Time: 15 mins Name:

Std. Number:

Quiz 1

- 1. Determine if each of the following functions can be a valid cumulative distribution function (CDF). For each function, provide a brief explanation of why the function does or does not qualify.
 - (a) $F(x) = \frac{0.5}{1+e^{-x}}$

Solution:

- This function is non-decreasing and satisfies F(x) = 0 as $x \to -\infty$, but it fails to reach 1.
- **Conclusion:** Not a valid CDF.

(b)
$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 0.5 & \text{if } 0 \le x \le 1\\ 1 & \text{if } x > 1 \end{cases}$$

Solution:

- The function is not right-continuous at x = 1.
- Conclusion: Not a valid CDF.

(c)
$$F(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x^2 & \text{if } 0 < x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$$

Solution:

- The function is non-decreasing and smoothly transitions from 0 to 1.
- Conclusion: Valid CDF.

(d)
$$F(x) = 0.9 + 0.1\sin(x)$$

Solution:

- This function is not non-decreasing.
- **Conclusion:** Not a valid CDF.
- 2. Using n samples from the joint distribution of X and Y, provide an estimate for the covariance function Cov(X, Y). Explain why this estimate is accurate by applying the Law of Large Numbers.

Solution: To estimate the covariance Cov(X, Y), use *n* samples from the joint distribution of X and Y:

$$\widehat{\operatorname{Cov}}(X,Y) = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)$$

where \overline{X} and \overline{Y} are the sample means of X and Y, respectively.

Justification: By the Law of Large Numbers, as $n \to \infty$, the sample means \overline{X} and \overline{Y} converge to the true expected values $\mathbb{E}[X]$ and $\mathbb{E}[Y]$, and the sample covariance $\widehat{Cov}(X,Y)$ converges to the true covariance Cov(X,Y). Thus, the estimate becomes more accurate with larger n.