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Ergodicity

A random process X(t) is ergodic iIf all of its
statistics can be determined from a sample function
(sample path) of the process.

« That Is, the ensemble averages equal the
corresponding time averages with probability one.
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Ergodicity illustrated

e Statistics can be determined by time averaging of
one realization (one sample path).
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Ergodicity and stationarity

* Wide-sense stationary (WSS): Mean Is constant
over time and autocorrelation is a function of time

difference.

o Strictly stationary (SSS): All statistics are constant

over time.

 In general an ergodic process is SSS and WSS.

wide-sense stationary

strictly stationary

Cu godic

Collection of all

possible processes
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Weak forms of ergodicity

« The complete statistics is often difficult to estimate
so we are often only interested in:
v" Ergodicity in mean

v" Ergodicity in autocorrelation
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Ergodicity in mean

« Arandom process Is ergodic in mean if E(X(t)) equals
the time average of sample function (Realization):
E(X(t)) = <x(t)>

* Where <.> denotes time-averaging:
<x()> = lim — [ x()dt
T—00 2T V=T

* Necessary and sufficient condition:

X(t+1) and X(t) must become independent as t

approaches co.
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Example 1-a

« Example of ergodic in mean:

X(t) =acos (wyt+ 9)

 Where: 8 is a random variable U [0,2x], t iIs the
time index, a and w, are constant variables is a
WSS process with mean zero.

* Mean is independent of random variable 6.

« Example of NOT ergodic in mean:

X(t) =acos (wyt+ 0) + c,

* Where: 6 is a random variable U(0,2x), c, Is a
random variable, t is the time index, a and w,are
constant variables.

» Mean is not independent of the random variable c,.
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Example 1-b

« Example of ergodic in mean:
X() =asin(w, t + 0)
* Where:
v 6 is a uniform random variable on [—m, ]
v' aand w, are constant variables
« Mean is independent of ¢ (is zero)
« Time average goes to zero (T — )
« Example of NOT ergodic in mean:
X({) =asin(w,t + 0) +c,
* Where:
v" 0 and c, are random variables
v 0 is a uniform random variable on [—, 7]
v' aand w, are constant variables
* Mean is independent of t and c,
« But time average doesn’t converge in mean squared
error (var(c,) > 0) to the mean.
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Example 2

Let C be a random variable (RV),
Let X(t) = C be a random process, with mean u,
Is X(t) mean ergodic?

Ensemble Average: E[X(t)] = E|C] = uc

Time Average: u; = %f_TTX(t)dt = %f_TT Cdt =C

Time Average is not equal to ensemble average, hence X(t) is
not mean ergodic. We can also check the variance of X(t):

= lim E[(ur — pe)*] = lim E[(C — uc)?] = var(C) > 0
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Ergodicity in autocorrelation

 Ergodic in autocorrelation implies that the
autocorrelation can be found by time averaging a
single realization:
Ryo(T) = <x(t+ TX(1)>
* Where:

. 1 T
< X(t+ T)X(t)> = lim — J_ x(t+ Dx(t)dt

« Necessary and sufficient condition:
x(t+ 1)x(t) and x(t+ T+a)x(t+a) must become

independent as a approaches oo.
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Example 3

« Arandom process X(t) is defined as:
X(t) =Acos(2rf .t + 0)
v Where A and f, are constants, and 6 is a random
variable uniformly distributed over the interval [0, 2]

v We have seen that the autocorrelation of X(t) is:
AZ
R(T) = = cos(2nf 1) (1)

v" What is the autocorrelation of a sample function?
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Example 3 continued

« The time averaged autocorrelation of the sample function:
X() =Acos(2rf .t + 0)
<X(t+7)X(1)>

= lim A TT cos[2nf (t+T) + O]cos(2rf .t + O)dt

T—00 2T ¥ —

. A* (T
— TII—%E f_T[cos Q2nf ) +cos(4nf t + 2nf T + 20)]dt

= A?Z cos 2nf.t) (Il

* note that: cosacosb = %(cos(a — b) + cos(a + b))

 From | & Il we conclude that X(t) is ergodic in autocorrelation
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Example 4

R.P

X(t) ~ W.S.S Gaussian Process with:

E|X(t)] =0
Ryx (1) = e~ I"

A ~ N(O,1)
R.V.

AL X(t)

LetY(t) =X(t)+ A

Is Y (t) mean
ergodic?

|

15/46



Example 4 continued

Y(t) =X({t)+ A
Expected value of Y(¢t):
EIY(t)|]=E|X(t)+A]l =E|X(t)]+E[A]=04+0=0

Time average of Y (t) :

<Y()>= lim — [ Y()dt
Thm —f [X(t) + A]dt
Tlm—f X(t)dt + 11m—f Adt

Tlm—f X(t)dt + A
=0+A=A

Therefore, Y (t) Is not mean ergodic because the time average does
not converge to the ensemble average (which is zero). 16/46



Alternatively:

Example 4 continued

Y(t) =X({t)+ A

E[Y®)] =E[X(t) + Al = E[X(O)]+E[A] =04+ 0= 0
Ryy(t,s) = E[X()X(s)] + E[A2] + 2E[X(1)A] = e It751 41

mean-ergodicity:

E

1
2T

-T

T 2] N2
fY(t)dt — My) = (ﬁ)

T
_fl E[Y(t)Y(s)] dtds

[ T
jl(e"t‘s|+1 ) dtds

!

E

- _
_fl Y(t)Y(s) dtds-

not mean ergodic

- _
j j 1dtds
=T i

\
=1>0
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Systems with Stochastic Inputs
A deterministic system transforms each input waveform X (t,&) into
an output waveform Y (t,&,) =T[X(t,£;)] by operating only on the
time variable t. Thus a set of realizations at the input corresponding
to a process X(t) generates a new set of realizations {Y (t,£)} at the
output associated with a new process Y(t).

X(t, &)

4
év\/\fi/ O, T[] e,

7\‘

)

! > 1

Our goal is to study the output process statistics in terms of the input
process statistics and the system function.
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Deterministic Systems

T

Memoryless Systems Systems with Memory

Y (0) = g[X (O] / / \

Time-varying  Time-Invariant  Linear systems
systems systems Y (t) = L[X(1)]

~.

Linear-Time Invariant
(LTI) systems

Xt)—| h@t) |—Y(®) =] ht-7)X(r)dr

LTI system = j:h ()X (t—7)dzr. 1946



Memoryless Systems
The output Y(t) In this case depends only on the present value of the

input X(1). i.e.; Y (1) = g{X (1)}

Strict-sense Memoryless Strict-sense
stationary Input system stationary output.

Wide-sense Memoryless Need not be
stationary input system stationary in
any sense.
X(t) stationary Memoryless Y(t) statiopary,b_ut
Gaussian with > system > not Gaussian with

R, (7) Ry (7) =R, (7).
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Linear Systems: L[] represents a linear system if

L{a, X (t,) +a, X (t,)}=a, L{X (t,)}+a,L{X (t,)}
et
Y (1) =X ()}
represent the output of a linear system.
Time-Invariant System: L[] represents a time-invariant system if

Y (1) = L{X (0} = L{X (- 1)}=Y (t-1t,)
1.e., shift in the input results in the same shift in the output.
If L[-] satisfies above equations, then it corresponds to
a linear time-invariant (LTI) system.
LTI systems can be uniquely represented in terms of their output to
a input delta function: 41 Impulse
response of
S(t)— LTI +— h(t) / " thesystr
SN\ —
! | T

Impulse

Impulse 21/46
response



then Y ()
(]
X (1)
M X (1) Y (1) \q\/h/\/\ s
At LTI — -
o Y(t)=| h(t—-7)X(r)dr
arbitrary '._OO
nput =] _h(z)X(t-7)dr

We can express X(t) as:
X(t)=[ "X(z)s(t-r)dr
But Y (t) = L{X(t)}. Then:
YO =L{X®}=L{[  X(r)st-r)dc}
— .._JF:L{X (Z')5(t — T)d T} 7 By Linearity
= _Jr:x (r)H{o(t-7)Hdr By Time-invariance

A

::j:X (z)h(t—7)dr :_fj:h(z')X(t—T)dT. 22/46




Output Statistics: The mean of the output process is given by

i, () = B{Y (0} = [ E{X(2)h(t - 7)d7}
= (@h(t=7)dz =, () *h(D).

Similarly the cross-correlation function between the input and output
processes Is given by:

R, (t,,t,) = E{X (t,)Y "(t,)}
= E{X(t)[ X" (t, - a)h" (z)da}

= [TE{X(t) X (t, — )} (@)da

_ .'j:RXX (t,,t, —a)h (a)da
— Rxx (tl’tZ) * h*(tZ)
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Finally the output autocorrelation function is given by:

Rw (tl’tZ) — E{Y (tl)Y *(tz )}
=E{[ "X (1, - ABIBY (L)}

or

Rw (tl’tZ) — Rxx (tl’tZ) * h*(tz) * h(tl)'

i, (1) —

ht) —— ()

Rxx (tl’tZ) h*(tZ)

Ryy (t1.t)

I

h(t.)

= [ TE{X(t, - B)Y " (t,)I(B)dp

- ..j:RXY (tl a ﬂ’tz)h(ﬂ)dﬂ
=R, (t,,t,) *h(ty),

24/46
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In particular if X(t) Is wide-sense stationary, then we have u (t) = u,
Then:

u,(t)=p, [ “h(r)dr=p.c, aconstant
Also R _(t,,t,)=R_(t,—t,), and:

RXY (tl’tZ) — jj:Rxx (tl o 1:2 + a)h*(a)da
— Rxx (T)*h*(—f) é RXY (T), z-:tl _t2'

Thus X(t) and Y(t) are jointly w.s.s., and the output
autocorrelation simplifies to:

R, (t,t,)=[ R, (t-B-t,)h(B)dB, =t -t
=R _(7)*h(r) =R, (7).
And we obtain:
R, (7) =R, (r)*h" (=) *h(z).
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The output process is also wide-sense stationary.
This gives rise to the following representation.

X(1) Y (1)
w_lde-sense | LTI system ‘ wide-sense
stationary process ] h(t) ~ stationary process.
()
X (t)
strict-sense LTIsystem | | stri\ét(-ts)ense
stationary process h(t) stationary process
(b)
X (1) G Y %t)
Gausslan | Linear system R aussian process
process (also (also stationary)

stationary) (c)
26/46



White Noise Process
W(t) Is said to be a white noise process if:

wa (tl’tZ) — q(t1)5(t1 _tz)’

le., E[W(t) W'(t))] =0 unless t;= t..
W(t) is said to be wide-sense stationary (w.s.s) white noise
If E[W(t)] = constant, and:

R (tl’tZ) = qg(tl _tz) =(q0(7).

If W(t) is also a Gaussian process (white Gaussian process), then all of
Its samples are independent random variables.

Colored noise
White noise ., LTl —>

W) h(t) N (t) = h(t) *W (t)
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For w.s.s. white noise input W(t), we have:

E[N(1)] =, j _+: h(r)dz, a constant

and:
R, () =06(r)*h"(-7) *h(z)
=gh’(-7) *h(z) = qp(7)

where: e
p(t) =h(t)*h*"(—71) = f h(a)h*(t — a)da.

Thus the output of a white noise process through an LTI system
represents a (colored) noise process.

Note: White noise need not be Gaussian.
“White” and “Gaussian” are two different concepts!
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Discrete Time Stochastic Processes

A discrete time stochastic process X, = X(nT) Is a sequence of
random variables. The mean, autocorrelation and auto-covariance
functions of a discrete-time process are gives by:

H, = E{X(nT)}
R(n;,n,) = E{X(n,T)X"(n,T)}
and
C(n;,n,)=R(n;,n,) - /Un1:u|:2

respectively. As before strict sense stationarity and wide-sense
stationarity definitions apply here.
For example, X(nT) Is wide sense stationary if:

E{X(nT)}=u, aconstant

and
E[X{(k+MTIX{(K)TH=R() =r, 2 r 29/46
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Power Spectrum

For a deterministic signal x(t), the spectrum is well defined: If X (w)
represents its Fourier transform, i.e., If;

X(w)={ " x(t)e dt,

then | X (w)|* represents its energy spectrum. This follows from
Parseval’s theorem since the signal energy 1s given by:

jj: X* (t)dt =%ﬂf_+:| X () do=E.
Thus| X (@) |? Aw represents the signal energy in the band (@, +Aw)

$ X (@) _
4 X (t) Energy in (o,0+Aw)

PN, o B

O o+ Aw
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Power Spectrum

Impulse
response

W.S.S.

o —
X(t) ?

H(f) or Hw)
w = 2nf
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However, for stochastic processes, a direct application of X()
generates a sequence of random variables for every w. Moreover,
for a stochastic process, E{| X(t) |°} represents the ensemble average
power (instantaneous energy) at the instant t.

To obtain the spectral distribution of power versus frequency for
stochastic processes, it Is best to avoid infinite intervals to begin with,
and start with a finite interval (— T, T ). Formally, partial

Fourier transform of a process X(t) based on (— T, T) is given by:

X; (@)= X (e dt
So that:
[ X, (@) _ 1
2T 2T
represents the power distribution associated with that realization
on (— T, T). Notice that the above represents a RV for every

@, and Its ensemble average gives, the average power distribution
on(~T, T). Thus: -

T ot
| X(t)e ™t




P (@) = E{'X 2(Tw)| } j j E{X (t,)X"(t,)}e "% )dt dt,

1 (1 T it —
= | ] Ry (it )e 2 dt dt,
represents the power distribution of X(t) on (— T, T).

Thus, if X(t) is assumed to be w.s.s, then R, (t;,t,) =R, (t, —t,)
and:

P(w)——j [T R, (4 —t,)e 4 dtdt,.

Let =1 —t,, we get:
P (a))—% R, (r)e " (2T |z ])d

=[° R, (e (1-Myd7 >

to be the power distribution of the w.s.s. process X(t) based on ,,
(— T, T). Finally letting T — oo, we obtain:



S, (w) = TIim P(w)= E: R, (z)e "dr >0
to be the power spectral density of the w.s.s process X(t). Notice that:
R, (0) <> S_(w)=0.

I.e., the autocorrelation function and the power spectrum of a w.s.s
Process form a Fourier transform pair, a relation known as the
Wiener-Khinchin Theorem. The inverse formula gives:

Ry (1) =4 [ S, (0)e da
and in particular for 7 =0, we get:

%;rf: S, (@)dw =R, (0)=E{| X(t)['}=P, thetotal power.

The area under S (w) represents the total power of the
process X(t), and hence S (w) truly represents the power
spectrum.
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Sxx (w) S, (@)Aw represents the power
inthe band (w, o + Aw)

The nonnegative-definiteness property of the autocorrelation function
translates into the “nonnegative” property for its Fourier
transform (power spectrum), since:

iiaia’;Rxx (tl —tj)zzn:iaia’;%ﬂjj:sxx (w)eja)(ti—tj)da)

=%ﬂj_ Sxx(a))‘Z ae’”t dw > 0.

It follows that:

R,, (r) nonnegative - definite < S, (w) 20. -



If X(t) Is a real w.s.s process, then R (r) =R (~r) SO that

+00

SXX (a)) — .. —o RXX (T)e_Ja)Td 4

e +00

=] R, (7)coswzrdr

=2[ 'R, (r)coswrdr =S, (-0) 20

so that the power spectrum is an even function, (in addition to being
real and nonnegative).
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Power Spectra and LTI Systems

If a w.s.s process X(t) with autocorrelation
function Ryx(r) © Syx(w) =0 iS X(t) — h(t) —Y(@®)
applied to a linear system with impulse _

response h(t), then the cross-correlation Fig 18.3

function R,, (z) and the output autocorrelation function R, (z) are

obtained as:

R, (1) =R, (1) ¥ (7). R, (1) =R, (2)*h"(=r)¥N(z)

recall:

f(t) & F(0), g(t) & G(o)
T(t)*g9(t) < F(o)G(o)
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® 400

F L) *g)d=] { [t (o)t —r)dr}ej”tdt
=[ T f(r)etdr [ T g(t-r)e d(t-7)
=F (0)G(w).
Then we get:
S, (@)=F{R, (@)*h"(-7)}=S,, (w)H (@)
Since:

[ “h(-r)e rdr = ( [ h(t)e‘j“’tdt)* - H* (o),
Where:
H(w)={ " h(t)e *dt
represents the transfer function of the system, and:

S, (@) =FA{R,(7)}=3, (v)H ()
=S (o) |H(0)[ . 39/46



The cross spectrum need not be real or nonnegative;

However, the output power spectrum is real and nonnegative and is
related to the input spectrum and the system transfer function

can be used for system identification as well.

W.S.S White Noise Process: If W(t) is a w.s.s white noise process,

then:

Ru(7)=06(r) = S, (0)=0
Thus, the spectrum of a white noise process is flat, thus justifying its
name. Notice that a white noise process Is unrealizable since its total
power Is indeterminate.
If the input to an unknown system is
a white noise process, then the output spectrum is given by:

S, (®)=0|H(o)[

Notice that the output spectrum captures the system transfer function
characteristics entirely, and rational systems may be used to
determine the pole/zero locations of the underlying system.  40/46



Example: A w.s.s white noise process W(t) Is passed
through a low pass filter (LPF) with bandwidth B/2. Find the

autocorrelation function of the output process.
Solution: Let X(t) represent the output of the LPF. Then:

q, |o|<£B/2
S =q|H(w) =
« (@) =q[H(o)| {o, o> B/2
Inverse transform of S () gives the output autocorrelation function

to be: | |
R, (1) =[%2 S (0)e" dw=q["} e dw

—B/2 T xx
=(B sin(Bz /2) = (B sinc(Bz/2)
(Br/2)
AR (7)
J|H(w)l2 qB
“B/2 B/2 @ \/\\/ \/\\/ 4

(a) LPF (b) 41/46



Example: Let:
t+T

Y(t)= - [T X(r)dr

2T ° -
represent a “smoothing” operation using a moving window on the mput
process X(t). Find the spectrum of the output Y(t) in term of X(t).

Solution: If we define an LTI system
with impulse response h(t), th(t)
then in term of h(t): Li2]

Y (t) = jf:h(t —7)X(z)dz =h(t) * X (t)
Here
S, () =8, ()| H(@)[".

H(w) = _[_+TT Le dt =sinc(wT) 42/46



so that:
S, (w) =S,, (w)sinc’ (oT).

[ s, (@ f sinc’ (@T) [Syy (@)

=3

Notice that the effect of the smoothing operation is to

suppress the high frequency components in the input (beyond 7 /T),
and the equivalent linear system acts as a low-pass filter (continuous-
time moving average) with bandwidth 27z /T in this case.
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Discrete — Time Processes

For discrete-time w.s.s stochastic processes X(nT) with

autocorrelation sequence {r. }'”, (proceeding as above) or formally
defining a continuous time process X (t)=>_ X(nT)d(t—nT), we get
the corresponding autocorrelation function to be:

R, (0)= " r.8(z—KT).

K=—c0

Its Fourier transform is given by:

S, (@)=Y re >0,

K=—o0

and it defines the power spectrum of the discrete-time process X(nT).

S, (w)=S, (0+27/T)

so that S,, (@) is a periodic function with period

27
2B=—.
T 44146



This gives the inverse relation:
. 1 B KT
r _EI—BSXX (w)e* dw
and: .
_ 2y _ 5
rO o E{l X(nT) | }_ EJ‘_B Sxx (a))da)

represents the total power of the discrete-time process X(nT). The
Input-output relations for discrete-time system h(nT)
translate into:

S, (@) =S, (w)H (e')
And:

S, (@)=S,, (@) |[H(E")[
Where:

H(e”)= 3 h(nT)e i

represents the discrete-time system transfer function. M0



Summary of LTI Systems
with Stochastic Inputs
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Summary of LTI Systems
with Stochastic Inputs

ty (£) = ux(t) = h(t)

Rxy(t1,t2) = Rxx(ty,tz) * h*(t)
Ryy(t1,t3) = Ryy(ty, t3) * h(ty)
Ryy(t1,t2) = Rxx(tq1,t2) * h*(t,) * h(ty)

47



Summary of LTI Systems
with Stochastic Inputs

Ryx(t1,t2)

d h(t)

* Ryy (t1,t3)

|

Ryy(t1,t2) ~—— A2

48



Summary of LTI Systems

with WSS Stochastic In

Let X(t) be a WSS Stochastic Process(in

DUTS

put), h(t) impulse

response of an LTI system, and y(t) its output, then:

Uy (t) = uyc = constant

Rxy(t) = Rxx(7) * h*(—7)
Ryy(t) = Rxy(7) * h(7)

Ryy(t) = Ryx(7) *x h*(—7) * h(7)

Sxx(w) =F (RXX(T))
Sxy(w) = Sxx(w)H"(w)
Syy(w) = Sxy(w)H(w)

Syy (@) = Sxx(w)H* (w)H(w) = SXX(CU)|H(0))|2



Next Week:

Poisson Processes
Point Processes

Have a good day!
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