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Ergodicity

• A random process X(t) is ergodic if all of its 

statistics can be determined from a sample function 

(sample path) of the process.

• That is, the ensemble averages equal the 

corresponding time averages with probability one.
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Ergodicity illustrated

• Statistics can be determined by time averaging of 

one realization (one sample path).

E[X(t)]
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Ergodicity and stationarity

• Wide-sense stationary (WSS): Mean is constant 

over time and autocorrelation is a function of time 

difference.

• Strictly stationary (SSS): All statistics are constant 

over time.

• In general an ergodic process is SSS and WSS.
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Weak forms of ergodicity

• The complete statistics is often difficult to estimate 

so we are often only interested in:

✓ Ergodicity in mean

✓ Ergodicity in autocorrelation
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Ergodicity in mean

• A random process is ergodic in mean if E(X(t)) equals 

the time average of sample function (Realization):

E(X(t)) = <x(t)>

• Where <.> denotes time-averaging:

<x(t)> = lim
𝑇→∞

1

2𝑇
𝑇−

𝑇
𝑥 𝑡 𝑑𝑡

• Necessary and sufficient condition:

 X(t+𝞃) and X(t) must become independent as 𝞃 

approaches ∞.
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Example 1-a

• Example of ergodic in mean:

X(t) = a cos (𝜔0t+ 𝜃)

• Where: 𝜃 is a random variable U [0,2], t is the 

time index, a and 𝜔0 are constant variables is a 

WSS process with mean zero.

• Mean is independent of random variable 𝜃.

• Example of NOT ergodic in mean:

X(t) = a cos (𝜔0t+ 𝜃) + cr

• Where: 𝜃 is a random variable U(0,2), cr is a 

random variable, t is the time index, a and 𝜔0 are 

constant variables.

• Mean is not independent of the random variable cr.
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Example 1-b

• Example of ergodic in mean:

 X(t) = a sin(𝜔𝑟 𝑡 + 𝜃)

• Where :

✓  𝜃 is a uniform random variable on [−𝜋, 𝜋]

✓ a and 𝜔𝑟 are constant variables

• Mean is independent of 𝑡 (is zero)

• Time average goes to zero (𝑇 → ∞)
• Example of NOT ergodic in mean:

X(t) = a sin(𝜔𝑟𝑡 +  𝜃) + cr

• Where :

✓ 𝜃 and cr are random variables

✓ 𝜃 is a uniform random variable on [−𝜋, 𝜋]

✓ a and 𝜔𝑟 are constant variables

• Mean is independent of t and cr

• But time average doesn’t converge in mean squared  

error (𝑣𝑎𝑟 𝑐𝑟 > 0) to the mean.



10/46

Let C be a random variable (RV),

Let X(t) = C be a random process, with mean 𝜇𝐶,

Is X(t) mean ergodic?

Ensemble Average:  𝐸 𝑋 𝑡 = 𝐸 𝐶 = 𝜇𝐶

Time Average: 𝜇𝑇 =
1

2𝑇
𝑇−

𝑇
𝑋 𝑡 𝑑𝑡 =

1

2𝑇
𝑇−

𝑇
𝐶𝑑𝑡 = 𝐶

Time Average is not equal to ensemble average, hence X(t) is 

not mean ergodic. We can also check the variance of X(t):

→ lim
𝑇→∞

𝐸[ 𝜇𝑇 − 𝜇𝑐
2] = lim

𝑇→∞
𝐸 𝐶 − 𝜇𝑐

2 = 𝑣𝑎𝑟 𝐶 > 0

Example 2
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Ergodicity in autocorrelation

• Ergodic in autocorrelation implies that the 

autocorrelation can be found by time averaging a 

single realization:

Rxx(𝞃) = <x(t+ 𝞃)x(t)>

• Where:

< x(t+ 𝞃)x(t)> = lim
𝑇→∞

1

2𝑇
𝑇−

𝑇
x(t+ 𝞃)x(t)𝑑𝑡

• Necessary and sufficient condition:

  x(t+ 𝞃)x(t) and x(t+ 𝞃+a)x(t+a) must become 

independent as a approaches ∞.
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Example 3

• A random process X(t) is defined as:

X(t) = A cos(2𝜋𝑓𝑐𝑡 +  𝜃)

✓ Where A and fc are constants, and 𝜃 is a random 

variable uniformly distributed over the interval [0, 2𝜋]

✓ We have seen that the autocorrelation of X(t) is:

Rxx(𝜏) = 
𝐴2

2
 cos(2𝜋𝑓𝑐𝜏)    (I)

✓ What is the autocorrelation of a sample function?
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Example 3 continued

• The time averaged autocorrelation of the sample function:

X(t) = A cos(2𝜋𝑓𝑐𝑡 +  𝜃)

<X(t+𝜏)X(t)> 

= lim
𝑇→∞

𝐴2

2𝑇
𝑇−

𝑇
cos[2𝜋𝑓𝑐(t+𝜏) + 𝜃]cos(2𝜋𝑓𝑐𝑡 +  𝜃)dt

 = lim
𝑇→∞

𝐴2

4𝑇
𝑇−

𝑇
[cos (2𝜋𝑓𝑐𝜏) + cos(4𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑐𝜏 + 2𝜃)]dt

= 
𝐴2

2
 cos (2𝜋𝑓𝑐𝜏)     (II)

• note that: cos 𝑎 cos 𝑏 =
1

2
(cos 𝑎 − 𝑏 + cos(𝑎 + 𝑏))

• From I & II we conclude that X(t) is ergodic in autocorrelation



X(t)   ~   W.S.S Gaussian Process with:

 𝐸 𝑋 𝑡 = 0

 𝑅𝑋𝑋 𝜏 = 𝑒− 𝜏

A   ~   N(0, 1) 

𝐴 𝑋(𝑡)

Let 𝑌 𝑡 = 𝑋 𝑡 + 𝐴

Example 4

R.P.

R.V.

Is Y(t) mean 

ergodic?
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𝑌 𝑡 = 𝑋 𝑡 + 𝐴
Expected value of 𝑌 𝑡 :

𝐸 𝑌 𝑡 = 𝐸 𝑋 𝑡 + 𝐴 = 𝐸 𝑋 𝑡 + 𝐸 𝐴 = 0 + 0 = 0

Time average of 𝑌 𝑡  :

< 𝑌(t)> = lim
𝑇→∞

1

2𝑇
𝑇−

𝑇
𝑌 𝑡 𝑑𝑡 

             = lim
𝑇→∞

1

2𝑇
𝑇−

𝑇
[𝑋 𝑡 + 𝐴 ]𝑑𝑡 

             = lim
𝑇→∞

1

2𝑇
𝑇−

𝑇
𝑋 𝑡 𝑑𝑡 + lim

𝑇→∞

1

2𝑇
𝑇−

𝑇
𝐴 𝑑𝑡 

             = lim
𝑇→∞

1

2𝑇
𝑇−

𝑇
𝑋 𝑡 𝑑𝑡 + A

             = 0 + A = A

Therefore, Y(t) is not mean ergodic because the time average does 

not converge to the ensemble average (which is zero).

Example 4 continued
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𝐀𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐢𝐯𝐞𝐥𝐲:  𝑌 𝑡 = 𝑋 𝑡 + 𝐴
𝐸 𝑌 𝑡 = 𝐸 𝑋 𝑡 + 𝐴 = 𝐸 𝑋 𝑡 + 𝐸 𝐴 = 0 + 0 = 0

𝑅𝑌𝑌 𝑡, 𝑠 = 𝐸 𝑋 𝑡 𝑋 𝑠 + 𝐸 𝐴2 + 2𝐸 𝑋 𝑡 𝐴 = 𝑒− 𝑡−𝑠 + 1

mean-ergodicity:

𝐸
1

2𝑇
න

−𝑇

𝑇

𝑌 𝑡 𝑑𝑡 − 𝜇𝑌

2

=
1

2𝑇

2

𝐸 ඵ

−𝑇

𝑇

𝑌 𝑡 𝑌 𝑠 𝑑𝑡𝑑𝑠

=
1

2𝑇

2

ඵ

−𝑇

𝑇

𝐸[𝑌 𝑡 𝑌 𝑠 ] 𝑑𝑡𝑑𝑠

=
1

2𝑇

2

ඵ

−𝑇

𝑇

(𝑒− 𝑡−𝑠 +1 ) 𝑑𝑡𝑑𝑠 ≥
1

2𝑇

2

ඵ

−𝑇

𝑇

1 𝑑𝑡𝑑𝑠 = 1 > 0

Example 4 continued

not mean ergodic
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Systems with Stochastic Inputs
A deterministic system transforms each input waveform              into

an output waveform                                   by operating only on the 

time variable t. Thus a set of realizations at the input corresponding 

to a process X(t) generates a new set of realizations                at the 

output associated with a new process Y(t).

),( itX 
)],([),( ii tXTtY  =

)},({ tY

Our goal is to study the output process statistics in terms of the input

process statistics and the system function.

][T⎯⎯→⎯ )(tX ⎯⎯→⎯ )(tY

t t

),(
i

tX 
),(

i
tY 
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Deterministic Systems

Systems with Memory

Time-Invariant

       systems

Linear systems

Linear-Time Invariant

      (LTI) systems

Memoryless Systems

)]([)( tXgtY =

)]([)( tXLtY =
Time-varying

     systems

.)()(

)()()(

 

 

 

 




+

−

+

−

−=

−=





dtXh

dXthtY( )h t( )X t

LTI system
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Memoryless Systems
The output Y(t) in this case depends only on the present value of the 

input X(t).  i.e.;        
)}({)( tXgtY =

Memoryless

system

Memoryless

system

Memoryless

system

Strict-sense 

stationary input

Wide-sense 

stationary input

X(t) stationary 

Gaussian with  
)(

XX
R

Strict-sense 

stationary output.

Need not be

stationary in 

any sense.

Y(t) stationary,but

not Gaussian with
).()( 

XXXY
RR =
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Linear Systems:       represents a linear system if

Let 

represent the output of a linear system.

Time-Invariant System:        represents a time-invariant system if

i.e., shift in the input results in the same shift in the output.

If          satisfies above equations, then it corresponds to 

a linear time-invariant (LTI) system.

LTI systems can be uniquely represented in terms of their output to 

a input delta function:

][L

)}({)( tXLtY =

)}.({)}({)}()({ 22112211 tXLatXLatXatXaL +=+

][L

)()}({)}({)( 00 ttYttXLtXLtY −=−=

][L

LTI)(t )(th

Impulse

Impulse

response of

the system

t

)(th

Impulse

response
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We can express X(t) as:

But                            Then:)}.({)( tXLtY =


+

−
−=

 

 
)()()(  dtXtX

.)()()()(

)}({)(

})()({

})()({)}({)(

 

 

 

 

 

 

 

 

 

 









+

−

+

−

+

−

+

−

+

−

−=−=

−=

−=
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dtXhdthX

dtLX

dtXL

dtXLtXLtY

By Linearity

By Time-invariance

then

LTI




+

−

+

−

−=
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)()(
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dtXh
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t
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Output Statistics: The mean of the output process is given by

Similarly the cross-correlation function between the input and output

processes is given by:

).()()()(

})()({)}({)(

 

 

 

 

thtdth

dthXEtYEt
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or 
),(),(

)(),(

)()}()({

})( )()({

)}()({),(

121

 

 21

 

 21
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*

1

2

*

121

thttR

dhttR

dhtYtXE

tYdhtXE

tYtYEttR

XY

XY

YY

=

−=

−=

−=

=







+

−

+

−

+

−







*
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h*(t2) h(t1)⎯⎯⎯ →⎯
),( 21 ttRXY⎯→⎯ ⎯→⎯ ),( 21 ttR

YY
),( 21 ttR

XX

Finally the output autocorrelation function is given by:



In particular if  X(t) is wide-sense stationary, then we have               

Then:

Also                                     , and:

Thus X(t) and Y(t) are jointly w.s.s., and the output 

autocorrelation simplifies to:

And we obtain:

XX
t  =)(

constant.a cdht
XXY
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The output process is also wide-sense stationary.

This gives rise to the following representation.

LTI system

h(t)

Linear system

wide-sense 

stationary process

strict-sense 

stationary process

Gaussian

process (also 

stationary)

wide-sense 

stationary process.

strict-sense

stationary process

Gaussian process

(also stationary)

)(tX )(tY

LTI system

h(t)

)(tX

)(tX

)(tY

)(tY

(a)

(b)

(c)
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White Noise Process
W(t) is said to be a white noise process if: 

i.e.,  E[W(t1) W*(t2)] = 0  unless t1 = t2.

W(t) is said to be wide-sense stationary (w.s.s) white noise 

if E[W(t)] = constant, and: 

If W(t) is also a Gaussian process (white Gaussian process), then all of 

its samples are independent random variables.

),()(),( 21121 tttqttR
WW

−= 

).()(),( 2121  qttqttR
WW

=−=

White noise

      W(t)

LTI

h(t)

Colored noise

( ) ( ) ( )N t h t W t= 
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For w.s.s. white noise input W(t), we have:

and: 

where: 

Thus the output of a white noise process through an LTI system 

represents a (colored) noise process.

Note: White noise need not be Gaussian.

          “White” and “Gaussian” are two different concepts!

)()()(

)()()()(

*

*





qhqh

hhqR
nn

=−=

−=

𝜌(𝜏) = ℎ(𝜏) ∗ ℎ∗(−𝜏) = න
 −∞

 +∞

ℎ(𝛼)ℎ∗(𝜏 − 𝛼)𝑑𝛼 .

 

 
[ ( )] ( ) ,    

W
E N t h d  

+

−
=  a constant
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Discrete Time Stochastic Processes

A discrete time stochastic process Xn = X(nT) is a sequence of 

random variables. The mean, autocorrelation and auto-covariance 

functions of a discrete-time process are gives by:

and

respectively. As before strict sense stationarity and wide-sense 

stationarity definitions apply here.

For example, X(nT) is wide sense stationary if:

and

)}()({),(

)}({         

2

*

121 TnXTnXEnnR

nTXEn

=

=

*

2121 21
),(),( nnnnRnnC −=

constanta  nTXE    ,)}({ =

* *[ {( ) } {( ) }] ( ) n nE X k n T X k T R n r r−+ = = =
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For a deterministic signal x(t), the spectrum is well defined: If             

represents its Fourier transform, i.e., if;

then                 represents its energy spectrum. This follows from 

Parseval’s theorem since the signal energy is given by:

Thus                       represents the signal energy in the band                  .

( )X 

 

 
( ) ( ) ,j tX x t e dt

+ −

−
= 

2| ( ) |X 

  2 2

  

1
2

( ) | ( ) | .x t dt X d E


 
+ +

− −
= = 

2| ( ) |X   ( , )  + 

Power Spectrum

t0

( )X t




0

2| ( )|X 
Energy in     ( , )  +

 + 



LTI System𝛿(𝑡) ℎ(𝑡)

Impulse 

response

LTI System ?𝑋(𝑡)

W.S.S.

𝐻(𝑓) 𝑜𝑟 𝐻(𝑤)
𝜔 = 2𝜋𝑓
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Power Spectrum



However, for stochastic processes, a direct application of X()

generates a sequence of random variables for every      Moreover,

for a stochastic process, E{| X(t) |2} represents the ensemble average

power (instantaneous energy) at the instant t. 

To obtain the spectral distribution of power versus frequency for 

stochastic processes, it is best to avoid infinite intervals to begin with, 

and start with a finite interval (– T,  T ). Formally, partial 

Fourier transform of a process X(t) based on (– T,  T ) is given by:

so that: 

represents the power distribution associated with that realization

on (– T,  T ). Notice that the above represents a RV for every

       and its ensemble average gives, the average power distribution 

on (– T,  T ). Thus: 

.

 

 
( ) ( )

T j t

T T
X X t e dt −

−
= 

2 2 

 

| ( ) | 1
( )

2 2

T j tT

T

X
X t e dt

T T

 −

−
= 

,
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represents the power distribution of X(t) on (– T,  T ). 

Thus, if X(t) is assumed to be w.s.s, then                                       

and:

Let                 , we get:

to be the power distribution of the w.s.s. process X(t) based on 

(– T, T ). Finally letting              , we obtain:T →

1 2
  ( )

1 2 1 2  

1
( ) ( ) .

2
T XX

T T j t t

T T
P R t t e dt dt

T

 − −

− −
= − 

1 2

1 2

2
( )*

1 2 1 2

( )

1 2 1 2

| ( ) | 1
( ) { ( ) ( )}

2 2

1
( , )

2

T

XX

T T j t tT

T T

T T j t t

T T

X
P E E X t X t e dt dt

T T

R t t e dt dt
T






 − −

− −

− −

− −

 
= = 

 

=

 

 

 2

 2

 2 | |

2 2

1
( ) ( ) (2 | |)

2

( ) (1 )   0

T XX

XX

T j

T

T j

TT

P R e T d
T

R e d





   

 

−

−

−

−

= −

= − 





1 2 1 2( , ) ( )
XX XX

R t t R t t= −

1 2t t = −



to be the power spectral density of the w.s.s process X(t). Notice that: 

i.e., the autocorrelation function and the power spectrum of a w.s.s

Process form a Fourier transform pair, a relation known as the 

Wiener-Khinchin Theorem. The inverse formula gives:

and in particular for            we get:

The area under              represents the total power of the

process X(t), and hence             truly represents the power 

spectrum. 

( ) lim ( ) ( ) 0
XX T XX

j

T
S P R e d   

+ −

−→
= = 

F T( )    ( ) 0.
XX XX

R S ⎯→ 

1
2

( ) ( )
XX XX

jR S e d


  

+

−
= 

21
2

( ) (0) {| ( ) | } ,     
XX XX

S d R E X t P the total power.


 
+

−
= = =

0, =

( )
XX

S 

( )
XX

S 
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The nonnegative-definiteness property of the autocorrelation function

translates into the “nonnegative” property for its Fourier

transform (power spectrum), since:   

It follows that:

( )      ( ) 0.
XX XX

R nonnegative - definite S  

( )* *

1 1 1 1

2

1

1
2

1
2

( ) ( )

( ) 0.

i j

XX XX

i

XX

n n n n
j t t

i j i j i j
i j i j

n j t

ii

a a R t t a a S e d

S a e d









 

 

+ −

−
= = = =

+

=−

− =

= 

  



 + 0


represents the power

in the band                  ( , )  + 

( )XXS  ( )
XX

S 
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If X(t) is a real w.s.s process, then                              so that

so that the power spectrum is an even function, (in addition to being

real and nonnegative).

( ) = ( )
XX XX

R R −
 

 

 

 

 

 0

( ) ( )

( )cos

2 ( )cos ( ) 0

XX XX

XX

XX XX

jS R e d

R d

R d S

  

  

   

+ −

−

+

−



=

=

= = − 
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Power Spectra and LTI Systems

If a w.s.s process X(t) with autocorrelation

function                               is 

applied to a linear system with impulse

response h(t), then the cross-correlation

function             and the output autocorrelation function            are 

obtained as:

recall:   

( )
XY

R  ( )
YY

R 

𝑅𝑋𝑋(𝜏)   𝑆𝑋𝑋(𝜔) ≥ 0 h(t) X(t) Y(t)

Fig 18.3

* *( ) ( ) ( ),    ( ) ( ) ( ) ( ).
XY XX YY XX

R R h R R h h      =  − =  − 

( )  ( ),     ( )  ( )f t F g t G  

( ) ( )  ( ) ( )f t g t F G  
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Then we get:

Since:

Where:

represents the transfer function of the system, and:

   

  

  ( )

  

{ ( ) ( )}= ( ) ( )

= ( )  ( ) ( )

 = ( ) ( ).

j t

j j t

f t g t f g t d e dt

f e d g t e d t

F G
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The cross spectrum need not be real or nonnegative;

However, the output power spectrum is real and nonnegative and is 

related to the input spectrum and the system transfer function 

can be used for system identification as well.

W.S.S White Noise Process: If W(t) is a w.s.s white noise process, 

then:

Thus, the spectrum of a white noise process is flat, thus justifying its 

name. Notice that a white noise process is unrealizable since its total 

power is indeterminate.

If the input to an unknown system is

a white noise process, then the output spectrum is given by:

Notice that the output spectrum captures the system transfer function 

characteristics entirely, and rational systems may be used to

determine the pole/zero locations of the underlying system.

( ) ( )      ( ) .
WW WW

R q S q   =  =

2( ) | ( ) |
YY

S q H =
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Example: A w.s.s white noise process W(t) is passed

through a low pass filter (LPF) with bandwidth B/2. Find the 

autocorrelation function of the output process.

Solution: Let X(t) represent the output of the LPF. Then:

Inverse transform of              gives the output autocorrelation function

to be:

2
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Example: Let:

represent a “smoothing” operation using a moving window on the input

process X(t). Find the spectrum of the output Y(t) in term of X(t).

Solution: If we define an LTI system

with impulse response h(t),

then in term of h(t):

Here 
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so that: 

2
 ( ) ( ) sinc ( ).

YY XX
S S T  =

Notice that the effect of the smoothing operation is to 

suppress the high frequency components in the input                           

and the equivalent linear system acts as a low-pass filter (continuous-

time moving average) with bandwidth             in this case.

(beyond / ),T



( )
XX

S 
2sinc ( )T

T


 

( )
YY

S 

2 /T



Discrete – Time Processes

For discrete-time w.s.s stochastic processes X(nT) with

autocorrelation sequence             (proceeding as above) or formally

defining a continuous time process                                               we get

the corresponding autocorrelation function to be: 

Its Fourier transform is given by:

and it defines the power spectrum of the discrete-time process X(nT).

so that               is a periodic function with period

{ } ,kr
+

−
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2
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This gives the inverse relation:

and:

represents the total power of the discrete-time process X(nT). The 

input-output relations for discrete-time system h(nT) 

translate into:

And: 

Where:

represents the discrete-time system transfer function.
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Summary of LTI Systems

with Stochastic Inputs
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𝑋(𝑡)
ℎ 𝑡
𝐿𝑇𝐼

𝑌(𝑡)

S.

P.

S.

P.

𝜇𝑌 𝑡 = 𝜇𝑋 𝑡 ∗ ℎ 𝑡

𝑅𝑋𝑌 𝑡1, 𝑡2 = 𝑅𝑋𝑋 𝑡1, 𝑡2 ∗ ℎ∗ 𝑡2

𝑅𝑌𝑌 𝑡1, 𝑡2 = 𝑅𝑋𝑌 𝑡1, 𝑡2 ∗ ℎ 𝑡1

𝑅𝑌𝑌 𝑡1, 𝑡2 = 𝑅𝑋𝑋 𝑡1, 𝑡2 ∗ ℎ∗ 𝑡2 ∗ ℎ 𝑡1

Summary of LTI Systems

with Stochastic Inputs
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ℎ∗ 𝑡2

ℎ 𝑡1

𝑅𝑋𝑋(𝑡1, 𝑡2) 𝑅𝑋𝑌(𝑡1, 𝑡2)

𝑅𝑌𝑌(𝑡1, 𝑡2)

Summary of LTI Systems

with Stochastic Inputs



𝐿𝑒𝑡 𝑋 𝑡  𝑏𝑒 𝑎 𝑊𝑆𝑆 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑃𝑟𝑜𝑐𝑒𝑠𝑠(input), h(t) impulse 

response of an LTI system, and y(t) its output, then:

𝜇𝑌 𝑡 = 𝜇𝑋𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑅𝑋𝑌 𝜏 = 𝑅𝑋𝑋 𝜏 ∗ ℎ∗ −𝜏
𝑅𝑌𝑌 𝜏 = 𝑅𝑋𝑌 𝜏 ∗ ℎ 𝜏
𝑅𝑌𝑌 𝜏 = 𝑅𝑋𝑋 𝜏 ∗ ℎ∗ −𝜏 ∗ ℎ 𝜏

𝑆𝑋𝑋 𝜔 = ℱ 𝑅𝑋𝑋 𝜏

𝑆𝑋𝑌 𝜔 = 𝑆𝑋𝑋 𝜔 𝐻∗ 𝜔
𝑆𝑌𝑌 𝜔 = 𝑆𝑋𝑌 𝜔 𝐻 𝜔
𝑆𝑌𝑌 𝜔 = 𝑆𝑋𝑋 𝜔 𝐻∗ 𝜔 𝐻 𝜔 = 𝑆𝑋𝑋 𝜔 𝐻 𝜔 2

Summary of LTI Systems

with WSS Stochastic Inputs



Next Week:

Poisson Processes
Point Processes

Have a good day!
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