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Stochastic Process

Fall 2024
Sharif University of Technology Hamid R. Rabiee

Homework 3 Point Process, Poisson Process, Gaussian Process Solution

1. Let X and Z be IID normalized Gaussian random variables. Let Y = |Z|Sgn(X), where Sgn(X)
is 1 if X ≥ 0 and −1 otherwise. Show that X and Y are each Gaussian, but are not jointly
Gaussian. Sketch the contours of equal joint probability density.
Solution:
Note that Y has the magnitude of Z but the sign of X, so that X and Y are either both positive
or both negative, i.e., their joint density is nonzero only in the first and third quadrant of the
X,Y plane. Conditional on a given X, the conditional density of Y is twice the conditional
density of Z since both Z and −Z are mapped into the same Y . Thus

fXY (x, y) =

(
1

π

)
exp

(
−x2 + y2

2

)
for all x, y in the first or third quadrant.

2. A radioactive source emits particles according to a Poisson process of rate 2 particles per minute.

(a) Compute the probability pa that the first particle appears some time after 3 minutes and
before 5 minutes.

(b) Compute the probability pb that exactly one particle is emitted in the time interval from 3
to 5 minutes.

Solution:

(a) Recall that the time intervals T1, T2, . . . for the jumps of the Poisson process are independent
identically distributed exponential random variables of rate λ = 2. To say that the first
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particle appears some time after 3 minutes and before 5 minutes is the same as to say that
3 < T1 < 5. Hence

pa = P(3 < T1 < 5) =

∫ 5

3
2e−2tdt = −e−2t

∣∣∣5
3
= e−6 − e−10.

(b) For pb, we ask also that there are no other particles arriving in the interval [3, 5], i.e. that
T1 + T2 > 5. Hence

pb = P(3 < T1 < 5, T1+T2 > 5) =

∫ 5

3
fT1(t)P(T2 > 5−t)dt =

∫ 5

3
2e−2te−2(5−t)dt =

∫ 5

3
2e−10dt = 4e−10.

3. Given a normal process x(t) with ηx = 0 and Rx(τ) = 4e−2|τ |, we form the random variables
z = x(t+ 1), w = x(t− 1):

(a) Find E[zw] and E[(z + w)2].
(b) Find fz(z), P{z < 1}, and fzw(z, w).

Solution:
(a)

E{zw} = Rx(2) = 4e−4,

E{z2} = E{w2} = Rx(0) = 4,

E{(z + w)2} = Rx(0) +Rx(0) + 2Rx(2) = 8(1 + e−4).

(b)

• z is normally distributed: z ∼ N (0, 4), so its probability density function is:

fz(z) =
1√
8π

exp
(
−z2

8

)
.

• The probability P{z < 1} is:

P{z < 1} = Φ

(
1

2

)
≈ 0.6915.

• The joint probability density function fzw(z, w) is bivariate normal:

fzw(z, w) =
1

2π · 2 · 2
√

1− (e−4)2
exp

(
− 1

2(1− e−8)

[
z2

4
+

w2

4
− 2e−4 zw

4

])
,

where z ∼ N (0, 4), w ∼ N (0, 4), and their correlation coefficient is e−4.

4. In one of the ancient cities, there was a traditional restaurant that served as the main gathering
place for the city’s residents. Every morning, all the people lined up in front of the restaurant
and entered one by one. Once inside, they chose a table and stayed there until the end of the day.
One of the favorite pastimes of the residents of this city is choosing their table at random. Now,
suppose Nth person in line wants to enter while N − 1 people are already seated . This person
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has two options: can sit at one of the tables that already have people, with the probability of
choosing table k (which currently has nk people seated) given by nk

N−1+α , or alternatively, can
choose a new table with a probability of α

N−1+α , where nk is the number of people already seated
at table k, and α is a fixed constant. Considering this seating process, if the total population of
the city is M , and α is equal to 1, determine the average number of tables occupied in one day.
Express the answer in terms of Hn (Hn =

∑n
i=1

1
i ).

Solution:
nt number of tables at time t, Zt = nt − nt−1

P (Zt = k) =

{
α

t−1+α if k = 1
t−1

t−1+α if k = 0

nt = 1 +

t∑
τ=2

Zτ ⇒ E[nt] = 1 +

t∑
τ=2

E[Zτ ]

E[nt] = 1 +
t∑

τ=2

α

τ − 1 + α
= Ht

5. (a) Let X1 ∼ N(0, σ2
1) and X2 ∼ N(0, σ2

2) be independent random variables. Show that X1+X2

follows the distribution N(0, σ2
1 + σ2

2).
(b) Let W1,W2 be i.i.d. normalized Gaussian random variables. Show that a1W1 + a2W2 is

Gaussian, N (0, a21 + a22).
(c) Using the result from part (b), to show that all linear combinations of i.i.d. normalized

Gaussian random variables are Gaussian.
Solution:

(a) Sum of Independent Normal Variables

Let Z = X1 +X2. Since X1 and X2 are independent, the density of Z is the convolution of the
X1 and X2 densities. For simplicity, assume σ2

X1
= σ2

X2
= 1.

fZ(z) = fX1(z) ∗ fX2(z) =

∫ ∞

−∞
fX1(x)fX2(z − x)dx

=

∫ ∞

−∞

1√
2π

e−x2/2 1√
2π

e−(z−x)2/2dx

=
1

2π

∫ ∞

−∞
e−(x2+z2−2zx)/2dx

=
1

2π

∫ ∞

−∞
e−(x−z/2)2−z2/4dx

=
1√
π
e−z2/4

∫ ∞

−∞

1√
π
e−(x−z/2)2dx

=
1√
π
e−z2/4,
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since the last integral evaluates to 1 (as it represents the integral of a Gaussian pdf with mean
z/2 and variance 1/2). Thus, Z is Gaussian with zero mean and variance 2.
The trick used here is called completing the square. For the term x2 + αzx + βz2, add and
subtract α2z2

4 , resulting in:

x2 + αzx+
α2z2

4
=
(
x+

αz

2

)2
.

This transformation allows us to integrate in Gaussian form.
Repeating the same steps for arbitrary σ2

X1
and σ2

X2
, we get the Gaussian density with mean 0

and variance σ2
X1

+ σ2
X2

.

(b) Linear Combination of Independent Gaussians

You could repeat all the steps from (a), but an insightful approach is to let:

Xi = aiWi for i = 1, 2.

Since W1 and W2 are i.i.d. standard Gaussian random variables, the variance of Xi is:

Var(Xi) = a2i for i = 1, 2.

Hence, the sum a1W1 + a2W2 is Gaussian with variance:

Var(a1W1 + a2W2) = a21 + a22.

Thus, a1W1 + a2W2 ∼ N (0, a21 + a22).

(c) Induction for General Linear Combination of Gaussians

We now prove by induction that any linear combination of i.i.d. Gaussian random variables is
Gaussian.
The inductive hypothesis is that for a sequence {Wi; i ≥ 1} of i.i.d. normal random variables,
and a sequence of constants {αi; i ≥ 1}, the sum:

n∑
i=1

αiWi ∼ N

(
0,

n∑
i=1

α2
i

)
for some n ≥ 1.
Base Case: For n = 2, from part (b), we have:

a1W1 + a2W2 ∼ N (0, a21 + a22).

Inductive Step: Assume the hypothesis is true for n = k, i.e.:
k∑

i=1

αiWi ∼ N

(
0,

k∑
i=1

α2
i

)
.

Now consider the sum for n = k + 1:

X =
k∑

i=1

αiWi.
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By the inductive hypothesis, X ∼ N (0,
∑k

i=1 α
2
i ). Since Wk+1 is independent of X, and Wk+1 ∼

N (0, 1), we have:

X + αk+1Wk+1 ∼ N

(
0,

k+1∑
i=1

α2
i

)
.

Thus, by the principle of induction, for all n ≥ 1, any linear combination of i.i.d. Gaussian
random variables is Gaussian.

6. Earthquakes occur in a given region in accordance with a Poisson process with rate 5 per year.

(a) What is the probability that there will be at least two earthquakes in the first half of 2020?
(b) Assuming that the event in part (a) occurs, what is the probability that there will be no

earthquakes during the first 9 months of 2021?
(c) Assuming that the event in part (a) occurs, what is the probability that there will be at

least four earthquakes over the first 9 months of the year 2020?

Solution:

(a) The rate of earthquakes per year is given as 5. For the first half of 2020 (i.e., 6 months),
the rate is:

λ6 months =
5

2
= 2.5 earthquakes per 6 months.

The number of earthquakes, X, follows a Poisson distribution with parameter λ = 2.5:

X ∼ Poisson(2.5).

We are interested in finding the probability that there are at least 2 earthquakes:

P (X ≥ 2) = 1− P (X = 0)− P (X = 1).

P (X = 0) =
e−2.5(2.5)0

0!
= e−2.5,

P (X = 1) =
e−2.5(2.5)1

1!
= 2.5e−2.5.

Now:

P (X ≥ 2) = 1− e−2.5 − 2.5e−2.5.

P (X ≥ 2) ≈ 1− 0.0821− 0.2052 = 0.7127.

Thus, the probability that there will be at least 2 earthquakes in the first half of 2020 is
approximately:

0.7127 .
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(b) The earthquakes in 2021 will be independent of those of 2020.
Given: λ = 5 per year, assuming occurrence to be homogeneous, we can assume λ = 3.75
for 9 months.

P (X = 0) =
e−3.753.750

0!
= 0.0235

(c) In the first half of 2020 since the event in part (a) occurs, 2, 3, or more than 4 earthquakes
will occur. Hence, we have 3 cases:
Case I: 2 earthquakes in the first half of 2020 Hence, at least 2 earthquakes need to occur
in the next 3 months which are independent of the previous 6 months. Hence,

P (case I) = P (X = 2 in the first half)× P (X ≥ 2 in the next quarter)
P (X ≥ 2 in the first half)

=

e−2.52.52

2! ×
(
1− e−1.251.250

0! − e−1.251.251

1!

)
0.7127

= 0.128

Case II: 3 earthquakes in the first half of 2020 Hence, at least 1 earthquake needs to occur
in the next 3 months which are independent of the previous 6 months. Hence,

P (case II) = P (X = 3 in the first half)× P (X ≥ 1 in the next quarter)
P (X ≥ 2 in the first half)

=

e−2.52.53

3! ×
(
1− e−1.251.250

0!

)
0.7127

= 0.214

Case III: 4 or more earthquakes in the first half of 2020 This is pretty straightforward.

P (case III) = P (X ≥ 4 in the first half)
P (X ≥ 2 in the first half)

=
1− e−2.52.50

0! − e−2.52.51

1! − e−2.52.52

2! − e−2.52.53

3!

0.7127
= 0.340

Hence, the total required probability will be:

P (X ≥ 4 in the first 9 months | X ≥ 2 in the first 6 months) = 0.682

7. A stochastic process {X(t), t ≥ 0} is said to be stationary if X(t1), . . . , X(tn) has the same joint
distribution as X(t1 + a), . . . , X(tn + a) for all n, a, t1, . . . , tn.
(a) Prove that a necessary and sufficient condition for a Gaussian process to be stationary is
that Cov(X(s), X(t)) depends only on t− s, s ≤ t, and E[X(t)] = c.
(b) Let {X(t), t ≥ 0} be Brownian motion and define

V (t) = e−αt/2X(aeαt).

Show that {V (t), t ≥ 0} is a stationary Gaussian process. It is called the Ornstein-Uhlenbeck pro-
cess. (Hint: Brownian motion is a Gaussian process Wt such that E[Wt] = 0 and cov(Wt,Ws) =
min(t, s).)
Solution:
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(a) If the Gaussian process is stationary, then for t > s:(
X(t)
X(s)

)
d
=

(
X(t− s)
X(0)

)
Thus E[X(s)] = E[X(0)] for all s and Cov(X(t), X(s)) = Cov(X(t− s), X(0)) for all t < s.
Now, assume E[X(t)] = c and Cov(X(t), X(s)) = h(t−s). For any T = (t1, . . . , tk), define vector
XT = (X(t1), . . . , X(tk))

⊤. Let T̃ = (t1 − a, . . . , tk − a). If {X(t)} is a Gaussian process, then
both XT and XT̃ are multivariate normal and it suffices to show that they have the same mean
and covariance. This follows directly from the fact that they have the same element-wise mean
c and the equal pairwise covariances, Cov(X(ti−a), X(tj −a)) = h(ti− tj) = Cov(X(ti), X(tj)).
(b) Since all finite dimensional distributions of {V (t)} are normal, it is a Gaussian process. Thus
from part (a), it suffices to show the following:

E[V (t)] = e−αt/2E[X(aeαt)] = 0.

Thus, E[V (t)] is constant.
For s ≤ t,

Cov(V (s), V (t)) = e−α(t+s)/2Cov(X(aeαs), X(aeαt)) = e−α(t+s)/2aeαs = ae−α(t−s)/2,

which depends only on t− s.

8. Let Xt and Yt represent two independent Poisson processes with arrival rates λ1 and λ2, respec-
tively, where these rates indicate the hourly arrival rate of customers at stores 1 and 2.

(a) What is the probability that a customer arrives at store 1 before any customers arrive at
store 2?

(b) What is the probability that, during the first hour, the combined total number of customers
arriving at both stores is exactly four?

(c) Given that exactly four customers arrived across the two stores, what is the probability
that all four arrived exclusively at store 1?

(d) Let T denote the arrival time of the first customer at store 2. Then, XT represents the
count of customers at store 1 by the time the first customer arrives at store 2. Determine
the probability distribution of XT .

Solution:

(a) Probability that a customer arrives in store 1 before any customers arrive in store 2
Let T1i and T2i be the times of the i-th customer arriving at store 1 and store 2, respectively.
Let T = min(T1, T2), then we want to compute the probability P (T1 = T ). This can be
computed as:

P (T1 = T ) =

∫ ∞

0
P (T2 > t)dP (T1 = t) =

∫ ∞

0
e−λ2tλ1e

−λ1tdt =
λ1

λ1 + λ2
.

Thus, the probability that a customer arrives in store 1 before any customers arrive in store
2 is given by λ1

λ1+λ2
.
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(b) The total number of customers arriving at the two stores by time t = 1 is N(1) = N1(1) +
N2(1), where N1(1) ∼ Poisson(λ1) and N2(1) ∼ Poisson(λ2). Thus, N(1) ∼ Poisson(λ1 +
λ2), and we have:

P (N(1) = 4) =
(λ1 + λ2)

4e−(λ1+λ2)

4!
.

(c) Given N1(1)+N2(1) = 4, the number of customers in store 1 follows a binomial distribution:

P (N1(1) = 4 | N1(1) +N2(1) = 4) =

(
4

4

)(
λ1

λ1 + λ2

)4

=

(
λ1

λ1 + λ2

)4

.

(d) Let T denote the time of the first arrival in store 2. Then XT is the number of customers
in store 1 by time T . Find the distribution of XT .
Since T ∼ Exp(λ2), the number of customers in store 1 by time T follows a Poisson
distribution:

P (XT = k) =

∫ ∞

0
P (XT = k | T = t)fT (t) dt =

∫ ∞

0

(λ1t)
ke−λ1t

k!
λ2e

−λ2t dt.

This simplifies to:

P (XT = k) =
λ2

k!

∫ ∞

0
(λ1t)

ke−(λ1+λ2)t dt =
λ2

k!

k!

(λ1 + λ2)k+1
(λ1)

k =
λ2

λ1 + λ2

(
λ1

λ1 + λ2

)k

.

Thus, XT ∼ Geom
(

λ1
λ1+λ2

)
:

P (XT = k) =
λ2

λ1 + λ2

(
λ1

λ1 + λ2

)k

.

9. Suppose X(t) is a Gaussian process, with X(0) = 0 with probability 1. Suppose that Xt+Xs ∼
N
(
0,
√

|t− s|
)

.

(a) Calculate the auto-covariance function.
(b) Calculate the distribution of (X(t1), X(t2), . . . , X(tn)).
(c) Prove that such a process doesn’t exist.

Solution:

(a) Auto-Covariance Function

We know:
Xt +Xs ∼ N

(
0,
√
|t− s|

)
,

so:
Var(Xt +Xs) = Var(Xt) + Var(Xs) + 2Cov(Xt, Xs).

Since X(t) = 0 with probability 1, we have Var(Xt) = 0 and Var(Xs) = 0. Therefore:

2Cov(Xt, Xs) =
√
|t− s|,

which gives:

Cov(X(t), X(s)) = RX(t, s) =

√
|t− s|
2

.
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(b) Joint Distribution

Since X(t) is a Gaussian process, the joint distribution (X(t1), X(t2), . . . , X(tn)) is multivariate
normal with:

E[X(t1), X(t2), . . . , X(tn)] = (0, 0, . . . , 0),

and the covariance matrix Σ is given by:

Σij =

√
|ti − tj |
2

.

Thus, the joint distribution is:

(X(t1), X(t2), . . . , X(tn)) ∼ N (0,Σ),

where Σij =

√
|ti−tj |
2 .

(c) Non-existence

We calculate the variance of Xt −Xs:

Var(Xt −Xs) = Var(Xt) + Var(Xs)− 2Cov(Xt, Xs),

where Var(Xt) = 0, Var(Xs) = 0, and:

Cov(Xt, Xs) =

√
|t− s|
2

.

Thus, the equation becomes:

Var(Xt −Xs) = 0 + 0− 2×
√

|t− s|
2

= −
√
|t− s| < 0 for t ̸= s.

Since variance cannot be negative, this leads to a contradiction. Therefore, such a process does
not exist.
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