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1. [40] In automated food packaging machines, there is always a degree of error. We intend to
purchase and evaluate the performance of several packaging machines for a food company.

(a) There are two machines available for purchase at the same price. Based on their reported
performance specifications, determine which machine has better accuracy. Provide a de-
tailed explanation for your choice.

• Machine Type A : Has 98% accuracy within a range of ±2%.
(This means that if the packaging weight is set to 100 grams, 98% of the packages fall
within the range of 98 to 102 grams.)

• Machine Type B : Has 90% accuracy within a range of ±1%.
(This means that if the packaging weight is set to 100 grams, 90% of the packages fall
within the range of 99 to 101 grams.)

(b) After purchasing the chosen machine, we set it up and configured the target packaging
weight to 100 grams. We measured the weights of 10 samples packaged by the machine,
which are as follows:

106.69, 107.1, 106.74, 106.23, 106.99, 107.72, 106.29, 108.51, 106.59, 106.76

It seems the machine is not packaging correctly. Calculate the P-Value to determine if the
machine is functioning correctly. (α = 0.05)

(c) After reviewing the machine’s user manual, we discovered that the calibration of the ma-
chine degrades over time or due to transportation, introducing bias into its operation.
Therefore, it needs to be recalibrated after transportation or at regular monthly intervals.
The calibration process is iterative, reducing some bias with each step. However, due to
the time-consuming nature of calibration, we decided to repeat it only a few steps. After
each calibration step, 10 samples were taken to check the calibration accuracy of the ma-
chine. The samples taken at the end of each step are shown in Table 1. Based on this data,
determine how many calibration steps are required. (α = 0.05)

(d) After years of use, these machines become worn, leading to operational drift. However,
due to financial constraints, the company does not plan to replace them. As a result, we
must continue the calibration process as before. Based on Table 2, determine how many
calibration steps are required. (α = 0.05) Have we achieved reliable calibration in the end?

Solution:

(a) The errors occurring in this scenario result from the interaction of many small errors in
different parts of the system. Therefore, they can be modeled using a normal distribution.
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Step 1 104.77 105.08 105.35 104.89 104.71 104.47 105.56 106.35 105.65 104.57

Step 2 103.98 102.67 103.63 102.91 103.01 103.95 104.36 103.56 103.53 103.72

Step 3 101.45 101.88 103.18 102.49 103.41 102.19 102.35 101.83 102.79 101.43

Step 4 102.57 101.56 101.66 102.07 102.19 101.86 100.81 101.71 100.74 101.87

Step 5 101.02 101.52 102.33 100.74 100.17 100.65 100.78 100.14 101.08 101.13

Step 6 101.01 100.04 101.58 100.75 100.44 101.04 100.31 100.66 100.39 100.49

Step 7 100.24 100.43 100.26 100.32 100.29 100.35 101.55 100.33 100.56 99.59

Step 8 100.19 101.07 101.18 100.32 100.19 101.11 99.16 101.03 99.53 99.73

Table 1: Sample data after each calibration step during setup

Step 1 91.29 92.64 97.74 95.75 95.71 92.11 98.63 92.13 91.68 91.73

Step 2 94.32 103.45 99.69 97.15 103.12 93.33 108.28 95.24 100.38 92.41

Step 3 99.68 96.11 98.93 103.91 103.2 101.01 95.28 103.29 98.58 94.98

Step 4 95.38 98.92 98.91 103.22 102.2 100.77 96.22 99.41 98.58 97.33

Step 5 107.45 102.52 89.22 98.19 96.73 90.65 101.74 104.21 106.00 98.61

Step 6 99.31 100.88 105.07 102.94 100.91 98.94 98.81 103.21 108.06 98.78

Table 2: Sample data from the calibration process of a worn machine

Consequently, it is necessary to calculate the variance of the distributions for two different
systems and select the system with the lower variance.

• System Type A
If the variance for this system is denoted as σ2

A, then:

x− µ

σA
∼ N (0, 1)

where x represents the weight of the samples, and µ is the weight chosen for packaging.
Based on the description of this system, we have:

P (0.98µ ≤ x ≤ 1.02µ) = 0.98

P

(
0.98µ− µ

σA
≤ x− µ

σA
≤ 1.02µ− µ

σA

)
= 0.98

P

(
−0.02µ

σA
≤ x− µ

σA
≤ 0.02µ

σA

)
= 0.98

Due to symmetry, we have:

−0.02µ

σA
= Φ−1

(
1− 0.98

2

)
= Φ−1(0.01)

σA =
−0.02µ

Φ−1(0.01)

Referring to the z-table, we find:

σA =
−0.02µ

−2.33
= 0.0086µ
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• System Type B
Similar to the previous case, we can write:

σB =
−0.01µ

Φ−1
(
1−0.90

2

) =
−0.01µ

Φ−1(0.05)

σB =
−0.01µ

−1.64
= 0.0061µ

Thus, the variance of system B is smaller, and it has higher accuracy.
(b) If the distribution of x is given as follows, then for x̄, we have:

x ∼ N (µ, σB)

x̄ ∼ N
(
µ,

σB√
n

)

x̄ =
106.69 + 107.1 + 106.74 + 106.23 + 106.99 + 107.72 + 106.29 + 108.51 + 106.59 + 106.76

10
= 106.96

P(|x̄− µ| > (106.96− 100))

⇒ P -Value = 2(1− ϕ

(
106.96− 100

σB√
n

)
) = 2(1− ϕ(36.08)) = 2(1− 1) = 0

As shown, the p-value is approximately zero, indicating that this system is not functioning
correctly.

(c) Here, based on the explanations, we understand that the system’s variance has not changed,
and only the mean has experienced a slight bias. Therefore, we can still use σB for this
calculation. Since the variance is known, the appropriate test here is the z-test.
Given that the variance remains consistent throughout all steps, we calculate the acceptable
range for the mean at each step and then evaluate the steps.

Z =
x̄− µ
σB√
n

The significance level is α = 0.05, so for a two-tailed z-test, the value of |Z| must be less
than |Φ−1(0.025)| = 1.96. Therefore, the permissible range for x̄ is:

| x̄− µ
σB√
n

| < 1.96

⇒ |x̄− 100| < 1.96 · 0.0061 · 100√
10

= 0.378

⇒ 100− 0.378 < x̄ < 100 + 0.378

Now, we calculate the mean for each step.
As observed in table 3, 7 steps are sufficient, and step 8 can be omitted.
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Step x̄

Step 1 105.14

Step 2 103.53

Step 3 102.30

Step 4 101.70

Step 5 100.96

Step 6 100.67

Step 7 100.36

Step 8 100.35

Table 3: Mean of different calibration steps during initialization

(d) Based on the explanations, we understand that the variance of the system has changed over
time. Therefore, we can no longer use the z-test and must instead use the t-test.

t =
x̄− µ

σ̂√
n

σ̂ =

√
1

n− 1

∑
(xi − x̄)2

Since the number of data points is 10, the degrees of freedom will be 9 (df = 9). Based
on the t-test table, for a two-tailed test, the value of |t| must be less than 2.26. Now, we
calculate the value of t for each step.

Step t

Step 1 −6.96

Step 2 −0.77

Step 3 −0.47

Step 4 −1.15

Step 5 −0.24

Step 6 1.71

Table 4: Values of t during different calibration steps for the worn system

From Table 4, we observe that two steps are sufficient for calibration. The reason calibration
completed earlier in this case is that the variance has increased, reducing the packaging
accuracy.

2. [10] In a complete graph with n vertices (n > 1), consider two distinct vertices u and v.

(a) In a simple random walk, what is the expected number of steps to reach vertex v starting
from vertex u?

(b) If a new vertex v′ is added to the graph and connected to v with a single edge, what is the
expected number of steps to reach vertex v′ starting from vertex u?

Solution:

(a) We assume the expected number of steps for vertex v is 0, and for the other vertices, it is
x. Thus, we have:
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x = 1 +

(
n− 2

n− 1
x+

1

n− 1
· 0
)

x = 1 +
n− 2

n− 1
x

1

n− 1
x = 1

x = n− 1

(b) We assume the expected number of steps for vertex v′ is 0, for vertex v is y, and for the
remaining vertices is x. Thus, we have:

x = 1 +

(
n− 2

n− 1
x+

1

n− 1
y

)

y = 1 +

(
n− 1

n
x+

1

n
· 0
)

= 1 +
n− 1

n
x

For x, we can write:

x = 1 +

(
n− 2

n− 1
x+

1

n− 1

(
1 +

n− 1

n
x

))

x = 1 +
n− 2

n− 1
x+

1

n− 1
+

1

n
x

x− n− 2

n− 1
x− 1

n
x = 1 +

1

n− 1

1

n(n− 1)
x =

n

n− 1

x = n2

3. [10] A fair coin is flipped repeatedly until the sequence {Heads,Heads, Tails} is observed. At
this point, the experiment ends.

(a) Model the problem using a Markov chain.
(b) Calculate the expected number of flips until the experiment ends.

Solution:

(a) The Markov chain corresponding to this problem is shown in Figure 3a.
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Figure 1: Markov chain of the coin-tossing problem

(b) If ei represents the expected number of tosses until the end of the experiment starting from
state xi, we have:

e3 = 0

e2 = 1 +

(
1

2
e2 +

1

2
e3

)
⇒ e2 = 2

e1 = 1 +

(
1

2
e2 +

1

2
e0

)
⇒ e1 = 1 +

(
1

2
· 2 + 1

2
e0

)
⇒ e1 = 2 +

1

2
e0

For e0, we have:
e0 = 1 +

(
1

2
e0 +

1

2
e1

)

⇒ e0 = 1 +

(
1

2
e0 +

1

2

(
2 +

1

2
e0

))

⇒ e0 = 2 +
3

4
e0
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⇒ e0 = 8

⇒ e1 = 6

Thus, the expected number of coin tosses is 8.

4. [20] A tourist alternates between traveling for kn days and resting for km days. If kn ∼
uniform(1, n) and km ∼ uniform(1,m) :

(a) Model the state of this tourist as a Markov chain.
(b) Using the model obtained in the previous part, determine the long-term probability that

the tourist is traveling on the i-th day of their trip, given that n0 ≤ i (n0 ≤ n).

Solution:

(a) In Figure 4a, you can see the Markov chain model for the tourist’s trips. In this model, x1
to xn correspond to travel days, and xn+1 to xn+m correspond to rest days.

Figure 2: Markov process for the tourist’s trips

(b) First, we need to determine the stationary distribution of this model. If πi represents the
probability of state xi in the stationary distribution, we have:

π2 =
n− 1

n
π1

π3 =
n− 2

n− 1
π2 =

n− 2

n
π1

π4 =
n− 3

n− 2
π3 =

n− 3

n
π1

(i ≤ n) ⇒ πi =
n− i+ 1

n
π1

7



Similarly, for πn+2 to πn+m:
πn+2 =

m− 1

m
πn+1

πn+3 =
m− 2

m− 1
πn+2 =

m− 2

m
πn+1

(i ≤ m) ⇒ πn+i =
m− i+ 1

m
πn+1

For π1, we have:
π1 =

1

m
πn+1 +

1

m− 1
πn+2 + . . .+

1

1
πn+m

=
1

m
πn+1 +

1

m− 1

m− 1

m
πn+1 +

1

m− 2

m− 2

m
πn+1 + . . .+

1

1

1

m
πn+1

= m
1

m
πn+1 = πn+1

We know
∑

i πi = 1, so:

n∑
i=1

n− i+ 1

n
π1 +

m∑
i=1

m− i+ 1

m
πn+1 = 1

⇒
n∑

i=1

i

n
π1 +

m∑
i=1

i

m
π1 = 1

⇒
(
n(n+ 1)

2n
+

m(m+ 1)

2m

)
π1 = 1

⇒ n+m+ 2

2
π1 = 1

⇒ π1 =
2

n+m+ 2

Now, we compute
∑n

i=n0
πi:

n∑
i=n0

πi

=

n∑
i=n0

n− i+ 1

n
π1

=

n−n0+1∑
i=1

i

n
π1

=
(n− n0 + 1)(n− n0 + 2)

2n

2

n+m+ 2

=
(n− n0 + 1)(n− n0 + 2)

n(n+m+ 2)
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5. [20] An HMM (Hidden Markov Model) with two Hidden States, H0 and H1, and two Visible
States, V0 and V1, is given. The transition probability matrix is denoted by A, the observation
probability matrix by B, and the initial probability vector by π.

A =

[
p 1− p

1− p p

]
, B =

[
0.8 0.2
0.2 0.8

]
, π =

[
1
0

]
If the following sequence is generated by this model, update the value of p by performing one
step of the EM algorithm. (Assume the initial value of p is p = 1

2 .)

0, 1, 0, 1, 1, 0

(Hint: Compute the values of α, β, ξ, and γ.)
Solution:
To compute this, we first need to calculate the values of α, β, ξ, and γ.

α1(i) = πibi(o1)

αk+1(j) =

[∑
i

αk(i)aij

]
bj(ok+1)

α α1() α2() α3() α4() α5() α6()

α(0) 0.8 0.8
2 · 0.2 0.8

22
· 0.8 0.8

23
· 0.2 0.8

24
· 0.2 0.8

25
· 0.8

α(1) 0 0.8
2 · 0.8 0.8

22
· 0.2 0.8

23
· 0.8 0.8

24
· 0.8 0.8

25
· 0.2

Table 5: α values

βK(i) = 1

βk(j) =
∑
i

βk+1(i)ajibi(ok+1)

β β1() β2() β3() β4() β5() β6()

β(0) 1
25

1
24

1
23

1
22

1
2 1

β(1) 1
25

1
24

1
23

1
22

1
2 1

Table 6: β values

ξk(i, j) =
αk(i)aijbj(ok+1)βk+1(j)∑

i′
∑

j′ αk(i′)ai′j′bj′(ok+1)βk+1(j′)

∝ αk(i)aijbj(ok+1)βk+1(j)

∝ αk(i)bj(ok+1)

γk(i) =
αk(i)β(i)∑
i′ αk(i′)β(i′)

∝ αk(i)β(i)
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ξ ξ1() ξ2() ξ3() ξ4() ξ5() ξ6()

ξ(0, 0) 0.2 0.04 0.64 0.04 0.04 0.64

ξ(0, 1) 0.8 0.16 0.16 0.16 0.16 0.16

ξ(1, 0) 0 0.16 0.16 0.16 0.16 0.16

ξ(1, 1) 0 0.64 0.04 0.64 0.64 0.04

Table 7: ξ values

γ γ1() γ2() γ3() γ4() γ5() γ6()

γ(0) 1 0.2 0.8 0.2 0.2 0.8

γ(1) 0 0.8 0.2 0.8 0.8 0.2

Table 8: γ values

∝ αk(i)

aij =

∑
k ξk(i, j)∑
i γk(i)

Using this relation, p can be written as:

p =

∑
k ξk(0, 0) + ξk(1, 1)∑

k γk(0) + γk(1)

=
0.2 + 0.68 + 0.68 + 0.68 + 0.68 + 0.68

6
= 0.6
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Figure 3: z-table
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Figure 4: t-table

12


