 − 𝜃
)

1
2 𝑖. 𝑒. 𝛽𝑒𝑡𝑎(

1

2
,
1

2
)
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Consistency

Why do frequentists use MLE’s?

• MLE’s have nice asymptotic properties

Def:  a sequence of estimators:

𝑤𝑛 = 𝑤𝑛 𝑥1, … , 𝑥𝑛  is a consistent sequence of estimators of the parameter 𝜃 if 

for any 𝜖 > 0, 𝜃 ∈ 𝛩:

lim
𝑛→∞

𝑃𝜃 𝑤𝑛 − 𝜃 < 𝜖 = 1

                     or:                  𝑙𝑖𝑚
𝑛→∞

𝑃𝜃 𝑤𝑛 − 𝜃 ≥ 𝜖 = 0

(it means 𝑤𝑛 converges to 𝜃 in probability)
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Consistency

Theorem: 

If  𝑤𝑛 is a sequence of estimators of a parameter 𝜃 with:

(a) 𝑙𝑖𝑚
𝑛→∞

𝑉𝑎𝑟𝜃(𝑤𝑛) = 0 and

(b) 𝑤𝑛 unbiased estimator of 𝜃

Then 𝑤𝑛 is a consistent sequence of estimators of 𝜃.

Proof:

𝐶ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑣 ⟹  𝑃𝜃 𝑤𝑛 − 𝜃 ≥ 𝜀 ≤
𝐸𝜃 𝑤𝑛 − 𝜃 2

𝜀2

𝐸𝜃 𝑤𝑛 − 𝜃 2 = 𝐸𝜃 𝑤𝑛 + 𝐸𝑤𝑛 − 𝐸𝑤𝑛 − 𝜃 2

= 𝑉𝑎𝑟𝜃𝑤𝑛 + 𝐵𝑖𝑎𝑠𝜃𝑤𝑛
2
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Consistency

▪ MLE’s are consistent

▪ MLE’s are asymptotically unbiased

Theorem:

Let  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑓(𝑋|𝜃).

Let 𝐿 𝜃 𝑋 = ς 𝑓 𝑋𝑖|𝜃

መ𝜃 = MLE of 𝜃  

Then with some regularity conditions on 𝑓(𝑋|𝜃) we have:

መ𝜃𝑛 is a consistent estimator of 𝜃.

Condition: support of pdf does not depend on parameters and rules out 𝑈(0, 𝜃)
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Outline of Week 7 Lectures

• Introduction to Optimal Frequentist Estimator

• Score and Fisher Information

• Cramer-Rao Lower Bound

• Rao-Blackwell Theorem

• UMVUE

• Bayesian Estimation

• Conjugate Prior

• Consistency

• Efficiency

• Estimator Comparison

• Summary
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Efficiency

▪ Let  𝐼 𝜃 = 𝐸𝜃
𝜕

𝜕𝜃
log 𝑓 𝑋|𝜃

2
   and X is not a vector.

Def:

Let 𝑤 be an unbiased estimator of 𝜃. The efficiency of 𝑤 is:

𝑒𝑓𝑓 𝑤 =
ൗ1

𝑛 𝐼 𝜃  

𝑣𝑎𝑟 𝑤
 

                                                                                                       

 
CRB lower bound
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Efficiency

Definition:

A sequence of estimators 𝑤 is said to be asymptotically efficient if:

lim
𝑛→∞

𝑒𝑓𝑓(𝑤𝑛) → 1

As 𝑛 → ∞, 𝑣𝑎𝑟 𝑤𝑛 attains CR lower bound.

▪ MLE’s are asymptotically efficient.

▪ MLE’s are asymptotically normal.

i.e. 𝑛 መ𝜃𝑛 − 𝜃  
 𝐷 

𝑁 0,
1

𝐼 𝜃

❖MLE’s are:

(1) Consistent    (2) asymptotically unbiased   (3) asymptotically efficient   

(4) asymptotically normal
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Outline of Week 7 Lectures

• Introduction to Optimal Frequentist Estimator

• Score and Fisher Information

• Cramer-Rao Lower Bound

• Rao-Blackwell Theorem

• UMVUE

• Bayesian Estimation

• Conjugate Prior

• Consistency

• Efficiency

• Estimator Comparison

• Summary
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Asymptotic variance of MLE

Asymptotic variance of MLE

𝑒𝑓𝑓 መ𝜃𝑛 =
ൗ1

𝑛 𝐼 𝜃

𝑣𝑎𝑟 መ𝜃𝑛

 
 

1

Approximate  𝑣𝑎𝑟 መ𝜃𝑛   by  n𝐼 𝜃   ⟷ expected information

𝑛𝐼 𝜃 |𝜃=෡𝜃  ⟵  observed info.

Better approximation for finite sample sizes.
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Asymptotic variance of MLE

Expected information:

𝑛𝐼 𝜃 = 𝑛𝐸𝜃

𝜕

𝜕𝜃
log 𝑓 𝑋|𝜃

2

= 𝐸𝜃

𝜕

𝜕𝜃
log ෑ 𝑓 𝑋𝑖|𝜃

2

= 𝐸𝜃

𝜕

𝜕𝜃
log 𝐿 𝜃|𝑋

2

Approximation:  if  𝑥1, … , 𝑥𝑛 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑓 𝑋 𝜃 ,  መ𝜃 is the MLE of 𝜃.

𝑣𝑎𝑟𝜃
መ𝜃 ≃

1

𝐸𝜃
𝜕

𝜕𝜃
log 𝐿 𝜃|𝑋

2 ≃
1

−
𝜕2

𝜕𝜃2 log 𝐿 𝜃|𝑋 |𝜃=෡𝜃

 (∗)
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Asymptotic variance of MLE

Example: 𝑥1, … , 𝑥𝑛 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑓𝑟𝑜𝑚 𝐵𝑒𝑟𝑛 𝜃

𝑀𝐿𝐸 𝑖𝑠 Ƹ𝑝 = ത𝑋

 Var Ƹ𝑝 =
𝑝 1−𝑝

𝑛

෢𝑉𝑎𝑟 Ƹ𝑝 =
Ƹ𝑝 1 − Ƹ𝑝

n
 an approximated variance

𝑈𝑠𝑒 ∗ → ෢𝑉𝑎𝑟 Ƹ𝑝 ≈
1

−
𝜕2

𝜕𝜃2 𝑙𝑜𝑔𝐿(𝑝|𝑥)|𝑝= ො𝑝

𝑙𝑜𝑔𝐿 =  ෍ 𝑥𝑖𝑙𝑜𝑔𝑝 + 𝑛 − ෍ 𝑥𝑖 log 1 − 𝑝  

𝜕2

𝜕𝜃2 𝑙𝑜𝑔𝐿 = −
𝑛 ത𝑋

𝑝2 −
𝑛 1 − ത𝑋

1 − 𝑝 2
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Asymptotic variance of MLE

⟹
𝜕2

𝜕𝜃2 𝑙𝑜𝑔𝐿|𝑝= ො𝑝 = −
𝑛 ത𝑋

ത𝑋2
−

𝑛 1 − ത𝑋

1 − ത𝑋 2
= −

𝑛

ത𝑋 1 − ത𝑋

∗  𝑎𝑙𝑠𝑜 𝑔𝑖𝑣𝑒𝑠: ෢𝑉𝑎𝑟 Ƹ𝑝 =
ത𝑋 1 − ത𝑋

n
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Estimator Comparison

• Frequentists:   𝑚𝑖𝑛 𝐸𝜃
መ𝜃 − 𝜃

2

Example:  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2),  want to estimate 𝛿2 

MLE   ෢𝛿1
2

=
𝑠

𝑛
 𝑤ℎ𝑒𝑛 𝑠 =  σ 𝑥𝑖 − ҧ𝑥 2                    

Bayes(Jeffery’s prior) 𝜋 𝛿2 ∝
1

𝑠2  ෢𝛿2
2 =

𝑠

𝑛−2

UMVUE       ෢𝛿3
2 =

𝑠

𝑛−1
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Estimator Comparison
𝐸 𝑎𝑆 − 𝛿2 2 = 𝑎2𝐸 𝑠2 − 2𝑎𝛿2𝐸𝑆 + 𝛿4

= 𝑎2𝑉𝑎𝑟 𝑠 + 𝑎2 𝐸(𝑠) 2 − 2𝑎𝛿2𝐸𝑆 + 𝛿4

𝑠

𝛿2 ~𝑋𝑛−1
2 ⟹ 𝐸 𝑆 = (𝑛 − 1)𝛿2

𝑉𝑎𝑟 𝑆 = 2 𝑛 − 1 𝛿4

𝐸 𝑎𝑠 − 𝛿2 2 = 𝛿4 𝑎2 𝑛 − 1 𝑛 + 1 − 2𝑎 𝑛 − 1 + 1

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑 𝑏𝑦:  𝑎 =
1

𝑛 + 1
,  ෢𝛿4 =

𝑠

𝑛 + 1
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Estimator Comparison

෡𝜹𝟒
෡𝜹𝟏

𝟐 ෡𝜹𝟑
𝟐 ෡𝜹𝟐

𝟐

estimator 𝑆

𝑛 + 1

𝑆

𝑛

𝑆

𝑛 − 1

𝑆

𝑛 − 2

MSE
𝛿4

2

𝑛 + 1
𝛿4

2𝑛 − 1

𝑛2
𝛿4

2

𝑛 − 1
𝛿4

2𝑛 − 1

(𝑛 − 2)2
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Estimator Comparison

Example:   let R= #of tosses needed to reach 𝑘 heads,  𝜃 = 𝑝(ℎ𝑒𝑎𝑑)

𝑃 𝑅 = 𝑟 =  𝑟−1 𝐶𝑘−1𝜃𝑘 1 − 𝜃 𝑟−𝑘 𝑟 = 𝑘, 𝑘 + 1, …

R has negative binomial distribution.

(𝟏) MLE       ෢𝜃1 =
𝑘

𝑟

𝟐  Bayes      𝜋 𝜃 ∝ 𝜃 1 − 𝜃 −
1

2

⟹ 𝜋 𝜃 𝑅 ∝ 𝜃𝑘−
1
2 1 − 𝜃 𝑟−𝑘−

1
2

⟹ ෢𝜃2 = 𝐸 𝜃 𝑅 =  
𝑘 +

1
2

𝑟 + 1
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Estimator Comparison

(𝟑) UMVUE:  𝑟 is complete and sufficient for 𝜃:

𝐸
1

𝑟 − 1
=

𝜃

𝑘 − 1

⟹ ෢𝜃3 =
𝑘 − 1

𝑟 − 1
 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑈𝑀𝑉𝑈𝐸 𝑜𝑓 𝜃
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Outline of Week 7 Lectures

• Introduction to Optimal Frequentist Estimator

• Score and Fisher Information

• Cramer-Rao Lower Bound

• Rao-Blackwell Theorem

• UMVUE

• Bayesian Estimation

• Conjugate Prior

• Consistency

• Efficiency

• Estimator Comparison

• Summary
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Summary

𝟏 𝐋𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝: 

Estimate 𝜃 by the value መ𝜃 which maximizes the likelihood

𝟐 𝐁𝐚𝐲𝐞𝐬: 

Let 𝜋 𝜃  be a prior distribution for 𝜃 leading to a posterior 𝜋 𝜃|𝑋

Let 𝐿(𝜃, መ𝜃) be a loss function. Choose መ𝜃 to minimize:    ׬𝛩
𝐿(𝜃, መ𝜃) 𝜋 𝜃|𝑋 𝑑𝜃 

𝐿 𝜃, መ𝜃 = (𝜃 − መ𝜃)2  ⟹  መ𝜃 = 𝐸 𝜃|𝑋

𝐿 𝜃, መ𝜃 = 𝜃 − መ𝜃     ⟹  መ𝜃 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓𝜋 𝜃|𝑋
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Summary

𝟑  𝐅𝐫𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐬𝐭: 

(a) If possible, find the UMVUE of 𝜃

(b) If (a) hard, use the MLE መ𝜃 which is asymptotically unbiased and whose 

efficiency ⟶ 1  as  𝑛 ⟶ ∞ 

(1), (2) and (3) may not exist!

Example:

𝑈𝑀𝑉𝑈𝐸:   𝐵𝑒𝑟𝑛(𝑝). Then  𝜃 =
𝑝

1−𝑝
⟹ 𝑈𝑀𝑉𝑈𝐸 𝑜𝑓𝜃 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡    
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Summary

▪ MLE and Bayes may not be unique, but UMVUE is unique.

▪ MLE has an invariance property, while UMVUE and Bayes do not.

▪ Bayes: incorporate prior information, but MLE and UMVUE don’t.
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Next Week:

Hypothesis Testing

Have a good day!
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