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1. Metropolis-Hastings Algorithm Pseudo-code

Find the errors in the following pseudo-codes and explain the reasons. Please note that x, x′,
and xis in general all represent samples drawn from the distribution. These samples correspond
to the states of the Markov Chain we are sampling from.

(a) Initialize:
• Choose an initial state x0.
• Set n = 0.

(b) While n < N :
a. Propose a new state x′ using the proposal distribution Q(x′ | xn).
b. Calculate the acceptance ratio:

r =
P (x′) ·Q(x′ | xn)
P (xn) ·Q(xn | x′)

c. • Generate a random number u ∼ U(0, 1).
• If u > min(1, r):

– Accept x′, set xn+1 = x′.
• Otherwise:

– Reject x′, set xn+1 = xn.
d. Increment n: n = n+ 1.

(c) Return the set of samples {x1, x2, . . . , xN}.

Solution:

• The acceptance rate is: r = P (x′)·Q(xn|x′)
P (xn)·Q(x′|xn)

. This acceptance rate ensures the generated
samples approximate the target distribution P(x) and converge to it in the long run. This
rate is designed to satisfy the detailed balance condition, which guarantees reversibility of
the Markov chain. As a result, P(x) becomes the stationary distribution of the chain.
Let P (x) be the target distribution and Q(x′|x) be the proposal distribution. The transition
probability from state x to x′ is given by:

T (x′|x) = Q(x′|x)min
(
1,

P (x′)Q(x|x′)
P (x)Q(x′|x)

)
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To prove reversibility, we need to show that:

P (x)T (x′|x) = P (x′)T (x|x′)

We consider two cases:
(a) Case 1: P (x′)Q(x|x′) ≥ P (x)Q(x′|x)

P (x)T (x′|x) = P (x)q(x′|x) · 1
= P (x)q(x′|x)

P (x′)T (x|x′) = P (x′)q(x|x′)min
(
1,

P (x)q(x′|x)
P (x′)q(x|x′)

)
= P (x′)q(x|x′) · P (x)q(x′|x)

P (x′)q(x|x′)
= P (x)q(x′|x)

(b) Case 2: P (x′)q(x|x′) < P (x)q(x′|x)

P (x)T (x′|x) = P (x)q(x′|x) · P (x′)q(x|x′)
P (x)q(x′|x)

= P (x′)q(x|x′)

P (x′)T (x|x′) = P (x′)q(x|x′) · 1
= P (x′)q(x|x′)

In both cases, we have shown that:

P (x)T (x′|x) = P (x′)T (x|x′)

This proves that the balance condition is satisfied, and thus the Markov chain is re-
versible with respect to the target distribution P (x) and converges to the target dis-
tribution.

• If u ≤ min(1, r), accept. The other condition leads an acceptance rate of 1−r and therefore
the above properties are not hold in that case.

2



2. Gibbs Sampling vs Metropolis-Hastings Algorithm

Gibbs sampling is a specialized variant of the Metropolis-Hastings algorithm with a key distin-
guishing feature. Taking this specific characteristic into account, let’s compare Gibbs Sampling
with the general Metropolis-Hastings algorithm in terms of the following aspects. Please provide
brief explanations for your answers.

(a) Proposal Distribution (What are the specific conditions for the proposal distributions
used in each of them?)

(b) Acceptance Step (Is the step the same for both of them?)
(c) Complexity (Is there any difference between their computational complexity in any step?)
(d) Efficiency (When both of the algorithms can be applied, which would provide the required

samples faster?)
(e) Use case (In which situations / problems, Gibbs Sampling is preferred to the Metropolis-

Hastings Algorithm?)

Solution:

(a) Proposal Distribution
In Gibbs Sampling, the conditional distributions of one variable given the others are used as
the proposals. In Metropolis Hastings algorithm in general, any proposal distribution can
be used as the proposal (Definitely, we would prefer a proposal that closely approximates the
target distribution while remaining computationally efficient. This strategy typically results
in fewer rejections, faster convergence, and overall improved efficiency of the sampling
process).

(b) Acceptance Step
There is a acceptance rate in the general Metropolis-Hastings algorithm, while due to the
specific proposal used in the Gibbs Sampling, the rate is 1 and all samples are accepted.

(c) Complexity
In Gibbs sampling, we sample for one variable given the values of the others at a time.
For N random variables, we need to sample N times for each variable. Considering the
complexity of the conditional distribution to be O(C), the total complexity of generating
each sample is of O(NC).
In the general Metropolis-Hastings algorithm, considering no specific feature for the pro-
posal, we have a N-dimensional joint distribution to sample from. Therefore, both sampling
from the joint distribution and calculating the probabilities for the acceptance step is of
O(CN ) complexity.

(d) Efficiency
Considering the previous item, Gibbs Sampling is more efficient and would produce the
samples faster. Additionally, there is no rejection and all samples are accepted leading to a
faster convergence. Therefore it is more efficient.

(e) Use case
Gibbs Sampling, while effective in many scenarios, faces a significant limitation when con-
ditional distributions are difficult to calculate or sample from. In such cases, the general
Metropolis-Hastings algorithm may be more efficient, especially when using simpler pro-
posal distributions with independence assumptions. Consequently, Gibbs Sampling is not
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always the preferred choice over the general version. However, in situations where condi-
tional distributions are easily calculated and sampled, Gibbs Sampling often outperforms
the general Metropolis-Hastings algorithm in terms of efficiency. Thus, the choice between
these methods depends largely on the specific characteristics of the problem at hand and
the computational feasibility of sampling from conditional distributions.
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