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A&/ Signals and systems overview |
What is Signal?

It is representation of physical quantity (Sound, temperature, intensity, Pressure, etc..,)
which varies with respect to time or space or independent or dependent variable.

or

It is single valued function which carries information by means of Amplitude,
Frequency and Phase.

Example: voice signal, video signal, signals on telephone wires efc.
X(t) = ASin(wt +¢)=A Sin(Inft+ ¢) x(t)
time
Where A= Peak Amplitude 1/ .
= FrEl:lLIEﬂw:.T T ime Period \ /\ /\ /\ >
¢ = Phase angle / \/ \/ \/ \/

Angular Frequency w = 2rf ( Linear Frequency)
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Signals and systems overview

Signal with different Phases, Amplitudes and Frequencies
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Classification of Signals

Types of Signals with respect to no. of variables or dimensions

One Dimensional or 1-D Signal: If the signal is function of only one variable or If
Signal value varies with respect to only one variable then it is called “One
Dimensional or 1-D Signal”

Examples: Audio Signal, Biomedical Signals, temperature Signal etc.., in which
signal is function “fime”
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Classification of Signals

Two Dimensional or 2-D Signal: If the signal is function of two variable or If Signal

value varies with respect to two variable then it is called “Two Dimensional or 2-D
Signal”

Examples: Image Signal in which intensity is function of two spatial co-ordinates “X”
& “Y"I,.el(X)Y)

Intensity is function of co-ordinatesx &y i /(XY) Y

Color Image

Three Dimensional or 3-D Signal: If the signal is function of
three variable or If Signal value varies with respect to three
variable then it is called “Three Dimensional or 3-D Signal”
Examples: Video Signal in which intensity is function of two

spatial co-ordinates “X" & “Y" and also time “1t" i.e v(x,y.1)
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Classification of Signals

10

Types of Signal with respect to nature of the signal
Continuous Time Signal (CTS) or Analog Signal :

If the signal values continuously varies with respect to time then it is called “Continuous Time
Signal (CTS) or Analog Signal *. It contains infinite set of values and it is represented as
shown below.

Digital Signal: If the signal contains only two values then it is called “Digital Signal”.
Discrete Time Signal (DTS):

If signal contain discrete set of values with respect to tfime then it is called “Discrete Time
Signal (DTS)”. It contains finite set of values. Sampling process converts Contfinuous time
signal in to Discrete time signal.

X(¢)

CT g?gnu\ Lo /I\ o~

DT Signal 5 T
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Representation of Discrete Time Signal (DTS)

A discrete-time signal x(n) is a function of an integer variable n.In the DS processor, the signal is represented by the discrete
encoded values with a finite precision.

xin)

u{» ...... ” -‘:f;""=1'§ Pl =2 1012345
3 x(n)=1{4, forn= .
T 2 " i xtmyf-+ 0 001 4100
x(3)
Functional representation Tabular representation

Graphical representation of a discrete-time signal x(n)

() =440:0, 1%, 1,0,0,.:-} infinite — duration signal
x(n)={0,-2,1,4,-1,} finite — duration signal

Sequence representation (bold or arrow for origin n=0)

Mathematically a discrete-time signal x(n) can be determined by

x(n) = X(O)|¢=pnr = x(nT)
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Basic Types of Signals

Unit Step Function

Unit step function is denoted by u(t). It is defined as u(t) = 1 whent =0
and U Owhent<0

1

It is used as best test signal.
Area under unit step function is unity.
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» Unit Impulse Function
Impulse function is denoted by 6(t). and it is defined as &§(t) ={0; t#0
w; t=0}

A 50 0 | E 1
o(t)dt = u(t ' b xl
Al /—\OO ( ) ( ) e % Area=1
[iree e s fmchon V

du (t) i) = ]mDP[.-'] This e s tecmiedly 3 Area=1
> 5(t) — 7 = b/ wbied iy |, T ﬁ/
wan = [ red = S foreninstant bt t e - 1
0 { t Area Laq.]m 1 R v— :
t
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Basic Types of Signals

Ramp Signal
Ramp signal is denoted by r(t), and it is defined as r(f) = {é zi 3
. Tt
’
h (0 dr(t)
0 1 2 ] u D
‘ dt

Area under unit ramp is unity.
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Basic Types of Signals

Signum Function

Signum function is denoted as sgn(t). It is defined as sgn(t) = { o

A sgn(t)

1

—1
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Basic Types of Signals

Exponential Signal
Exponential signal is in the form of x(t) = eat
The shape of exponential can be defined by a.

Caseiiifa=0—-x(t) =e0=1

Caseii: if a< 0 i.e. -ve then x(t) = e—atf,
The shape is called decaying exponential.

Caseiiii: if a> 0 i.e. +ve then x(t) = eat,

The shape is called raising exponential.

+ X [1]

x(t)

SUB:ES

UNIT:2

17




Basic Types of Signals

Rectangular Signal

Let it be denoted as x(t) and it is defined as

r ex: 4 rect [r]
x(f) = A rect [—‘ : ra
(1) - 6
A X[t) A Xit)
A 4
i | ™ 1
-T/2 T/2 t -3
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Basic Types of Signals

19

Triangular Signal ) =A [1 _g mﬂ)ﬂ[l_%
Let it be denoted as x(t), ” .
AN 'y
» 4 »
. . . T T " 5 5 l
Sinusoidal Signal

Sinusoidal signal is in the form of x(t) = A cos(w0x¢) or A sin(w0z¢)

»X(t)

A / / ™\ / N\
n /’[ \/ \/ D \VAR]

y
T

Where T0 = 2r1/w0
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Classification of Signals

Signals are classified into the following categories:

Conftfinuous Time and Discrete Time Signals

Deterministic and Non-deterministic Signals

Even and Odd Signals

Periodic and Aperiodic Signals

Energy and Power Signals

Real and Imaginary Signals
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Classification of Signals

Continuous Time and Discrete Time Signals
A signal is said to be continuous when it is defined for all instants of time.

Amplitude

/ \ / \ ,/ \ f/\\ x’/ >
\/ \/ H\jﬁ ‘\// time

A signal is said to be discrete when it is defined at only discrete instants of time.

e 1l
illl

discrete time
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Classification of Signals

22

Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any

instant of time. Or, signals which can be definecil}excc’rly by a mathematical formula are
®x(t

known as deterministic signails.
/[ / \
L \\ / \ / \ // HH —>
/ \ / Y / Iﬁ | .
/ N / time
A signal is said to be non-deterministic if " ~ N/ / &
there is uncertainty with respect to its value voltage

are random in hature hence they are called

at some instant of time. Non-deterministic signals ’ \
g / ~/ N\/\

random signals. Random signals cannot be ,

>
described by a mathematical equation. time

They are modelled in probabilistic terms. SUB-ES UNIT:2




Classification of Signals

Even and Odd signals

A signal is said to be even when it satisfies the condition x(t) = x(-t)
Example 1: 12, t4... cost etc.

Let x(t) = 12

X(-t) = (-1)2 =12 = x(t)

. t2is even function

Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function.

X(t)

Ll

A

>
T/2 T/2 t

A signalis said to be odd when it safisfies the condition x(t) = -x(-1)
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Classification of Signals

Periodic and Aperiodic Signals
A signal is said to be periodic if it safisfies the condition x(t) = x(t + T) or x(n) = x(n + N).
Where, T = fundamental time period,

1/T =f=fundamental frequency.
AX(t)

A f,/ \ / f \\ /\ / f/ \"‘\
“’ VIRV

\ / V)t
A/ \

\/
To

< >

The above signal will repeat for every time interval TO hence it is periodic with period TO.
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Classification of Signals

Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

oo
Energy FE — / x? (t)dt
— 00

A signal is said to be power signal when it has finite power.

1 T
Power P = lim — / z° (t)dt
T— o0 T =/

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be
neither energy nor power signal.

Power of energy signal = 0 and Energy of power signal =

SUB:ES UNIT:2

25




Classification of Signals

Real and Imaginary Signals
A signal is said to be real when it satisfies the condition x(t) = x*(t)

A signalis said to be odd when it safisfies the condition x(t) = -x*(t)

Example:
If X(t)= 3 then x*(t)=3*=3, here x(t) is areal signal.
If X(t)= 3] then x*(t)=3j* = -3] = -x(1), hence x(t) is a odd signal.

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal,
real part should be zero.
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Basic Operations on Signals

There are two variable parameters in general:
Amplitude
Time
The following operation can be performed with amplitude:
Amplitude Scdli
C x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a

factor C.

a2 x (t)
0.5 x (t)

() 4

L
L
L 4
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Addition of two signals is nothing but addition of their corresponding amplitudes
can be best explained by using the following example:

10

As seen from the previous diagram,

-10 <t <-3 amplitude of z(t) = x1(f) + x2(t) =0+ 2=2
-3 <t <3 amplitude of z(t) =x1(f) +x2(t) =1+2=3

3 <t< 10 amplitude of z(t) = x1(t) + x2(t) =0+2 =2

SUB:ES UNIT:2
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Basic Operations on Signals

subtraction of two signals is nothing but subtraction of their corresponding amplitudes.

This can be best explained by the following example:

As seen from the diagram above,

-10 <t <-3 amplitude of z (t) = x1(t) -x2(t) =0-2=-2
-3 <t< 3 amplitude of z (t) = x1(t) -x2(t) =1-2=-1
3<t< 10 amplitude of z () = x1(t) -x2(t) =0-2 =-2

1 (t)
P

10

Y
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Basic Operations on Signals

30

Multiplication of two signals is nothing but multiplication of their corresponding

amplitudes.

This can be best explained by the following example:

As seen from the diagram above,

-10 <t <-3 amplitude of z (t) = x1(t) xx2(t) =0x2=0
-3 <t< 3 amplitude of z (t) = x1(f) -x2(t) =1 x2=2
3<t< 10 amplitude of z (t) = x1(t) -x2(t) =0x2=0

4

5

X1 (t)

Az (1)

-10 -3
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Basic Operations on Signals

The following operations can be performed with time:

Time Shifti

x(t £t0) is time shifted version of the signal x(t).

X (t + t0) -»negative shift
X (t - 10) —positive shift

fu

x(t) |

/\

X(t -t) |

x(t +t,) |

L

L
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Basic Operations on Signals

Iim lin

X(At) is time scaled version of the signal x(t). where A is always positive.
|A| > 1 - Compression of the signal
| Al <1 — Expansion of the signal

o

o

x(t) | x(2t) x(t/2)

-2 2 A1 -4 4

Note: u(at) = u(t) time scaling is not applicable for unit step function.
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Basic Operations on Signals

X(-1) is the time reversal of the signal x(t).

x{t} i I[Ht] i
2 -2
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Basic Operations on Signals

34

Convolution: Convolution between two continuous fime signals can be written as

O T T

The following operations are required to compute convolution

Time reversal

Time Shifting ( Delay & Advance)
Signal Multiplication

Integration

Note: If two signals are finite duration then Graphical Method is used and Else Function
Method is employed to compute Convolution
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What is System?

System is a device or combination of devices, which can operate on signals and
produces corresponding response. Input to a system is called as excitation and
output from it is called as response.

For one or more inputs, the system can have one or more outputs.

Example: Communication System

Input  «—— —» QOutput
Or «— System — o
Excitation ¥ —* Response
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Classification of Systems

Systems are classified into the following categories:
linear and Non-linear Systems

Time Variant and Time Invariant Systems

linear Time variant and linear Time invariant systems
Static and Dynamic Systems

Causal and Non-causal Systems

Invertible and Non-Invertible Systems

Stable and Unstable Systems
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Classification of Systems

37

Linear and Non-linear Systems

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two
systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the
superposition and homogenate principles,

T[al xT(t) + a2 x2(t)] = al T[x1(t)] + a2 T[x2(1)]
~T[al x1(t) + a2 x2(t)] = al y1{t) + a2 y2(1)

From the above expression, is clear that response of overall system is equal to response of individual
system.

Example: y(1) = x2(t)
Solufion:
y1 (1) =T[x1(t)] = x12(1)
y2 (1) = T[x2(t)] = x22(1)
T[al x1(t) + a2 x2(f)] = [al x1(1) + a2 x2(t)]?

Which is not equalto al y1(t) + a2 y2(t). Hence the system is said to be non linear.
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Classification of Systems

Iime Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time.

Otherwise, the system is considered as tfime invariant. The condition for fime invariant system is:

y (N, 1) =y(n-1)
The condition for fime variant system is:
y (n, 1) #y(n-)
Where vy (n, 1) =T[x(n-t)] = input change
y (n-t) = output change
Example:
y(n) =x(-n)
y(n, 1) = T[x(n-1)] = x(-n-1)
y(n-t) = x(-(n-1)) = x(-n +1)

~y(n, t) #y(n-1). Hence, the system is time variant.

SUB:ES
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Classification of Systems

39

Liner Time variant (LTV) and Liner Time Invariant (LTI lem
If a system is both liner and time variant, then it is called liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is called liner time invariant (LTl
system.

Stafi I D ic Syst
Static system is memory-less whereas dynamic system is a memory system.
Example 1: y(f) = 2 x(1)

For present value t=0, the system output is y(0) = 2x(0). Here, the output is only dependent
upon present input. Hence the system is memory less or staftic.

Example 2: y(t) = 2 x(t) + 3 x(t-3)
For present value t=0, the system output is y(0) = 2x(0) + 3x(-3).
Here x(-3) is past value for the present input for which the system requires memory to get

this output. Hence, the system is a dynamic system. SUBES UNIT:2




Classification of Systems

A system is said to be causal if its output depends upon present and past inputs, and does
not depend upon future input.

For non causal system, the output depends upon future inputs also.
Example 1: y(n) = 2 x(t) + 3 x(t-3)
For present value t=1, the system outputis y(1) = 2x(1) + 3x(-2).

Here, the system output only depends upon present and past inputs. Hence, the system is
causal.

Example 2: y(n) = 2 x(t) + 3 x(t-3) + éx(t + 3)

For present value t=1, the system outputis y(1) = 2x(1) + 3x(-2) + 6x(4) Here, the system
output depends upon future input. Hence the system is non-causal system.
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Classification of Systems

Invertible and Non-Invertible systems

A system is said to invertible if the input of the system appears at the output.

X(t)
— hit) —
Y(S) = X(S) H1(S) H2(S)

y(t) =x(t

ha(t) l

Invertible System

= X(S) HT(S) - T1(HT(S))
Since H2(S) = 1/( HI(S) )
=~ Y(S) = X(S)
— y(t) = x(t)
Hence, the system is invertible.

It y(t) # X(t), Then the system is said to be non-invertible.
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Classification of Systems

42

table and Unstable System

The system is said to be stable only when the output is bounded for bounded input. For a
bounded input, if the output is unbounded in the system then it is said to be unstable.

Note: For a bounded signal, amplitude is finite.
Example 1: vy (f) = x2(1)

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded
output.

Hence, the system is stable.
Example 2: vy (1) = [x(t)dt

Let the inputis u (t) (unit step bounded input) then the output y(t) = Ju(t)dt = ramp signal
(unbounded because amplitude of ramp is not finite it goes to infinite when t —
infinite).

Hence, the system is unstable.
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Convolution and correlation of signals

Convolution

Convolution is a mathematical operation used to express the relation bbeaebtween input and output of an
LTI system. If relates input, output and impulse response of an LTI system as

w(t) — x=(t) = h(t)
Wvhere v () = output of LTI
X (t) = imput of LTI
h (L) = impulse response of LTI
There are two types of convolutions:

Continuous comnvoluticon

Discrete conwvoluticon

Continuous Conwvolution

Irpwt LTI SYSTERM

Chut ot
hit) >

(]

wit) = x(t) = ht)
w(t)

w(E) = B(t)

= f_:gc (v Yh{t — 7 )d+
{or)
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Convolution and correlation of signals

Diiscrete Cornmmeoloutiom

I oot LTI SWSTEM Ottt
i h{r) [ -
=) wilm) = ={m)} * him)
wi(rz) = (72} = Fe(r2)}

— =2 @(R)R(n — &)

(or)
— 22 __a(ve — E)FR(K)
Eﬁ‘_:.l" L,ISiI"'I'g Cconmyluticom vwe camnm Timd Z=ro states MeEesSpomnses o the S"y"S—tE'rT'I_

Deconvolution

Dhreconwolution Iis mnResverse process o comnvolution widely used im signal and image processimg.
FProperties of Convolution

Crommutative Propaerty

a1 () == ol t) = @z (E) = a1 (£)

Distributive Propaeriy
@y () = [a(Ef) + axz(E)] = [1(F) + @2(E)] + [1(T) = x=5(T)}]
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Convolution and correlation of signals

Associative FProperty

a1 () = [mwa2(f) = xa(t)] = [@a(E) = aa2(Et)] =+ aza (L)

Shiattimg Property

w1 () = aa2(t) — m(t)

21 (E) = ot — ETn) = w(f — £o)

at1 'I:'f: —_— t{.} e :L’g{]!:} y{t — ]!qu.::l

a(t — Tg) = xa2(® — 1) =— (Tt — o — 1)

Convolution with Impulse

a1 (t) = S(E) — a=(&)

() = S(f — £5) = x(E — £o)

dVUD.LI
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Convolution and correlation of signals

Convolution of Unit Steps

2w E) = () = (&)
2wt — T ) e 2wt — AL ) = rw(t — T3 — T5)
w72} = w(re) = [rz + 1]ue(n)

Scaling Property

IT a(t) = A(t) = w(t)

then @w(at) = (at) = ﬁy{at]

Differaentiation of Output

it 2t} = a(£) = (L)

duiz)  dweE)
P - ot

then = Ft)

e Ok afde
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Convolution and correlation of signals

MNote:

Convolution of two causal sequences is causal.

Convolution of two anti causal sequences is anti causal.
Convolution of two unequal length rectangles resulis a trapezium.
Convolution of two equal length rectangles resulis a triangle.

A function convoluted itself is equal to integration of that function.

Example: You know that w(t) = w(t) = r(f)
According to above note, w(t) = u(t) = [u(t)dt = [ 1di =t = r(¢)

Here, you get the result just by integrating () -
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47




Convolution and correlation of signals

Limits of Convoluted Signal

If two signals are convoluted then the resulting convoluted signal has following range:
Sum of lower limits < t < sum of upper limits

Ex: find the range of convolution of signals given below

x1 () T x(tr2) T

-1 2 -2 2

Here. we have two rectangles of unequal length to convolute, which results a trapezium.
The range of convoluted signal is:

Sum of lower limits < t < sum of upper limits

—1 4+ —2 =t = 2+ 2

—3 < f =< 4

Hence the result is trapezium with period 7.




Convolution and correlation of signals

Area of Convoluted Signal

The area under convoluted signal is given by A, = A Ap

YWhere A, = area under input signal
AL = area under impulse response
A, = area under output signal
e

Proof: w(t) = [ wx(+)h(t — m)d+

Take integration on both sides

Sut)ydt = [ [0 =(=)h(t — +)drdt

= [ ae()d+ T3 Rt — +)dt

— =

We Know that area of any signal is the integration of that signal itself.

S A@. = A—.:I:' iq—h

QUD.LY

UNII.Z
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Convolution and correlation of signals

* *

DC Component
D component oOf any sigmnal is given by

arcea of the =ignal
pericd of the sigmsl

D component —

Ex- what is the dc component of the resultant convoluted signal given below?

.,

21 () »(t S 2)
“1 | 1

-1 ' p. -2
Here area of X401} = length = breadih = 1 = 3 = 3=
aAarea of =i} = length = breadih = 1 = 4 = 4
area of conmnvoluted sigmnal = area of Xq({(1) = area of X=(1)
= 3 = 4 = 12
Duration of thhe convoluted sigmnal = sum of lower limits = T = sum of upper limits

= -1 + -2 =t = Z2+2
= 3 = 1T = 4
FPericod=7

ar=a of the signal
peric-d of the sigmal

- - D component of the convoluted signal =

50




Convolute two sequences x[n] = {a.b.c} & h[n] = [e.T.g]

a 5 _
e| ea ~eb —ec
gl ga ~gb gc

Convoluted output = [ ea. eb+fa. ecs+Tbs+ga. fc+gb. gc]

Note: if any two sequences have m. n number of samples respectively. then the resulting convoluted
sequence will have [m+n-1] samples._

Example: Convolute two sequences X[n] = {1.2.3} & h[n] = {-1.2.2}

>< 1 2 3
4| A~ =2 _~=3 _
22 "4 6

Convoluted ouiput y[n] =[ -1, 2+2 -3+43+2 6+4 6]
=[-1. 0, 3. 10, 6]

Here x[n] contains 3 samples and h[n] is also having 3 samples so the resulting sequence having
3+3-1 = 5 samples.




Convolution and correlation of signals

52
il. To calculate periodic or circular conwvoaolution:

Fericodic conmnvolution is walid for discrete Fourier transtform. To calculate pericodic convoalution all

fthe
samiples must e real. Pericodic or circular conywolution is also called as Tast comwoluticm.

IT two sequUuences of length m. Nn respectively are convoluted using circular comyvaoluticon then resultimg
seCuence hhawvinmng max [m.on] samples.

Ex: convolute two sequences X[n] = 41 2. 3% & ] = {-1_2_ 2% using circular comnyvolutiomn
1 2 3
-1 -1 -2 -3
2 2 —a 5
2 24 5

Mormal Convoluted output yn] = [ -1, —2+2_ —-3+4+2_ 6+4_ 6]

=[-1. 0O, Z 10, &]

Here X[n] contains 3 samiples and hifn] also has 3 samples. Hence the resulting sequence obifaimed
by circular conwvalution must hawe max[3_ 3= 3 samples._

HNow o get

pericodic comvolution result, 1st 3 samples [as the period
same next two samples are addaed o 1st samples as shown beeloww:

-1 O 3
—+ 10 (=

i= 3] of mnormal conwvolution is

= 5 3

T Chircular convolution result ] = [DO L& 2]

dUBIEY UNII £
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L .
— Correlation

Correlation is a measure of similarity between two signals. The general formula for correlation is
p-
f ay () (t — +)dE
— =T

There are two types of correlation:
= Auto correlation

= Cros correlation

Auto Correlation Function

It is defined as correlation of a signal with itself. Auto correlation function is a measure of similarity

between a signal & its time delayed version. It is represented with R{ +— ).

Consider a signals x(t). The auto correlation function of x(t) with its time delayed version is given by

o
(7)) = R(+) = f ()t — 7 )dt [+ve shift]
— =
[ e}
_ f w () (t —+ )t [ve shift]
—
Wherse -+ = searching or scanning or delay parameter.

SUB:ES UNIT:2
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L Properties of Auto-correlation Function of Energy Signal

Auto correlation exhibits conjugate symmetry ie. R{ — })=R%- T )}

Auto correlation function of energy signal at origin i.e. at +— =0 is equal to total energy of

that signal. which is given as:

R@=E= J70 |a(£)|"dt

Auto correlation function m% .

Auto correlation function is maximum at - =0ie|R{ T }|=R{O} ¥ T

Auto correlation function and energy spectral densities are Fourier transform pairs. i.e.

F.T[R(7)] = T(w)
I () = f_ggc R({(+)ye 7" d+

R{7T) = a&(7) = &2(—7)

LA A X L A AR LENY -1




\

Convolution and correlation of signals

55
Auto Correlation Function of Power Signals
The auto correlation Tunction of periodic power signal with pericod T is given by
by
A 1i 1 = T T ait
Ty = itmy — e 7 il — T
() = lim — f  =() ( J
=
Froperties
Auto correlation of power signal exxhibits conjugate symmetry e R[T] = R = {—T]
Auto correlation function of power signal at —-— = 0 (at origin)is equal to total power of that

signal. ie.

R(0) = p

Auto correlation function of power signal -::::-::::-% .

Auto correlation fTunction of power signal is maximum at — =0 i.e_|

| R{)| = R(0) ¥ T

Auto correlation function and power spectral densities are Fourier transform pairs. i.e_,

F.T[R(m)] — s(w)
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N HR{(+) = a&(+) = a( —7)

Density Spectrum

Let us see density spectrums:

Energy Density Spectrum

Energy density spectrum can be calculated using the formula:s

E— [ lxoPar

FPower Density Spectrum

Fower density spectrum can be calculated by using the formuula:

P = 32< | e | Z

==

SUB:ES
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Cross correlation is the measure of similarity between two different signals.

Consider two signals Xq (T} and Xx=(t)}. The cross correlation of these two signals

— “[_m ay(t + e () dE [-wve shift]

IT signals are complex themn

Riz(7) = f;: a1 ()i (t — ) dE [+we shift]
S ‘j(;m ay (t + )X (t) dt [-wve shift]
Rsi(7) = f;: a2 ()T (t — 7)) dt [+we shift]

— fm kot + 73 () dt [-ve shift]

ya(+)

is given by

57
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Properties of Cross Correlation Function of Energy and Power Signals

Auto correlation exhibits conjugate symmetry i.e. Ris(+) = R, (—7) .

2 Cross corrglation is not commutative like convolution ioe.

Ris(7) &= Roy(—7)

CIf Rqz(0) = 0 means. it [ . @ (f)xzi(f)dt = 0 . then the two signals are said to be

[l

orthogonal.

fyly

For power signal if limg oo % I a(t)ye*(t)dt then two signals are said to be

.

orthogonal.

Cross correlation function corresponds to the multiplication of spectrums of one signal to the
complex conjugate of spectrum of another signal. i.e.

Fyz(7) +—— X3 () X3 (w)

This also called as correlation theorem.

58
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Parseval's Theorem

Parseval's theorem for energy signals states that the tofal energy in a signal can be obtained by the
spectrum of the signal as

E=1 % |1X(w)|dw

2 J-00

Note: If a signal has energy E then time scaled version of that signal x(at) has energy Efa.

SUB:ES
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Analogy between vectors and signals

There is a perfect analogy between vectors and signals.
Vector

A vector contains magnitude and direction. The name of the vector is denoted by
bold face type and their magnitude is denoted by light face type.

Example: V is a vector with magnitude V. Consider two vectors V1 and V2 as shown in
the following diagram. Let the component of V1 along with V2 is given by C12V2.
The component of a vector V1 along with the vector V2 can obtained by taking a
perpendicular from the end of V1 to the vector V2 as shown in diagram:

Vs
The vector V1 can be expressed in terms of vector V2
V1=CIl2V2 + Ve

Where Ve is the error vector. : >
Cia2Vo Ve

SUB:ES UNIT:2
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But this is not the only way of expressing vector V1 in terms of V2. The alternate
possibilities are:

V1=ClV2+Vel

W

v

Ve

IV1

V2=C2V2+Ve?2

CzVz ~ Va

The error signal is minimum for large component value. If C12=0, then two signals are said to be
orthogonal.

Dot Product of Two Vectors V1 . V2 =V1.V2 coso

D\ A 1 1 1 \ /1 L\ /N _\ /1 \ /N v 7NN\ /1

SUB:ES UNIT:2
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The error signal is minimum for large component value. If C12=0, then two signals are said to
be orthogonal.

Dot Product of Two Vectors
V1.V2=V1.V2cosb
O = Angle between V1 and V2 V1. V2 =V2.V]
From the diagram, components of VI along V2=C 12 V2

ViV
Vo = Ci2Vs
o, WV

Vs

SUB:ES UNIT:2
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Signal
The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f2(t).
Similar to vectors, you can approximate f1(t) in terms of f2(t) as

f1(t) = C12f2(t) + fe(t) for (11 <t <12)

= fe(t) = f1(1) - C12 f2(1)

One possible way of minimizing the error is integrating over the interval t1 to 12.
t
) e@a

to — 1

i &
i —

ft Lf1(8) — Crafa()]dt

However, this step also does not reduce the error to appreciable extent. This can be corrected by taking

the square of error function. o
: e = 2 [ [f())at

s t;»—l—tl ‘IZA [fe(t) — Crafo]*dt

SUB:ES UNIT:2
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Where ¢ is the mean square value of error signal. The value of C12 which minimizes the

error, you need to calculate de/dC12=0

d

= -2 [P 1fi(t) — Crafa(t)]Pd] =0

= tgitl ftf [dgl,_, F2(t) - ﬁfzfl(t)clzﬁ(t) +- ﬁf‘? (t)CE,ldt =0

Derivative of the terms which do not have C12 term are zero.

> [ —2f1(t) fo(t)dt + 2C1a [2 [£3 (£)]dt = 0

[ fi)f(e)dt | | |
19 = component is zero, then two signals are said to be orthogonal.
fff f3(t)dt

Put C12 =0 tfo get condition for orthogonality.

2 fi(©)f(¢)de .
0= i Fod t; fi(t)fa(t)dt =0

SUB:ES
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Orthogonal Vector Space

A complete set of orthogonal vectors is referred to as or’rhogonol vector space. Consider
a three dimensional vector space as shown below: 1

V' E EER LI T A(X1.Y1, Z4)

-

Z
Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (VX, VY, VZ) in the
direction of X, Y, Z axis respectively. Since these unit vectors are mutually orthogonal, it
safisfies that

Vx Vx =W. V3o =Vz.Vz=1

1 Q. =
Vo W= Wi, Wi Vir Wi =0 "3"/":{

O a =0

SUB:ES UNIT:2
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The vector A can be represented in terms of its components and unit vectors as

A=X\Vy+ W + 25 (1)

Any vectors in this three dimensional space can be represented in terms of these three unit
vectors only.

If you consider n dimensional space, then any vector A in that space can be represented
as
A=X\Vx + VW + Z1Vz+...+N Vy..... (2)

As the magnitude of unit vectors is unity for any vector A
The component of A along x axis = A.VX
The component of A along Y axis = A.VY
The component of A along Z axis = A.VZ
Similarly, for n dimensional space, the component of A along some G axis
=AVG (3) SUB:ES UNIT:2




Analogy between vectors and signals

Substitute equation 2 in equation 3.

=C0G =X Vx +Yi W + Z1Vz+... 4G 1 Vg... +N1VN) Ve
=X VxVoe +YIW Ve + Z:VzVe+...+G1 Ve Vg... + N1V Ve
=G; sinceVgVg =1

IfVoVg #11.eVgVg =k

AV = G1VgVe = G1 K

(AVg)
=

Gy =

SUB:ES
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Orthogonal Signal Space
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Let us consider a set of n mutually orthogonal functions x1(t), x2(t)... xn(t) over the interval
t1 to 12. As these functions are orthogonal to each other, any two signals xj(t), xk(t) have

to saftisfy the orthogonality condition. i.e.
2
/ zj(t)xr(t)dt = 0 wherej # k
iy

ta
Let/ x3 (t)dt = ky,
31

Let a function f(t), it can be approximated with this orthogonal signal space by adding the

components along mutually orthogonal signals i.e.

f(t) = Cirz1(t) + Coza(t)+. . . +Crzyn(t) + fe(t)
=" ,C,z:(%)

f(t) = f(t) o Z;}:lcrmr (t)

SUB:ES
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Mean sqaure error € = zoito tfz [fo(t)]?dt
1 . - .

= ] -y Gz ()] dt
bt J, [£12] ; (®)]

The component which minimizes the mean square error can be found by

de _de B _da 5
dC; dC, = dCp
Let us consider g‘z,k =0

d 1

2
n 2 -
dC; [tg =% i Lf(t) — E7~:1Cj'7'51:'r'(i:)] dt] =0

All terms that do not contain Ck is zero. i.e. in summation, r=k tferm remains and all other terms are zero.

ts ta
/ 2f(t)ax(t)dt 2Ck/ [3(¢)]dt = O

& S F()w(t)dt
= il = — — — -
inty? xf (t)dt

t;
= f(@)z)(t)dt = Cp Ky
1 SUB:ES UNIT:2
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Mean re Error

The average of square of error function fe(t) is called as mean square error. It is denoted
by ¢ (epsilon).
e =g — 2 [f-(D)]2ae

L ;2 [fe(®) — = Crz (2)]2dt

to —1y

1 2[f2@)]dt + =r_,C2 [ 2 aZ(B)dt — 287 ,C; [ = () f(H)dt

to —t; iy

You know that C2 [,”* z2(¢)dt = C, [, =, (t) f(d)dt = C? K,

s=2 [[2[f2(@®]dt + 3" ,C2K, — 2" ,C2K,]
= tzitl [ tfz [F2(B)]dt — = | CPK,]
Le= A [F2®)]dt + (C2 K1 + C3 K +. .. +CE K]
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To represent any periodic signal x(t), Fourier developed an expression called Fourier
series. This is in ferms of an infinite sum of sines and cosines or exponentials. Fourier
series uses orthoganality condition.

Fourier Series Representation of Continuous Time Periodic Signals

A signal is said to be periodic if it satisfies the condition x () =x (t +T) orx (n) =x (n + N).
Where T = fundamental time period,

0= fundamental frequency = 211/T

There are two basic periodic signals: x(f)=coswOt(sinusoidal) & x(f)=eje0f(complex
exponential)

These two signals are periodic with period T=217/000
A set of harmonically related complex exponentials can be represented as {¢k(t)}
7, . 2_”
di(t) = {1} = {7 ywherek = 0+ 1, £2..n ... (1)

All these signals are periodic with period T
SUB:ES UNIT:2
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According tfo orthogonal signal space approximation of a function x (f) with n, mutually
orthogonal functions is given by

Where ak = Fourier coefficient = coefficient of approximation.
This signal x(t) is also periodic with period T.
Equation 2 represents Fourier series representation of periodic signal x(t).
The term k = 0 is constant.
The term k=%1 having fundamental frequency w0, is called as 15" harmonics.

The term k=£2 having fundamental frequency 2w0 , is called as 2"9 harmonics, and so
on...

The term k=xn having fundamental frequency nwoO, is called as N harmonics.
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Fourier Series

Deriving Fourier Coefficient
We know that

=X e, ., .00)

Multiply e—jnc0f on both sides. Then
m(t)e—anot — Z akejkat : e—jnth
k=—o0

Consider integral on both sides.

T l\ T o0 Aw ‘
(L'(t)e" 7W(ll‘dt — / al\-e‘l . u{.e—.}'“.w()fdt
/, v

k=—o0
T )
— [1 3wyttt ae
0 h——00
T . =) s i X
/ z(t)ertdt = 3 ay / elth—m)wot gy . (2)
0 R i 4 70

SUB:ES

UNIT:2

73




Fourier Series

by Euler's formula,

iy T T
/ el(k-n)unt gy — / cos(k — n)wydt +j/ sin(k — n)w,t dt
0 0 0

T
/ ej(k—n)wot dt. = {T k=n
0 0 k#n

74

Hence in equation 2, the integral is zero for all values of k except at k = n. Put k = n in

equation 2.
:>/ z(t)e "otdt = a, T

a, T / —anot dt

1 s
= ap =, ¥ ikt gy
0

oo
..L‘(L) = Z akej(k—'n.)wnt

k=——o0

Replace n by k

L T .
wherea;. _T/ e~ Thwot g

SUB:ES
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Fourier Series Properties

Properties of Fourier series:
Linearity Property

5 fourier series coefficient \

If 2(t) 4 > fon &

then linearity property states that

A ( t) i by ( t) < fourier series coe fﬁcient) : fm i} fyn

Time Shifting Property

5 fourier series coe fficient

( t) ; fourier series coef fic'ient\
y

|f£l!(t) ¢ > fan

then time shifting property state

y fourier series coe fficient

s that

il)(t - t()) <

4

fin

UNIT:2
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Fourier Series Properties

Frequency Shifting Property If z(t) <

Time Reversal Property

Time Scaling Property

Sfourier series coefficient

\f
v T

then frequency shifting property states that

Jourier series coe fficient

eThskite. m(t) < > f:r:(n—n(,)
If ac(t) <fou'r'ie‘r series coefficient . fm

then time reversal property states that

Jourier series coefficient
> f—an

If x(—¢) <

; fourier series coe fficient :

If 2(t) 4 > fan

then time scaling property states that

: fourier series coefficient 3

If m(at) 3 4 f:m

Time scaling property changes frequency components from wy to awy.
SUB:ES UNIT:2
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Fourier Series Properties

Differentiation and Integration Properties
; fourier series coefficient \

lf:L‘(t) ‘ d f:m

then differentiation property states that

dz(t) lfourier series coefficient

I — > Jnwo- fon

& integration property states that

Sfourier series coefficient ; 5 1

If [x(t)dt <

Jrnwg

Multiplication and Convolution Properties

fourier series coefficient fourier series coefficient 1

> fon &Y(t) < ¥ Fam

‘hen multiplication property states that

fa(t) <

fourier series coefficient
z(t). y(t) < > T fon * fiym
& convolution property states that

r(t) * y(t) < i T HES

fourier series coe fficient

UNIT:2
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Fourier Series Properties

Conjugate and Conjugate Symmetry Properties

3 fourier series coefficient 1 f
xn

If z(t) < :

Then conjugate property states that

fourier series coefficient

x * (t) < o

Conjugate symmetry property for real valued time signal states that

f *rn = f—;z:n
& Conjugate symmetry property for imaginary valued time signal states that
f *pn = _f—;rn

SUB:ES
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Trigonometric Fourier Series
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Triaonometric Fourier Seri TE

sinnc 0t and sinmaO0t are orthogonal over the interval (f0,f0+2mmw0). So sinc0t,5iNn2c00t forms
an orthogonal set. This set is not complete without {cosnwO0t } because this cosine set is
also orthogonal to sine set. So to complete this set we must include both cosine and sine
terms. Now the complete orthogonal set contains all cosine and sine terms i.e.
{sinnco0t,cosnwOt } where n=0, 1, 2...

... Any function xt in the interval (5, tg + i—’;) can be represented as

x(t) = ag cos Owgt + a; cos lwot + as cos2wgt+. .. +a, cosnwot+. ..
+bp sin Owot + by sin lwot+-. .. +b, sin nwot+-. ..
= agp + ai cos lwgt + as cos 2wpt+... t+a, cosnwot+...

+ 61 sin lwgt+. .. +b, sin nwot+. ..

20
Soz(t) = ag + Z(a.,, cos nwnt + h -

The above equation represents trigonometric Fourier series representation of x(t).
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Trigonometric Fourier Series

to+T :
z(t) - 1dt 1 to+T
Whereag = ft" — = — / x(t)dt
S 1% T Jyg
f:}"+T x(t) - cos nwytdt
a, —

I t:“ T cos? nwot dt

to+T .
5 = ftn x(t) - sin nwot di

ft0+T

B sin? nwgt dt

to+T to+T T
Here / cos? nwot dt = / sin? nwot dt = —
to o 2

2 to+T
T T (S / x(t) - cos nwot dt
r ly

2 to+T
b, = — - / x(t) - sin nwgt dt
T Jy
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Exponential Fourier Series
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Exponential Fourier Series (EF
Consider a set of complex exponenfial functions {ejnwnl } (n=0,+1,42...)

which is orthogonal over the interval (10,f0+T). Where T=217/w0 . This is a complete set so it is
possible to represent any function f(t) as shown below

t) = F, + Fye/t 4+ F,el?@t 4, 4 F, ety .
0 1 2 n
F_le‘j“’“‘ -+ F_ge‘j2“""+. i3 +F_ne—4j‘nw(,t+. o

L fl)= ) Fe™t  (h<t<ty+T)....... (1)

Equation 1 represents exponential Fourier series representation of a signal f(t) over the
interval (10, t0+T).
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Exponential Fourier Series

¢ to+T _—.
U f(E) (e et) dt

o Ly
n :
j;z°+7 eJnw,t (ef"wot )*dt

T f(t)e et dt

ft,t)“ +1 e~ Jnwt gt Jt
=]

[ ft)eiatdt 4

0 —

ft:"*T 1dt T

to

to+T

f(t)e Iotdt

1

A
/ i

0

to+T |
/ f(t)e ™ot dt
t

D |

OV D
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Consider a periodic signal x(t), the TFS & EFS representations are given below respectively

z(t) = ag + X, (a, cosnwyt + b, sinnwpt). ... ... (1)
B(t) = B2 o Py et
— F) + Feot  Fyei2ant | | ety
F e it { F ety 4R e ity

= Fy + Fi(coswyt + jsinwgt) + Fy(cos2wyt + 7sin 2wyt)+. .. +F), (cos nwyt + jsin nwyt)+.

+F_1(coswyt - jsinuyt) + F_y(cos 2uyt - jsin2ugt)+... +F., (cosnwgt - jsinnut)+...
=B+ (B + Fy)coswgt + (B + Fy) cosdwytt.. +j(F, - F-y ) sinwgt + (B - F u#?wo

Lo(t) = Ry + B2 (B 4 Fop) cosnwgt + (B, = Fop ) sinnagt). ... (2)

SUB:ES
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Continuous Time Fourier Transform

The main drawback of Fourier series is, it is only applicable to periodic signals. There are
some naturally produced signals such as nonperiodic or aperiodic, which we cannot
represent using Fourier series. To overcome this shortcoming, Fourier developed a
mathematical model to transform signals between time (or spatiall domain to
frequency domain & vice versa, which is called 'Fourier transform'.

Fourier fransform has many applications in physics and engineering such as analysis of LT
systems, RADAR, astronomy, signal processing etc.

Deriving Fourier fransform from Fourier series:

Consider a periodic signal f(t) with period T. The complex Fourier series representation of
f(t) is given as %0

= kt
i7k
= Z ae ho...... (1)
2 SUB:ES UNIT:2
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Continuous Time Fourier Transform

Let 3‘1'.,_ — A f, then equation 1 becomes
) =3 " _ Bl s (2)

but you know that
o 5% to+T — jkwpt
ar = 7- f(t)e 7™t dt
0
Substitute in equation 2.

2= f(8) = B2 2 [T f(t)e Tt dpeltmast

U‘ f e —52wkA ft dt] e]27l'kAft Af

SUB:ES
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Continuous Time Fourier Transform

In the limit as T—e, Af approaches differential df, kKAf becomes a continuous variable f,

and summation becomes infegration

f( ) = limp_o { S [ / f o J2mRAft dt] el2mRAft A f}

= / [ / f(t)e > dtle* Tt d f

Where Flw] = [[°2 f(t)e 72/t di]
Fourier fransform of @ S|gnol

£&) = Flol = [ T f()e i ay

Inverse Fourier Transform is

F(t) = [_ " Flw]et duw
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Fourier Transform of Basic functions

X (t)

FT of GATE Function A

A

>t
-1/2 T/2

Flu] = ATSa(%)

FT of Impulse Function: FT[w(®)] = [J25, d(D)e 7" dt]
— e Jwt | t=0

=¥ =1

Cow) =1

SUB:ES
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Fourier Transform of Basic functions

FT of Unit Step Function:

FT of Exponentials:

FT of Signum Function :

Ulw) = md(w) + 1/jw

e “u(t) Fiia 1/(a + jw)
eotu(t) = 1/(a + ju)

—al|t| - . 2a
e ) [ a2+w2

. F.T
et 5(0) — wo)

F.T
sgn(t) +— 2

Jw
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Continuous Time Fourier Transform

8¢9

Conditions for Existence of Fourier Transform:

Any function f(t) can be represented by using Fourier tfransform only when the function
satisfies Dirichlet’s conditions. i.e.

The function f(t) has finite number of maxima and minima.

There must be finite number of discontinuities in the signal f(t),in the
given interval of fime.

It must be absolutely infegrable in the given interval of time i.e.

[ | f()] dt < o0
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Fourier Transform Properties

If (1) &4 X(w)

& y(t) ¢ Y(w)
Then linearity property states that

az(t) + by(t) &y aX (w) + bY (w)

ime Shiffing Propetty:
me(t)fiX(w)

Then Time shifting property states that

PT
z(t —ty) «— e X(w)

SUB:ES
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Fourier Transform Properties

F.T
If () «— X(w)
Then frequency shifting property states that

ekt z(t) & X(w— wp)

lime Reversal Property:
If x(t) il X(w)

Then Time reversal property states that

z(—1) &5 X(—w)
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Fourier Transform Properties

Time Scaling Property: If z(t) ¢+ X(w)

Then Time scaling property states that z(at)

Differentiati L Ini tion P fies:

If 2(t) 6o X(w)

Then Differentiation property states that

oty ET .
Zt(t) — jw. X(w)

d™ z(t) ,F'T\ )
e (jw)". X(w)

and integration property states that

[x(t)dt &5 %X(w)

[IJ-. () dt < 2 X(w)

ng
a

|

|a |
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Fourier Transform Properties

Multiplication and Convolution Properties:
If 2(t) «— X(w)
& y(t) ¢ Y(w)
Then multiplication property states that
FT

z(t). y(t) 4— X(w) * Y(w)

and convolution property states that

2() ¢ y(t) = LX(w). V()

o
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Sampling theorem of low pass signals

Statement of Sampling Theorem:

94

A band limited signal can be reconstructed exactly if it is sampled at a rate atleast twice

the maximum frequency component in it."

The following figure shows a signal G(w)

m m —=

Figurel: Spectrum of band limited signal g(t)

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from

its samples it has to be sampled at a rate fs = 2fm.
The minimum required sampling rate fs = 2fm is called “Nyquist rate”.
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g(t)

o

an

N

N

(a)

G(m)

ol

/ \

\\

0
) m

(b)

Figure 2: (a) Original signal g(t) (b) Spectrum G(w)

dr(t) is the sampling signal with fs = 1/T > 2fm..

ol t)

I 1

Ol (D)

aEn

(a)

o

(b)

(a) sampling signal ér () (b) Spectrum é7(w)
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Sampling theorem of low pass signals

Let g s(t) be the sampled signal. Its Fourier Transform Gs(w) is given by

Flgs(t)) = Flg®)or(¢)]
o
=== F [g({) E o(t — nT)]
1 -0 -
— S [G(u.') * Lo E ) O (ww — 72&.;.;0)]
1 oo
Gs(w‘) == ? n:E-x G(“J) e 5(;.4..,’ — 7');.4}())
Gi(w) = Flg@)+ 2g(t) cos(weat) + 2g(¢f) cos(2wot) + - - -]
1 oo
Go(w) — ?“ E - Gw — 7109)
: G (m)
g ()
| | ‘ //\ /\ /\
l | ‘ | 1 4 1 \\g/ \‘.c// 1
IR

Figure 4: (a) sampled signal g<(#) (b) Spectrum Gs(w)
SUB:ES

UNIT:2

96




Sampling theorem of low pass signals

If we = 2y, ice., T = 1/2f,,,. Therefore, G¢(w) is given by

Go(w) =% D>, G(w—nwnm)

n——oo
To recover the original signal G(w):

1. Filter with a Gate function, Hy,, (w) of width 2w,,.

2. Scale it by T.

G(w) =TGs(w)Ha,, (w).

m

Figure 5: Recovery of signal by filtering with a filter of width 2w, SUB:ES

UNIT:2
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Sampling theorem of low pass signals

98

Aliasing is a phenomenon where the high frequency components of the sampled signal
interfere with each other because of inadequate sampling s < om

Interference of high frequency componengs

—® —@ D ) ®
S m m S

Figure 6: Aliasing due to inadequate sampling

Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency

should be atleast twice the bandwidth of the signal.
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Sampling theorem of low pass signals
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In practice signal are oversampled, where fs is significantly higher than Nyquist rate to

avoid aliasing.

Figure 7: Oversampled signal-avoids aliasing

0
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Discrete Time Fourier Transforms (DTFT

Here we take the exponential signals to be [E.'Im}where '‘W'is a real number. The
representation is motivated by the Harmonic analysis, but instead of following the
historical development of the  representation we give directly the
defining equation.

[l

Let {x[n]} be discrete time signal such that ¥ [kih]l<w , that is sequence is absolutely
summable. “__m

The sequence {x[n]} can be represented by a Fourier integral of the form,

T

I|n]=§f}f[ej“)ej”“dm

Where,
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Equation (1) and (2) give the Fourier representation of the signal.

Equation (1) is referred as synthesis equation or the inverse discrete time Fourier fransform
(IDTFT) and equation (2)is Fourier transform in the analysis equation.

Fourier fransform of a signal in general is a complex valued function, we can write,
)= Xale) 4"

where ‘X[&""‘i’]s‘ magnitude and IX[FJL) is the phase.

We also use the term Fourier spectrum or simply, the spectrum to refer to. Thus‘X[ej“']‘ is called
the magnitude spectrum and M[gﬂ“) is called_the phase spectrum.

.1'|n] = i‘/‘ ( Z I[m]e_j"'m) E-l-ihﬂid

Interchanging the order of integration, Sy \m=-o0

tn] = Z z|m] (%/eﬂ“(“-m)du)
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Example: Let {z/n}={a"u[n]}
Fourier tfransform of this sequence will exist if it is absolutely summable. We have

[+ 4] [+ 4]
Y. Izl =) lal"
n=—on n=0
X(e’™) = S xfr]e " = > a’u[nle 7" = > ae )" = ! —
¥ =—00s H=—m0c =10 1— e g

The magmtude and phase for this example are show in the figure below., where a =0 and a < 0
are shown in (a) and (b).

(=]

. Potar|

1 —a) 11
1+a

1 AA

(1-=a) -
1 | | : A i = .
—&Fm —m 1] w 2w w o T P - F—

SUB:ES UNIT:2




Discrete Time Fourier Transform

Example: x[n] = al'., la| <1.

103

o | " i
I(E Ij||'_'|_;| :} — ﬂl H| H[H ]E—jﬂ;H — ﬂ_ﬂ _ljll'.'l.;.f + a Fl _Jﬂ;'l [1+all1 'l]
pX 2 Yae |
1
Let m = —n 1n the first summation. we obtain
I(Ejﬂj}_ Zﬂ'ulﬂ[n — jim Zﬂm _,rﬂJm +"~.T‘ﬂu — j e
R=—1 = I:I'
l ‘ -1+l
nﬂﬂ” lh""l rl!II“ '['
Ja 2 b N - ¢
ae 1 1—a
= — + — = o i i
1—ae™ 1—ae”™ 1-2acosw+a”
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Example: Consider the rectangular pulse

a|n|

o] 1L |n=2 (5.14) ;

n)= - :
0. |H| =2
-N, T N, A
a4
L sina(N, +1/2)

X(jo)y=> e = ] : 5.15

This function 1s the discrete counterpart of the sic

function, which appears in the Founer transform of 7\

the contimous-time pulse. 2 \VEAVEE 1.._; =
&)

The difference between these two functions is that

the discrete one 15 periodic (see figure) with period of 2r . whereas the sinc function 15 aperiodic.
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For a periodic discrete-time signal,

i)
(n]=e"".
its Fourier fransform of this signal is periodic in w with period 2], and is given

+X

X(e")= ) (0~ _-n)

|=-0
Now consider a periodic seguence x[n] with period N and with the Fourier series
representation LT/ N
qn]= ) a0,
k=<N>

The Fourier tfransform is,

0] - 27&
X(e™)=") 2ma,6(0- V ).
k=- 4
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Example: The Fourier transform of the periodic signal

l JWgn l —J@yn ~ 277:
x[nn]=cos®n7=—e’" +—e7" _with w, =——.
2 2 3
1S given as
o 4 27 ) i 29
X(e®*Y=md w—T[+7r6[co+T : — T =@ <7TT.
\ — J/ . J
X(e')
1y
oo T, t ]t t .} o
—2T —wg O wg 2% w
(27w —wg) (—2m+wp) (27 —wg) (27 +wy)
Discrete-time Fourier transform of x[n] = CO0S exyn.
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S

Example: The periodic impulse train

afnz] = iS[n — kN].

k=

The Fourier series coefficients for this signal can be calculated

a, = > x{nje TETIN=
= N >

Choosing the interval of summationas 0= n = N —1. we have

1
a, B

The Fourier transform is

— 2 = " 27k
X)) =23 sl .

kE=—wx
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x[nj}
. 1
-N 0 N 2N '
(a)
X(ej“’)
27/N
?ﬂ 5
N
(b)

(a) Discrete-time periodic impulse train: (b) its Fourier transform.
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Let {x[n]}and {y[n]} be two signal, then their DTFT is denoted by x[gi“)and. The notation
(o} - X[e")

is used to say that left hand side is the signal x[n] whose DTFT X[} is given at right hand side.

1.Periodicity of the DTFT:

The discrete-time Fourier transform is always periodic in @ with period 2r. 1€..

X( e)(m-lx) ) b X(e,am )
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2. Linearity of the DTFT: If x, 1]« X, (e™) . and x,[n] s X, ().

then

ax,[1n]+bx,[n]«—— aX, (e’ ) + bX, (e’)

3.Time Shifting and Frequency Shifting:  If *lrl«—— Xi=").

then

x[rz — 1y ]«——> e " X (&%)

and

Jcon

x[r]<—F— X (el

[ =4
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4.Conjugation and Conjugate Symmetry:
If x{n]e<E—s X(e’™).

then

x *[n]«E o X *(e?)

If x{n] is real valued, its transform X {(e'") is conjugate symmetric. That is

X(&)=X*(e’")

From this, it follows that Re{X (e jw )} is an even function of w and Im{X (e jw )} is an odd
function of w . Similarly, the magnitude of X(e jw ) is an even function and the phase
angle is an odd function. Furthermore,

Ev{xin]}«=—>Re{X(e™ }.
and

Od {x{n]}«~=— jim{x(e”}.
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5.Differencing and Accumulation
If x[n]e—f—s X(e™).

then

x[rn] —x[rn — 1]<—= }(1 — e 7 )X(Efjm) _

For signal

Hnl= > m].

Ry =—00

1ts Founer transform i1s given as

n l

M=—00

> sl Eor o X(e) + T () S8 (o—276)|

112

The impulse train on the right-hand side reflects the dc or average value that can result

from summation.
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6.Time Reversal If a[n]<«—— X(e’).

then

x[-n]<«———> X (—e’”)|

7.Time Expansion

For continuous-time signal, we have

x( HI}{L}LX'[‘?—W] :
o =\ a

113

For discrete-time signals, however, a should be an integer. Let us define a signal with k a

positive integer,
xn/kl. if nis a mulfiple of k
1 = '
® 0. if nis not a multiple of k
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X [1] 15 obtained from x[n] by placing k -1 zeros between successive values of the original
signal,

The Fourier transform of x;,[n] is given by

+

X‘:ﬂ [:gj{':') — Zx(k:l[n:b—ﬁﬂu _ le:ﬂ[rkk—ﬁﬂrk _ Zx[rp—.f(b&}}r _ X{Ejkm) .

H=—"0 y=— =—

That is.

X [n]«—>X (€™

For k > 1, the signal is spread out and slowed down in tfime, while its Fourier tfransform is
compressed.

SUB:ES UNIT:2




Discrete Time Fourier Transform

8.Differentiation in Frequency

If a{n]<F— X(e’).

Differentiate both sides of the analysis equation X (e’®)= > x[nle

dxX "y
dw

H=—00

= > — jnxnle’™"

.
—Jjon

n=—x

115

The right-hand side of the above equation is the Fourier fransform of - jnx[n] . Therefore,

multiplying both sides by |, we see that

9.Parseval’s Relation

nx{n]<«——j

dX (&)

dw

If a[n]e«— X(e’). then we have

|

+00 > _ }‘2
n;m‘x[ﬂ]‘ =5 b X(&™™| dw
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A system is said to be linear when it safisfies superposition and homogenate principles. Consider two

systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the
superposition and homogenate principles,

T[al x1(t) + a2 x2(t)] = al T[x1(t)] + a2 T[x2(t)]
~T[al x1(t) + a2 x2(t)] = al yl(t) + a2 y2(t)

From the above expression, is clear that response of overall system is equal to response of individual
system.

Example: y(t) = 2x(t)
Solution:
y1 () =T[x1(t)] = 2x1(t)
y2 (1) =T[x2(t)] = 2x2(t)
T [al x1(t) + a2 x2(t)] =2[ al x1(t) + a2 x2(t)]

Which is equal to alyl(t) + a2 y2(t). Hence the system is said to be lisvaesr. UNIT:2
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The impulse response of a system is its response 1o the input §(f) when the system is initially
at rest. The impulse response is usually denoted h(t). In other words, if the input to an

initially at rest system is §(t) then the output is named h(t).

§(t) ht)

B svstem

liner Ti iant (LTV) and Liner Time Invarignt (LT1) Syst

If a system is both liner and tfime variant, then it is called liner time variant (LTV) system.

If a system is both liner and fime Invariant then that system is called liner time invariant

(LTI) system.
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Response of a continvuous-time LTl system and the convolution integral

Impulse Response:

The impulse response h(t) of a confinuous-time LTl system (represented by T) is defined to
be the response of the system when the input is 6(t), thatis,

h(t)=T1{6(f)} (1)
Response to an Arbitrary Input:
The input x( t) can be expressed as
x()= [ x(r)d(t—rydr (2)

Since the system is linear, the response y( t of the system to an arbitrary input x( t ) can be
expressed as (1) = Ti(0) =T{f

— |

ks

x(7)8(t —T]dT}

= fx x(T)T{8(t — 7)) dr
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Since the system is time-invariant, we have

h(t=7)=T{3(t~7)) ™

Substituting Eq. (4) into Eq. (3), we obtain
y{:}=f x(7)h(t —7)dr ——(5)

- =

Equation (5) indicates that a confinuous-time LTl system is completely characterized by its
Impulse response h( t).

Convolution Integrail:

Equation (§) defines the convolution of two continuous-time signals x ( ) and h(f) denoted

o

By y(l)=x(l)*h(!)=[ x(r)h(t=1)dr — (6)

x
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Equation (6) is commonly called the convolution integral.

Thus, we have the fundamental result that the output of any continuous-time LTI system is
the convolution of the input x ( t ) with the impulse response h(t) of the system.

The following figure illustrates the definition of the impulse response h(t) and the
relationship of Eq. (6).

8(7) LTI h(r)
e = e EeS
x(1) R ¥(1) = x(1) » h(1)

Fig. : Continuous-time LTI system.
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Properties of the Convolution Integral:

The convolution integral has the following properties.

1. Commutative:
x(t)*h(t)=h(t)*x(t)
2. Associative:
(x() < hy(1)) # hy(t) = x(e) e {hy(1) * hyf1))
3. Distributive:
x(t) by (0)) + (1)) =x()* by () + (1) £ hof)
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Step Response:

The step response s(t) of a continuous-time LTl system (represented by T) is defined to
be the response of the system when the input is u(t); that s,

S(h)=T{u(1)}

In many applications, the step response s(t) is also a useful characterization of the
system.

The step response s(f) can be easily dgfermined by,

s(:)=h(r)w(:)=j h(ﬂr)u(r—a-)dfr=f1h(fr}dar

a2 =

Thus, the step response s(t) can be obtained by integrating the impulse response h(t).

Differentiating the above equation with resr;re(c’a to 1, we get
s( 1

Thus, the impulse response h(t) can be determined by differentiating the step response
s(t).
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Distortion less transmission through a system:

123

Transmission is said to be distortion-less if the input and output have identical wave
shapes. i.e., in distortion-less fransmission, the input x(f) and output y(t) satisfy the

condition:
y () = Kx(t - 1d)
Where td = delay time and
k = constant.

Take Fourier fransform on both sides
FT[ vy (t)] = FT[KX(t - td)]

= K FT[x(t - td)]
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According fo time shifting property,  y(w) = KX(w)e-i

Thus, distortion less transmission of a signal x(t) through a system with impulse response h(t) is achieved when

|H(®) | =K and (amplitude response) }@(w) by <Bnfly DhaverEsTOREE

t |Hew) s P(w)

W

: -0t
Amplitude response Phase response

A physical fransmission system may have amplitude and phase responses as shown below:

‘ '”((l))‘ k ) (M(I))

R \\
x L ()
/ k A
() N\,
%
\
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» Theorems of
communication and
information theory are
t f
0 0
a)

Bandwidth

xq(t) Peal

based on the
assumption of strictly
band limited channels *0) 1 XAf)]

The mathematical
description of a real
signal does not permit . f
0 0
(c)

the signal to be strictly

duration limited and _ e |
Figure 1.19 (a) Strictly bandlimited signal in the time domain. (b) In

StriCt]y band limited. the frequency domain. (c) Strictly time limited signal in the time domain.
(d) In the frequency domain.

( (b)

(d)
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' Different Bandwidth Criteria

sin n(f — [T |? .
General shape of G:(f) = T[—'nT}'__ﬁﬂ_"'] (Q) Half—power bandwidth.

power spectral ------ ’ \

density (PSD) (b) Equivalent
rectangular or noise

equivalent bandwidth.

(€) Null-to-null bandwidth.
= L fe ferz (d) Fractional power
= containment
‘ o ‘ bandwidth.
- (c) -]
, (d) N () Bounded power
& (e) 35 dB X spectral density.
- (e) 50 dB -| () Absolute bandwidth.

Figure 1.20 Bandwidth of digital data. (a) Half-power. (b) Noise equiv-
alent. (c) Null to null. (d) 99% of power. (e) Bounded PSD (defines atten-
tuation outside bandwidth) at 35 and 50 dB.
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FILTERING
One of the most basic operations in any signal processing system is filtering.

127

Filtering is the process by which the relative amplitudes of the frequency components in

a signal are changed or perhaps some frequency components are suppressed.

For continuous-time LTl systems, the spectrum of the output is that of the input multiplied

by the frequency response of the system.

Therefore, an LTl system acts as a filter on the input signal. Here the word "filter" is used 1o

denote a system that exhibits some sort of frequency-selective behavior.

Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of

frequencies and completely rejects the rest.

The band of frequencies passed by the filter is referred to as the pass band, and the

band of frequencies rejected by the filter is called the stop band.
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The most common types of ideal frequency-selective filters are the
following.

Ideal Low-Pass Filter:

An ideal low-pass filter (LPF) is specified by

T ol <w,

0 lo|> o,

The frequency wc is called the cutoff frequency.
Ideal High-Pass Filter:

An ideal high-pass filter (HPF) is specified by

0 ol <o,

[H(w)|=

H(w) =

1 lw| >0,
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Ideal Bandpass Filter:
An ideal bandpass filter (BPF) is specified by

| w|<|w|<w:

H(w) =
\H(w)l 2

otherwise

Ideal Bandstop Filter:
An ideal bandstop filter (BSF) is specified by

| <lwl €,
IH(w)|= I W, wl W,

otherwise
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The following figures shows the magnitude responses of ideal filters

IH(w)l IHw)l

ey
EY

Fig: Magnitude responses of ideal filters (a) Ideal Low-Pass Filter (b)ldeal High-Pass Filter
© Ideal Bandpass Filter (d) Ideal Bandstop Filter
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|Causallty and Stability

h(t) =0, t<O0O
o Causality : It does not respond before the excitation is applied
o Stability
= The output signal is bounded for all bounded input signals

(BIBO)
\x(1)| <M forallz

|y(1)| = |j h(z)x(t-1)d7

| <[ \h(T)x(t—T)dT .
} I ly(D)] < M_[ tlh(r)ldr

l[ h(r)dr
= An LTI system to be stab

2 The impulse response h(t) must be absolutely integrable

0_The necessary and sufficient condition for BIBO stability of a linear
time-invariant systefn n |h(t)dr <o (2.100)
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Paley-Wiener Criterion

a The frequency-domaii W
equivalent of the
causality requirement o)
j |a(f)| OO B 0 B f
1 + f (n)
H( |
LA
f\ WM/\
~fc~-B f . +B !
Ficurr 2,22  lllustration of the definition of system bandwidth

(@) Low-pass system. () Band-pass system
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Spectral Density

= The spectral density of a signal characterizes the distribution
of the signal’s energy or power in the frequency domain.

= This concept is particularly important when considering
filtering in communication systems while evaluating the signal
and noise at the filter output.

= The energy spectral density (ESD) or the power spectral
density (PSD) is used in the evaluation.

SUB:ES UNIT:2

133




SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

{ Energy Spectral Density (ESD)

Energy spectral density describes the signal energy per unit
bandwidth measured in joules/hertz.

Represented as y (), the squared magnitude spectrum

w. ()=|XA|

According to Parseval’s theorem, the energy of x(t):
E, = [x*(dt= [[X(DF df

-0

Therefore: 2
E, = [y (Ddf

The Energy spectral density is symmetrical in frequency about
origin and total energy of the signal x(t) can be expressed as:

E, =2[w, () df

0
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I Power Spectral Density (PSD)

= The power spectral density (PSD) function G (f) of the
periodic signal x(7) is a real, even, and nonnegative function of
frequency that gives the distribution of the power of x(7) in the

frequency domain.
= PSD is represented as: & 5
i G, ()= D IC,P6(f —nfy)

n=-co

» Whereas the average power of a periodic signal x(t) is

represented as:  #F - )
P=— [ x*>®dt=>|C,
7:) —T5/2 n=-owo

= Using PSD, the average normalized power of a real-valued
signal is represented as:

P = TGx(f)df =2TGx(f)df
—c0 0
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We know that for a contfinuous-time LTI system with impulse response h(t), the output y(t)of
the system to the complex exponential input of the form es'is,

(1) =T(e") = H(s)e"

x

Definition: H(s)= f_xh{f)f' dt

The function H(s) is referred to as the Laplace transform of h(t). For a general continuous-
time signal x(t), the Laplace transform X(s) is defined as,

b i

X(s)= f x(r)e " di
The variable s is generally complex-valued and is expressed as,

s=0+]w
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Relation between Laplace and Fourier transforms:

Laplace transform of x(t)

X(8) = [°, x(t)e *dt
Substitute s= o + jw in above equation.
— X(o+ jw) = [* z(t)e ")t

= [0 [z(t)e e > dt
. X(8) = F.Tlz(t)e .
X(8)=Xw) fors=jw

SUB:ES

UNIT:2

137




LAPLACE TRANSFORM

We know that
X(8) = F.T[z(t)e ]

s z(t)e = F.T [X(S)] = F.T '[X(0 + jw)]
=37 [* X(0+ jw)er dw
z(t) = e 5= [7 X(o+ jw)e! dw
- i [ °°x X(o+ juw)elot it dy.
Here, 0+ jw = §

jdw = ds — dw = ds/j
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Conditions for Existence of Laplace Transform:
Dirichlet's conditions are used to define the existence of Laplace transform. i.e.
The function f has finite number of maxima and minima.

There must be finite number of discontinuities in the signal f ,in the given interval of
time.

It must be absolutely integrable in the given interval of time. i.e. foo ]f(t)\dt < 50
Initial and Final Value Theorems x

If the Laplace transform of an unknown function x(t) is known, then it is possible to determine
the initial and the final values of that unknown signal i.e. x(t) at t=0* and t=,

Initial Value Theorem
Statement: If x(t) and its 1st derivative is Laplace fransformable, then the initial value of x(t) is

givenby z(0") = hm SX(S)
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Final Value Theorem
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Statement: If x(t) and its 1st derivative is Laplace transformable, then the final value of x(t) is

given by, g(o0) = lim SX(S)

S0
Properties of Laplace fransform:
The properties of Laplace fransform are:
Linearity Property

If 2(2) 2 X(s)

& Y(t) > ¥ (s)

Then linearity property states that

az(t) + by(t) <« aX(s) 4 bY(s)
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L.T
Time Shifting Property If 2(t) +— X(s)
Then time shifting property states that

z(t —ty) Sve sto X (s)

i 2(t) e X(s)

Frequency Shifting Property Then frequency shifting property states that

T
%t 2(t) +— X(s — s¢)

Fa(t) < X(s)

: Then ti | tates that
Time Reversal Property en time reversal property states
LT
z(—t) +— X(—s)
SUB:ES
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Time Scaling Property .y T, v

Then time scaling property states that

z(at) —— LX(2)

lal

|tn

| L.
Differentiation and Integration Properties  f z(t) «— X(s)
Then differentiation property states that

dz(t) L.T
dt()< > 5. X(s)

The integration property states that d"z(t) L.T

= < (8)". X(s)

[z(t)dt <= LX(s)

[If... [z(t)dt <= LX(s)
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Multiplication and Convolution Properties
L.T
If (t) +— X(s)

and y(£) s ¥(s)

Then multiplication property states that

x(t). y(t) <L'T> 21j X(s) xY(s)

m

The convolution property states that

#(8) w (D) e—s X(3).Y(5)
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Region of convergence
The range variation of o for which the Laplace transform converges is called region of

convergence.
Properties of ROC of Laplace Transform Strip Line iff S-plane
ROC contains strip lines parallel to jo axis in s-plane. &z

[/
/

If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-plane.
If x(t) is a right sided sequence then ROC : Re{s} > co.
If x(t) is a left sided sequence then ROC : Re{s} < co.

If x(t) is a two sided sequence then ROC is the combination of two regions.
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Example 1: Find the Laplace transform and ROC of x(1)=e- at u(t) x(t)=etuy(t)

L.T[z(t)] = L.T[e — u(t)] = cL-

Re > —a
ROC : Res >> —a

/

/
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Example 2: Find the Laplace fransform and ROC of x(1)=e at u(-t) x(t)=etu(-1)

L. T(x(t)] = L. Te™u(t)] = o=
Res < a
ROC : Res < a
S-plane
joo el
/;
/// >
/‘ a O
//
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Example 3: Find the Laplace transform and ROC of x(t)=e —at u(t)+e at u(-t)

X(1)=e~u(y+eu() L pio(e) = L. Tle-tu(t) + ertu(~t)] = £ + <=

For S%}Re{s} > —a

For -‘S{TRe{s} <a

S-plane

0 7 O

Referring to the above diagram, combination region lies from —a to a. Hence, ROC:
—a<Res<a SUB:ES UNIT:2
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Causality and Stability
For a system to be causal, all poles of its fransfer function must be right half of s-plane.

jw
AN
poles
XK
o
A system is said to be stable when all poles of its transfer function lay on the left half of s-
plane. :
jw
A
poles
KX >
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A system is said to be unstable when at least one pole of its fransfer function is shifted to the
right half of s-plane.

jw
A
poles
XK K—>
A system is said to be marginally stable when at least one pole of its transfer function lies on
the joo axis of s-plane j
N
poles X
XX >
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LAPLACE TRANSFORMS OF SOME COMMON SIGNALS

Unit Impulse Function §(t):

(1)) = [ (e dr=1  alls
Unit Step Function u(t):

2l :)]—[ u(t)e™ di = je-“m

0*

= - Re(s)> 0

where 07 =lim, _ (0 +¢).
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Some Laplace Transforms Pairs:
L

[

x(r) X(s) ~ ROC
a(t) 1 All 5
1
() — Re(s) >0
5
1
—ul—1) — Re(s) <0
5
1
() 7 Re(s) >0
k!
t*ulr) — Re(s) >0
3
1
e () Re(s) > —Rela)
s+a
1
l—e g —1) Re(s) < —Rel(a) |
T 5+ a
1
te " ul(t) —_— Re(s) > —Rela)
(s +a)
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Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful
mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as
2.T(a(n)] = X(Z) = Ze&_s(n)2 "

The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

L.T(e(n)| = X(2) = I ja(n) "

Z-tfransform may exist for some signals for which Discrete Time Fourier Transform (DTFT) does

not exist. SUB:ES UNIT:2
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Concept of Z-Transform and Inverse Z-Transform
Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as

X(Z)=32 _  2ln)z ... .. (1)
IfZ= re-’“’ then equation 1 becomes
X(re) =32 _ x(n)[re]
=X® __a(n)[r e ™
X(re™) = X(2) = F.T[z(n)r ... ... (2)
The above equation represents the relation between Fourier tfransform and Z-transform
X(2)),—g = F.Tlz(n)].
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Inverse Z-transform: X(re™) = F.T[z(n)r "]
z(n)r—" =F.T [ X(re]

z(n) =r F.T{X(re")]
=71 [ X(relw)e’ dw

= o [X(relw)[re™"dw... ... (3)

Substitute re/ = z.
dz = jre’dw = jzdw
dw = %z‘ldz

Substitute in equation 3.

3 = z(n) =5 [ X(2)2" 227 1dz = 5y = [ X(z)2"Ydz
x@= 3 o

z(n) = 2—/ X(2)z" 1dz SUB:ES UNIT:2
W)
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Z-Transform has following properties:
Linearity Property:

Z.T
If z(n) +— X(2)
Z.T
and y(n) +— Y(2)
Then linearity property states that

axz(n)+by(n) s aX(Z)+bY(Z)
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Time Shifting Property:

If 2(n) <=5 X(2)

Then Time shifting property states that

Z.T
z(n—m) +— z mX(Z)
Multiplication by Exponential Sequence Property:

If z(n) Kt X(2)

Then multiplication by an exponential sequence property states that

a" . z(n) £> X(Z/a)
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Time Reversal Property:

If z(n) £> X(2)

Then time reversal property states that
Z2.T
z(—n) +— X(1/2)

Differentiation in Z-Domain OR Multiplication by n Property:

f 2(n) e X(2)

Then multiplication by n or differentiation in z-domain property states that

: LT . . d*X(2)
K 1Tk k
n*z(n) +— [-1]*2 —

SUB:ES UNIT:2




Z-TRANSFORM

Z.T
Convolution Property: If z(n) +— X(Z)
A
and y(n) +— Y(2)

Then convolution property states that

z(n) * y(n) <= X(2).Y(2)

Correlation Property:
Z.T
If z(n) +— X(2)

and y(n) &= Y(2)

Then correlation property states that

z(n) ® y(n) «— X(2).Y(Z 1)
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Initial Value and Final Value Theorems
Initial value and final value theorems of z-transform are defined for causal signal.
Initial Value Theorem

For a causal signal x(n), the initial value theorem states that

2(0) = lm, .0 X(2)

This is used to find the initial value of the signal without taking inverse z-transform
Final Value Theorem

For a causal signal x(n), the final value theorem states that

x(00) = lim,_,;[2 — 1| X(2)

This is used to find the final value of the signal without taking inverse z-transform
SUB:ES UNIT:2
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Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of convergence
of z- transform.
Properties of ROC of Z-Transforms
ROC of z-transform is indicated with circle in z-plane.

ROC does not contain any poles.

If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is entire z-plane except at z

= 0.
If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z-plane except
atz = «,

If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radius a.
i.e. |z| > a.

If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle with radius
a.i.e. |z]| <a.

f x(n) is a finite duration two sided sequence, then the ROC is entire z-B{Biffe except at z VW& 7 = «.
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Example 1: Find z-transform and ROC of a "u[n]+a ~ "u[-n—1] a"u[n]+a""u[-n—1]
Z.T[a"u[n]] + Z.T[a "u[-—n — 1]] =

Z Z
Z—-a + z-1

a

1
ROC': |z| > a ROC:|z|<Z

The plot of ROC has two conditions asa > 1 and a < 1, as we do not know a.

- 2 -
unit circle unit circle

In this case, there is no combination ROC.
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H H A
unit circle 1 unit circle
| ,a< 1/a>1
o
-
il >
- T— e
1/a
\
/ \

Here, the combination of ROC is from a<|z]|<1/a

Hence for this problem, z-transform is possible when a < 1.
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Causality and Stability
Causality condition for discrete time LTI systems is as follows:
A discrete time LTI system is causal when,

ROC is outside the outermost pole.

In The tfransfer function H[Z], the order of numerator cannot be grater than the order of
denominator.

Stability Condition for Discrete Time LTI System:s:
A discrete time LTI system is stable when
its system function H[Z] include unit circle |z|=1.

all poles of the transfer function lay inside the unit circle |z | =1.
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Property Sequence Transform ROC
x[n] X(z) R
x‘[n] Xl(Z) R|
x,[n) X(2) R,
Linearity a,x,[n]+a,x,[n) a,X(z)+a,X,(z) R'DR,NR,
Time shifting x[n —n,) z""X(z) R'DRN{0 < |z]| < )}
Z
Multiplication by z[ zhx[n) X( ;—) R' =|z,lR
0
Multiplication by e’/®" e/ x(n] X(e #fz) R'=R
1 1
Time reversal x[ —n) X( —) R = —
2z R
e dX(z)
Multiplication by n nx[n) -z - R' =R
2. 1
Accumulation 2. x[n] ﬁ;X(Z) R'DRN{lz]>1)
k= — o e
Convolution x,[n]* x,[n] X(z)X,(2) R'DOR,NR,
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Inverse Z fransform:

Three different methods are:
Partial fraction method
Power series method

Long division method

Partial fraction method:
o In case of L11 systems, commonly encountered form of z-transform is

B
X(z) = —:j—i

by+ by i+ bj.q‘;z"'”
X(2) =

T

a+az +.. Fayr A
Usually M < N
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where B(z) now has the order one less than the denominator polvno-

mial and use partial fraction method to find Ztransform

e The inverse z—transform of the terms in the summation are obtained

from the transform pair and time shift property

1 «—=— 3[r]

z " «Z . Sl — )

e If X(=z) is expressed as ratio of polynomials in = instead of z—! then

convert into the polynomial of =z 1

e Convert the denominator into product of fArst-order terms

1 - NT

Doy + Oy = —+ .. . + Dpgz
é7nl_lf;v=|(1 — dgz 1)

X(=z) =

where dyi are the poles of X{( =)
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For distinct poles

e For all distinct poles, the X(z) can be written as

J'\" Ak

X(z) =
() k;(l—dkz')

e Depending on ROC, the inverse z-transform associated with each term

is then determined by using the appropriate transform pair

o We get
8 A

Jv
]—(‘IkZ' 1

Ar(di)" uln]
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e For each term the relationship between the ROC associated with X(2)
and each pole determines whether the right-sided or left sided inverse
transform is selected

For Repeated poles
e If pole d; is repeated r times. then there are r terms in the partial-
fraction expansion associated with that pole

..4,', A,’Z A;
l—dlz“'(l—d,-z“'v)z ..... (l—d,Z l_)r

e Here also. the ROC of X (z) determines whether the right or left sided

inverse mransform is chosen.

z A
(l — dz ~|)ll)‘

(n+1)... (24 m—1)
(72— 1)!

A (d;) ™ ul ) with ROC|z| = d;
e If the ROC is of the form |z| < ;. the left-sided inverse z-transform is

chosen, ie.

A -
(I —diz—")™" with ROC|z| = d;

SUBIES UNII:Z
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Deciding ROC

e The ROC of X(z) is the intersection of the ROCs associated with the

individual terms in the partial fraction expansion.

e In aorder to chose the correct inverse z-transform. we must infer the

ROC of each term from the ROC of X(2).
e By comparing the location of each pole with the ROC of X{(z).

e Chose the right sided inverse transform: if the ROC of X(z) has the

radius greater than that of the pole associated with the given term

e Chose the left sided inverse transform: if the ROC of X(z) has the

radius less than that of the pole associated with the given term

SUB:ES UNIT:2




Z-TRANSFORM

170

Partial fraction method
e It can be applied to complex valued poles

= Generally the expansion coefficients are complex valued

e If the coefficients in X(z) are real valued, then the expansion coeffi-
cients corresponding to complex conjugate poles will be complex con-

jugate of each other
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*

— e Here we use information other than ROC to get unique inverse trans-

form
e We can use causality, stability and existence of DTFT

e If the signal is known to be causal then right sided inverse transform is

chosen

e [fthe signal is stable. then t is absolutely summable and has DTFT

e Stability is equivalent to existence of DTF'T, the ROC includes the unit
circle in the z-plane, ie. |2zl = 1

e The inverse z-transform is determined by comparing the poles and the
unit circle

e [fthe pole is inside the unit circle then the right-sided inverse z=transform
is chosen

e [fthe pole is outside the unit circle then the left-sided inverse z-transform

is chosen

- e AR LRERY
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Power series expansion method

o Lxpress X(z) as a power series in z~

' or zas given in ztransform equa-

lion
The values of the signal x[n] are then given by coefficient associated

with z—"
Main disadvantage: limited to one sided signals

Signals with ROCs of the form |z > aor |Zz] < a

If the ROC is |z > a. then express X(z) as a power series in z ! and
we get right sided signal
If the ROC is |z] <~ a, then express X(z) as a power series in zand we

get left sided signal
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I.ong division method:

e Find the Zmransform of

1
X2 == 2 —i—]z l.\-\"ith ROC |z > é

e Solution is: use long division method to write X(z) as a power series

in z !, since ROC indicates that x{zn] is right sided sequence

e We get
X(2=2+2z14+=z Z—i——%z e

e Compare with z-transform

o

X(2D= >  xldz"
Y o— —
SUB:ES UNIT:2
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x{n| = 28[n| +28[n— 1| +8[n— 2]

—i—%ﬁ[n—?»]—i—...

e If we change the ROC to |z| < % then expand X(z) as a power series

in z using long division method
e We get
X(z2) = —2—8z— 162z — 3223+ ...

e We can write x{n| as
x{n| = —206[n] —80[n+ 1] — 168[n+ 2]

—328[n+3]+...
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X(=Z) — & .with ROC all z except |z = ==

e Solution is: use power series expansion for e and is given by

=35

k=0

e We can write X (=) as
co 2k
X(z) — Z !

|
i—a X

e We can write x[s7] as

Q) r2 — 0 or rzis odd

W. otherwise
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Example: A finite sequence x [ n ] is defined as x[n] = (5,3,-2,0,4,- 3}
Find X(z) and its ROC. !
Sol: We know that

% E

X(z)= ) x[n]z7"= ) x[n]z™"

n=-u n= -1
=x( =22t +x(= 1)z (0] +x[1) 2 +x{2)z 24 x[3)
=5 +3- 244703
For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will

converge. Note that X ( z ) includes both positive powers of z and negative powers of z.
Thus, from the result we conclude that the ROC of X (z) is 0 <lzl <m.
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Example: Consider the sequence x[n] = {aﬂ O<nsN-1,a>0
0 otherwise

Find X ( z) and plot the poles and zeros of X(z).

Sol: N y
N-| 1~ (az™") AR

X(z)= }:ﬂ = L (e) = =

! | -az z Z=a

From the above equation we see that there is a pole of ( N - 1)/ order at z =0 and a pole at
z=a. Since x[n] is a finite sequence and is zero for n <0, the ROC is Iz > 0. The N roots of
the numerator polynomial are at

=N k=00, N
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The root at k = 0 cancels the pole at z = a. The remaining zeros of X ( z ) are at

_ agllTk/N)
I, =ae

k=1,...,N-1

The pole-zero plot is shown in the following figure with N=8

(M- 1)th
order pole

Imiz)

z-plane

Y. Pole-zero cancel
L1

Reiz}
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