Stochastic Processes

Week 04 (Version 1.2)

Poisson Processes

Point Process

Hamid R. Rabiee Fall 2024

Outline of Week 04 Lectures

- Poisson Process
- Point Process

Recall: Binomial Distribution and its relation to Poisson Distribution

Bionomial Distribution: $X \sim B(n, p)$ probability of exactly k success in n trials:

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $B(n,p) \xrightarrow[np]{n \to \infty} Poisson(np)$

- Recall: Binomial and Poisson distributions: Both distributions can be used to model the number of occurrences of some event.
- Recall: Poisson arrivals are the limiting behavior of Binomial random variables. (Refer to Poisson approximation of Binomial random variables in your textbook):

$$P\left\{ {}^{"k \text{ arrivals occur in an} \atop \text{interval of duration } \Delta "} \right\} = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, 2, \cdots$$

Where:

$$\lambda = np = \mu T \cdot \frac{\Delta}{T} = \mu \Delta$$

It follows that:

$$P\left\{ {}^{"k \text{ arrivals occur in an} \atop \text{interval of duration } 2\Delta"} \right\} = e^{-2\lambda} \frac{(2\lambda)^k}{k!}, \qquad k = 0, \ 1, \ 2, \cdots,$$

since in that case:

$$np_1 = \mu T \cdot \frac{2\Delta}{T} = 2\mu\Delta = 2\lambda.$$

- Poisson arrivals over an interval form a Poisson random variable whose parameter depends on the duration of that interval.
- Moreover because of the Bernoulli nature of the underlying basic random arrivals, events over nonoverlapping intervals are independent.
- We shall use these two key observations to define a Poisson process formally.

Definition: X(t) = n(0, t) represents a Poisson process if:

(i) the number of arrivals $n(t_1, t_2)$ in an interval (t_1, t_2) of length $t = t_2 - t_1$ is a Poisson random variable with parameter λt . Thus:

$$P\{n(t_1, t_2) = k\} = e^{-\lambda t} \frac{(\lambda t)^k}{k!} \quad k = 0, 1, 2, \dots, t = t_2 - t_1$$

And:

(ii) If the intervals (t_1, t_2) and (t_3, t_4) are nonoverlapping, then the random variables $n(t_1, t_2)$ and $n(t_3, t_4)$ are independent.

Since $n(0, t) \sim P(\lambda t)$ we have:

 $E[X(t)] = E[n(0,t)] = \lambda t$

And:

$$E[X^2(t)] = E[n^2(0,t)] = \lambda t + \lambda^2 t^2$$

Autocorrelation function $R_{xx}(t_1, t_2)$:

 $R_{xx}(t_1, t_2) = E[X(t_1)X(t_2)]$

 $X(t_1) = n(0, t_1)$ and $X(t_2) = n(0, t_2)$

To determine the autocorrelation function $R_{xx}(t_1, t_2)$ let $t_2 > t_1$ then from (ii) above $n(0, t_1)$ and $n(t_1, t_2)$ are independent Poisson random variables with parameters λt_1 and $\lambda(t_2 - t_1)$ respectively.

Thus:

$$E[n(0,t_1)n(t_1,t_2)] = E[n(0,t_1)]E[n(t_1,t_2)] = \lambda^2 t_1(t_2-t_1)$$

But:

$$n(t_1, t_2) = n(0, t_2) - n(0, t_1) = X(t_2) - X(t_1)$$

And:

$$E[X(t_1)\{X(t_2) - X(t_1)\}] = R_{xx}(t_1, t_2) - E[X^2(t_1)]$$

We obtain:

$$R_{xx}(t_1, t_2) = \lambda^2 t_1(t_2 - t_1) + E[X^2(t_1)] = \lambda t_1 + \lambda^2 t_1 t_2$$

$$t_2 \ge t_1$$

Similarly, for
$$t_1 > t_2$$
:

$$R_{xx}(t_1, t_2) = \lambda t_2 + \lambda^2 t_1 t_2$$

Thus:

$$R_{\chi\chi}(t_1, t_2) = \lambda^2 t_1 t_2 + \lambda \min(t_1, t_2)$$

Poisson Distribution vs Poisson Processes

Poisson Distribution: A discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space.

Characteristics: It assumes that these events occur with a known constant mean rate and independently of the time since the last event.

Example: The number of emails received in an hour can be modeled using a Poisson distribution if emails arrive independently and at a constant average rate.

Poisson Distribution vs Poisson Processes

Poisson Process: A stochastic process that models a series of events occurring randomly over time or space.

Characteristics: It describes the occurrence of events that happen independently and at a constant average rate. The time between consecutive events follows an exponential distribution.

Example: The arrival of customers at a bank can be modeled as a Poisson process if the arrivals are independent and occur at a constant average rate.

Example:

$$X(t) \longrightarrow \frac{d(\cdot)}{dt} \longrightarrow X'(t)$$

(Derivative as a LTI system)

Then:

$$\mu_{x'}(t) = \frac{d\mu_x(t)}{dt} = \frac{d\lambda t}{dt} = \lambda, \quad a \text{ constant}$$

And:

$$R_{XX'}(t_1, t_2) = \frac{\partial R_{XX}(t_1, t_2)}{\partial t_2} = \begin{cases} \lambda^2 t_1 & t_1 \le t_2 \\ \lambda^2 t_1 + \lambda & t_1 > t_2 \end{cases}$$
$$= \lambda^2 t_1 + \lambda \ U(t_1 - t_2)$$

And:

$$R_{XX'}(t_1, t_2) = \frac{\partial R_{XX'}(t_1, t_2)}{\partial t_1} = \lambda^2 + \lambda \,\delta(t_1 - t_2).$$

Notice that:

- The Poisson process X(t) *does not* represent a wide sense stationary process.
- Although X(t) *does not* represent a wide sense stationary process, its derivative X'(t) *does* represent a wide sense stationary process.

Since X'(t) is a wide sense stationary process; nonstationary inputs to a LTI systems *can* lead to wide sense stationary outputs, an interesting observation!

• Sum of Poisson Processes:

If $X_1(t)$ and $X_2(t)$ represent two independent Poisson processes, then their sum $X_1(t) + X_2(t)$ is also a Poisson process with parameter $(\lambda_1 + \lambda_2)t$. (Follows from the definition of the Poisson process in (i) and (ii)).

Random selection of Poisson Points:

Let $t_1, t_2, \dots, t_i, \dots$ represent random arrival points associated with a Poisson process X(t) with parameter λt , and associated with each arrival point, define an independent Bernoulli random variable N_i , where:

$$\begin{array}{c|c} & & & \\ \hline & & & \\ t_1 & & & \\ \hline & & & \\ t_i & & \\ \hline \end{array}$$

 $P(N_i = 1) = p,$ $P(N_i = 0) = q = 1 - p.$

Define the processes:

$$Y(t) = \sum_{i=1}^{X(t)} N_i \quad ; \quad Z(t) = \sum_{i=1}^{X(t)} (1 - N_i) = X(t) - Y(t)$$

We claim that both Y(t) and Z(t) are independent Poisson processes with parameters λpt and λqt , respectively, where q = 1 - p. When X(t) is a Poisson process with parameter λt .

Proof:

$$Y(t) = \sum_{n=k}^{\infty} P\{Y(t) = k \mid X(t) = n\} P\{X(t) = n\}.$$

But given
$$X(t) = n$$
, we have $Y(t) = \sum_{i=1}^{n} N_i \sim B(n, p)$ so that:
 $P\{Y(t) = k \mid X(t) = n\} = {n \choose k} p^k q^{n-k}, \quad 0 \le k \le n,$

And:

$$P\{X(t)=n\}=e^{-\lambda t}\frac{(\lambda t)^n}{n!}.$$

$$P\{Y(t) = k\} = e^{-\lambda t} \sum_{n=k}^{\infty} \frac{n!}{(n-k)!k!} p^{k} q^{n-k} \frac{(\lambda t)^{n}}{n!} = \frac{p^{k} e^{-\lambda t}}{k!} (\lambda t)^{k} \sum_{\substack{n=k \\ e^{q\lambda t}}}^{\infty} \frac{(q\lambda t)^{n-k}}{(n-k)!}$$
$$= (\lambda p t)^{k} \frac{e^{-(1-q)\lambda t}}{k!} = e^{-\lambda p t} \frac{(\lambda p t)^{k}}{k!}, \quad k = 0, 1, 2, \cdots$$
$$\sim P(\lambda p t).$$

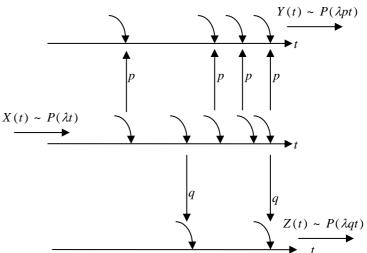
More generally:

$$P\{Y(t) = k, Z(t) = m\} = P\{Y(t) = k, X(t) - Y(t) = m\}$$

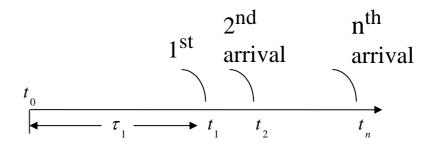
= $P\{Y(t) = k, X(t) = k + m\}$
= $P\{Y(t) = k \mid X(t) = k + m\}P\{X(t) = k + m\}$
= $\binom{k+m}{k} p^k q^m \cdot e^{-\lambda t} \frac{(\lambda t)^{k+m}}{(k+m)!} = \underbrace{e^{-\lambda pt} \frac{(\lambda pt)^n}{k!}}_{P(Y(t)=k)} \underbrace{e^{-\lambda qt} \frac{(\lambda qt)^n}{m!}}_{P(Z(t)=m)}$
= $P\{Y(t) = k\}P\{Z(t) = m\},$

19

- Notice that Y(t) and Z(t) are generated as a result of random Bernoulli selections from the original Poisson process X(t), where each arrival gets tossed over to either Y(t) with probability p or to Z(t) with probability q. Each such subarrival stream is also a Poisson process. Thus, a random selection of Poisson points preserves the Poisson nature of the resulting processes.
- However, a deterministic selection from a Poisson process destroys the Poisson property for the resulting processes.



Let τ_1 denote the time interval (delay) to the first arrival from *any* fixed point t_0 . To determine the probability distribution of the random variable τ_1 , we argue as follows: Observe that the event " $\tau_1 > t$ " is the same as " $n(t_0, t_0+t) = 0$ ", or the complement event " $\tau_1 \le t$ " is the same as the event " $n(t_0, t_0+t) > 0$ ".



Hence the distribution function of τ_1 is given by:

$$\begin{split} F_{\tau_1}(t) &\triangleq P\{\tau_1 \leq t\} = P\{X(t) > 0\} = P\{n(t_0, t_0 + t) > 0\} \\ &= 1 - P\{n(t_0, t_0 + t) = 0\} = 1 - e^{-\lambda t} \end{split}$$

Its derivative gives the probability density function for τ_1 to be:

$$f_{\tau_1}(t) = \frac{dF_{\tau_1}(t)}{dt} = \lambda e^{-\lambda t}, \quad t \ge 0$$

i.e. τ_1 is an exponential random variable with parameter λ so that: $E(\tau_1) = 1/\lambda$.

Similarly, let t_n represent the n^{th} random arrival point for a Poisson process. Then:

$$^{\Delta} F_{t_n}(t) = P\{t_n \le t\} = P\{X(t) \ge n\}$$
$$= 1 - P\{X(t) < n\} = 1 - \sum_{k=0}^{n-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

and hence:

$$f_{t_n}(x) = \frac{dF_{t_n}(x)}{dx} = -\sum_{k=1}^{n-1} \frac{\lambda(\lambda x)^{k-1}}{(k-1)!} e^{-\lambda x} + \sum_{k=0}^{n-1} \frac{\lambda(\lambda x)^k}{k!} e^{-\lambda x}$$
$$= \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x}, \quad x \ge 0$$

which represents a Gamma density function. i.e., the waiting time to the n^{th} Poisson arrival has a Gamma distribution. Moreover:

$$t_n = \sum_{i=1}^n \tau_i$$

where τ_i is the random inter-arrival duration between the $(i-1)^{th}$ and i^{th} events. Notice that τ_i s are independent, identically distributed random variables. Hence using their characteristic functions, it follows that all inter-arrival durations of a Poisson process are independent exponential random variables with common parameter λ . i.e.,

$$f_{\tau_i}(t) = \lambda e^{-\lambda t}, \quad t \ge 0.$$

Alternatively, we have τ_1 is an exponential random variable. By repeating that argument after shifting t_0 to the new point t_1 , we conclude that τ_2 is an exponential random variable. Thus, the sequence $\tau_1, \tau_2, \dots, \tau_n, \dots$ are independent exponential random variables with common p.d.f.

Thus, if we systematically tag every m^{th} outcome of a Poisson process X(t) with parameter λt to generate a new process e(t), then the inter-arrival time between any two events of e(t) is a Gamma random variable.

Notice that:

$$E[e(t)] = m/\lambda$$
, and if $\lambda = m\mu$, then $E[e(t)] = 1/\mu$.

The inter-arrival time of e(t) in that case represents an Erlang-m random variable, and e(t) is an Erlang-m process. In summary, if Poisson arrivals are randomly redirected to form new queues, then each such queue generates a new Poisson process.

Poisson Departures between Exponential Inter-arrivals

Let $X(t) \sim P(\lambda t)$ and $Y(t) \sim P(\mu t)$ represent two independent Poisson processes called *arrival* and *departure* processes.

$$\begin{array}{c} X(t) \rightarrow \\ Y(t) \rightarrow \\ \end{array} \xrightarrow{t_1} \\ t_2 \\ t_1 \\ t_2 \\ t_1 \\ t_2 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\$$

Let *Z* represent the random interval between *any* two successive arrivals of X(t). *Z* has an exponential distribution with parameter λ . Let *N* represent the number of "departures" of Y(t) between *any* two successive arrivals of X(t). Then from the Poisson nature of the departures we have:

$$P\{N = k \mid Z = t\} = e^{-\mu t} \frac{(\mu t)^k}{k!}.$$

Poisson Departures between Exponential Inter-arrivals

. . .

$$P\{N = k\} = \int_{0}^{\infty} P\{N = k \mid Z = t\} f_{z}(t) dt$$
$$= \int_{0}^{\infty} e^{-\mu t} \frac{(\mu t)^{k}}{k!} \lambda e^{-\lambda t} dt$$
$$= \frac{\lambda}{k!} \int_{0}^{\infty} (\mu t)^{k} e^{-(\lambda + \mu)t} dt$$
$$= \frac{\lambda}{\lambda + \mu} \left(\frac{\mu}{\lambda + \mu}\right)^{k} \frac{1}{k!} \underbrace{\int_{0}^{\infty} x^{k} e^{-x} dx}_{k!}$$
$$= \left(\frac{\lambda}{\lambda + \mu}\right) \left(\frac{\mu}{\lambda + \mu}\right)^{k} , \quad k = 0, 1, 2,$$

•

Poisson Departures between Exponential Inter-arrivals

- The random variable *N* has a geometric distribution. Thus if customers come in and get out according to two independent Poisson processes at a counter, then the number of arrivals between any two departures has a geometric distribution.
- Similarly, the number of departures between *any* two arrivals also represents another geometric distribution.

Example

Suppose there are 2 independent Poisson processes with $\lambda_1 = 1, \lambda_2 = 2$.

Find the probability that 2nd arrival of first process occurs before 3rd arrival of the second process.

Solution:

Consider the superposition of these two Poisson processes. It is still a Poisson process with $\lambda = 1 + 2 = 3$.

Also, each event of the resulting process is from first process with probability $\frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{1}{3}$ and otherwise with probability $\frac{2}{3}$. So, for the 2nd arrival of first process to occur before 3rd arrival of the second process, we need the first 4 occurrences to cover at least 2 occurrences of the first process:

$$\sum_{k=2}^{4} \binom{4}{k} \left(\frac{1}{3}\right)^{k} \left(\frac{2}{3}\right)^{4-k}$$

Example: Coupon Collecting

Suppose a cereal manufacturer randomly inserts a sample of one type of coupon into each cereal box. Suppose there are *n* such distinct types of coupons. One interesting question is how many boxes of cereal should one buy on average to collect at least one coupon of each kind?

Example: Coupon Collecting

We shall reformulate the above problem in terms of Poisson processes. Let $X_1(t), X_2(t), \dots, X_n(t)$ represent *n* independent identically distributed Poisson processes with common parameter λt . Let t_{i1}, t_{i2}, \dots represent the first, second, ... random arrival instants of the process $X_i(t)$, $i = 1, 2, \dots, n$. They will correspond to the first, second, \dots appearance of the i^{th} type of coupon in the above problem. Let:

$$X(t) \triangleq \sum_{i=1}^{n} X_{i}(t),$$

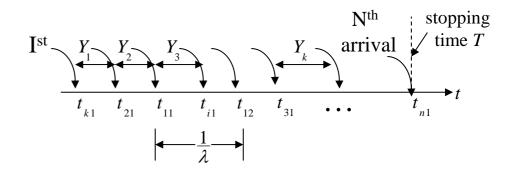
so that the sum X(t) is also a Poisson process with parameter μt , where

$$\mu = n\lambda.$$

Example: Coupon Collecting

 $1/\lambda$ represents: The average inter-arrival duration between any two arrivals of $X_i(t), i = 1, 2, \dots, n$, whereas:

 $1/\mu$ represents the average inter-arrival time for the combined sum process X(t).

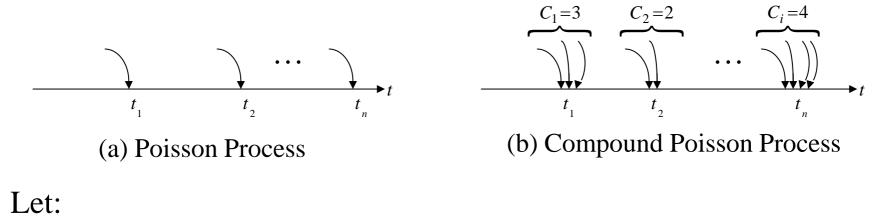


Bulk Arrivals and Compound Poisson Processes

In an ordinary Poisson process X(t), only one event occurs at any arrival instant. Instead suppose a random number of events C_i occur simultaneously as a cluster at every arrival instant of a Poisson process. If X(t) represents the total number of all occurrences in the interval (0, t), then X(t) represents a **compound Poisson process**, or a **bulk arrival process**.

Bulk Arrivals and Compound Poisson Processes

Inventory orders, arrivals at an airport queue, tickets purchased for a show, etc. follow this process (when things happen, they happen in a bulk, or a bunch of items are involved.)



$$p_k = P\{C_i = k\}, \quad k = 0, 1, 2, \cdots$$

represent the common probability mass function for the occurrence in any cluster C_i . Then the compound process X(t) satisfies:

$$X(t) = \sum_{i=1}^{N(t)} C_i,$$

where N(t) represents an ordinary Poisson process with parameter λ . Let:

$$P(z) = E\{z^{C_i}\} = \sum_{k=0}^{\infty} p_k z^k$$

represent the moment generating function associated with the cluster Statistics. Then the moment generating function of the compound Poisson process X(t) is given by:

$$\phi_{X}(z) = \sum_{n=0}^{\infty} z^{n} P\{X(t) = n\} = E\{z^{X(t)}\}$$

$$= E\{E[z^{X(t)} | N(t) = k]\} = E[E\{z^{\sum_{i=1}^{k} C_{i}} | N(t) = k\}]$$

$$= \sum_{k=0}^{\infty} (E\{z^{C_{i}}\})^{k} P\{N(t) = k\}$$

$$= \sum_{k=0}^{\infty} P^{k}(z)e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} = e^{-\lambda t(1-P(z))}$$

If we let:

$$P^{k}(z) \stackrel{\Delta}{=} \left(\sum_{n=0}^{\infty} p_{n} z^{k}\right)^{k} = \sum_{n=0}^{\infty} p_{n}^{(k)} z^{n}$$

where $\{p_n^{(k)}\}\$ represents the *k* fold convolution of the sequence $\{p_n\}\$ with itself, we obtain:

$$P\{X(t) = n\} = \sum_{k=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k!} p_{n}^{(k)}$$

The above, represents the probability that there are *n* arrivals in the interval (0, t) for a compound Poisson process X(t).

We can rewrite $\phi_x(z)$ also as:

$$\phi_{x}(z) = e^{-\lambda_{1}t(1-z)}e^{-\lambda_{2}t(1-z^{2})}\cdots e^{-\lambda_{k}t(1-z^{k})}\cdots$$

where $\lambda_k = p_k \lambda$, which shows that the compound Poisson process can be expressed as the sum of integer-scaled independent Poisson processes $m_1(t), m_2(t), \cdots$. Thus:

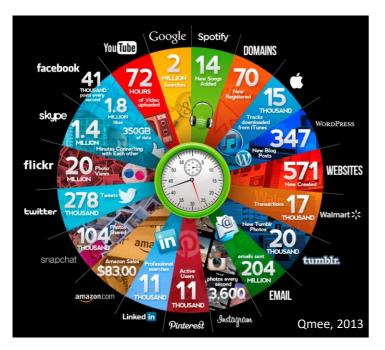
$$X(t) = \sum_{k=1}^{\infty} k \, m_k(t).$$

More generally, every linear combination of independent Poisson processes represents a compound Poisson process.

Outline of Week 04 Lectures

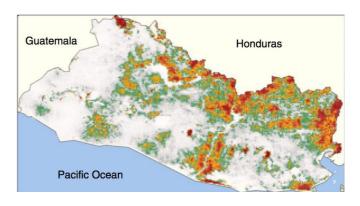
- Poisson Process
- Point Process

Many discrete events in continuous time

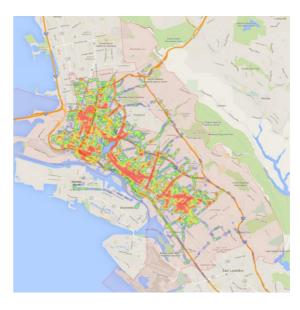


Online actions

Financial trading



Disease dynamics

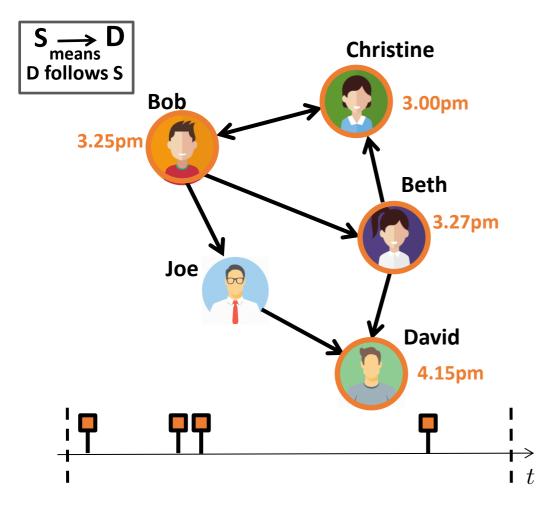


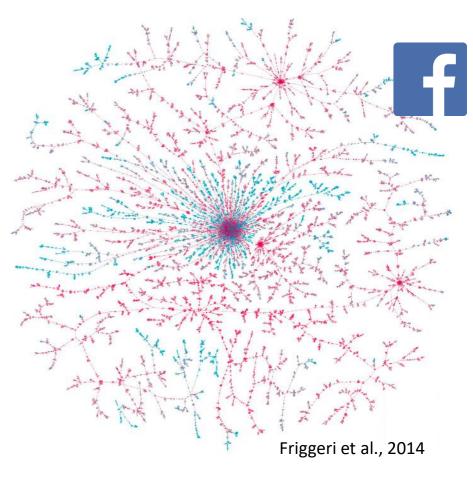
Mobility dynamics

Variety of processes behind these events

Events are (noisy) observations of a variety of complex dynamic processes...

Example I: Information propagation

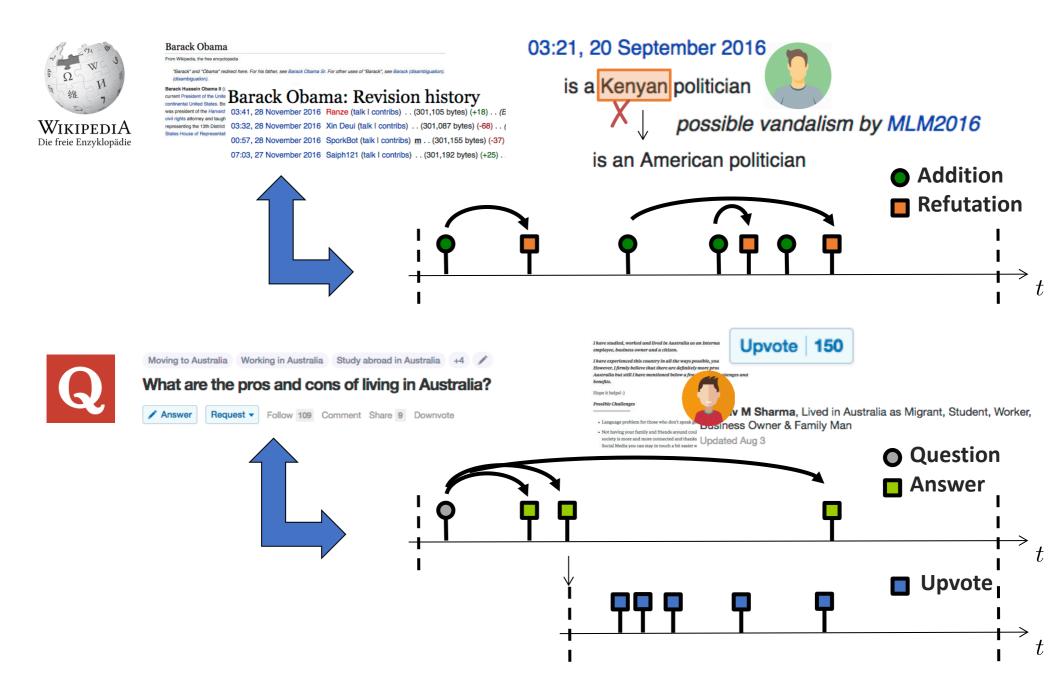




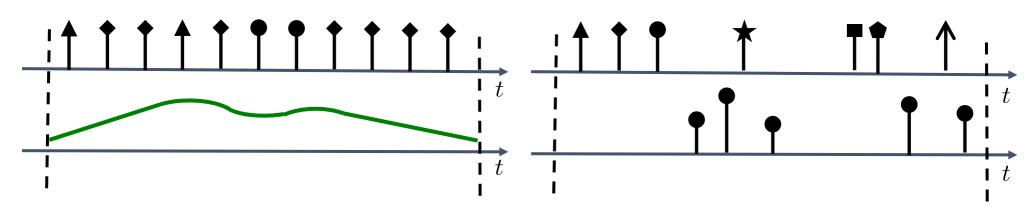
They can have an impact in the off-line world

theguardian

Click and elect: how fake news helped Donald Trump win a real election



Aren't these event traces just time series?



Discrete and continuous times series

Discrete events in continuous time

What about aggregating events in *epochs*?

'Epoch 1'Epoch 2' Epoch 3 '

How long is each epoch? How to aggregate events per epoch? What if no event in one epoch? What about time-related queries?

Temporal Point Processes (TPPs): Introduction

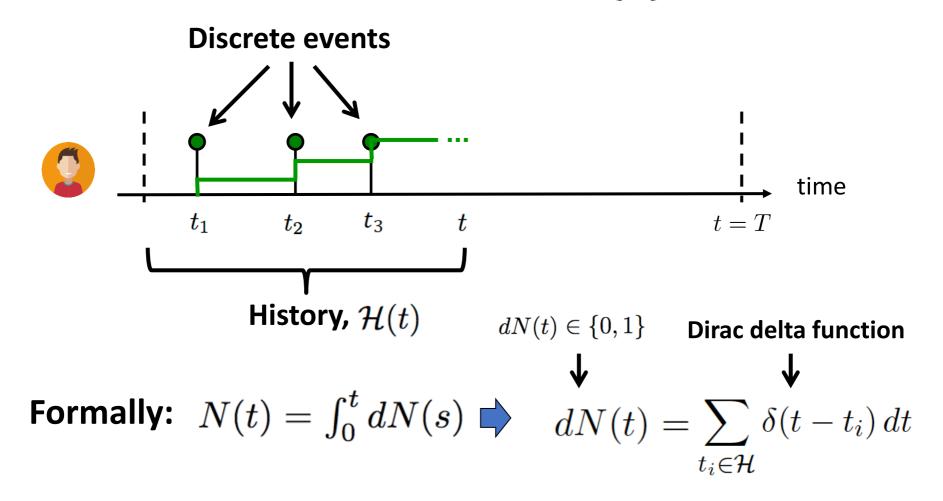
1. Intensity function

2. Basic building blocks
 3. Superposition
 4. Marks and SDEs with jumps

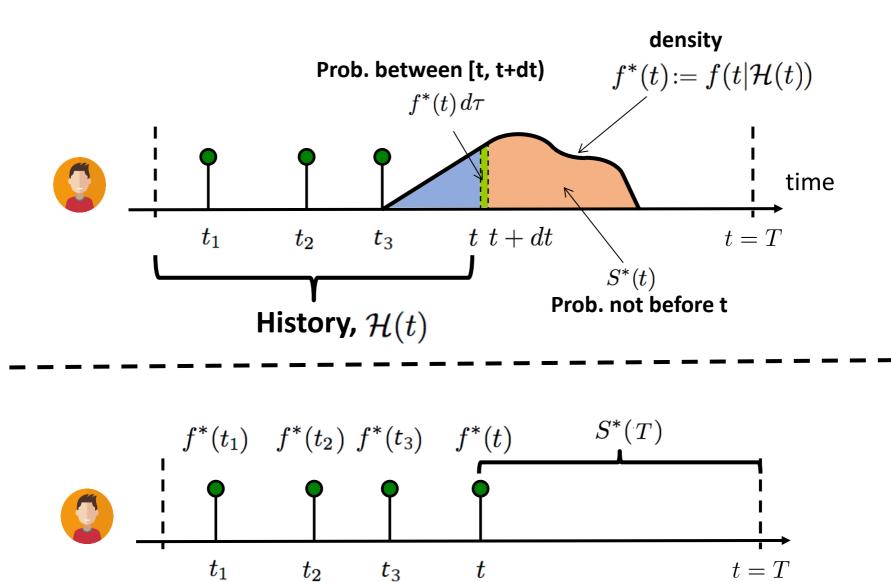
Temporal point processes

Temporal point process:

A random process whose realization consists of discrete events localized in time $\mathcal{H} = \{t_i\}$

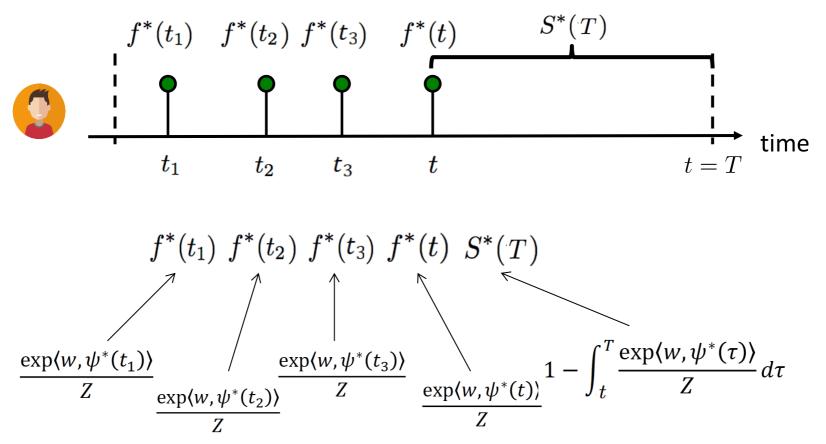


Model time as a random variable



Likelihood of a timeline: $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$

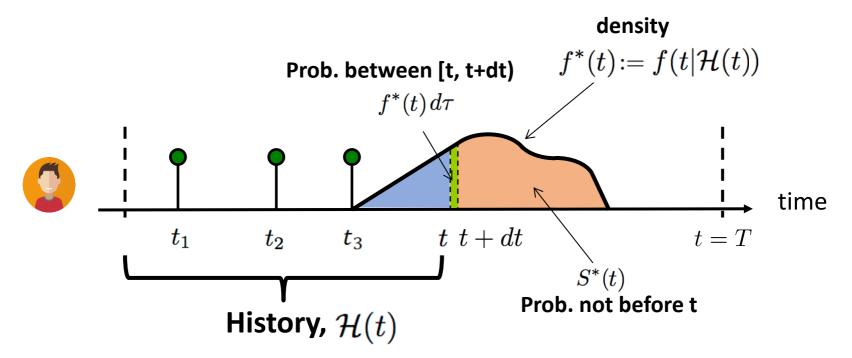
Problems of density parametrization (I)



It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- **2.** Difficult to combine timelines

Intensity function



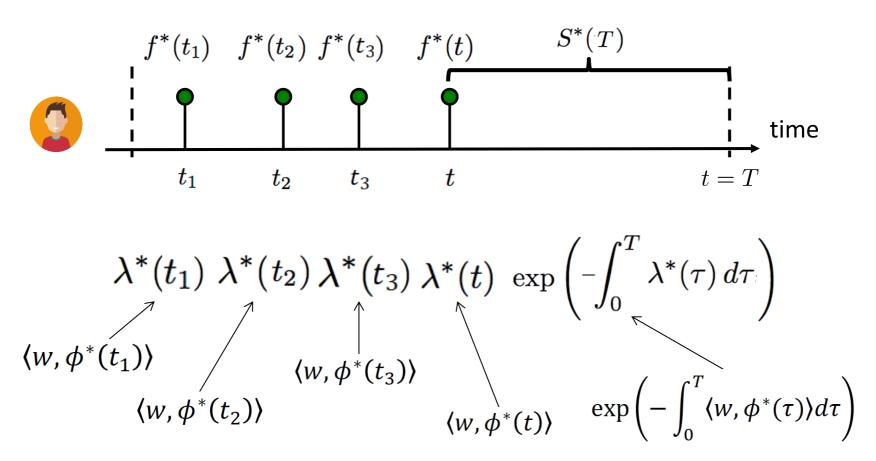
Intensity:

Probability between [t, t+dt) but not before t

$$\lambda^*(t)dt = \frac{f^*(t)dt}{S^*(t)} \ge 0 \quad \Longrightarrow \quad \lambda^*(t)dt = \mathbb{E}[dN(t)|\mathcal{H}(t)]$$

Observation: $\lambda^*(t)$ It is a rate = # of events / unit of time

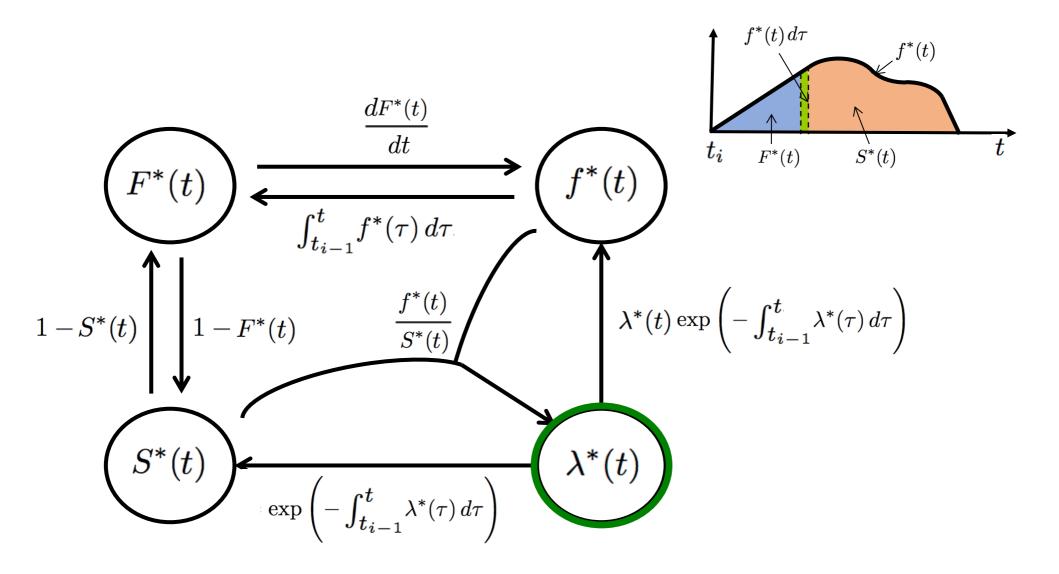
Advantages of intensity parametrization (I)



Suitable for model design and interpretable:

- 1. Intensities only need to be nonnegative
- 2. Easy to combine timelines

Relation between f^* , F^* , S^* , λ^*



Representation: Temporal Point Processes

Intensity function
 Basic building blocks
 Superposition
 Marks and SDEs with jumps

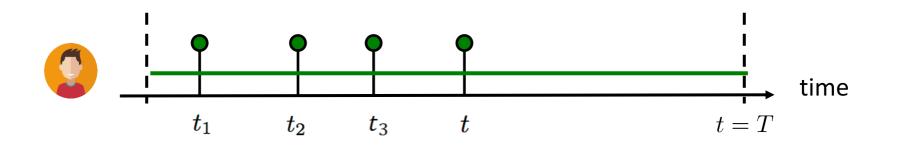
Recall: Some Sampling Techniques

- Sampling is essential in statistics because it makes inference more efficient, feasible, accurate, and resource-effective while allowing for generalizability and detailed analysis.
- We treat sampling methods in more detail at the end of the course.
- **Inversion sampling**: Also known as inverse transform sampling, is a method for generating random samples from any probability distribution given its cumulative distribution function (CDF), in two steps:
 - Uniform Random Sample: Generate a random number (u) from a uniform distribution between 0 and 1.
 - Inverse CDF: Use the inverse of the cumulative distribution function (CDF) of the target distribution to transform the uniform random sample. This involves finding the value (x) such that (F(x) = u), where (F) is the CDF of the target distribution.

Recall: Some Sampling Techniques

- **Rejection sampling:** also known as the acceptance-rejection method, is a technique used in computational statistics to generate observations from a target distribution by using a proposal distribution:
 - Proposal Distribution: Choose a proposal distribution (g(x)) from which it is easy to sample. This distribution should cover the support of the target distribution (f(x)).
 - Sampling: Generate a samples (x) from the proposal distribution (g(x)).
 - Acceptance Criterion: Accept the sample (x) if the defined acceptance criterion is met. Repeat the process until a sample is accepted.

Poisson process



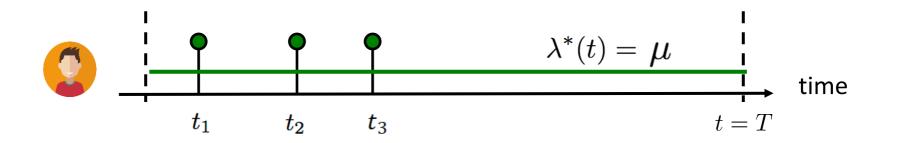
Intensity of a Poisson process

$$\lambda^*(t) = \mu$$

Observations:

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution

Fitting & sampling from a Poisson



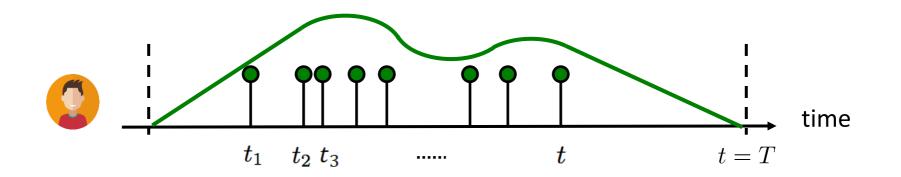
Fitting by maximum likelihood:

$$\mu^* = \underset{\mu}{\operatorname{argmax}} 3 \log \mu - \mu T = \frac{3}{T}$$

Sampling using inversion sampling:

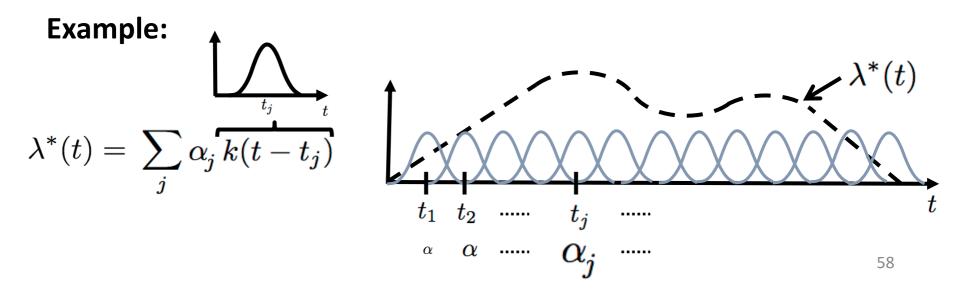
Uniform(0,1)

Inhomogeneous Poisson process

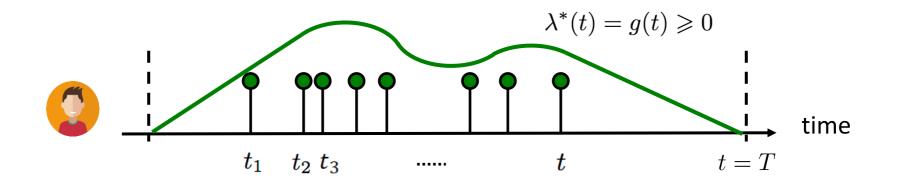


Intensity of an inhomogeneous Poisson process

 $\lambda^*(t) = g(t) \geqslant 0$ (Independent of history)



Fitting & sampling from inhomogeneous Poisson



Fitting by maximum likelihood: maximize $\sum_{g(t)}^{n} \log g(t_i) - \int_{0}^{T} g(\tau) d\tau$

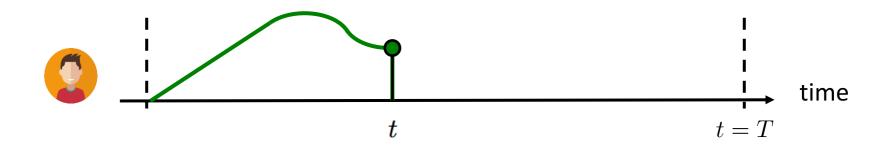
Sampling using thinning (reject. sampling) + inverse sampling:

- 1. Sample $t \,$ from Poisson process with intensity $\mu \,$ using inverse sampling
- **2.** Generate $u_2 \sim Uniform(0,1)$

3. Keep the sample if $u_2 \leq g(t) / \mu$

Keep sample with prob. $g(t) / \mu$

Terminating (or survival) process



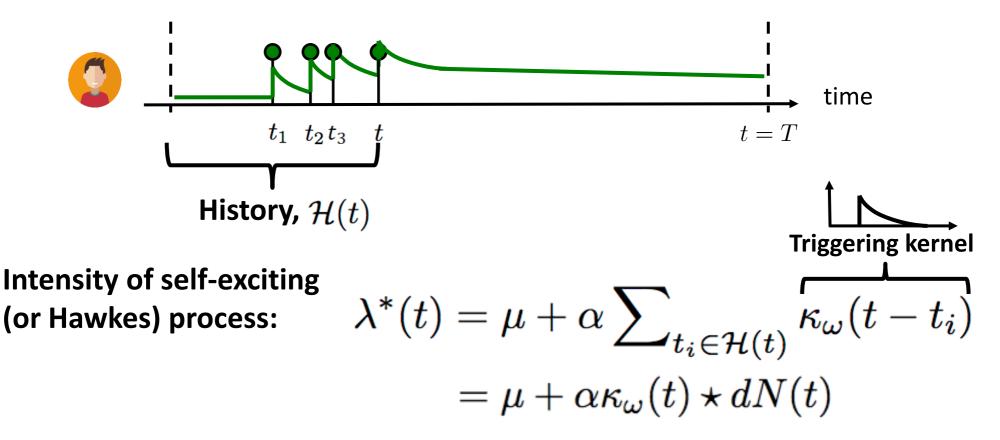
Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \ge 0$$

Observations:

1. Limited number of occurrences

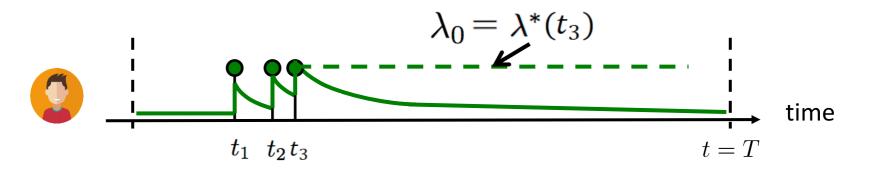
Self-exciting (or Hawkes) process



Observations:

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

Fitting a Hawkes process from a recorded timeline



Fitting by maximum likelihood:

$$\underset{\mu,\alpha}{\text{maximize}} \sum_{i=1}^{n} \log \lambda^{*}(t_{i}) - \int_{0}^{T} \lambda^{*}(\tau) d\tau \quad \left\{ \begin{array}{c} \text{The max. likelihood} \\ \text{is jointly convex} \\ \text{in } \mu \text{ and } \alpha \end{array} \right\}$$

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity $\,\lambda_0\,$ changes over time

Summary

Building blocks to represent different dynamic processes:

Poisson processes:

$$\lambda^*(t) = \lambda$$

Inhomogeneous Poisson processes:

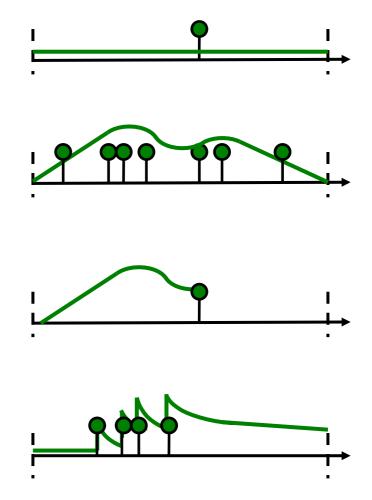
$$\lambda^*(t) = g(t)$$

Terminating point processes:

$$\lambda^*(t) = g^*(t)(1 - N(t))$$

Self-exciting point processes:

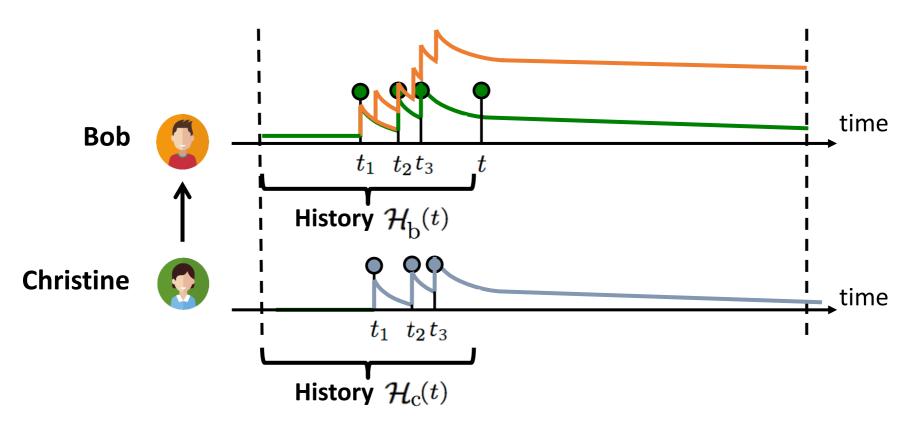
$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_\omega(t - t_i)$$



Representation: Temporal Point Processes

Intensity function
 Basic building blocks
 Superposition
 Marks and SDEs with jumps

Mutually exciting process

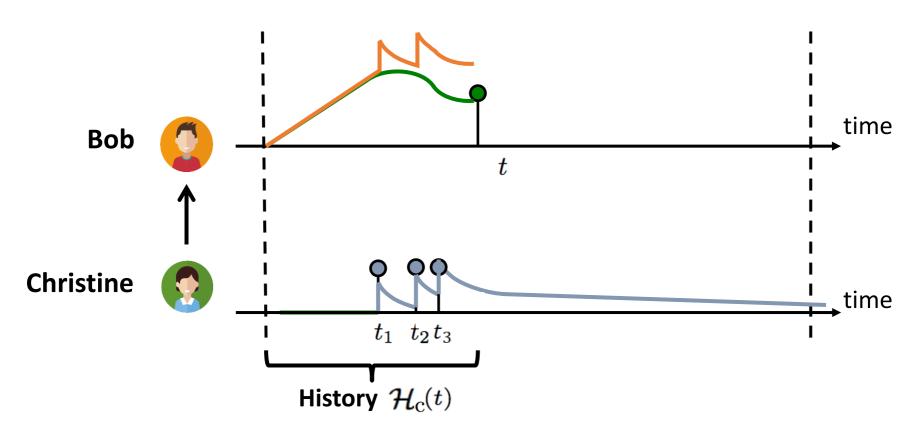


Clustered occurrence affected by neighbors

$$egin{aligned} \lambda^*(t) &= \mu + lpha \sum_{t_i \in \mathcal{H}_{\mathrm{b}}^{(t)}} \kappa_\omega(t-t_i) \ &+ eta \sum_{t_i \in \mathcal{H}_{\mathrm{c}}^{(t)}} \kappa_\omega(t-t_i) \end{aligned}$$

65

Mutually exciting terminating process



Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega (t - t_i) \right)$$

Representation: Temporal Point Processes

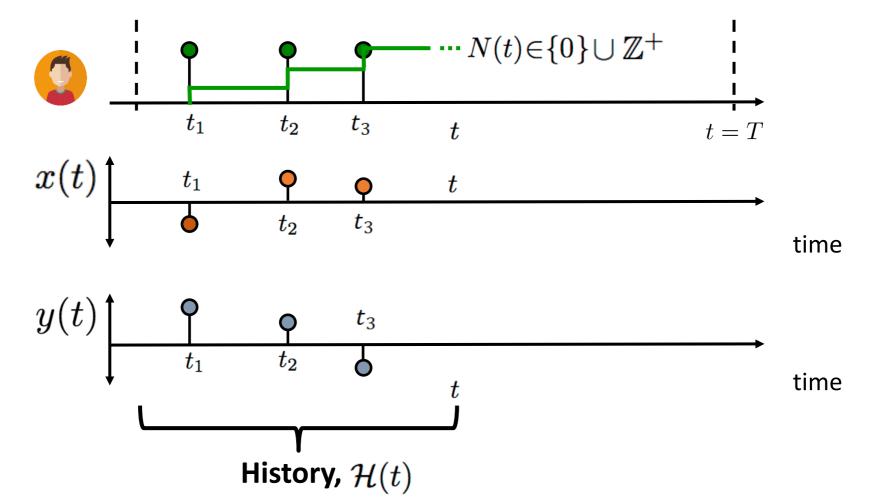
Intensity function
 Basic building blocks
 Superposition

4. Marks and SDEs with jumps

Marked temporal point processes

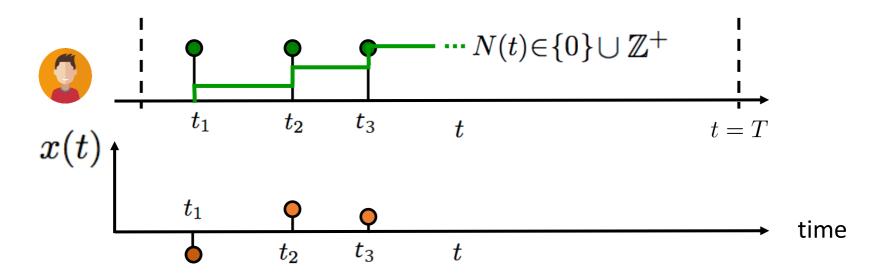
Marked temporal point process:

A random process whose realization consists of discrete marked events localized in time



68

Independent identically distributed marks



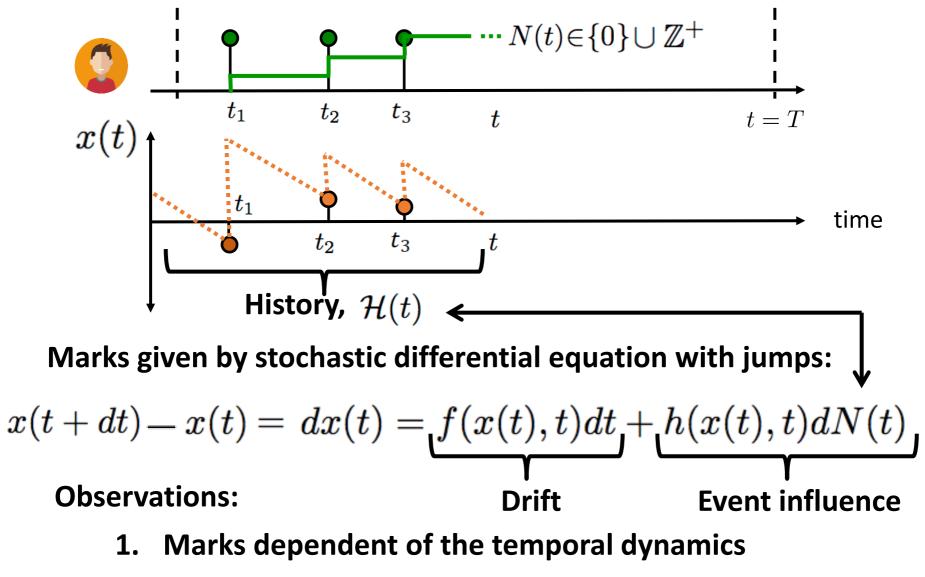
Distribution for the marks:

$$x^*(t_i) \sim p(x)$$

Observations:

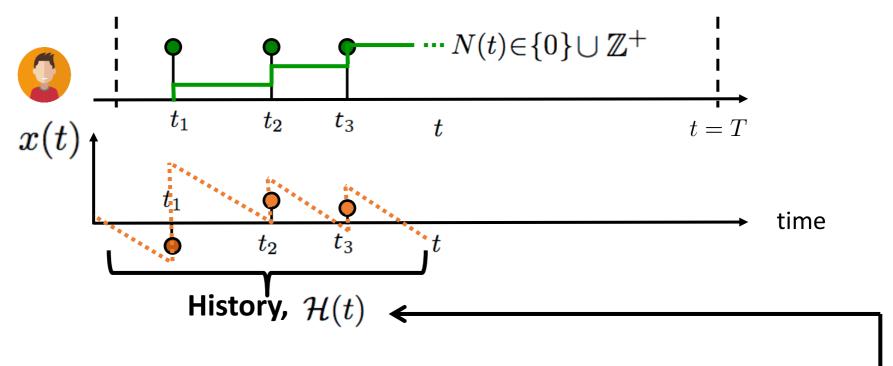
- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

Dependent marks: SDEs with jumps



2. Defined for all values of t

Dependent marks: distribution + SDE with jumps



Distribution for the marks:

$$x^*(t_i) \sim p(x^*|x(t)) \Rightarrow dx(t) = f(x(t), t)dt + h(x(t), t)dN(t)$$

Observations:

- 1. Marks dependent on the temporal dynamics
- 2. Distribution represents additional source of uncertainty 71

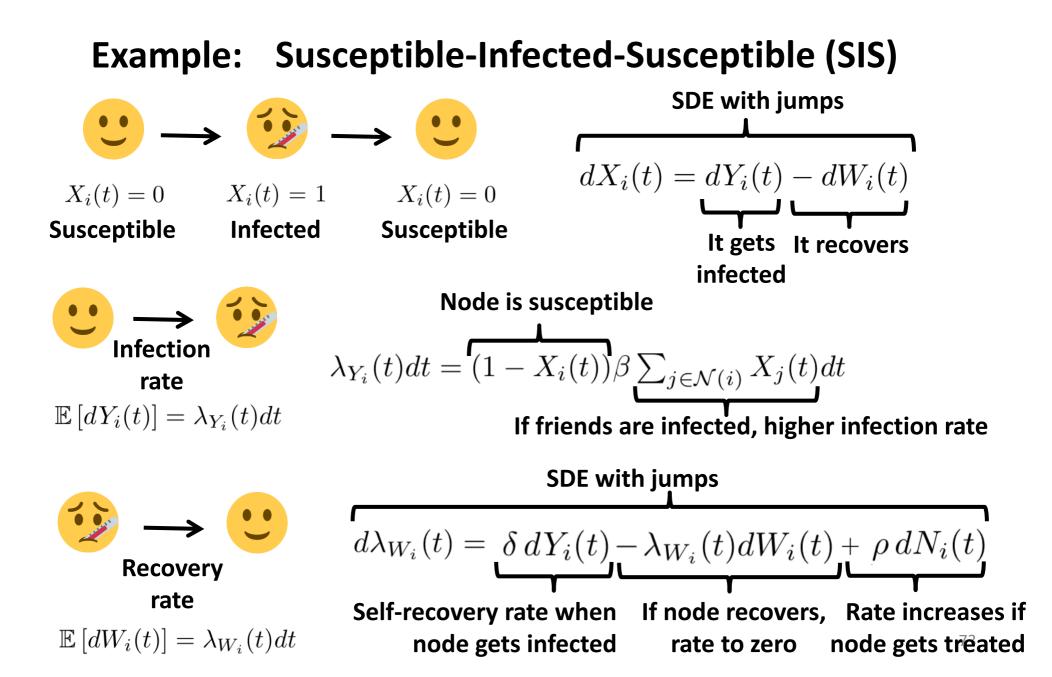
Mutually exciting + marks



$$dx(t) = \underbrace{f(x(t), t)dt}_{\text{Drift}} + \underbrace{g(x(t), t)dM(t)}_{\text{Neighbor influence}}$$

72

Marked TPPs as stochastic dynamical systems

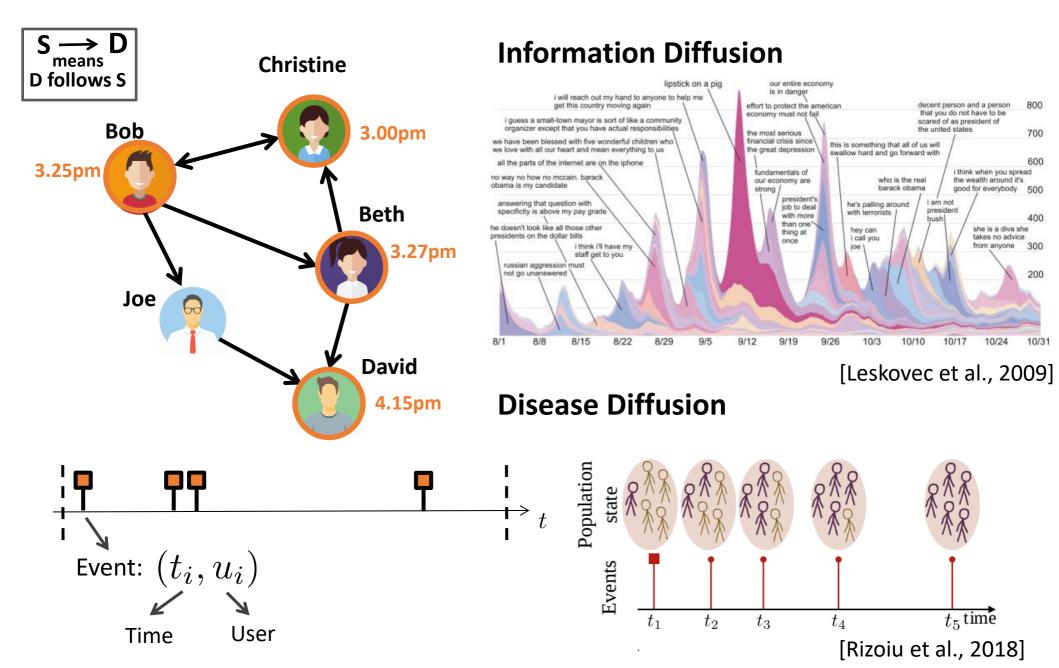


Models & Inference

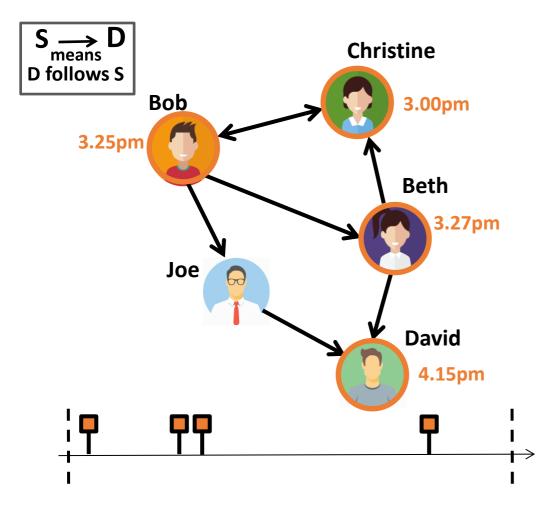
1. Modeling event sequences

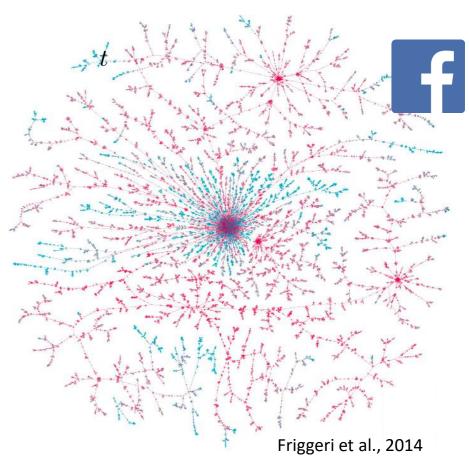
Clustering event sequences
 Capturing complex dynamics
 Causal reasoning on event sequences

Event sequences as cascades



An example: idea adoption





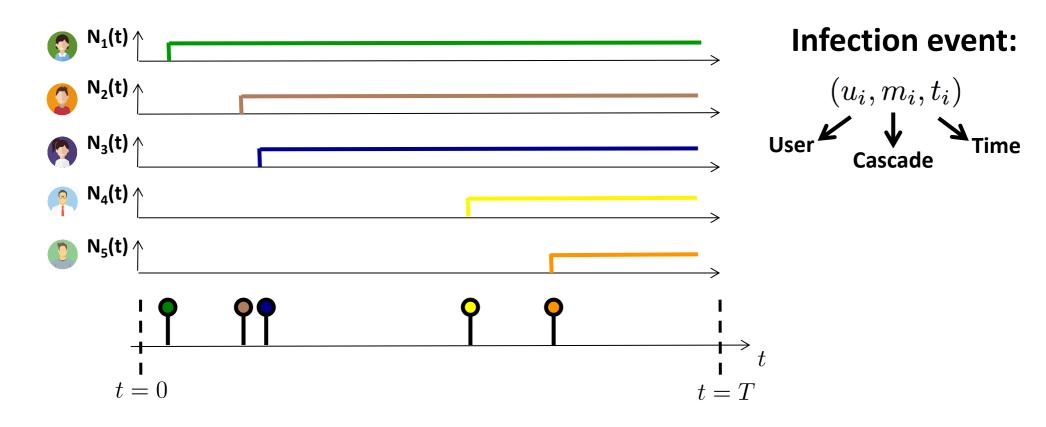
They can have an impact in the off-line world

theguardian

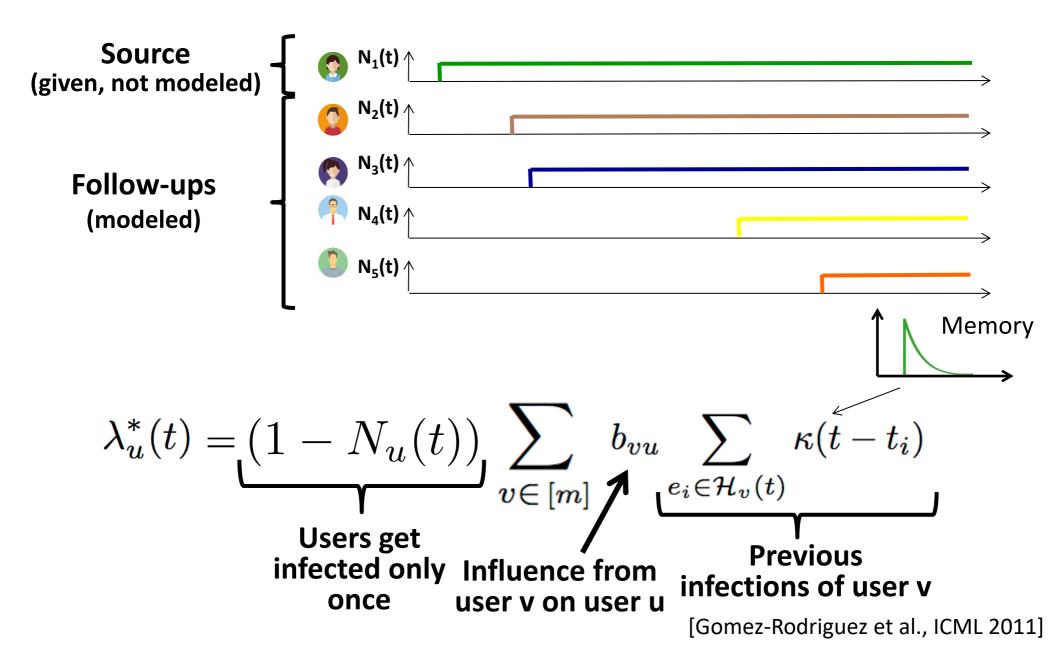
Click and elect: how fake news helped Donald Trump win a real election

Infection cascade representation

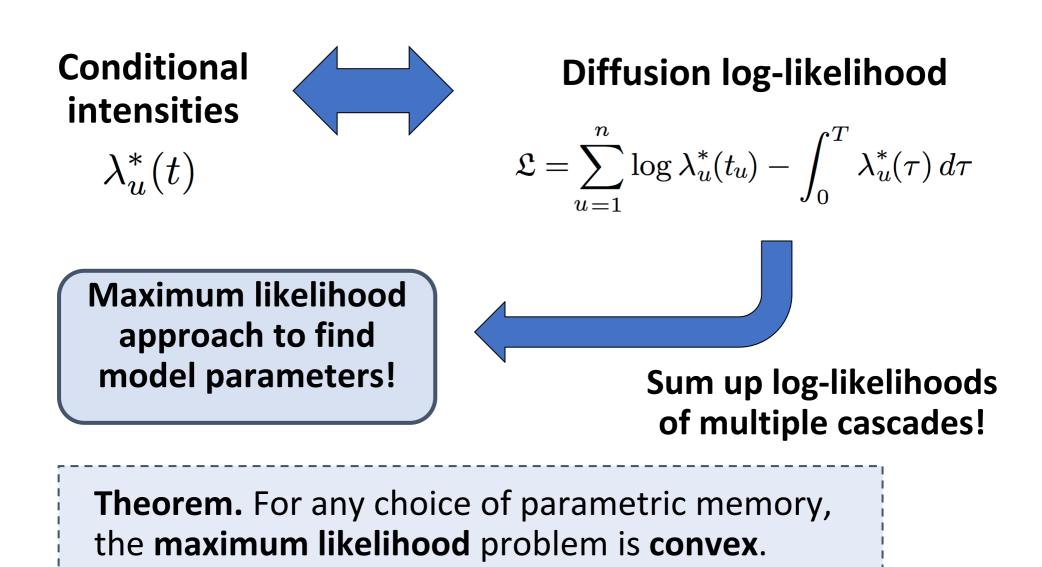
We represent an infection cascade using **terminating temporal point processes**:



Infection intensity

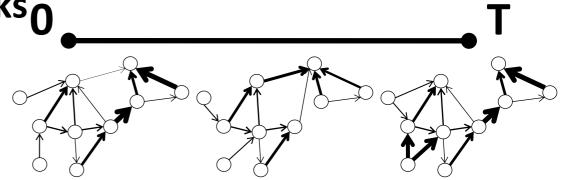


Model inference from multiple cascades



[Gomez-Rodriguez et al., ICML 2011]

Propagation over networks with variable influence

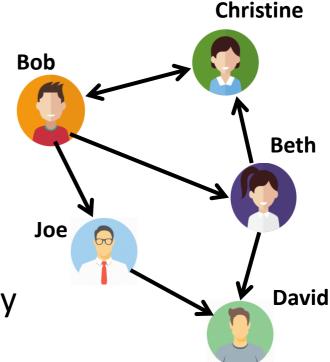


[Gomez-Rodriguez et al., WSDM 2013]

Recurrent events: beyond cascades

Up to this point, each users is only infected once, and event sequences can be seen as cascades.

In general, users perform recurrent events over time. E.g., people repeatedly express their opinion online:



The New York Times Social Media Are Giving a Voice to Taste Buds

How social media is revolutionizing debates

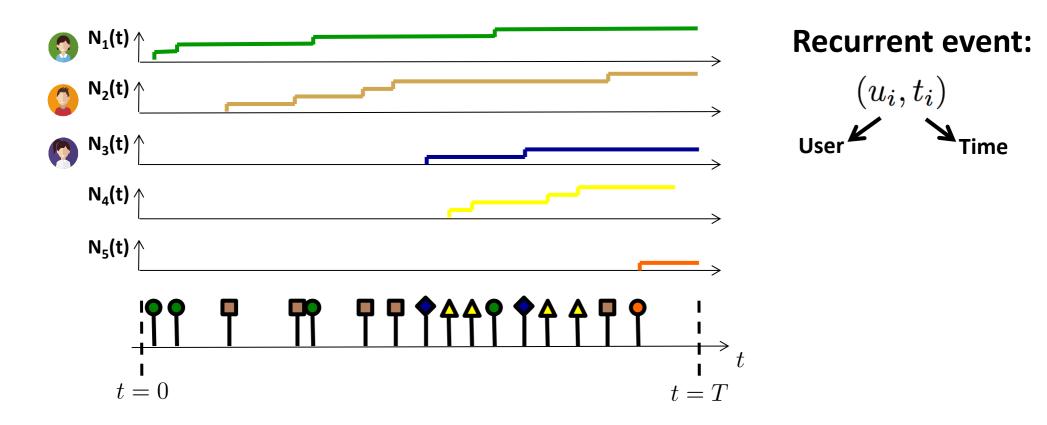
The New York Times

Campaigns Use Social Media to Lure Younger Voters

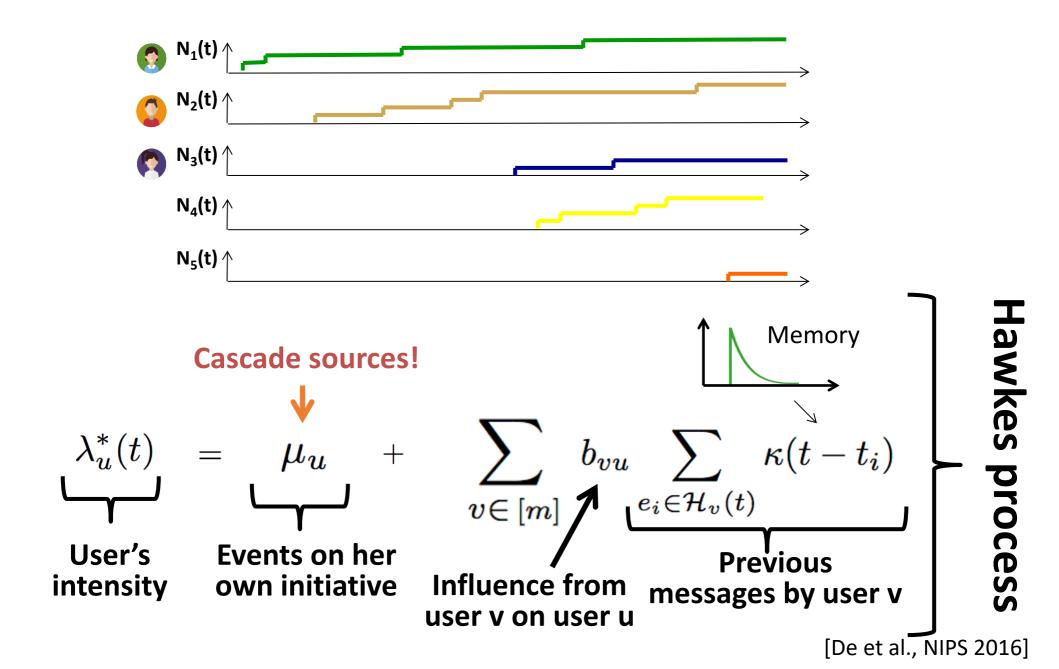
Twitter Unveils A New Set Of Brand-Centric Analytics

Recurrent events representation

We represent messages using **nonterminating temporal point processes**:



Recurrent events intensity



Models & Inference

1. Modeling event sequences

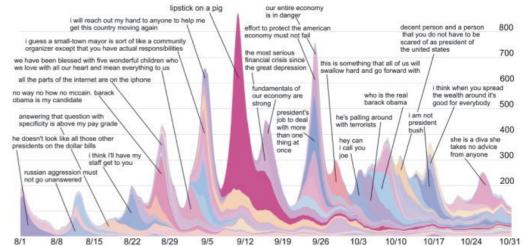
2. Clustering event sequences

3. Capturing complex dynamics

4. Causal reasoning on event sequences

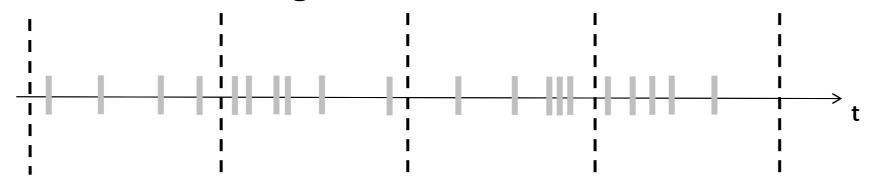
Event sequences

So far, we have assumed the cascade (topic, meme, etc.) that each event belongs to was known.

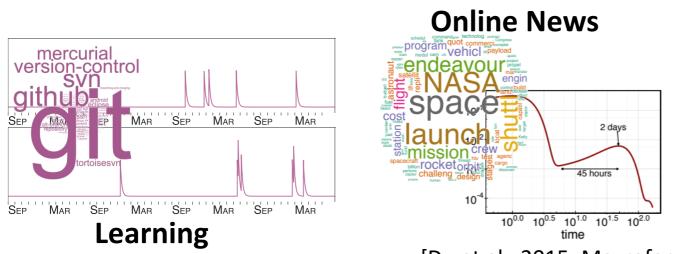


Often, the cluster (topic, meme, etc.) that each event in a sequence belongs to is not known:

Assume the event **cluster to be hidden** and aim to automatically **learn the cluster assigments** from the data:



Bayesian methods to cluster event sequences in the context of:

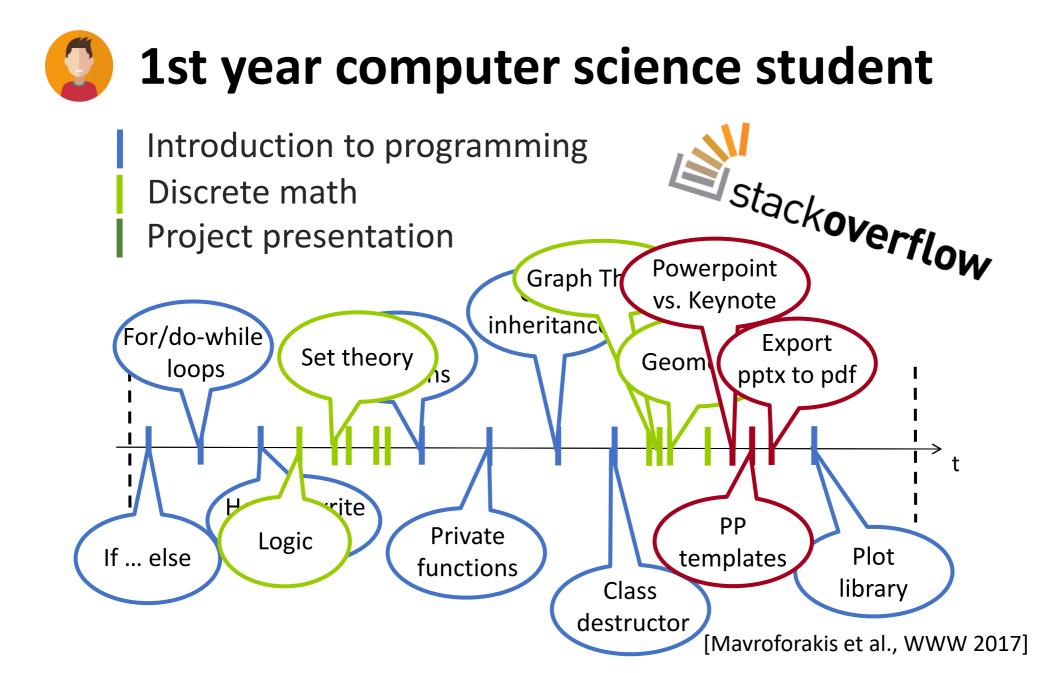


Health care

Method	DMHP
ICU Patient	0.3778
IPTV User	0.2004

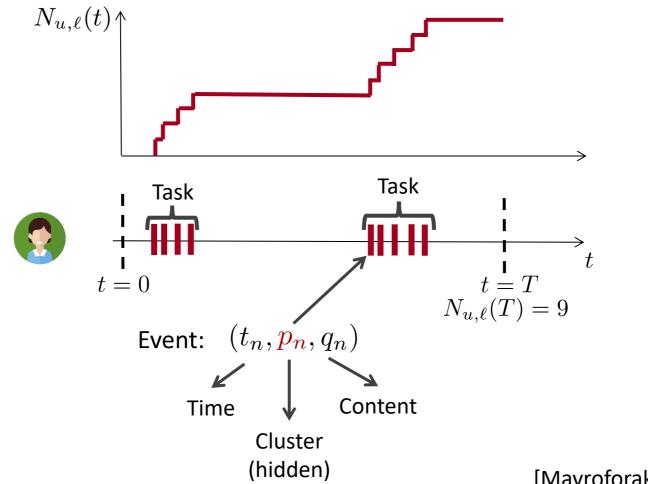
[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]

Hierarchical Dirichlet Hawkes process



Events representation

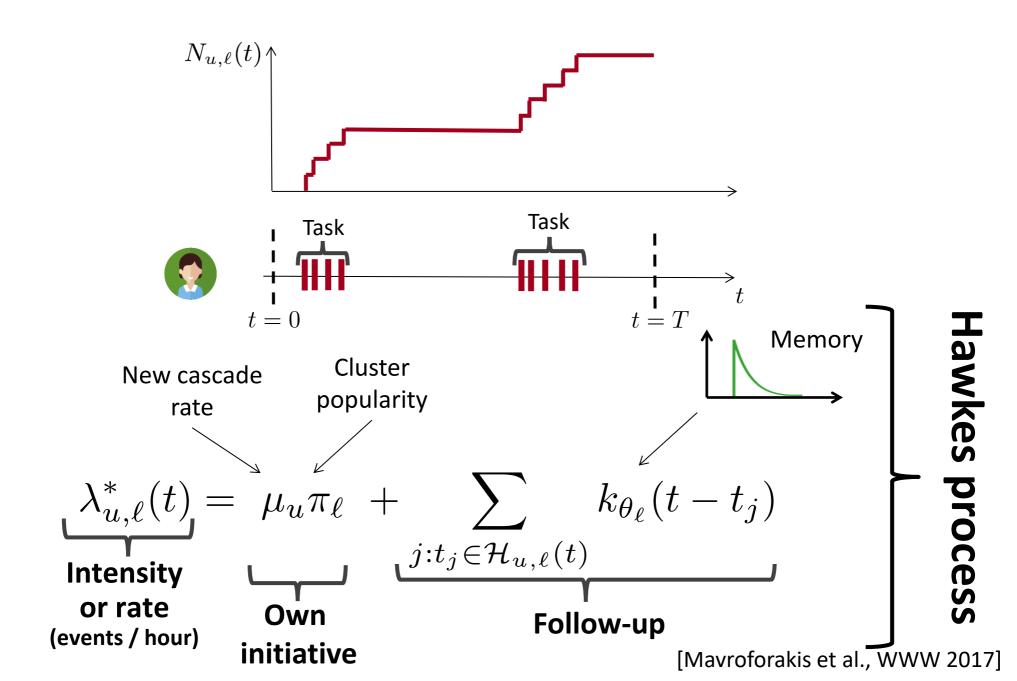
We represent the events using marked temporal point processes:



88

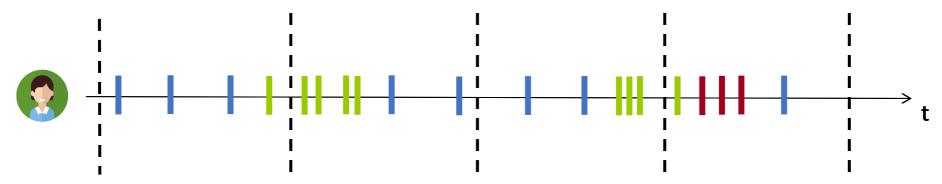
[Mavroforakis et al., WWW 2017]

Cluster intensity

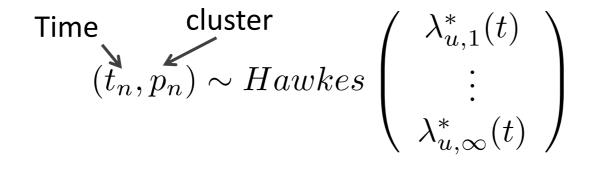


User events intensity

Users adopt more than one cluster:



A user's learning events as a multidimensional Hawkes:

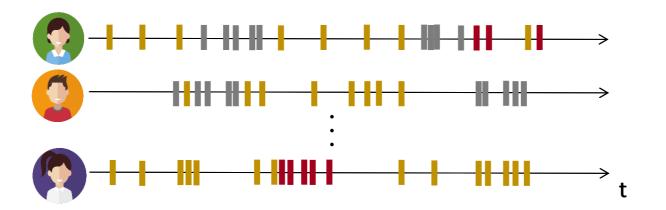


Content $\rightarrow q_n = \boldsymbol{\omega} \quad \omega_j \sim Multinomial(\boldsymbol{\theta}_p)$

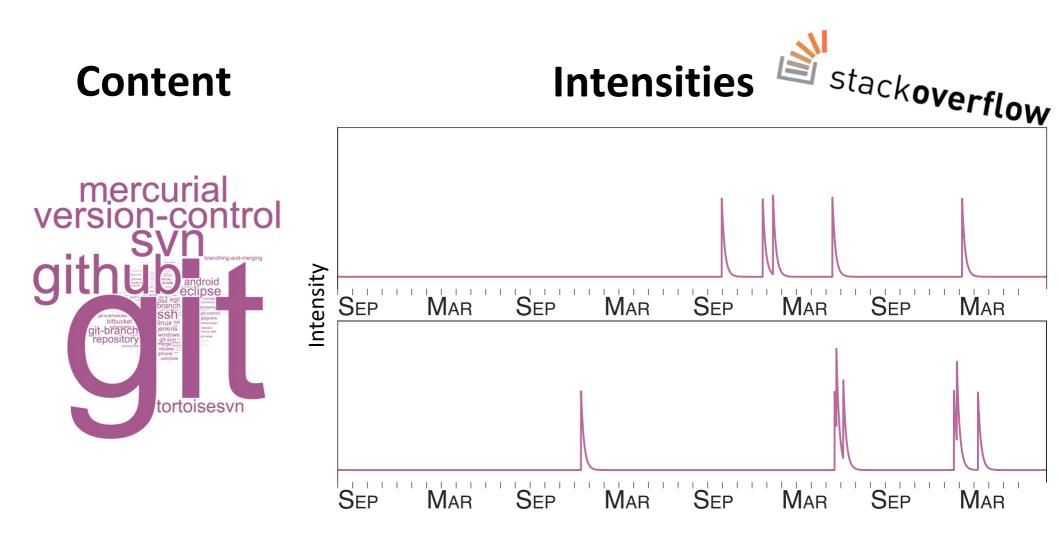
[Mavroforakis et al., WWW 2017]

People share same clusters

Different users adopt same clusters

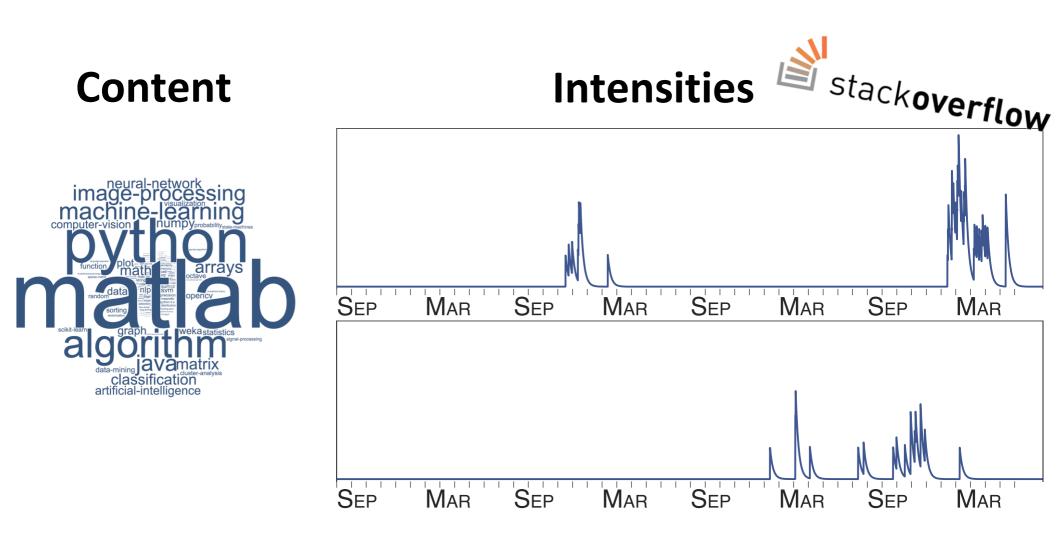


Cluster distribution from a **Dirichlet process:** in the - Infinite # of clusters. - Shared parameters across users



Version control tasks tend to be specific, quickly solved after performing few questions

[Mavroforakis et al., WWW 2017]



Machine learning tasks tend to be more complex and require asking more questions

[Mavroforakis et al., WWW 2017]

Models & Inference

Modeling event sequences
 Clustering event sequences

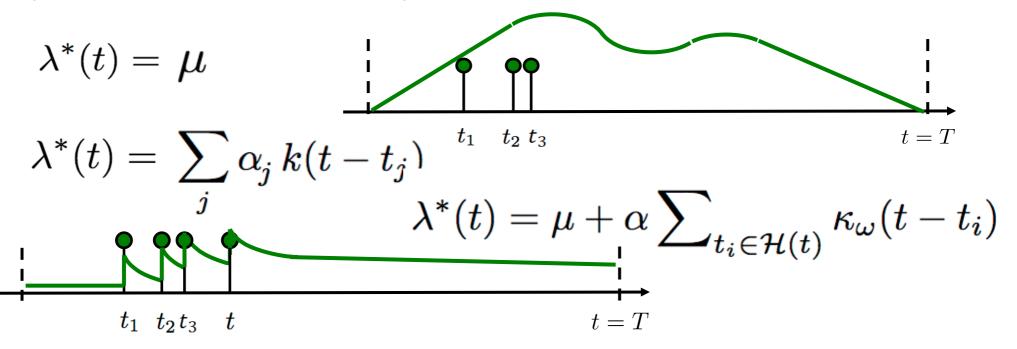
3. Capturing complex dynamics

4. Causal reasoning on event sequences

Case Studies & References

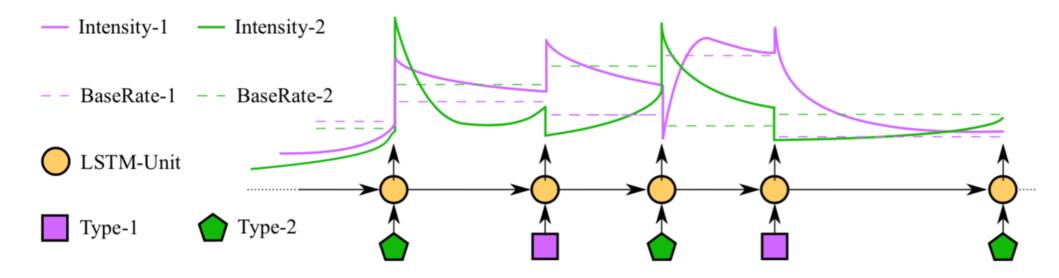
For those who want to do research in social media

Up to now, we have focused on simple temporal dynamics (and intensity functions):



Recent works make use of RNNs to capture more complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017; Trivedi et al., 2017; Xiao et al., 2017a; 2018] History effect does not need to be additive
 Allows for complex memory effects (such as delays)



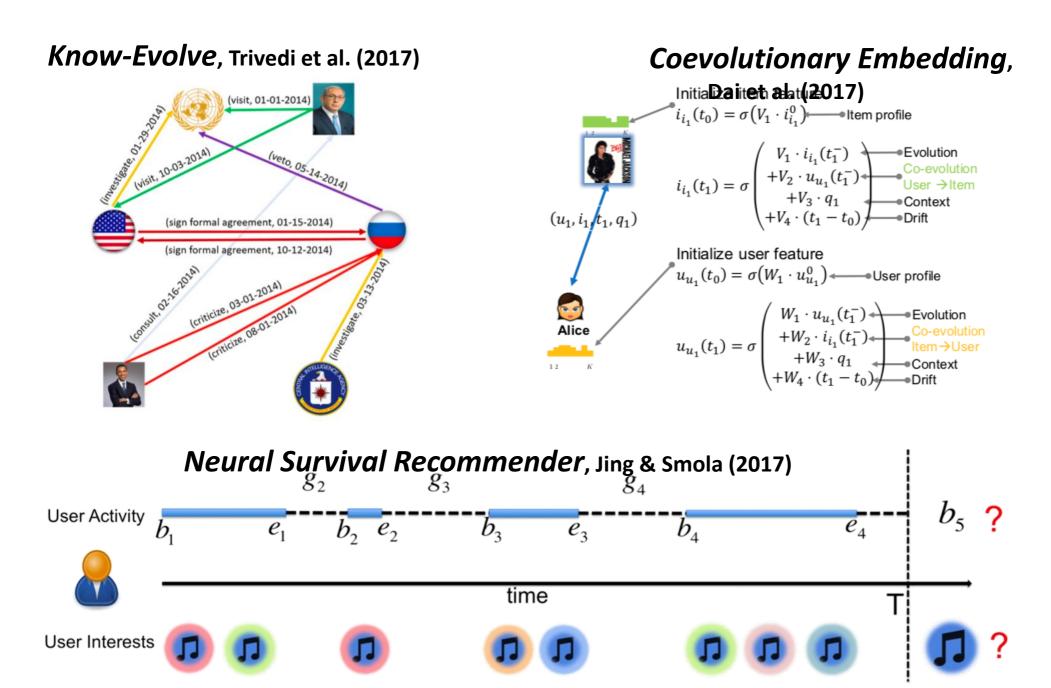
Neural Hawkes process

 \bigcirc

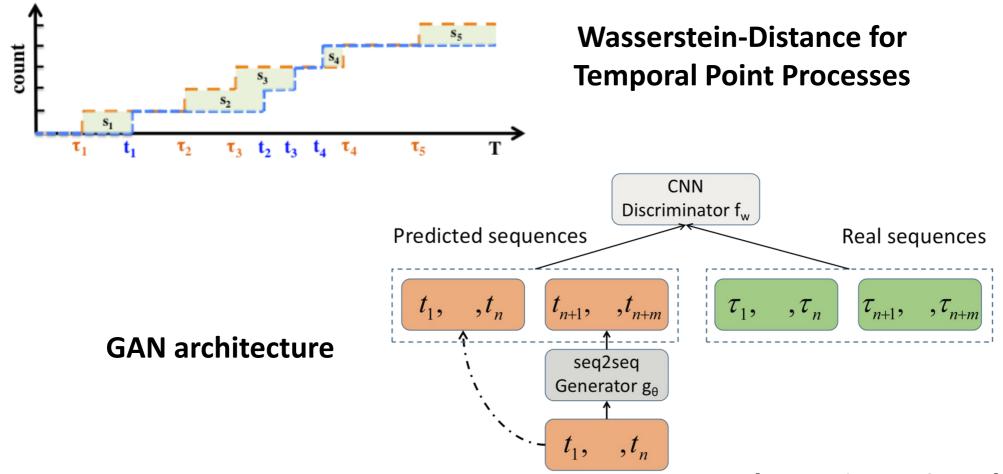
$$\lambda_{u}(t) = f_{u}(\mathbf{w}_{u}^{\top}\mathbf{h}(t)) \qquad \text{Memory} \\ \mathbf{h}(t) = \text{RNN}(\mathcal{H}(t)) \\ \text{Excitation & inhibition} \\ - \text{Intensity-1} - \text{Intensity-2} \\ - \text{BaseRate-1} - \text{BaseRate-2} \\ - \text{BaseRate-1} - \text{BaseRate-2} \\ - \text{ISTM-Unit} \\ - \text{Type-1} \quad \mathbf{Type-2} \\ - \text{Type-1} \quad \mathbf{h}(t) = \mathbf{h}(t) \\ - \text{Figure 1} \quad \mathbf{h}(t) \\ - \text{Figure 1} \quad \mathbf{h}(t) = \mathbf{h}(t) \\ - \text{Figure 1} \quad \mathbf{h}(t) = \mathbf{h}(t) \\ - \text{Figure 1} \quad \mathbf{$$

[Mei & Eisner, NIPS 2017]

Applications (I): Predictive Models



Key idea: Intensity- and likelihood-free models



[[]Xiao et al., 2017 & 2018]

Models & Inference

1. Modeling event sequences

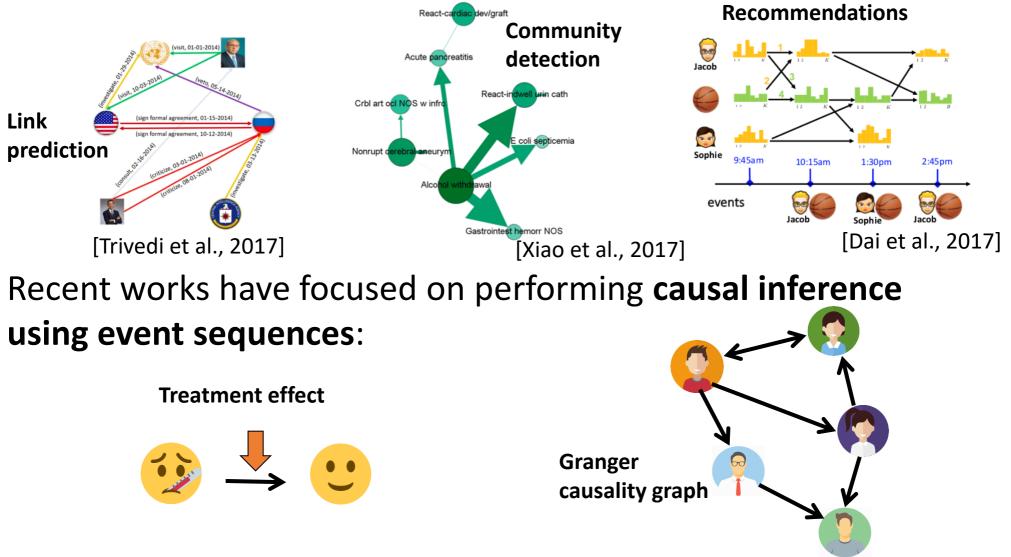
2. Clustering event sequences

3. Capturing complex dynamics

4. Causal reasoning on event sequences

Temporal point processes beyond prediction

So far, we have focused on models that improve preditions:

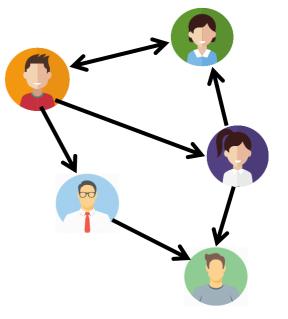


[Xu et al., 2016; Achab et al., 2017; Kuśmierczyk & Gomez-Rodriguez, 2018]

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t-t') dN_v(t')$$



Effect of v's past events on u

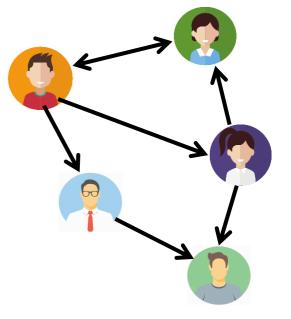
Granger causality:

"X causes Y in the sense of Granger causality if forecasting future values of Y is more successful while taking X past values into account"

Multivariate Hawkes process:

$$N(t) = \sum_{u \in \mathcal{U}} N_u(t)$$

$$\lambda_u(t) = \mu_u + \sum_{v \in \mathcal{U}} \int_0^t k_{u,v}(t-t') dN_v(t')$$



Granger causality on multivariate Hawkes processes:

Effect of v's past events on u

" $N_v(t)$ does not Ganger-cause $N_u(t)$ w.r.t. N(t) if and only if $k_{u,v}(\tau)=0$ for $\ \tau\in\Re^+$ "

[Eichler et al., 2016]

Goal is to estimate $G = [g_{uv}]$, where:

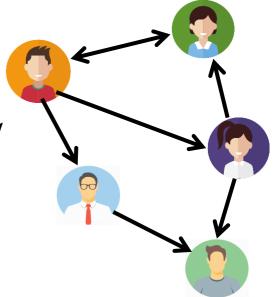
$$g_{uv} = \int_{0}^{+\infty} k_{u,v}(\tau) d\tau \ge 0 \text{ for all } u, v \in \mathcal{U}$$
Average total # of events of node u whose direct ancestor is an event by node v

Then, $G = [g_{uv}]$ quantifies the *direct causal relationship* between nodes.

Goal is to estimate $G = [g_{uv}]$, where:

1 - -

$$g_{uv} = \int_{0}^{+\infty} k_{u,v}(\tau) d\tau \ge 0 \text{ for all } u, v \in \mathcal{U}$$
Average total # of events of node u whose direct ancestor is an event by node v



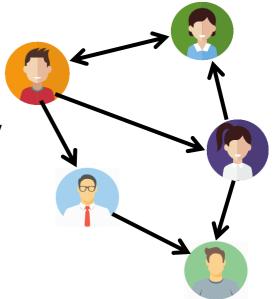
Then, $G = [g_{uv}]$ quantifies the *direct causal relationship* between nodes.

Key idea: Estimate G using the cumulants dN(t) of the Hawkes process.

Goal is to estimate $G = [g_{uv}]$, where:

1 - -

$$g_{uv} = \int_{0}^{+\infty} k_{u,v}(\tau) d\tau \ge 0 \text{ for all } u, v \in \mathcal{U}$$
Average total # of events of node u whose direct ancestor is an event by node v



Then, $G = [g_{uv}]$ quantifies the direct causal relativeship between nodes. Details in the below!

Key idea: Estimate G using the cumulants the dN(t) of the Hawkes process.

Next Week:

Gaussian Process

Have a good day!