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Recall: Binomial Distribution
and 1ts relation to Poisson
Distribution

Bionomial Distribution: X ~ B(n,p)
probability of exactly k success In n trials:

Pex =10 = )p-a-p*
B(n,p) o > Poisson(np)

np remains constant



Poisson Processes

Recall: Binomial and Poisson distributions:

Both distributions can be used to model the number of
occurrences of some event.

Recall: Poisson arrivals are the limiting behavior

of Binomial random variables. (Refer to Poisson approximation of

Binomial random variables in your textbook):

"k arrivals occur In an
Interval of duration A"

Where:

k arrivals
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Poisson Processes

It follows that:

] k:O’ 11 21...1

"k arrivals occur in an L, (22"
P =g
Interval of duration 2A™ k!

since in that case:

np, = ul -2_I_—A:2,uA:2/1.



Poisson Processes

Poisson arrivals over an interval form a Poisson random
variable whose parameter depends on the duration of
that interval.

Moreover because of the Bernoulli nature of the
underlying basic random arrivals, events over
nonoverlapping intervals are independent.

We shall use these two key observations to define a
Poisson process formally.



Poisson Process

Definition: X(t) = n(0, t) represents a Poisson process If:

(1) the number of arrivals n(ty, t) in an interval (t1, t2) of length
t =t,—t; 1S a Poisson random variable with parameter At.
Thus:

5 (A0

P{n(t,,t,) =k} =c¢e =

k=0,1,2,...,t=t2—t1

And:



Poisson Processes

(i1) If the intervals (11, t2) and (i3, t4) are nonoverlapping, then the
random variables n(ti, t2) and n(ts, t4) are independent.

Since n(0, t) ~ P(At) we have:
E[X(t)] = E[n(0,t)] = At
And:

E[X?(t)] = E[n?(0,t)] = At + A%t?



Poisson Processes

Autocorrelation function R, (t1, t,):
Ryx (81, t2) = E[X (1) X (t2)]
X(tl) — n(ol tl) and X(tZ) — n(O) tZ)

To determine the autocorrelation function R (t;,t,) let tb>1;

then from (i1) above n(0, t;) and n(ty, t2) are independent Poisson
random variables with parameters At; and A(t, — t;)
respectively.

Thus:

E[n(0,t)n(ty, t5)] = E[n(0, t)]E[n(ty, t)] = 2%t1 (¢, — 1)



But:
n(ty, t;) =n(0,t;) —n(0,t) = X(t3) — X(£1)

And:
E[X(t){X(t;) — X(t1)}] = Ryx (8, t2) — E[X*(t1)]

We obtain:
Ryx(ty, t2) = A°t;(t; — t1) + E[X?(t)] = Aty + A%ty ¢,
t, >t

Similarly, for t; > t,:
Ryx(t1,t2) = Aty + A%ty ¢,

Thus:
Rxx(tl' tz) — Aztltz + A min(tl, tz)

10



Poisson Distribution vs Poisson Processes

Poisson Distribution: A discrete probability distribution
that expresses the probability of a given number of events
occurring in a fixed interval of time or space.

Characteristics: It assumes that these events occur with a
known constant mean rate and independently of the time
since the last event.

Example: The number of emails received in an hour can be

modeled using a Poisson distribution if emails arrive
Independently and at a constant average rate.

11



Poisson Distribution vs Poisson Processes

Poisson Process: A stochastic process that models a series
of events occurring randomly over time or space.

Characteristics: It describes the occurrence of events that
happen independently and at a constant average rate. The
time between consecutive events follows an exponential
distribution.

Example: The arrival of customers at a bank can be

modeled as a Poisson process if the arrivals are
Independent and occur at a constant average rate.

12



Example:

dl)

X(t) — it

—— X(1)

(Derivative as a LTI system)

Then:
w.(t)= A, (1) = aAt = /A, aconstant

dt dt

And: SR 2% ‘<t

RXX'(t]_!tZ): xx(tl’ t2) — 1 1 — =2
ot AL+ >t
=t +A Ut -t)
And:

a Rxx' (tl’ t2)

=+ A6(t - t).
81:1 (1 2)

Rxx' (tl’ t2) —

13



Poisson Processes

Notice that:

» The Poisson process X(t) does not represent a wide
sense stationary process.

 Although X(t) does not represent a wide sense stationary process,
Its derivative X '(t) does represent a wide sense stationary process.

14



Poisson Processes

Since X'(t) 1s a wide sense stationary process;
nonstationary inputs to a LTI systems can lead to
wide sense stationary outputs, an interesting observation!

« Sum of Poisson Processes:

If X1(t) and Xz(t) represent two independent Poisson processes,
then their sum Xy (t) + Xo(t) is also a Poisson process with
parameter (4, + 4,)t. (Follows from the definition

of the Poisson process in (i) and (i1)).

15



Poisson Processes

Random selection of Poisson Points:

Let t,,t,,---,t.,--- represent random arrival points associated with a

Poisson process X(t) with parameter At, and associated with
each arrival point, define an independent Bernoulli random

variable N;, where:

P(N;=1)=p, P(N;=0)=q=1-p

16



Poisson Processes

Define the processes:

X (t) X (t)

YO=XN i Z0=XA-N)=XO-Y ()

We claim that both Y(t) and Z(t) are independent Poisson processes
with parameters Apt and Aqt, respectively, where q = 1- p.
When X(t) is a Poisson process with parameter At.

17



Poisson Processes

Proof:
Y(t)= ikP{Y (t) =k [ X(t) =n}P{X (1) =n)}.
But given X(t) =n, we have \((t):iNi ~ B(n, p) so that:

PLY (t) =k | X (t)=n}=(;) p“a™*, O<k<n,

A d: n
! PIX (1) = mh = e~ A

n!

18



kK ~—At
n— e © n-k
P{Y (t) =k}=e “Z(n LA R pk, (A0 X
. n=Kk

'

eq/lt

e—(l—Q)M _ e_},pt (ﬂ, pt)k
k| kt

= (Apt)*
~  P(Apt).

More generally:

PLY (t) =k, Z(t) =m} = P{Y (t) =k, X (t) =Y (t) = m}
= P{Y (t) =k, X(t) =k +m}
= P{Y (t) =k | X (t) =k + m}P{X (t) =k + m}

k

k:O, 1, 2,

() prgn e GO g (APYT i (AA)
(k+m)! kt m!

P(Y (1)=k) P(Z(t)=m)

= P{Y (t) = KIP{Z () = m},

19



* Notice that Y(t) and Z(t) are generated as a result of random
Bernoulli selections from the original Poisson process X(t),
where each arrival gets tossed over to either Y(t) with
probability p or to Z(t) with probability g. Each such sub-
arrival stream is also a Poisson process. Thus, a random
selection of Poisson points preserves the Poisson nature of the
resulting processes.

« However, a deterministic selection from a Poisson process
destroys the Poisson property for the resulting processes.

Y (t) ~ P(4pt)

N NN

v |
R W T

g q

\ w Z(t) ~ P(4aqt)
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Inter-arrival Distribution for Poisson Processes

Let 7, denote the time interval (delay) to the first arrival from any
fixed point ty. To determine the probability distribution of the
random variable 7;, we argue as follows: Observe that the event
"7, >t" Is the same as “n(to, to+t) = 0™, or the complement event
"7, <t" Is the same as the event “n(to, to+t) > 0.

1St . .
arrival arrival

t NN N

T, > t1 t2

»
>

tn

A

21



Inter-arrival Distribution for Poisson Processes

Hence the distribution function of 7, is given by:
F. (1) 2 P{r, <t} = P{X(t) > 0}= P{n(t,,t, +t) > O}
=1-P{n(t,,t, +t)=0}=1-¢ "

Its derivative gives the probability density
function for z, to be:
dF, (t) it

f (t)= =Ae", t>0
“() dt

l.e. 71 1s an exponential random variable with parameter A
so that: E(z,) =1/




Inter-arrival Distribution for Poisson Processes

Similarly, let t, represent the n™" random arrival point for a Poisson
process. Then:

“F, (t) = P{t, <t} = P{X(t) 2 n}

n—

=1-P{X(t)<n}=1 Z
and hence:
dF, (x)  nt -t =
(1)~ (%) Eaax) L §AM
dX k=1 (k 1)' k=0 kl
ﬁ,an 1 L




Inter-arrival Distribution for Poisson Processes

which represents a Gamma density function. i.e., the waiting time to
the n™ Poisson arrival has a Gamma distribution.
Moreover:

where 7; is the random inter-arrival duration between the (i — 1)t

and it events. Notice that z, s are independent, identically distributed
random variables. Hence using their characteristic functions, it follows
that all inter-arrival durations of a Poisson process are independent
exponential random variables with common parameter A.

l.e.,

f()=4e", t20.

24



Inter-arrival Distribution for Poisson Processes

Alternatively, we have z; Is an exponential random variable.
By repeating that argument after shifting ty to the
new point t;, we conclude that 7, s an exponential random variable.

Thus, the sequencer,,z,,---,7,,--- are independent exponential random
variables with common p.d.f.

Thus, if we systematically tag every mt" outcome of a Poisson process
X(t) with parameter At to generate a new process e(t), then the

Inter-arrival time between any two events of e(t) is a Gamma random
variable.



Inter-arrival Distribution for Poisson Processes

Notice that:

Ele(t)]=m/A, andif A=mg, then E[e(t)]=1/ .

The inter-arrival time of e(t) in that case represents an Erlang-m
random variable, and e(t) is an Erlang-m process.

In summary, if Poisson arrivals are randomly redirected to form new
queues, then each such queue generates a new Poisson process.



Poisson Departures between Exponential Inter-arrivals

Let X(t) ~ P(At) and Y (t) ~ P(ut) represent two independent
Poisson processes called arrival and departure processes.

AURGER SR D AN
P R
s

et Z represent the random interval between any two successive
arrivals of X(t). Z has an exponential distribution with

parameter A. Let N represent the number of “departures’ of Y(t)
between any two successive arrivals of X(t). Then from the Poisson

nature of the departures we have:

(1)
kI

P{N =k|Z =t} =¢



Poisson Departures between Exponential Inter-arrivals

P{N =k}=[_ P{N =k |Z =t} (t)dt
= [ "ot L 2ol

= 4] Dty e et

k
A ), 1% ko
_/1+ﬂ(/1+uj mjoxe d)f

A4

k!

Kk
:(ﬂ) (ﬂj k=012 ...
A+ A+u




Poisson Departures between Exponential Inter-arrivals

« The random variable N has a geometric distribution. Thus if
customers come In and get out according to two independent
Poisson processes at a counter, then the number of arrivals between
any two departures has a geometric distribution.

 Similarly, the number of departures between any two arrivals also
represents another geometric distribution.



Example

Suppose there are 2 independent Poisson processes with A, = 1,1, = 2.
Find the probability that 2" arrival of first process occurs before 3 arrival of the second process.

Solution:
Consider the superposition of these two Poisson processes. It is still a Poisson process with A =
14+ 2=23.

M1

Also, each event of the resulting process is from first process with probability Tl T3 and
1 2

otherwise with probability % So, for the 2" arrival of first process to occur before 3™ arrival of the

second process, we need the first 4 occurrences to cover at least 2 occurrences of the first process:
4

e




Example: Coupon Collecting

Suppose a cereal manufacturer randomly inserts a sample of one type
of coupon into each cereal box. Suppose there are n such

distinct types of coupons. One interesting question is how many
boxes of cereal should one buy on average to collect

at least one coupon of each kind?



Example: Coupon Collecting

We shall reformulate the above problem in terms of Poisson
processes. Let X, (t), X,(t),---, X, (t) represent n independent
Identically distributed Poisson processes with common parameter At.
Let t,,t,, - represent the first, second, ... random arrival instants

of the process X.(t), 1=1,2,---,n. They will correspond to the first,
second, --- appearance of the i!" type of coupon in the above problem.

Let: n
X(t) = gxi(t),

so that the sum X(t) is also a Poisson process with parameter ut, where

u=nAi.



Example: Coupon Collecting

1/ A represents: The average inter-arrival duration between any
two arrivals of X.(t),1=1,2,---,n, whereas:

1/ it represents the average inter-arrival time for the combined
sum process X(t).

Nth ;stoppmg
arrival / ime T

R v
i

trt

nl



Bulk Arrivals and Compound Poisson Processes

In an ordinary Poisson process X(t), only one event occurs at

any arrival instant. Instead suppose a random number

of events C; occur simultaneously as a cluster at every arrival instant
of a Poisson process. If X(t) represents the total number of

all occurrences in the interval (0, t), then X(t) represents a compound
Poisson process, or a bulk arrival process.



Bulk Arrivals and Compound Poisson Processes

Inventory orders, arrivals at an airport queue, tickets purchased
for a show, etc. follow this process (when things happen, they happen
In a bulk, or a bunch of items are involved.)

C,=3  C,=2 C;=4
—— — ——
D W W O )
t, t, t t, t, t
(a) Poisson Process (b) Compound Poisson Process

Let:
p. =P{C. =k}, k=0,1,2,---



represent the common probability mass function for the occurrence
In any cluster C;. Then the compound process X(t) satisfies:

N (t)

X(t): ZCi;

where N(t) represents an ordinary Poisson process with parameter A.
Let:

P(2) = E{zci}=gpkzk



represent the moment generating function associated with the cluster
Statistics. Then the moment generating function of the
compound Poisson process X(t) is given by:

b, (2) = > 2"P{X (1) = n} = E{* "}

~ E{E[2"" |N() = K]} = E[E{z"" [N() =k}
= S EEY PN =K)

_ i Pk (2)e" (/}(’tl)k _ p~A(-P(2)
k=0 '



If we let:

k
Pk(z)é(z pnzkj - > plz"
n=0 n=0

where {p,"} represents the k fold convolution of the sequence {pn}
with itself, we obtain:

POX®) =n}=3e " G pl?



The above, represents the probability that there are n arrivals
In the interval (0, t) for a compound Poisson process X(t).

We can rewrite 95 (2) also as:
6 (2) = o AtA-2) o= At (1-2) || a=Atl-7)

where A4, = p, 4, which shows that the compound Poisson process
can be expressed as the sum of integer-scaled independent
Poisson processes M, (t), m,(t),---. Thus:

X (t) =S km, (t).

More generally, every linear combination of independent Poisson
processes represents a compound Poisson process.



Outline of Week 04 Lectures

ePoisson Process
e Point Process
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Many discrete events in continuous time

Google | spotify
(1 Tube] Guatemala

o b SRR T |
k%S
¥, A
Q' R~ o s
> \§ - -~
p Y NG / .Y
= .,’,\ s
3 P
;
\
A\
\
N\
N

Financial trading Mobility dynamics

41



Variety of processes behind these events

Events are (noisy) observations of a
variety of complex dynamic processes...

Article creation

\ Stock R’
: i, Flu in Wikipedia

¢ trading &% hreading
News spread in @ Reviews and

Twitter sales in Amazon
Ride-sharing A user’s reputation
requests In Quora

FAST
I >

...in @ wide range of temporal scales.



Example |: Information propagation

Smeans D Christine

D follows S
3.00pm

3.25pm
Beth
3.27pm
David
4.15pm

T

o
—
-0

)

They can have an impact theguardian
in the off-line world Click and elect: how fake news helped

Donald Trump win a real election
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Aren’t these event traces just time series?

IRASRAARRARES

111 T 1

e

t

Discrete and continuous

times series

What about aggregating
events in epochs?

t1it )t

'Epoch 1'Epoch 2 Epoch 3’

t

L -

|

|

® |

0 Y .:
|t

|

Discrete events in
continuous time

How long is each epoch?
How to aggregate events per epoch?
What if no event in one epoch?

What about time-related queries?



Temporal Point Processes (TPPs):
Introduction

1. Intensity function

46



Temporal point processes

Temporal point process:
A random process whose realization consists of
discrete events localized in time H = {¢;}

Discrete events

/N

n Y 5
v | ! time
t to ts t t=T
\
|
History, #(t) dN(t) €{0,1}  Dirac delta function
v \

Formally: N(¢) = ft s)®  dN(t Z Ot —t:)



Model time as a random variable

density
Prob. between [t, t+dt) fr(t):= HUA6)

fr(t)dr /

2




Problems of density parametrization ()

f( o (t2) f7( S*ET)
: T T T T :
| I
' I
™ time
t="1T
exp(w, ¢ (t1)) / exp{w, P*(t3)) f exp(w, " (T))
exp{w, 1/) (t2)) Z exp(w, P’ (t)) t Z

Z
It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition function)

2. Difficult to combine timelines

49



Intensity function

density
Prob. between [t, t+dt) f *( (t"H(t))
fr()dr /
- =§ :
Py | T T X |, time
t1 to t3 tt+dt t="1T
\ ' J \S
History, H(t) Prob. not beforet
Intensity:
Probability between [t, t+dt) but not before t
* 7 (t)dt
A" (t)dt = o0 >0 ®m N\*(t)dt=E[dN(t)|H(t)]

Observation: \* (t) It is a rate = # of events / unit of time .



Advantages of intensity parametrization (l)

f f f

“(t)  fT(2) f7(ts) f*'(t) |
T T T T i R time
t1 to ts t

A*(t1) A*(t2) \*(t3) \*(£) exp ( /0 () dr)

"
(W, ¢*(t1)) (W, q’)I(tB)) \T
(w, d"(t2)) (w,d*(t)) exp (_ [0 (w, ¢*(T))dT)

Suitable for model design and interpretable:

1. Intensities only need to be nonnegative

2. Easy to combine timelines
51



Relation between f*, F*, S*, A*




Representation:
Temporal Point Processes

2. Basic building blocks

53



Recall: Some Sampling Techniques

Sampling is essential in statistics because it makes inference more
efficient, feasible, accurate, and resource-effective while allowing for
generalizability and detailed analysis.

We treat sampling methods in more detail at the end of the course.

Inversion sampling: Also known as inverse transform sampling, is a
method for generating random samples from any probability
distribution given its cumulative distribution function (CDF), in two
steps:

— Uniform Random Sample: Generate a random number (u ) from a uniform
distribution between 0 and 1.

e Inverse CDF: Use the inverse of the cumulative distribution function (CDF)
of the target distribution to transform the uniform random sample. This
involves finding the value (x) such that (F(x) = u), where (F) is the CDF of
the target distribution.



Recall: Some Sampling Techniques

* Rejection sampling: also known as the acceptance-rejection
method, Is a technique used in computational statistics to generate
observations from a target distribution by using a proposal
distribution:

e Proposal Distribution: Choose a proposal distribution (g(x)) from which it
Is easy to sample. This distribution should cover the support of the target
distribution (f(x)).

o Sampling: Generate a samples (x) from the proposal distribution (g(x)).

o Acceptance Criterion: Accept the sample (x) if the defined acceptance
criterion is met. Repeat the process until a sample is accepted.



Poisson process

Intensity of a Poisson process

N (t) = W
Observations:

1. Intensity independent of history
2. Uniformly random occurrence
3. Time interval follows exponential distribution



Fitting & sampling from a Poisson

| |
- T ¢ @ A ()= W :
Py I 1, time
t1 to {3 t="17T
Fitting by maximum likelihood:
* 3
p-=argmax 3logpu — pT = —
ll/ T
Sampling using inversion sampling: Uniform(0,1)
J
1
t ~ pexp(—u(t —tz)) B t= — — log(1 —u) +t3

L

£ () F(u)

t




Inhomogeneous Poisson process

5 | iR

to t3 e t =T

Intensity of an inhomogeneous Poisson process

A*(t) = g(t) > 0 (Independent of history)

Example:
VAN N
A™(2)

7’ ~._/ N
l_l_l ’/ \\
— Zajk(t_tj) L’ | Y
j MVNVAND\AN VA DA
t1 tg e tj ......
o’ (0TI af ......



Fitting & sampling from inhomogeneous Poisson

1T TTT

t1 tgts e t="T

time

Fitting by maximum likelihood: maxzr?lze Z log g(t / g(r)dr
glt 1=1

Sampling using thinning (reject. sampling) + inverse sampling:

1. Sample ¢ from Poisson process with intensity 1
using inverse sampling

2. Generate wus ~ Uniform(0,1) }

Keep sample with

3. Keep the sample if u; < g(?) /p prob. g(t)/



Terminating (or survival) process

I I
I I
"~ I I
Poy : |, time

L t="1T

Intensity of a terminating (or survival) process
A*(t) =g (t)(1 = N(¢)) =0

Observations:

1. Limited number of occurrences



Self-exciting (or Hawkes) process

"~
o« —» time
t1 t t t="1T
‘ 1 1l2l3 ’
|
History,’H(t) I I\

Triggering kern:el

Intensity of self-exciting f |
(or Hawkes) process: A1) = pu+ « Zt.ﬁe’:'-{.(t) Kew(t — ;)

= i+ aky,(t) *dN (1)
Observations:

1. Clustered (or bursty) occurrence of events
2. Intensity is stochastic and history dependent



Fitting a Hawkes process from a recorded timeline

11 tots t="1T
Fitting by maximum likelihood:

o n T The max. likelihood
maximize Z log A\*(¢;) — / N (1) dT is jointly convex
0

u,o i—1 in 4 and &

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity )\ changes
over time



Summary

Building blocks to represent different dynamic processes:

Poisson processes:

A5 (1) = A
Inhomogeneous Poisson processes:

A*(t) = g(t)

Terminating point processes:

?r 77 .

? 5

Self-exciting point processes:

X () = g"())(1 — N (1)) /\T
—N a

M) =p+a Y kut—t)

63



Representation:
Temporal Point Processes

3. Superposition

64



Mutually exciting process

| |
| |
| |
| ®\& ® |
Bob (™ ! \l I time
o« I t t |
{ '1 b2ls 1 |
T : History ?—{b(t) :
| |
Christine n : QN : :
. -l =, lime
I t1 tots I
\ J

|
History H.(t)

Clustered occurrence affected by neighbors
* — R .
A5(t) = p+ « Ztié?{b(ﬂ o (t — t;)
Kol — T;
+ 5 the Hc(t) w( Z) 65



Mutually exciting terminating process

M

I |
| |
I |
I |
Bob /™ ! I time
o« I t |
I |
I |
T I |
I 00 |
< L. |
Christine n : ? I
! ' : :tlme
| t1 tots I
\

I
History H..(t)

Clustered occurrence affected by neighbors

() =(1-NO) (9O +BY, ., Fult—t) )



Representation:
Temporal Point Processes

4. Marks and SDEs with jumps

67



Marked temporal point processes

Marked temporal point process:
A random process whose realization consists of discrete
marked events localized in time

N i o) o) -~ N@t)e{0}U ZT i
- | |,
t1 ta 3 t t="T
z(t)] & ® o t
l ‘ to t3 .
time
u(®)| 9 ,
l g & O ¢ time
\ J
|

History, H(t)

68



Independent identically distributed marks

| |
. ' 9 0 -~ N(@)e{0}U ZT !
- | L,
t t t _
:I:(t) 1 2 3 t t—T
b ? o o
‘ : s ; time

Distribution for the marks:
z*(t;) ~ p(z)
Observations:

1. Marks independent of the temporal dynamics
2. Independent identically distributed (I.1.D.)



Dependent marks: SDEs with jumps

l l
pe 9 o) -~ Nt e{0}U Z* !
- : |
m(t) \ (3] to t3 ¢ t =T
b ? © > time

History, H(t) <
Marks given by stochastic differential equation with jumps: l

z(t + dt) — z(t) = dz(t) :‘f(m(t), t)dt,+‘h(a:(t),,t)dN(t),

| |

Observations: Drift Event influence
1. Marks dependent of the temporal dynamics
2. Defined for all values of t



Dependent marks: distribution + SDE with jumps

p. i o) o) - N(t)e{0}U Z™T i
:L'(t) t1 ta 13 t t=T
|~ i ? Q » time
‘ o) ty  t3 it
Histor'y, H(t) <
Distribution for the marks: v
z*(t;) ~p(x*|z(t)) & dz(t) :‘f(::c(t), t)dt’qt‘h(m(t),,t)dN(t),

Observations: Drift Event influence

1. Marks dependent on the temporal dynamics
2. Distribution represents additional source of uncertainty



Mutually exciting + marks

gE—

| |
9 o) - N@t)e{0YU ZT !
Bob : R
H — ﬂf(t) tl tg t3 t t="1T
-
‘ b )
é 1) t3 t
Christine : :
n ! 99 M e{0}UZT
I |
-t 2 3 t i

Marks affected by neighbors

dx(t) = f(x(t), t)dt_+‘g(a:(t), t)dM (t),

| |
Drift Neighbor influence

» time

72



Marked TPPs as stochastic dynamical systems

Example: Susceptible-Infected-Susceptible (SIS)

TR SDE with jumps
o0 0. o0 |
Xi(t)=0 X;(t) =1 X;(t)=0 dXi(t) - in(t) - dWi(t)
Susceptible Infected Susceptible It glets It reclovers
infected
°0 < Node is susceptible
° —> (32
Infection l_l_\
rate A, (t)dt = (1 - Xi(t))ﬁlzjej\/(i) X (t)'dt
EldYi(t)] = Av;()dt If friends are infect'ed, higher infection rate
SDE with jumps
T X f A \
¥ @ d\w, (t) = §dYi(t)— Aw, ()dW;(t) + pdN;(t)
Recovery \_'_H Y l\_'_l

rate Self-recovery rate when If node recovers, Rate increases if

E [dW;(t)] = Aw, (t)dt node gets infected rate to zero node gets treated



Models & Inference

1. Modeling event sequences



Event sequences as cascades

S— D

means
D follows S

Christine

Bob

3.00pm
3.25pm

Beth
3.27pm

David
4.15pm

o7 ?

Information Diffusion

lipstick on a pig 'osulvn e;\aur:; ;conomy
\

| will reach out my hand to anyone to help me
get this country moving again effort to protect the amencan decent person and a person 800
economy must not fail that you do not have o be
i guess a smali-lown mayor is sort of like a community scared of as president of
r R It
organizer axcept that you have actual responsibilitios the most sefious the united states 700
“:an c:sm Senea this is something that all of us will
the great depression \ | g\valiow hard and go forward with

we have been blessed with five wonderful children who
we love with all cur heart and mean everything to us

all the parts of the Iintemet are qn the Iiphone 600

: fundamentals of | think when you spread
"g way no how no mecain. barack our economy are who is the real the wealth around it's
obama is my candidate strong barack obama good for everybody 500
answering that question with )00: k',d g::ﬂs he's palling around i am not
specificity is above my pay grade : with terrorists presiient
\ 'V;‘Ilf:‘ more bush 400
he doesn't look like al those other reddislol hey can she is a diva she
presidents on the dollar bills onrg | call you takes no advice
\ joe from anyone 300

i think V'll have my
staff get to you

russian aggression must

not go unanswered
}
I
iy \
.
| =t —
an 8/8 8/15 8/22 8/29 9/5 912 919 9/26 10/3 10/10 10117 10/24 10/31

[Leskovec et al., 2009]
Disease Diffusion

AR of3

7 A ofR W@

Time User

Population
state

i Rk R

-

t5time

Events

ty ta 13 ta
[Rizoiu et al., 2018]



An example: idea adoption

S—D

means
D follows S

3.25pm

Christine

3.00pm

Beth
3.27pm

David
4.15pm

They can have an impact

in

the off-line world

theguardian

Click and elect: how fake news helped
Donald Trump win a real election



Infection cascade representation

We represent an infection cascade using
terminating temporal point processes:

ﬂ N,(t)

~ Nz(t)

(¢ N;(t)

5 Ny(t)

'j N5(t)

t

Infection event:

(uia myq, tz)

PR RN

Cascade Time

User

T

T

T 7



Infection intensity

Source @ Nl

(given, not modeled) L
"~ Nz(t) |
n N;(t)
Follow-ups | * |
(modeled) 1 Ny(t)
o Ng(t)
|
>
* —
Au(t) :‘(1 — Nu(t))’ bow Y Rt —t:)
\ = [mV (€1 €M (2) ’
fooers 8ot Pre!/ious
lnfetc:;csgeonly J;\:Iru‘cle r;cneuf;g:n y infections of user v

[Gomez-Rodriguez et al., ICML 2011]



Model inference from multiple cascades

Conditional Diffusion log-likelihood
intensities

n T
A (¢) 2= log Ny(t) [ \5(7) dr
u=1 0
" Maximum likelihood
approach to find
. model parameters! ) Sum up log-likelihoods

of multiple cascades!

Theorem. For any choice of parametric memory,
the maximum likelihood problem is convex.

1
I
1
1
I
1
___________________________________________________________

[Gomez-Rodriguez et al., ICML 2011]



In some cases, influence change over time:

| Hgreece
retweets
Fri Jsl.ur‘l 15 Cat Jlun 16. | éun ::.JI"I 17 Man .;..nn 18
Propagation over networkso T
° o ° Prm———————————————————)
with variable influence

[T

[Gomez-Rodriguez et al., WSDM 2013]



Recurrent events: beyond cascades

Christine

Up to this point, each users is only Bob n
infected once, and event sequences W
can be seen as cascades. \‘\:\ Beth

Joe 0
In general, users perform recurrent i j
events over time. E.g., people repeatedly \ David
express their opinion online: €

Ehe New JJork Times

Social Media Are Giving a Voice to Taste Buds

How social media is revolutionizing

debates
T

The New ork Times Twitter Unveils A New Set Of Brand-Centric Analytics

Campaigns Use Social Media to Lure Younger Voters



Recurrent events represe ntation

We represent messages using nonterminating
temporal point processes:

o Nt s ’ Recurrent event:
o " (wists)
o N,(t) . . User/ \Time

N,(t)

N;(t)

77 7 ™ OTTIfETILLNY

|
t=20 t

|

|

;¢
=T

[Farajtabar et al., NIPS 2014]



Recurrent events intensity

n N,(t) — r ol

A N(t)

0 N;(t)

N,(t)

N;(t)
]l
Memory Q)
Cascade sources! E
"3
. Z o
User’s Events on her Previous 8
intensity  own initiative Influence from megsages by user v \

user v on user u

[De et al_, NIPS 2016]



Models & Inference

2. Clustering event sequences



Event sequences

So far, we have assumed
the cascade (topic, meme,
etc.) that each event
belongs to was known.

BBC News (World) & @BBCWorld - 4m
NEWS Turkey election: Erdogan win ushers in new presidential era

WORLD

BBC News (World) & @BBCWorld - 46m

Dublin church: Seven injured as car hits pedestrians

C
S
S

S

NEW

sEl) BBC News (World) & @BBCWorld - 2h
NEW

8O
NE

BBC News (World) & @BBCWorld - 2h

Turkey election: Country's heart split over Erdogan victory

lipstick on a pig our entire economy
Is in danger
| will reach out my hand to anyone to help me 9 \
get this country moving again \ effort to protect the amencan decent person and a person 800
R \ economy must not fail at you do not have to be
i guess a smal-io of like a community \ o as president of
organizer exce, pt th tual TGSDOHSID'MI?S \ 700
\ /
© have been blessed hidren who'\ | A this is something that all of us wil |
love with all cur he hing 1o us \ \ m:: greal depression \ swallow hard and go forward with |
all the parts of the internet are on the iphone \ \-\ II 'I ,:’ 600
fundamentals of / | think when you spread
P’ w \ - / )
GE way 2”:":3':2 ;r;‘;‘“'" byrack \ our economy are | who is the real [ the wealth around it's
a 18 my c i L 3 ams v
y \ \\‘ :stlrn 9 ’| barack oba v/u ',I good for everybody 500
& i \ \ president’s 2 8 2
that question with \ \ [ 100 to deal | he's paiting around [ 1am not /
is above my pay grade \ \ A/ with terronsts | | presxient
\ | [f with mors | |/ bushl / 400
he doesn’ t look like all those other “3‘” | / h
presidents on the dollar bills f
\ \ i think /Il have my

\  staff get to you

\
|

| russian aggression must
4 nanswered

not go uf \ '\\ \
\ N\R'Y, ¥
\ \
\ \

8/8 8/15 8/22 8/29 95 912 9/19 9/26 1073 10/10 10117 10/24 10/31

Often, the cluster (topic, meme, etc.) that each event in a
sequence belongs to is not known:

— Politics

Music

Nigerian music star D'banj's son 'drowns at home'



Assume the event cluster to be hidden and aim to automatically
learn the cluster assigments from the data:

v

Bayesian methods to cluster event sequences in the context of:

Online News

mercurial prograimy e Health care
verS|on control endeaéour
sg ! cost SpaG ICU Patient | 0.3778
ﬂ I slaunch: IPTV User | 0.2004
“_ mission &,
zortoasesvnk M M rOCKetorpttl
10"‘}

SepMan S MARSer | Man | Ser ' Man RS B S s
Learning time
[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]



Hierarchical Dirichlet Hawkes process

"~

« 1styear computer science student

| Introduction to programming
Discrete math §/
| Project presentation

Set the?

- |te
Loglc

Powerpoint
vs. Keynote

For/do-while inheritanct

loops

PP
templates

Private
functions

Plot
library

Class
destructor

[Mavroforakis et al., WWW 2017]



Events representation

We represent the events using marked temporal
point processes:

Nu,e(t) IJ-I_’_|7
-

I Task Task |
® I T
| | t
t=0 t=T
Nu,g(T) =9
Event: (tn,Pn,qn)
e N
Time Content

Cluster 58
(hidden) [Mavroforakis et al., WWW 2017]



Cluster intensity

Now ()

| Task Task |
I I
T HH—
t=0 =T )
t Memory g:,):
New cascade Cluster T K E
rate popularity > =
n
% Si—
u,? (t) = M7y + kee (t — tj) -g
i .1 w.e(t (@)
Intensity \_'_I JtiEH . )' J 3
or rate 0] wn
(events / hour) wn FOIIOW-UP

initiative

[Mavroforakis et aI.,-VVWW 2017]



User events intensity

Users adopt more than one cluster:

n

o

v

*

A user’s learning events as a multidimensional Hawkes:

Time\l L}Iuster w1(t)
(tn,pn) ~ Hawkes
Ao (1)

Content - ¢, = W w; ~ Multinomial(8,)
[Mavroforakis et al., WWW 2017]



People share same clusters

Different users adopt same clusters

o REEEETFENENEE RTTIT
- .

04IHFHH1H: H—AHH—

t
1\
Cluster distribution from a Dirichlet proce%:e‘a‘\\s \“‘oe\o\N\
- Infinite # of clusters. e‘e(e“ce
- Shared parameters across users. \

[Mavroforakis et al., WWW 2017]



e '
4 \ \.\\
N

iti =1 st
Content Intensities Ackoverfloyy
mercurial
versmgvcrc])ntrol k m k k
g ithub?.g¢ 2-—F—— — "\
SSI § SEP Mar  Sep Mar  Sep Mar  Sep MAR
tortoisesvn k KK\ M

Version control tasks tend to be specific,
quickly solved after performing few questions

[Mavroforakis et al., WWW 2017]



Content Intensities =/ Stackoverf,
0w

SEP MAR SEP MaR SEP MAR SEP MAaR

artificial-intelligence

SEP MAR SEP MAaR SEP MAR SEP MaR

Machine learning tasks tend to be more
complex and require asking more questions

[Mavroforakis et al., WWW 2017]



Models & Inference

3. Capturing complex dynamics



Case Studies & References

For those who want to do research in social media



Up to now, we have focused on simple temporal
dynamics (and intensity functions):

vosu A TN
()= D o k(t—t) 0 =
; N(t)=p+a Ztiew) fo (t — 1)

t1 totz t t="T

Recent works make use of RNNs to capture more
complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017,
Trivedi et al., 2017; Xiao et al., 2017a; 2018]



Neural Hawkes process

1) History effect does not need to be additive

2) Allows for complex memory effects
(such as delays)

Intensity-1 —— Intensity-2
BaseRate-1 BaseRate-2 K/I/j\\‘
' —
(O LSTM-Unit //2 i % ﬁ)
.............. >
Type-1 © Type-2 %

[Mei & Eisner, NIPS 2017]




Neural Hawkes process

Excitation & inhibition

Intensity-1 —— Intensity-2

BaseRate-1 BaseRate-2

(O LSTM-Unit // i
Type-1 O Type-2

[Mei & Eisner, NIPS 2017]



Applications (l): Predictive Models

Know-Evolve, Trivedi et al. (2017) Coevolutionary Embedding,

InitiaDaiitet akt(2017)
/fil (to) = (V- iﬂ}—'ltem profile

Vi -4, (t)) )\—OEvolution

i, (t) = o | TV2 U (G
+V3-qq ——a Context
(ub ilﬁll ql) +V4_ . (t]_ - t(}) Drift

(visit, 01-01-2014)

Initialize user feature
uy, (to) = o(W; - u31)4—1U5er profile

@ Wy - uy, (8) ~)\—~Evolution
+W, - ifl(tl_)a——c

+Ws - q, —e Context
+W,-(t1 —to Drift

u, (t) =0

8- 83 84

User Activity s
1

g time Ti

e @@ @ @@ o000



Key idea: Intensity- and likelihood-free models

count

Il'll}

. T T — — — — —

GAN architecture

Wasserstein-Distance for
Temporal Point Processes

’ CNN
Discriminator f,

seq2seq
Generator gg

Real sequences

—————————————————————————————————

[Xiao et al., 2017 & 2018]



Models & Inference

4. Causal reasoning on event sequences



Temporal point processes beyond prediction

So far, we have focused on models that improve preditions:

React v _ Recommendations
Community
ég : ‘ Acute @reahtls detection j§ 1 ,X,. . N . r
55‘@ s> Leay,, Crbl art o.Swinfr e - e 18 Ll
Link = 22 2 /<
prEdiCtion &‘JS\ e,oa,.mcﬂ\ < gf e ‘-ew Sophie 91‘45am'. 10:15am 1:30pr;1 2:45pm
« N events
. Yo 20 YO
. . Gastrointe h’morr NOS .
[Trivedi et al., 2017] [Xiao et al., 2017] [Dai et al., 2017]

Recent works have focused on performing causal inference
using event sequences: - /7“

Treatment effect mx

e o0 Granger

@ .
L >  — causality graph | J
~N )

[Xu et al., 2016; Achab et al., 2017; Kusmierczyk & Gome/z-l-'iodriguez, 2018]



Uncovering Causality from Hawkes Processes

Multivariate Hawkes process:

Granger causality:

“X causes Y in the sense of Granger causality if forecasting
future values of Y is more successful while taking X past
- 11 i
values into account [Granger, 1969]

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Multivariate Hawkes process:

Granger causality on multivariate Hawkes processes:
“ N, (t) does not Ganger-cause N, (t)w.r.t. N (¢) if and only if
| kuo(T)=0for T€RT"

[Eichler et al., 2016]5

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:

H/n

+ 00
guv:/ Ko (T )d7'>0foralluv€bl\‘\>0
0

\ Average total # of events of node u whose \ \/
direct ancestor is an event by node v

Then, G = [g,,] quantifies the
between nodes.

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:

H/n

+ 00
guv:/ Ko (T )d7'>0foralluv€bl\‘\>0
0

\ Average total # of events of node u whose \ \/
direct ancestor is an event by node v

Then, G = [g,,] quantifies the
between nodes.

Estimate G using the cumulants dN(t) of the

Hawkes process.
[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:

H/n

+ 00
guv:/ Ko (T )d7'>0foralluv€u\‘\>0
0

\ Average total # of events of node u whose \ \/
direct ancestor is an event by node v

Then, G = [g..] quantifies the el
between nodes. petal

Estimate G using the cumulants the dN(t) of

the Hawkes process.
[Achab et al., ICML 2017]



Next Week:
Gaussian Process

Have a good day!
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