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Signals and systems overview

What is Signal?

It is representation of physical quantity (Sound, temperature, intensity, Pressure, etc..,)

which varies with respect to time or space or independent or dependent variable.

or

It is single valued function which carries information by means of Amplitude,

Frequency and Phase.

Example: voice signal, video signal, signals on telephone wires etc.
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Signals and systems overview
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Signal with different Phases, Amplitudes and Frequencies 
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Classification of Signals

Types of Signals with respect to no. of variables or dimensions

 One Dimensional or 1-D Signal: If the signal is function of only one variable or If

Signal value varies with respect to only one variable then it is called “One

Dimensional or 1-D Signal”

Examples: Audio Signal, Biomedical Signals, temperature Signal etc.., in which

signal is function “time”
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Classification of Signals

 Two Dimensional or 2-D Signal: If the signal is function of two variable or If Signal

value varies with respect to two variable then it is called “Two Dimensional or 2-D

Signal”

Examples: Image Signal in which intensity is function of two spatial co-ordinates “X”

& “Y” i,.e I (X,Y)

 Three Dimensional or 3-D Signal: If the signal is function of

three variable or If Signal value varies with respect to three

variable then it is called “Three Dimensional or 3-D Signal”

Examples: Video Signal in which intensity is function of two

spatial co-ordinates “X” & “Y” and also time “t” i.e v(x,y,t)
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Classification of Signals

Types of Signal with respect to nature of the signal 

Continuous Time Signal (CTS) or Analog Signal :

If the signal values continuously varies with respect to time then it is called “Continuous Time

Signal (CTS) or Analog Signal “. It contains infinite set of values and it is represented as

shown below.

Digital Signal: If the signal contains only two values then it is called “Digital Signal”.

Discrete Time Signal (DTS):

If signal contain discrete set of values with respect to time then it is called “Discrete Time

Signal (DTS)”. It contains finite set of values. Sampling process converts Continuous time

signal in to Discrete time signal.
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Representation of Discrete Time Signal (DTS)
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Basic Types of Signals

 Unit Step Function

Unit step function is denoted by u(t). It is defined as u(t) = 1 when t ≥ 0                                

and                                                                                          0 when t < 0

 It is used as best test signal.

 Area under unit step function is unity.
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Basic Types of Signals
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Unit Impulse Function
Impulse function is denoted by δ(t). and it is defined as δ(t) ={ 0; 𝑡 ≠ 0

∞; 𝑡 = 0 }
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Basic Types of Signals

 Ramp Signal

Ramp signal is denoted by r(t), and it is defined as r(t) =

Area under unit ramp is unity.
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Basic Types of Signals

 Signum Function

Signum function is denoted as sgn(t). It is defined as sgn(t) =
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Basic Types of Signals

 Exponential Signal

Exponential signal is in the form of x(t) = eαt

The shape of exponential can be defined by α.

Case i: if α = 0 → x(t) = e0= 1

Case ii: if α< 0 i.e. -ve then x(t) = e−αt, 

The shape is called decaying exponential.

Case iii: if α> 0 i.e. +ve then x(t) = eαt, 

The shape is called raising exponential.
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Basic Types of Signals
18

Rectangular Signal

Let it be denoted as x(t) and it is defined as
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Basic Types of Signals
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Triangular Signal

Let it be denoted as x(t),

Sinusoidal Signal

Sinusoidal signal is in the form of x(t) = A cos(w0±ϕ) or A sin(w0±ϕ)

Where T0 = 2π/w0



SUB:ES UNIT:2

Classification of Signals

Signals are classified into the following categories:

 Continuous Time and Discrete Time Signals

 Deterministic and Non-deterministic Signals

 Even and Odd Signals

 Periodic and Aperiodic Signals

 Energy and Power Signals

 Real and Imaginary Signals
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Classification of Signals
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 Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

A signal is said to be discrete when it is defined at only discrete instants of time.
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Classification of Signals
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Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any

instant of time. Or, signals which can be defined exactly by a mathematical formula are

known as deterministic signals.

A signal is said to be non-deterministic if

there is uncertainty with respect to its value

at some instant of time. Non-deterministic signals

are random in nature hence they are called

random signals. Random signals cannot be

described by a mathematical equation.

They are modelled in probabilistic terms.
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Classification of Signals

Even and Odd signals

A signal is said to be even when it satisfies the condition x(t) = x(-t)

Example 1: t2, t4… cost etc.

Let x(t) = t2

x(-t) = (-t)2 = t2 = x(t)

∴ t2 is even function

Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function.

A signal is said to be odd when it satisfies the condition x(t) = -x(-t)
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Classification of Signals
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Periodic and Aperiodic Signals

A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N).

Where, T = fundamental time period,

1/T = f = fundamental frequency.

The above signal will repeat for every time interval T0 hence it is periodic with period T0.
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Classification of Signals
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Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

A signal is said to be power signal when it has finite power.

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be 

neither energy nor power signal.

Power of energy signal = 0  and Energy of power signal = ∞
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Classification of Signals
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Real and Imaginary Signals

A signal is said to be real when it satisfies the condition x(t) = x*(t) 

A signal is said to be odd when it satisfies the condition x(t) = -x*(t) 

Example:

If x(t)= 3 then x*(t)=3*=3,   here x(t) is a real signal.

If x(t)= 3j then x*(t)=3j* = -3j = -x(t),  hence x(t) is a odd signal.

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal,

real part should be zero.
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Basic Operations on Signals
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There are two variable parameters in general:

 Amplitude

 Time

The following operation can be performed with amplitude:

Amplitude Scaling

C x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a 

factor C.
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Basic Operations on Signals
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Addition

Addition of two signals is nothing but addition of their corresponding amplitudes. This

can be best explained by using the following example:

As seen from the previous diagram,

-10 < t < -3 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2

-3 < t < 3 amplitude of z(t) = x1(t) + x2(t) = 1 + 2 = 3 

3 < t < 10 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2
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Basic Operations on Signals
29

Subtraction

subtraction of two signals is nothing but subtraction of their corresponding amplitudes.

This can be best explained by the following example:

As seen from the diagram above,

-10 < t < -3 amplitude of z (t) = x1(t) - x2(t) = 0 - 2 = -2

-3 < t < 3 amplitude of z (t) = x1(t) - x2(t) = 1 - 2 = -1 

3 < t < 10 amplitude of z (t) = x1(t) - x2(t) = 0 - 2 = -2
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Basic Operations on Signals
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Multiplication

Multiplication of two signals is nothing but multiplication of their corresponding

amplitudes.

This can be best explained by the following example:

As seen from the diagram above,

-10 < t < -3 amplitude of z (t) = x1(t) ×x2(t) = 0 ×2 = 0

-3 < t < 3 amplitude of z (t) = x1(t) - x2(t) = 1 ×2 = 2 

3 < t < 10 amplitude of z (t) = x1(t) - x2(t) = 0 × 2 = 0
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Basic Operations on Signals
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The following operations can be performed with time:

Time Shifting

x(t ±t0) is time shifted version of the signal x(t).

x (t + t0) →negative shift

x (t - t0) →positive shift
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Basic Operations on Signals

Time Scaling

x(At) is time scaled version of the signal x(t). where A is always positive.

|A| > 1 → Compression of the signal

|A| < 1 → Expansion of the signal

Note: u(at) = u(t) time scaling is not applicable for unit step function.
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Basic Operations on Signals

Time Reversal

x(-t) is the time reversal of the signal x(t).
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Basic Operations on Signals

Convolution: Convolution between two continuous time signals can be written as

The following operations are required to compute convolution

1. Time reversal

2. Time Shifting ( Delay & Advance)

3. Signal Multiplication

4. Integration

Note: If two signals are finite duration then Graphical Method is used and Else Function

Method is employed to compute Convolution
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What is System?

System is a device or combination of devices, which can operate on signals and

produces corresponding response. Input to a system is called as excitation and

output from it is called as response.

For one or more inputs, the system can have one or more outputs.

Example: Communication System

35
System Definition
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Classification of Systems

Systems are classified into the following categories:

 linear and Non-linear Systems

 Time Variant and Time Invariant Systems 

 linear Time variant and linear Time invariant systems

 Static and Dynamic Systems 

 Causal and Non-causal Systems

 Invertible and Non-Invertible Systems

 Stable and Unstable Systems
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Classification of Systems
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Linear and Non-linear Systems

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two

systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the

superposition and homogenate principles,

T [a1 x1(t) + a2 x2(t)] = a1 T[x1(t)] + a2 T[x2(t)]

∴ T [a1 x1(t) + a2 x2(t)] = a1 y1(t) + a2 y2(t)

From the above expression, is clear that response of overall system is equal to response of individual

system.

Example: y(t) = x2(t) 

Solution:

y1  (t) = T[x1(t)] = x12(t)

y2  (t) = T[x2(t)] = x22(t)

T [a1 x1(t) + a2 x2(t)] = [ a1 x1(t) + a2 x2(t)]2

Which is not equal to a1 y1(t) + a2 y2(t). Hence the system is said to be non linear.
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Classification of Systems
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Time Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time.

Otherwise, the system is considered as time invariant. The condition for time invariant system is:

y (n , t) = y(n-t)

The condition for time variant system is:

y (n , t) ≠ y(n-t)

Where y (n , t) = T[x(n-t)] = input change

y (n-t) = output change

Example:

y(n) = x(-n)

y(n, t) = T[x(n-t)] = x(-n-t)

y(n-t) = x(-(n-t)) = x(-n + t)

∴ y(n, t) ≠ y(n-t). Hence, the system is time variant.



SUB:ES UNIT:2

Classification of Systems
39

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems

If a system is both liner and time variant, then it is called liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is called liner time invariant (LTI)

system.

Static and Dynamic Systems

Static system is memory-less whereas dynamic system is a memory system.

Example 1: y(t) = 2 x(t)

For present value t=0, the system output is y(0) = 2x(0). Here, the output is only dependent 

upon present input. Hence the system is memory less or static.

Example 2: y(t) = 2 x(t) + 3 x(t-3)

For present value t=0, the system output is y(0) = 2x(0) + 3x(-3).

Here x(-3) is past value for the present input for which the system requires memory to get 

this output. Hence, the system is a dynamic system.
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Classification of Systems
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Causal and Non-Causal Systems

A system is said to be causal if its output depends upon present and past inputs, and does 

not depend upon future input.

For non causal system, the output depends upon future inputs also.

Example 1: y(n) = 2 x(t) + 3 x(t-3)

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2).

Here, the system output only depends upon present and past inputs. Hence, the system is 

causal.

Example 2: y(n) = 2 x(t) + 3 x(t-3) + 6x(t + 3)

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2) + 6x(4) Here, the system 

output depends upon future input. Hence the system is non-causal system.
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Classification of Systems

Invertible and Non-Invertible systems

A system is said to invertible if the input of the system appears at the output.

Y(S) = X(S) H1(S) H2(S)

= X(S) H1(S) · 1(H1(S))

Since H2(S) = 1/( H1(S) )

∴ Y(S) = X(S)

→ y(t) = x(t)

Hence, the system is invertible.

If y(t) ≠ x(t), then the system is said to be non-invertible.

41



SUB:ES UNIT:2

Classification of Systems

Stable and Unstable Systems

The system is said to be stable only when the output is bounded for bounded input. For a

bounded input, if the output is unbounded in the system then it is said to be unstable.

Note: For a bounded signal, amplitude is finite.

Example 1: y (t) = x2(t)

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded

output.

Hence, the system is stable.

Example 2: y (t) = ∫x(t)dt

Let the input is u (t) (unit step bounded input) then the output y(t) = ∫u(t)dt = ramp signal 

(unbounded because amplitude of ramp is not finite it goes to infinite when t → 

infinite).

Hence, the system is unstable.
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
55



SUB:ES UNIT:2

Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Analogy between vectors and signals
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There is a perfect analogy between vectors and signals.

Vector

A vector contains magnitude and direction. The name of the vector is denoted by

bold face type and their magnitude is denoted by light face type.

Example: V is a vector with magnitude V. Consider two vectors V1 and V2 as shown in

the following diagram. Let the component of V1 along with V2 is given by C12V2.

The component of a vector V1 along with the vector V2 can obtained by taking a

perpendicular from the end of V1 to the vector V2 as shown in diagram:

The vector V1 can be expressed in terms of vector V2

V1= C12V2  + Ve



 Where Ve is the error vector.
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Analogy between vectors and signals
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But this is not the only way of expressing vector V1 in terms of V2. The alternate

possibilities are:

V1=C1V2+Ve1

V2=C2V2+Ve2

The error signal is minimum for large component value. If C12=0, then two signals are said to be
orthogonal.

Dot Product of Two Vectors V1 . V2 = V1.V2 cosθ

θ = Angle between V1 and V2 V1. V2 =V2.V1
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Analogy between vectors and signals
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The error signal is minimum for large component value. If C12=0, then two signals are said to 

be orthogonal.

Dot Product of Two Vectors 

V1 . V2 = V1.V2 cosθ

θ = Angle between V1 and V2 V1. V2 =V2.V1

From the diagram, components of V1 a long V2 = C 12 V2
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Analogy between vectors and signals
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Signal

The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f2(t).

Similar to vectors, you can approximate f1(t) in terms of f2(t) as

f1(t) = C12 f2(t) + fe(t) for (t1 < t < t2)

⇒ fe(t) = f1(t) – C12 f2(t)

One possible way of minimizing the error is integrating over the interval t1 to t2.

However, this step also does not reduce the error to appreciable extent. This can be corrected by taking 
the square of error function.
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Analogy between vectors and signals
64

Where ε is the mean square value of error signal. The value of C12 which minimizes the

error, you need to calculate dε/dC12=0

Derivative of the terms which do not have C12 term are zero.

Put C12 = 0 to get condition for orthogonality.
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Analogy between vectors and signals
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Orthogonal Vector Space

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider

a three dimensional vector space as shown below:

Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (VX, VY, VZ) in the

direction of X, Y, Z axis respectively. Since these unit vectors are mutually orthogonal, it

satisfies that
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Analogy between vectors and signals
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The vector A can be represented in terms of its components and unit vectors as

Any vectors in this three dimensional space can be represented in terms of these three unit 

vectors only.

If you consider n dimensional space, then any vector A in that space can be represented 

as

As the magnitude of unit vectors is unity for any vector A 

The component of A along x axis = A.VX

The component of A along Y axis = A.VY 

The component of A along Z axis = A.VZ

Similarly, for n dimensional space, the component of A along some G axis

=A.VG (3)
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Analogy between vectors and signals
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Substitute equation 2 in equation 3.
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Analogy between vectors and signals
68

Orthogonal Signal Space

Let us consider a set of n mutually orthogonal functions x1(t), x2(t)... xn(t) over the interval

t1 to t2. As these functions are orthogonal to each other, any two signals xj(t), xk(t) have

to satisfy the orthogonality condition. i.e.

Let a function f(t), it can be approximated with this orthogonal signal space by adding the

components along mutually orthogonal signals i.e.
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Analogy between vectors and signals
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The component which minimizes the mean square error can be found by

All terms that do not contain Ck is zero. i.e. in summation, r=k term remains and all other terms are zero.
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Analogy between vectors and signals
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Mean Square Error

The average of square of error function fe(t) is called as mean square error. It is denoted

by ε (epsilon).
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Fourier Series
71

To represent any periodic signal x(t), Fourier developed an expression called Fourier

series. This is in terms of an infinite sum of sines and cosines or exponentials. Fourier

series uses orthoganality condition.

Fourier Series Representation of Continuous Time Periodic Signals

A signal is said to be periodic if it satisfies the condition x (t) = x (t + T) or x (n) = x (n + N). 

Where T = fundamental time period,

ω0= fundamental frequency = 2π/T

There are two basic periodic signals: x(t)=cosω0t(sinusoidal) & x(t)=ejω0t(complex 

exponential)

These two signals are periodic with period T=2π/ω0

A set of harmonically related complex exponentials can be represented as {ϕk(t)}

All these signals are periodic with period T
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Fourier Series
72

According to orthogonal signal space approximation of a function x (t) with n, mutually

orthogonal functions is given by

Where ak = Fourier coefficient = coefficient of approximation. 

This signal x(t) is also periodic with period T.

Equation 2 represents Fourier series representation of periodic signal x(t). 

The term k = 0 is constant.

 The term k=±1 having fundamental frequency ω0 , is called as 1st harmonics.

 The term k=±2 having fundamental frequency 2ω0 , is called as 2nd harmonics, and so 

on... 

 The term k=±n having fundamental frequency nω0, is called as nth harmonics.
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Fourier Series
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Deriving Fourier Coefficient

We know that

Multiply e−jnω0t  on both sides. Then

Consider integral on both sides.
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Fourier Series
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by Euler's formula,

Hence in equation 2, the integral is zero for all values of k except at k = n. Put k = n in

equation 2.

Replace n by k
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Fourier Series Properties
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Properties of Fourier series:

Linearity Property

Time Shifting Property
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Fourier Series Properties
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Frequency Shifting Property

Time Reversal Property

Time Scaling Property
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Fourier Series Properties
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Differentiation and Integration Properties

Multiplication and Convolution Properties
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Fourier Series Properties
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Conjugate and Conjugate Symmetry Properties
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Trigonometric Fourier Series
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Trigonometric Fourier Series (TFS)

sinnω0t and sinmω0t are orthogonal over the interval (t0,t0+2πω0). So sinω0t,sin2ω0t forms 

an orthogonal set. This set is not complete without {cosnω0t } because this cosine set is 

also orthogonal to sine set. So to complete this set we must include both cosine and sine 

terms. Now the complete orthogonal set contains all cosine and sine terms i.e. 

{sinnω0t,cosnω0t } where n=0, 1, 2...

The above equation represents trigonometric Fourier series representation of x(t).
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Trigonometric Fourier Series
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Exponential Fourier Series
81

Exponential Fourier Series (EFS):

Consider a set of complex exponential functions 

which is orthogonal over the interval (t0,t0+T). Where T=2π/ω0 . This is a complete set so it is 

possible to represent any function f(t) as shown below

Equation 1 represents exponential Fourier series representation of a signal f(t) over the 

interval (t0, t0+T). 



SUB:ES UNIT:2

Exponential Fourier Series
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Exponential Fourier Series
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Relation Between Trigonometric and Exponential Fourier Series:

Consider a periodic signal x(t), the TFS & EFS representations are given below respectively
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Continuous Time Fourier Transform

INTRODUCTION:

The main drawback of Fourier series is, it is only applicable to periodic signals. There are

some naturally produced signals such as nonperiodic or aperiodic, which we cannot

represent using Fourier series. To overcome this shortcoming, Fourier developed a

mathematical model to transform signals between time (or spatial) domain to

frequency domain & vice versa, which is called 'Fourier transform'.

Fourier transform has many applications in physics and engineering such as analysis of LTI 

systems, RADAR, astronomy, signal processing etc.

Deriving Fourier transform from Fourier series:

Consider a periodic signal f(t) with period T. The complex Fourier series representation of 

f(t) is given as

84
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Continuous Time Fourier Transform
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Continuous Time Fourier Transform
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In the limit as T→∞,Δf approaches differential df, kΔf becomes a continuous variable f, 

and summation becomes integration

Fourier transform of a signal

Inverse Fourier Transform is
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Fourier Transform of Basic functions
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FT of GATE Function

FT of Impulse Function:
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Fourier Transform of Basic functions
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FT of Unit Step Function:

FT of Exponentials:

FT of Signum Function :
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Continuous Time Fourier Transform
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Conditions for Existence of Fourier Transform:

Any function f(t) can be represented by using Fourier transform only when the function

satisfies Dirichlet’s conditions. i.e.

 The function f(t) has finite number of maxima and minima.

 There must be finite number of discontinuities in the signal f(t),in the 

given interval of time.

 It must be absolutely integrable in the given interval of time i.e.
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Fourier Transform Properties
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Linearity Property:

Then linearity property states that

Time Shifting Property:

Then Time shifting property states that
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Fourier Transform Properties
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Frequency Shifting Property:

Then frequency shifting property states that

Time Reversal Property:

Then Time reversal property states that
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Fourier Transform Properties
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Time Scaling Property:

Then Time scaling property states that

Differentiation and Integration Properties:

Then Differentiation property states that

and integration property states that
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Multiplication and Convolution Properties:

Then multiplication property states that

and convolution property states that
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Statement of Sampling Theorem:

A band limited signal can be reconstructed exactly if it is sampled at a rate atleast twice

the maximum frequency component in it.“

The following figure shows a signal g(t) that is band limited.

Figure1: Spectrum of band limited signal g(t)

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from

its samples it has to be sampled at a rate fs ≥ 2fm.

The minimum required sampling rate fs = 2fm is called “Nyquist rate”.
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Figure 2: (a) Original signal g(t)  (b) Spectrum G(ω)
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Let g s(t) be the sampled signal. Its Fourier Transform Gs(ω) is given by
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Aliasing:

Aliasing is a phenomenon where the high frequency components of the sampled signal

interfere with each other because of inadequate sampling ωs < ωm

Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency 

should be atleast twice the bandwidth of the signal.
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Oversampling:

In practice signal are oversampled, where fs is significantly higher than Nyquist rate to

avoid aliasing.
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Discrete Time Fourier Transforms (DTFT)

Here we take the exponential signals to be where ‘w’is a real number. The

representation is motivated by the Harmonic analysis, but instead of following the

historical development of the representation we give directly the

defining equation.

Let {x[n]} be discrete time signal such that , that is sequence is absolutely

summable.

The sequence {x[n]} can be represented by a Fourier integral of the form,

Where,
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Equation (1) and (2) give the Fourier representation of the signal.

Equation (1) is referred as synthesis equation or the inverse discrete time Fourier transform

(IDTFT) and equation (2)is Fourier transform in the analysis equation.

Fourier transform of a signal in general is a complex valued function, we can write,

where is magnitude and is the phase.

We also use the term Fourier spectrum or simply, the spectrum to refer to. Thus is called

the magnitude spectrum and is called the phase spectrum.

Interchanging the order of integration, 
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Example: Let 

Fourier transform of this sequence will exist if it is absolutely summable. We have
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Fourier transform of Periodic Signals

For a periodic discrete-time signal,

its Fourier transform of this signal is periodic in w with period 2∏ , and is given

Now consider a periodic sequence x[n] with period N and with the Fourier series

representation

The Fourier transform is,
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Properties of the Discrete Time Fourier Transform:

Let {x[n]}and  {y[n]} be two signal, then their DTFT is denoted by        and. The notation

is used to say that left hand side is the signal x[n] whose DTFT          is given at right hand side.

1.Periodicity of the DTFT:
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2. Linearity of the DTFT:

3.Time Shifting and Frequency Shifting:
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4.Conjugation and Conjugate Symmetry:

From this, it follows that Re{X(e jw )} is an even function of w and Im{X (e jw )} is an odd 

function of w . Similarly, the magnitude of X(e jw ) is an even function and the phase 

angle is an odd function. Furthermore,
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5.Differencing and Accumulation

The impulse train on the right-hand side reflects the dc or average value that can result

from summation.
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6.Time Reversal

7.Time Expansion

For continuous-time signal, we have

For discrete-time signals, however, a should be an integer. Let us define a signal with k a

positive integer,
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For k > 1, the signal is spread out and slowed down in time, while its Fourier transform is 

compressed.
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8.Differentiation in Frequency

The right-hand side of the above equation is the Fourier transform of - jnx[n] . Therefore,

multiplying both sides by j , we see that

9.Parseval’s Relation
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Linear Systems:

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two

systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the

superposition and homogenate principles,

T [a1 x1(t) + a2 x2(t)] = a1 T[x1(t)] + a2 T[x2(t)]

∴ T [a1 x1(t) + a2 x2(t)] = a1 y1(t) + a2 y2(t)

From the above expression, is clear that response of overall system is equal to response of individual 

system.

Example: y(t) = 2x(t) 

Solution:

y1  (t) = T[x1(t)] = 2x1(t)

y2  (t) = T[x2(t)] = 2x2(t)

T [a1 x1(t) + a2 x2(t)] = 2[ a1 x1(t) + a2 x2(t)]

Which is equal to a1y1(t) + a2 y2(t). Hence the system is said to be linear.
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Impulse Response:

The impulse response of a system is its response to the input δ(t) when the system is initially

at rest. The impulse response is usually denoted h(t). In other words, if the input to an

initially at rest system is δ(t) then the output is named h(t).

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems

 If a system is both liner and time variant, then it is called liner time variant (LTV) system.

 If a system is both liner and time Invariant then that system is called liner time invariant 

(LTI) system.
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Response of a continuous-time LTI system and the convolution integral

Impulse Response:

The impulse response h(t) of a continuous-time LTI system (represented by T) is defined to

be the response of the system when the input is δ(t), that is,

h(t)= T{ δ(t)} (1)

Response to an Arbitrary Input:

 The input x( t) can be expressed as

------(2)

Since the system is linear, the response y( t of the system to an arbitrary input x( t ) can be 

expressed as                                                       

------(3)
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Since the system is time-invariant, we have

-----(4)

Substituting Eq. (4) into Eq. (3), we obtain

-----(5)

Equation (5) indicates that a continuous-time LTI system is completely characterized by its

impulse response h( t).

Convolution Integral:

Equation (5) defines the convolution of two continuous-time signals x ( t ) and h(t) denoted

By -----(6)
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Equation (6) is commonly called the convolution integral.

Thus, we have the fundamental result that the output of any continuous-time LTI system is

the convolution of the input x ( t ) with the impulse response h(t) of the system.

The following figure illustrates the definition of the impulse response h(t) and the

relationship of Eq. (6).

Fig. : Continuous-time LTl system.
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Properties of the Convolution Integral:

The convolution integral has the following properties.
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Step Response:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to

be the response of the system when the input is u(t); that is,

S(t)= T{u(t)}

In many applications, the step response s(t) is also a useful characterization of the

system.

The step response s(t) can be easily determined by,

Thus, the step response s(t) can be obtained by integrating the impulse response h(t). 

Differentiating the above equation with respect to t, we get

Thus, the impulse response h(t) can be determined by differentiating the step response 

s(t).
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Distortion less transmission through a system:

Transmission is said to be distortion-less if the input and output have identical wave

shapes. i.e., in distortion-less transmission, the input x(t) and output y(t) satisfy the

condition:

y (t) = Kx(t - td)

Where td = delay time and

k = constant.

Take Fourier transform on both sides

FT[ y (t)] = FT[Kx(t - td)]

= K FT[x(t - td)]
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According to time shifting property,

Thus, distortion less transmission of a signal x(t) through a system with impulse response h(t) is achieved when

|H(ω)|=K and (amplitude response)

A physical transmission system may have amplitude and phase responses as shown below:
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FILTERING

One of the most basic operations in any signal processing system is filtering.

Filtering is the process by which the relative amplitudes of the frequency components in

a signal are changed or perhaps some frequency components are suppressed.

For continuous-time LTI systems, the spectrum of the output is that of the input multiplied

by the frequency response of the system.

Therefore, an LTI system acts as a filter on the input signal. Here the word "filter" is used to

denote a system that exhibits some sort of frequency-selective behavior.

Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of

frequencies and completely rejects the rest.

The band of frequencies passed by the filter is referred to as the pass band, and the

band of frequencies rejected by the filter is called the stop band.
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The most common types of ideal frequency-selective filters are the

following.

Ideal Low-Pass Filter:

An ideal low-pass filter (LPF) is specified by

The frequency wc is called the cutoff frequency.

Ideal High-Pass Filter:

An ideal high-pass filter (HPF) is specified by
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Ideal Bandpass Filter:

An ideal bandpass filter (BPF) is specified by

Ideal Bandstop Filter:

An ideal bandstop filter (BSF) is specified by
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The following figures shows the magnitude responses of ideal filters

Fig: Magnitude responses of ideal filters (a) Ideal Low-Pass Filter (b)Ideal High-Pass Filter

© Ideal Bandpass Filter (d) Ideal Bandstop Filter
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THE LAPLACE TRANSFORM

We know that for a continuous-time LTI system with impulse response h(t), the output y(t)of

the system to the complex exponential input of the form est is,

Definition:

The function H(s) is referred to as the Laplace transform of h(t). For a general continuous-

time signal x(t), the Laplace transform X(s) is defined as,

The variable s is generally complex-valued and is expressed as,
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Relation between Laplace and Fourier transforms:

Laplace transform of x(t)
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Inverse Laplace Transform:

We know that

138



SUB:ES UNIT:2

LAPLACE TRANSFORM

Conditions for Existence of Laplace Transform:

Dirichlet's conditions are used to define the existence of Laplace transform. i.e.

 The function f has finite number of maxima and minima.

 There must be finite number of discontinuities in the signal f ,in the given interval of 

time.

 It must be absolutely integrable in the given interval of time. i.e. 

Initial and Final Value Theorems

If the Laplace transform of an unknown function x(t) is known, then it is possible to determine 

the initial and the final values of that unknown signal i.e. x(t) at t=0+ and t=∞.

Initial Value Theorem

Statement: If x(t) and its 1st derivative is Laplace transformable, then the initial value of x(t) is 

given by 
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Final Value Theorem

Statement: If x(t) and its 1st derivative is Laplace transformable, then the final value of x(t) is 

given by, 

Properties of Laplace transform:

The properties of Laplace transform are:

Linearity Property
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Time Shifting Property

Frequency Shifting Property

Time Reversal Property
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Time Scaling Property

Differentiation and Integration Properties
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Multiplication and Convolution Properties
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Region of convergence

The range variation of σ for which the Laplace transform converges is called region of

convergence.

Properties of ROC of Laplace Transform

 ROC contains strip lines parallel to jω axis in s-plane.

 If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-plane.

 If x(t) is a right sided sequence then ROC : Re{s} > σo.

 If x(t) is a left sided sequence then ROC : Re{s} < σo.

 If x(t) is a two sided sequence then ROC is the combination of two regions. 
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Example 1: Find the Laplace transform and ROC of x(t)=e− at u(t) x(t)=e−atu(t)
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Example 2: Find the Laplace transform and ROC of x(t)=e at u(−t) x(t)=eatu(−t)
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Example 3: Find the Laplace transform and ROC of x(t)=e −at u(t)+e at u(−t) 

x(t)=e−atu(t)+eatu(−t)

Referring to the above diagram, combination region lies from –a to a. Hence, ROC: 

−a<Res<a
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Causality and Stability

For a system to be causal, all poles of its transfer function must be right half of s-plane.

A system is said to be stable when all poles of its transfer function lay on the left half of s-

plane.
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A system is said to be unstable when at least one pole of its transfer function is shifted to the 

right half of s-plane.

A system is said to be marginally stable when at least one pole of its transfer function lies on 

the jω axis of s-plane
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LAPLACE TRANSFORMS OF SOME COMMON SIGNALS

Unit Impulse Function δ( t ):

Unit Step Function u(t ):
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Some Laplace Transforms Pairs:
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Z-Transform

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful

mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as

The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

Z-transform may exist for some signals for which Discrete Time Fourier Transform (DTFT) does 

not exist.
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Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as

The above equation represents the relation between Fourier transform and Z-transform
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Inverse Z-transform:
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Z-Transform Properties:

Z-Transform has following properties:

Linearity Property:
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Time Shifting Property:

Multiplication by Exponential Sequence Property:
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Time Reversal Property:

Differentiation in Z-Domain OR Multiplication by n Property:
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Convolution Property:

Correlation Property:
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Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.

Initial Value Theorem

For a causal signal x(n), the initial value theorem states that

This is used to find the initial value of the signal without taking inverse z-transform

Final Value Theorem

For a causal signal x(n), the final value theorem states that

This is used to find the final value of the signal without taking inverse z-transform
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Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of convergence

of z- transform.

Properties of ROC of Z-Transforms

 ROC of z-transform is indicated with circle in z-plane.

 ROC does not contain any poles.

 If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is entire z-plane except at z 
= 0.

 If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z-plane except 
at z = ∞.

 If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radius a.

i.e. |z| > a.

 If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle with radius

a. i.e. |z| < a.

 f x(n) is a finite duration two sided sequence, then the ROC is entire z-plane except at z = 0 & z = ∞.
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Example 1: Find z-transform and ROC of a n u[n]+a − nu[−n−1] anu[n]+a−nu[−n−1]

The plot of ROC has two conditions as a > 1 and a < 1, as we do not know a.

In this case, there is no combination ROC.
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Here, the combination of ROC is from a<|z|<1/a

Hence for this problem, z-transform is possible when a < 1.
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Causality and Stability

Causality condition for discrete time LTI systems is as follows:

A discrete time LTI system is causal when,

 ROC is outside the outermost pole.

 In The transfer function H[Z], the order of numerator cannot be grater than the order of 

denominator.

Stability Condition for Discrete Time LTI Systems:

A discrete time LTI system is stable when

 its system function H[Z] include unit circle |z|=1.

 all poles of the transfer function lay inside the unit circle |z|=1.
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Some Properties of the Z- Transform:
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Inverse Z transform:

Three different methods are:

 Partial fraction method

 Power series method

 Long division method
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Example: A finite sequence x [ n ] is defined as

Find X(z) and its ROC.

Sol: We know that

For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will

converge. Note that X ( z ) includes both positive powers of z and negative powers of z.

Thus, from the result we conclude that the ROC of X ( z ) is 0 < lzl < m.
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Example: Consider the sequence

Find X ( z ) and plot the poles and zeros of X(z). 

Sol:

From the above equation we see that there is a pole of ( N - 1)th order at z = 0 and a pole at 

z = a . Since x[n] is a finite sequence and is zero for n < 0, the ROC is IzI > 0. The N roots of 

the numerator polynomial are at
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The root at k = 0 cancels the pole at z = a. The remaining zeros of X ( z ) are at

The pole-zero plot is shown in the following figure with N=8
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