
1/89

Stochastic Processes

Week 05 (Version 1.0)
Gaussian Processes

Hamid R. Rabiee
Fall 2024



Main Reference Textbook
http://gaussianprocess.org/gpml/chapters/RW.pdf
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Gaussian Process Motivation

● In many real-world applications we are confronted by 
the need for a model. 

● We apply our knowledge of the physics involved to 
deduce a specific model form.

● Often our knowledge of the underlying physical 
processes is useless or involves too many 
assumptions or variables we cannot measure.

● In these cases machine learning attempts to solve the 
problem by learning relationships from existing data or 
measurements (empirical models)

● Impressive results from Deep Neural Networks (DNN). 
However, they are black box (not interpretable) in 
general, and are vulnerable to adversarial attacks.
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Gaussian Process Motivation

● DNN solutions are still far from commonplace in some 
applied engineering for a variety of reasons such as 
data availability, processing complexity, robustness, …

● Gaussian Processes can be considered as a suitable 
model in many applications.
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What is a Gaussian Process (GP)

● A Gaussian Process (GP) is a collection of random 
variables, any finite number of which have a joint 
Gaussian distribution.

● With GP we seek to find the most likely function that 
could produce our data using a Bayesian approach.

● Gaussian Processes provide a machine learning 
approach where uncertainty in the model is concretely 
available and the model can be used to gain physical 
insight into the process.

● Gaussian Processes can be considered as neural 
networks with infinitely many weights where a 
distribution is assigned to each weight (GP is a 
distribution over functions)
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GP as Distribution over Functions

● A Gaussian process

●  is completely specified by a mean and covariance 
function:
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Gaussian Density Function
Gaussian: The most common probability density function. It is 
completely specified by its mean and variance: 
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Gaussian PDF with mean 1.6 
and variance 0.125.

Blue vertical line shows the 
mean. 



Important Gaussian Properties

● Sum of independent Gaussian variables 
is also Gaussian:

● As sum increases, sum of non-Gaussian, 
finite variance variables is also Gaussian 
[Central Limit Theorem].
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Important Gaussian Properties

● Scaling a Gaussian leads to a Gaussian.
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Multivariate Gaussian Density Function
The multivariate normal distribution of a k-dimensional 
random vector                        can be written as:

Where:
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Case Study:
System of Equations

Random Lines
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A system of two equations with two unknowns.

Two Simultaneous Equations
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How do we deal with three simultaneous 
equations with only two unknowns?

Three Simultaneous Equations
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Overdetermined Systems

With two unknowns 
and two observations:

Additional 
observation leads to 
overdetermined 
system:

This problem is 
solved through a 
noise model
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Noise Models
● We aren’t modeling the entire system.

● Noise model gives mismatch between 

model and data.  

● Gaussian model justified by appeal to 

central limit theorem.  

● Other models also possible (Student-t for 

heavy tails).

● Maximum likelihood with Gaussian noise 

leads to least squares.
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Underdetermined Systems

What about two unknowns and one

observation?
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Underdetermined System

We can compute m given c:

19/89



Underdetermined System

We can compute m given c:
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Underdetermined System

We can compute m given c.

Assume:

We find a distribution of solutions.
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Probability for Under- and Overdetermined 
Systems

● To deal with overdetermined system, introduced 
probability distribution for variable,      .

● For underdetermined system, introduced 
probability distribution for  parameter, c.

● We can solve this problem with a GP model (the 
random line example).

● This is known as a Bayesian treatment.
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Probability for Under- and Overdetermined 
Systems
● For general Bayesian inference we need 

multivariate priors.
● E.g. for multivariate linear regression:

(where we’ve dropped c for convenience) 

● We need distribution over parameters (w) 
and variables (     ). This motivates a 
multivariate Gaussian density.
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Multivariate Regression Likelihood

● Multivariate regression likelihood: 

● Now we use a multivariate Gaussian 
prior:
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Posterior Density
● If compute the posterior, we get to Gaussian 

distribution again:
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Case Study:
Two Dimensional Gaussian

Height vs Weight
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Height and Weight Models
Gaussian distributions for weight and height:

Height distribution Weight distribution
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Sampling Two Dimensional Variables
Sample height and weight 
one after the other and plot 
against each other:

p(h)

p(w)
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Sampling Two Dimensional Variables
Sample height and weight 
one after the other and plot 
against each other:



Independence Assumption

This assumes height and weight are independent.

In reality they are dependent (body mass index =  ) .
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Sampling Two Dimensional Variables
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Marginal Distribution
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Joint Distribution

Sampling Two Dimensional Variables



Bivariate Independent Gaussians
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Correlated Gaussians

Obtained from original by rotating the data 
space using matrix R.

This gives a covariance matrix:
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Recall Univariate Gaussian Properties 
(slides 10-11)
Multivariate Consequence:

If we have:

And:

Then:
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Prediction with Correlated Gaussians

Suppose a zero-mean 2-dimensional Gaussian 
variable:

Prediction of       from  requires conditional density.  
Conditional density is also Gaussian:
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Prediction with Correlated Gaussians

General case (still zero-mean):

Prediction of        from  requires conditional 
density.  Conditional density is also Gaussian:
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Covariance Functions

● Covariance matrix is built by getting values 
from covariance function.

● The covariance function is also known as a 
kernel.

● Covariance functions are building blocks of 
covariance matrices.

Covariance matrix
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Covariance Functions: Example
Covariance matrix is built by getting values from 
covariance function.

Exponentiated Quadratic Kernel Function:

(also known as RBF, Squared  Exponential, Gaussian)

Covariance matrix
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Covariance Functions: Example

1.0
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1.0 0.11
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1.0 0.11 0.089
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1.0 0.11 0.089

0.11 1.0 0.995

0.089 0.995 1.0
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Covariance Functions: Example
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Gaussian Process
Stochastic process X indexed on some space      is 
called a Gaussian process (GP) with mean function     
and covariance function     if for every finite subset 
of      such as             the joint distribution of X on 
this subset is a multivariate Gaussian variable with 
mean     and covariance generated from    :
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Basis Function Form

Radial basis functions commonly have the 
form:

A set of radial basis 
functions

Basis function maps data 
into a feature  space in 
which a  linear sum is a 
nonlinear function.
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Basis Function Representations

Represent a function by a linear sum over a 
basis.

Where          are basis functions.
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Random Functions

Functions derived using:

where w is sampled from a 
Gaussian density:

Each line is a separate 
sample, generated by  a 
weighted sum of the 
basis set. The weights, 
w are  sampled from a 
Gaussian density with 
variance 1.
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Direct Construction of Covariance Matrix

Using matrix notation to write function:

computed at training data gives a vector:

● w and f are only related by a inner product.
● Φ is fixed and non-stochastic for a given training set.
● f is Gaussian distributed.
● It is straightforward to compute distribution for f.
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Infinite Feature Space

● A RBF model with infinite basis functions is a 
Gaussian process.  The covariance function is the 
exponentiated quadratic.

● Note: The functional form for the covariance 
function and basis functions are similar.
○ This is a special case,
○ In general they are very different
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Nonparametric Gaussian Processes

● Gaussian processes are generally 
non-parametric: combine data with  covariance 
function to get model.

● This representation cannot be summarized by a 
parameter vector of a fixed size.
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The Parametric Bottleneck

Parametric models have a representation that does not 
respond to increasing training set size.

Bayesian posterior distributions over parameters contain 
the information about the training data.

1. Use Bayes’ rule from training data to estimate 
parameters: p (w|y, X),

2. Make predictions on test data using estimated 
parameters:
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The Parametric Bottleneck

w becomes a bottleneck for information about the 
training set to pass to the test set.

Solution: increase m (dimension of w) so that the 
bottleneck is so large that it no  longer presents a 
problem.

How big is big enough for m? Non-parametric says:
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The Parametric Bottleneck: Nonparametric 
Solution
Now no longer possible to manipulate the model through 
the standard parametric form.
However, it is possible to express parametric as GPs:

These are known as degenerate covariance matrices.
No matter how big training data is, their rank is bounded 
by m. Instead, non-parametric models have full rank 
covariance matrices.
Most well known is the linear kernel: 
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Making Predictions
● For non-parametrics prediction at new points       is 

made by conditioning on        in the joint distribution.
● In GPs this involves combining the training data with 

the covariance function and the mean function.
● Parametric is a special case when conditional 

prediction can be  summarized in a fixed number of 
parameters.

● Complexity of parametric model remains fixed 
regardless of the size of  our training data set.

● For a non-parametric model the required number of 
parameters grows  with the size of the training data.
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Constructing Covariance Functions

Sum of two covariances is also a covariance 
function.
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Constructing Covariance Functions
Product of two covariances is also a covariance 
function:

If f(x) is a Gaussian process, and g (x) is a 
deterministic function and:

Then:
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Covariance Functions
MLP covariance function:

Based on the infinite neural network model.

MLP covariance 
matrix
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Covariance Functions

MLP covariance function:

Based on infinite neural network model:

Samples of GP 
generated by MLP 

covariance 
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Covariance Functions

Linear covariance function:

Bayesian linear regression.

Linear 
covariance 

matrix
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Covariance Functions

Linear covariance function:

Bayesian linear regression.

Samples of GP 
generated by Linear 

covariance 
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Gaussian Noise
Gaussian noise model,

Where       is the variance of the noise.

Equivalent to a covariance function of the 
form

where       is the Kronecker delta function.

Additive nature of Gaussians means we can 
simply add this term to existing covariance 
matrices.
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Limitations of Gaussian Processes

● Inference is              due to matrix inverse (in practice use 
Cholesky).

● Gaussian processes don’t deal well with discontinuities 
(financial crises, phosphorylation, collisions, edges in 
images).

● Widely used exponentiated quadratic covariance (RBF) can 
be too smooth in practice (but there are many alternatives.)
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Summary

● Broad introduction to Gaussian processes.

Started with Gaussian distribution.

Motivated Gaussian processes through the multivariate density.

● Emphasized the role of the covariance (not the mean).  Performs 
nonlinear regression with error bars.

● Parameters of the covariance function (kernel) are easily 
optimized with maximum likelihood.

● Demos:

● https://edward-rees.com/gp

● http://chifeng.scripts.mit.edu/stuff/gp-demo/
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Next Week:

Point Estimation

Have a good day!


