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History & Philosophy

Started by gamblers’ dispute!
Probability as a game analyzer
~ormulated by B. Pascal and P. Fermet

~irst Problem (1654)
*“Double Six” during 24 throws!

First Book (1657):.

 Christian Huygens, “De Ratiociniis in Ludo
Aleae (On Reasons in the Game of Chance)’,
In Latin, 1657.
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History & Philosophy (Cont’d)

« Rapid development during 18" Century

* Major Contributions:
J. Bernoulli (1654-1705)

A. De

Moivre (1667-1754)

* Arenaissance: Generalizing the concepts from
mathematical analysis of games to analyzing
scientific and practical problems: P. Laplace
(1749-1827)

* New ap

*P. Lap
Proba

oroach first book:
ace, “Théorie Analytique des

nilités”, In France, 1812.
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History & Philosophy (Cont’d)

« 19t century’s developments:
* Theory of errors
« Actuarial mathematics
e Statistical mechanics

« Modern theory of probability (20t Century):
« A. Kolmogorov : an Axiomatic approach

* First modern book:

« A. Kolmogorov, “Foundations of Probability
Theory”, Chelsea, New York, 1950.

* Other giants in the field:
* Chebyshev, Markov and Kolmogorov
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History & Philosophy (Cont’d)

« Two major philosophies:
* Frequentist Philosophy

* Observations (dataset X) are sufficient to
obtain probability density functions f(X|0)!
(assume 0 Is fixed but unknown)

« Bayesian Philosophy:

* Observations are NOT sufficient but are

necessary!

 Prior knowledge of the parameters (0) of
probability density functions is also
essential!

(assume 0 Is random but unknown)
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History & Philosophy (Cont’d)

Frequentist philosophy

« Parameters (0) of f(X|0)
are fixed

* There is an underlying
distribution from which
observations X are
drawn

e Likelihood functions
f(X]0) is used for any
Inference on X

 For Gaussian likelihood
function, the most likely
for X is happens to be
(1/N)2x; (sample
average)

Bayesian philosophy

« Parameters (0) of f(X|0)
are random

« Variation of the
parameters defined by the
prior probability (0)

* This is combined with
f(X]0) to obtain the
posterior f(6]X)

« Mean of the posterior,
f(6|X) can be considered
a point estimate for 6
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History & Philosophy (Cont’d)

* An Example:

A coin is tossed 1000 times, yielding 800 heads and
200 talls. Let p = P(heads) be the bias of the coin.
What is p?

« Bayesian Analysis
- Our prior knowledge (believe): z(p)=1 (Uniform(0,1))
» Our posterior knowledge: 7(p|Observation)= p®(1— p)**
* Frequentist Analysis
« Answer is an estimator b such that
* Mean: E[p]=0.8
« Confidence Interval: P(0.774 < p <0.826)>0.95
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History & Philosophy (Cont’d)

Nowadays, Probability Theory is considered to be
a part of the Measure Theory!

 Further reading:

* http://www.leidenuniv.nl/fsw/verduin/stathist/st
athist.htm

e http://www.mrs.umn.edu/~sungurea/introstat/h
Istory/indexhistory.shtml

« www.csS.ucl.ac.uk/staff/D.Wischik/Talks/histpro
b.pdf
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Random Variables

 Probability Space
* Atriple of (Q,F,P)
« Q) represents a nonempty set, whose

elements are sometimes known as
outcomes or states of nature (Sample Space).

* F represents a set, whose elements are
called events. The events are subsets of
Q. F should be a “Borel Field”.

« Prepresents the probability measure.

* Fact: P(Q) =1
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Random Variables (Cont’d)

« Random Variable (RV) is a “function”
(“mapping”) from a set of possible outcomes of
the experiment to an interval of real (complex)
numbers.

* |n other words :
FcP(Q) [X:F—l
{IQR '{x(ﬁ)zr

Outcomes

-
Real Line
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Random Variables (Cont’d)

« Example I
* Mapping faces of a dice to the first six natural
numbers.
« Example II:
* Mapping height of a man to the real interval
(0,3] (meter or something else).
« Example Il

* Mapping success in an exam to the discrete
Interval [0,20] by 0.1 increments.
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Random Variables (Cont’d)

* Random Variables
* Discrete
* Dice, Coin, Grade of a course, etc.
e Continuous
* Temperature, Humidity, Length, etc.

« Random Variables
* Real
« Complex
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Density/Distribution Functions

 Probability Mass Function (PMF)
* Discrete random variables
e Summation of impulses

* The magnitude of each impulse represents the
probability of occurrence of the outcome

* Example I PIX]
*Rolling a fair dice
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Density/Distribution Functions (Cont’d)

« Cumulative Distribution Function (CDF)
* Both Continuous and Discrete
* Could be defined as the integration of PDF

CDF( )=Fy (x)=P(X <x)
fo (x).

PDF(X)

.
//;D;;//f\
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Density/Distribution Functions (Cont’d)

 Some CDF properties
* Non-decreasing
* Right Continuous
* F(-infinity) = O
* F(infinity) = 1
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Density/Distribution Functions (Cont’d)

 Probability Density Function (PDF)
e Continuous random variables

mgn d d
* The probability of occurrence of Xo E(X—gx’”?xj
will be P(x) dx

PIX)
I\
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Density/Distribution Functions (Cont’d)

« Some famous masses and densities:
» Uniform Density PX)

f(x)zé.(u (end)-U(begin)) 2 T

e Gaussian (Normal) Density a
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Density/Distribution Functions (Cont’d)

* Binomial Density

(o) Je-orpt

n

* Poisson Density

4 A
f=e )

Note: x e N = ['(x+1)=x!

* Important Fact:

n
For Sufficient ly large N : (:j(l— pN " p" xe NP (N-p)

n!
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Density/Distribution Functions (Cont’d)

* Exponential Density

e x>0
0 Xx<0

f(x)=A.e ™ U(x)= {

Probab ility Dens ity
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Density/Distribution Functions (Cont’d)

* Expected Value
* The most likelihood value:

E[X]= Tx.fx (x)dx
*Linear Operator: _
Ela.X +b]=a.E[X]|+b

 Function of a random variable:
* Expectation

Efg(X)]= [g(x) y (x)dx
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Density/Distribution Functions (Cont’d)

* PDF of a function of random variables:
« Assume RV “Y” such that Y =g(X)
*The inverse equation X =g~*(y) may have
more than one solution called X, X,.,..., X,

 PDF of “Y” can be obtained from PDF of “X”
as follows:

fy(y)=3 fx (%)

= O g(x)
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Joint/Conditional Distributions

« Joint Probability Functions
* Density Fyy(x,y)=P(X <x and Y <y)

 Distribution Xy
= [ [ fxy (%, y)dydx

—00 —Q0

* Example I:
*|In a rolling fair dice experiment represent the
outcome as a 3-bit digital number “xyz”.

XYz
L x=0y=0 15001

% x=0;y=1 2 —>010
3—011

fX'Y(x,y)=<% Xx=Ly=0 , o
W x=Ly=1 5101
0 OW. 6 — 110
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Joint/Conditional Distributions (Cont’d)

« Example Il
* Two normal (Gaussian) random variables

{ 1 {(x-wg(y—ﬂy)z zr<x—ﬂx>(y—uy)n

2 2 2
2(1—r ) Oy Gy o-x-o-y

1
fyy(X,y)= e
. 27r.0y.0y N1 re
Whatis “r’ ?

 Independent Events (Strong Axiom)

fx v (x,y)=fx (x).fy (y)
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Joint/Conditional Distributions (Cont’d)

« Obtaining one variable density functions:

fx (x)= OJ? fx v (X y)dy

fy(y)= T Fx v (X, y)dx

* Distribution functions can be obtained just from
the density functions. (How?)
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Joint/Conditional Distributions (Cont’d)

« Conditional Density Function:

* Probabillity of occurrence of an event if
another event is observed (we know what
Y7 is).

_ fx v (x,y)
fy (Y)

fx\Y (X|Y)

*Bayes’ Rule:

)

_{on|X (y]x} f (x)olx
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Joint/Conditional Distributions (Cont’d)

* Example I:
* Rolling a fair dice:
« X : the outcome Is an even number
*Y : the outcome Is a prime number

i) 2. .2

* Example Il
« Joint normal (Gaussian) random variables:

! e[()()]

2

Fxy (X|y):

2r.oyN1-T1
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Joint/Conditional Distributions (Cont’d)

 Conditional Distribution Function:

Fyv (Xy)=P(X < x while Y = y)

X
= ,[fX|Y (x|y)dx

6y, N

* Note that "y” is a constant during the integration.
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Joint/Conditional Distributions (Cont’d)

* Independent Random Variables:

fx v (X, Y)
fy (Y)
fx (x)fy (y)

Tx|v (X‘y):

« Remember! Independency is NOT heuristic.
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Joint/Conditional Distributions (Cont’d)

* PDF of a functions of joint random variables
 Assume that (U,V)=g(X,Y)

* The inverse equation set (X,Y)=g'(U,v) has a
set of solutions (X;,Y;),(X,,Y,),...(X,,,Y,)

* Define Jacobean matrix as follows:

—U —V
J _ oX oX
2y 2y
oX oY
* The joint PDF will be:

fU’V(u’V):.Z fxy Oy

n
' absolute determinant(J|(X )

\
(X, i ))

33/55



Outline

History/Philosophy
Random Variables

Density/Distribution Functions

« Joint/Conditional Distributions

_inear Correlation
mportant Theorems

ntroduction to Stochastic Processes

34/55



Correlation

* Knowing about a random variable “X”, how
much information will we gain about the other
random variable “Y"?

* Covariance: Measures the degree to which two
variables change together (linear similarity):

Cov(X,Y) = E[(X =t WY — sy )]= E[XY | pa .11y

 Correlation coefficient (p): This is a normalized
version of covariance. It is dimensionless and
ranges between -1 and 1.

cov(X,Y)
p p—
\/var(X)var(Y)
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Correlation (cont’d)

|If the random variables “X” and “Y” are
uncorrelated then their covariance and
correlation coefficient are zero, and:

E [XY] = E[X] E[Y]

* |t IS Important to note that while uncorrelated
variables have zero covariance, this does not
necessarily imply that they are independent.

*Independence is a stronger condition that
Implies no relationship (of any kind), not just
linear.

« Consequently, independent random variables
are also uncorrelated.
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Correlation (cont’d)

* A correlation scatter plot is a graph to visualize
the relationship between two numerical
variables.

,-"f f"':i«.,\\ -
f.r" \‘\..“ \"'-\
:_ﬁ '; A
/l rd ™, L
(] |
1
v | |
& N P
= " /
- g \\!\ i
Positive Correlation Negative Correlation No Correlation
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Correlation (cont’d)

e Variance
e Covariance of a random variable with itself

Var(X )=oy,? = E[(X — Hx )2]

 Relation between correlation and covariance

EX2]= 02 + 1y

« Standard Deviation
e Square root of variance
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Correlation (cont’d)

e Moments

* Nt order moment of a rapdom variable “X” is
the expected value of “X”

M, =E(X")
* Normalized form
M, = E((X — Hx )n)

 Mean Is the first moment

 Variance Is the second moment added by the
sqguare of the mean
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Important Theorems
* Central limit theorem (CLT)

* Consider I.1.d. (Independent Identically
Distributed) RVs “X,” with finite variances

n
*Let S,=> a,.X,
i—1

* Then PDF of “S,” converges to a normal
distribution as n increases, regardless of the
initial density of RVs.

« Exception: Cauchy Distribution (Why?)
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Important Theorems (cont’d)

 Law of Large Numbers (Weak)

*For I.I.d. RVs "X\’

lim

>0 Nn—o0
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Important Theorems (cont’d)

Law of Large Numbers (Strong)

*For 1..d. RVs "X\

Pr< lim = = =1

* Why this definition is stronger than the weak law
of large numbers?
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Important Theorems (cont’d)
* Chebyshev’s Inequality

 Let “X” be a nonnegative RV

- Let “c” be a positive number, then: Pr{X > c}s%E[x]

* The term Chebyshev's inequality may also refer
to Markov’s inequality, especially in the context of
analysis. They are closel?{ related, and some authors
refer to Markov’s inequality as "Chebyshev's First
Inequality,”

 Another form:

2
Pr{|X — uy | > &< %

 This could also be rewritten for negative RVs.
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Important Theorems (cont’d)

*Schwarz Inequality

*For two RVs “X” and “Y” with finite second
moments:

E[x.Y]ZSE[xz].EB(Z]

« Equality holds in case of linear dependency.
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Introduction to Stochastic Processes

Let £ denote the random outcome of an

experiment.

To every such outcome suppose a function

X(t,$) Is assigned. £X(1,€)

The collection of such :

functions form a X“’ﬁn’/\/\\/\/
stochastic process. %7 I~} ‘b
The set of {¢ }and the X(t,gz)/\\f//\/\/

time indextcanbe 1~ L——
continuous or discrete 0 t t

(countably infinite or finite).
For fixed & €S (the set of all experimental
outcomes), X(t,&) Is a specific time function.
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Introduction to Stochastic Processes

* Forfixedt, X, =X(t,&) IS arandom variable.
 The ensemble of all such realizations X (t,&) over
time represents the stochastic process X(t).

P X(t,¢)
X(t,in)/\\/\\/\\/
X(t,gk)/\\://\\_/

[N
X(t,€,) :
X(t,§1)/\_J/\
0 . . >

48/55



Introduction to Stochastic Processes

« Examples:
* Let X(t)=acos(w,t+ @),
where ¢ Is a uniformly distributed random
variable in (0,27), represents a stochastic process.
« Stochastic processes are everywhere:
« stock market fluctuations
e various gqueuing systems
« Earthquake Signals
« 1-D Audios
 2-D Images
« 3-D Videos
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Introduction to Stochastic Processes

« Example 1.

The Random Process (RP) X(t) is defined as:
X(t) = At + b, b is a constant, Ais a Gaussianrv, t > 0

Find fy(x,t) :
__1 (_a_2> = N(0,1)
fa(@) = =exp () = N
. t)—f“‘(‘)

X(t)— ‘ x—>b

1 (x — b)
(o) =+ fa(a) = mexp( 2)— Zntexp<_ — )



Introduction to Stochastic Processes

« Example 1.

The Random Process (RP) X(t) is defined as:
X(t) = At + b, b is a constant, Ais a Gaussianrv, t > 0

What is mean and variance of X(t)?
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Introduction to Stochastic Processes
« Example 1 continued:

Mean of X (t):

X(t)=At+ b, AisN(0,1)
E[X(t)] =E[At+ b] = E[A]t+ E[b]=0Xt+b=0Db

Variance of X (t) ),

X(t)2 = A%t*  b* + 2Abt

E[X(t)2] = E[A%? © b2 + 24bt] = E[AY¢? + E[b?] +
E[A] 2bt = 1xt?> 4+ b? + 0x*2bt

EX()? = 2 " p? . _
Var(X[t]) = E[X(t)2] - E[X()]2 = 2 " b2 — b2 = ¢2

Note: The mean of X(t) is constant but its variance is a function of
time t.
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Introduction to Stochastic Processes

Example 2:
X():RP

X(t) = Acos(wyt + 0)

l conétarh \

constant index RV: Uniform(0, 2m)
(time)
— 1
a) PDF =? fe(9)={% 6 € (0,27]
b) E[X(t)] =? clse 0

c) Var|X(t)] =?
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Introduction to Stochastic Processes

Example 2 continued:
X(t) = Acos(wyt +60) =X(0)

_ fQ(Hl) _ 1 1[0 < Hi < 27'[]
= ) TET =3 Tax,
i |qe, do,

Acos(wyt +6;) =x — has exactly 2 answers in (0, 2]

dX
Yl = | — Asin(wyt + 6)))| =\/A2 — X7
do;
2 1 1
= fx(x,t) = X< A

2T+ A2 — 2 B VA2 — x2
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Introduction to Stochastic Processes

Example 2 continued:
X(t) = Acos(wyt + 60) =X.(08)

2T

E[X(t)] = E|Acos(wot + 6)] = AJ cos(wot + 6) % do =0

0

VIX(®)] = E[X(©)*] — E[X()]* = E[(A cos(wot + 6))?]

2T 1
= AZJ cos?(wot + 6) — dO
0 2T

A2 2T 1 AZ 2T 1 AZ

=—| z@a 2 2 =—| Zdo==
2 ). 2( + cos(2wyt + 26)) d6 2 ). ZdH >

Note: The mean and variance of X(t) is constant in this example.
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Introduction to Stochastic Processes
Stationary Processes

Wide Sense
Stationary

Stationary

Process Strict Sense

Stationary
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Next Week:

Stochastic Processes
Stationary Stochastic Processes

Have a good day!
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