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1. (a) Inverse Transform Sampling requires computing the inverse CDF
(F−1), which often lacks analytical form and is computationally ex-
pensive, especially for multivariate distributions.

(b) A good proposal distribution in Importance Sampling is essential
since efficiency depends on its similarity to the target distribution.

poor choices cause high variance in weights and inadequate sampling
of important regions.

(c) Rejection sampling becomes inefficient when acceptance rates are
low, particularly in high dimensions, when target and proposal dis-
tributions differ significantly.

(d) The burn-in period in MCMC involves discarding initial samples to
allow chain convergence to the stationary distribution, with its length
depending on the starting point and mixing rate.

2. (a)

FX(x) =

∫ x

0

fX(t)dt =

∫ x

0

et

e− 1
dt =

[
et

e− 1

]x
0

=
ex − 1

e− 1

⇒ FX(x) =


0 x < 0
ex−1
e−1 0 ≤ x ≤ 1

1 x > 1

(b) To find the inverse CDF, solve FX(x) = y for x:

y =
ex − 1

e− 1

⇒ ln[y(e− 1) + 1] = x

⇒ F−1
X (y) =


0 y < 0

ln[y(e− 1) + 1] 0 ≤ y ≤ 1

1 y > 1
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(c)

X = F−1
X (U)

= ln

[
1√
e+ 1

(e− 1) + 1

]
= ln

[
(e− 1) + (

√
e+ 1)√

e+ 1

]
= ln

[
e+

√
e√

e+ 1

]
= ln(

√
e)

=
1

2

3. (a) Deriving the importance sampling estimator:

The expected value can be written as:

EX [X] =

∫
xf(x)dx =

∫
x
f(x)

q(x)
q(x)dx = Eq[Xw(x)]

where

w(x) =
f(x)

q(x)

is the importance weight

Given:

f(x) =
λα

Γ(α)
xα−1e−λx =

1

Γ(2)
x1e−x

(since α = 2, λ = 1)

q(x) = λ0e
−λ0x = 0.5e−0.5x

Therefore:

w(x) =
f(x)

q(x)
=

xe−x

0.5e−0.5xΓ(2)
=

2x

e0.5x

The importance sampling estimator is:

Î =
1

n

n∑
i=1

xiw(xi) =
1

n

n∑
i=1

2x2
i

e0.5xi

(b) For x1 = 2: w(2) = 2(2)
e0.5(2)

= 4
e1 ≈ 1.472

For x2 = 2: w(2) = 2(2)
e0.5(2)

= 4
e1 ≈ 1.472

For x3 = 3: w(3) = 2(3)
e0.5(3)

= 6
e1.5 ≈ 1.337

(b) Estimate of I:
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Î =
1

3
(2 · 1.472 + 2 · 1.472 + 3 · 1.337)

=
1

3
(2.944 + 2.944 + 4.011)

=
9.899

3
≈ 3.3

The selected samples (2, 2, 3) do not well represent our proposal
distribution and we need more samples to have a better estimate of
that.

4. (a) The standard normal PDF is: f(x) = 1√
2π

e−x2/2

Therefore, the truncated PDF is (due to symmetry):

fX(x) =

{
2√
2π

e−x2/2 x ≥ 0

0 x < 0

(b)
fX(x)

g(x)
=

2√
2π

e−x2/2 · 1

2e−2x
=

1√
2π

e−x2/2+2x

Differentiate with respect to x and set to 0:

d

dx
(−x2

2
+ 2x) = −x+ 2 = 0

The maximum value occurs at x = 2:

M =
1√
2π

e−22/2+2·2 =
1√
2π

e−2+4 =
1√
2π

e2

Therefore, the smallest M that satisfies the inequality for all x ≥ 0

is e2√
2π

(c) Generate proposal X from exponential(λ = 2):

u1 = 1− e−λx

⇒ x = − 1

λ
ln(1− u1)

⇒ X = −1

2
ln(U1) where U1 ∼ Uniform(0, 1)

Generate U2 ∼Uniform(0, 1)

Accept X if:

U2 ≤ fX(X)

Mg(X)
=

2√
2π

e−X2/2

( e2√
2π

)(2e−2X)
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=
e−X2/2

e2 · e−2X

= e−X2/2+2X−2

⇒ U2 ≤ e(
1
2 ln(U1))

2/2−ln(U1)−2 = eln(U1)
2/8−ln(U1)−2 =

eln(U1)
2/8−2

U1

5. (a) If 95% of the weight is on only 3 particles, the particle filter is nearly
degenerate. Most particles do not contribute meaningfully, reducing
diversity and increasing the risk of tracking failure.

(b) The Selection (resampling) step duplicates high-weight particles and
discards low-weight ones. This redistributes the weight more evenly,
restoring diversity and mitigating degeneracy.

(c) Use the Effective Sample Size (ESS):

ESS =
1∑
(w2

i )

If ESS falls below a threshold (e.g., half of the number of particles),
perform resampling.

6. (a) The likelihood: L(β0, β1|{Xi, Yi}) ∝ exp(− 1
2σ2

∑n
i=1(Yi−β0−β1Xi)

2)

Prior for β0: p(β0) ∝ exp(− β2
0

2τ2 )

⇒ p(β0|β1, {Xi, Yi}) ∝ exp(− 1

2σ2

n∑
i=1

(Yi − β0 − β1Xi)
2) exp(− β2

0

2τ2
)

n∑
i=1

(Yi − β0 − β1Xi)
2 =

n∑
i=1

(Yi − β1Xi)
2 − 2β0

n∑
i=1

(Yi − β1Xi) + nβ2
0

⇒ p(β0|β1, {Xi, Yi}) ∝ exp(−1

2
[(

n

σ2
+

1

τ2
)β2

0 −
2

σ2

n∑
i=1

(Yi−β1Xi)β0])

β0|β1, {Xi, Yi} ∼ N (

∑n
i=1(Yi − β1Xi)

n+ σ2/τ2
,

σ2

n+ σ2/τ2
)

(b) The likelihood: L(β0, β1|{Xi, Yi}) ∝ exp(− 1
2σ2

∑n
i=1(Yi−β0−β1Xi)

2)

Prior for β1: p(β1) ∝ exp(− β2
1

2τ2 )
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⇒ p(β1|β0, {Xi, Yi}) ∝ exp(− 1

2σ2

n∑
i=1

(Yi − β0 − β1Xi)
2) exp(− β2

1

2τ2
)

n∑
i=1

(Yi−β0−β1Xi)
2 =

n∑
i=1

(Yi−β0)
2−2β1

n∑
i=1

(Yi−β0)Xi+β2
1

n∑
i=1

X2
i

⇒ p(β1|β0, {Xi, Yi}) ∝ exp(−1

2
[(

∑n
i=1 X

2
i

σ2
+

1

τ2
)β2

1−
2

σ2

n∑
i=1

(Yi−β0)Xiβ1])

β1|β0, {Xi, Yi} ∼ N (

∑n
i=1(Yi − β0)Xi∑n
i=1 X

2
i + σ2/τ2

,
σ2∑n

i=1 X
2
i + σ2/τ2

)

5


