In the name of GOD.

Stochastic Process

Fall 2024

Sharif University of Technology Hamid R. Rabiee

Solution Homework 1 Review of Probability Deadline : $1403/07/20$

1. (a) The probability that the dart falls within the σ -radius circle centered at $(0,0)$ can be calculated as follows:

$$
\Pr(x^2 + y^2 \le \sigma^2) = \int_0^{2\pi} \int_0^{\sigma} \frac{r}{2\sigma^2} e^{-\frac{r^2}{2\sigma^2}} dr d\theta = 1 - e^{-1}.
$$

(b) The probability that the dart falls in the first quadrant $(x > 0, y > 0)$, due to the independence of *x* and *y* and the symmetry of Gaussian distribution in each quadrant, is:

$$
Pr(x > 0, y > 0) = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4}.
$$

(c) The conditional probability that the dart falls within the σ -radius circle centered at $(0,0)$ given that it hits in the first quadrant is:

$$
\Pr(x^2 + y^2 \le \sigma^2 \mid x > 0, y > 0) = \frac{\Pr(x^2 + y^2 \le \sigma^2 \cap x > 0 \cap y > 0)}{\Pr(x > 0, y > 0)}.
$$

Since $x^2 + y^2 \le \sigma^2$ is symmetric across all four quadrants, we get:

$$
\Pr(x^2 + y^2 \le \sigma^2 \mid x > 0, y > 0) = \frac{1 - e^{-1}}{4} \div \frac{1}{4} = 1 - e^{-1}.
$$

(d) Let $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(\frac{y}{x})$ $\frac{y}{x}$) be the polar coordinates. We have:

$$
\Pr[0 \le r \le R, 0 \le \theta \le \Theta] = \int_0^{\Theta} \int_0^R f_{R,\Theta}(r,\theta) \, r \, dr \, d\theta.
$$

The joint probability density function $P_{R,\Theta}(r,\theta)$ can be derived as:

$$
P_{R,\Theta}(r,\theta) = \frac{r}{2\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \quad 0 \le r \le \infty, \ 0 \le \theta \le 2\pi.
$$

2. **Proof:**

We want to prove the following equation for the conditional expectation:

$$
E[Y|X \le 0] = \frac{\int_{-\infty}^{0} E[Y|X = x] f_X(x) dx}{F_X(0)}.
$$
 (1)

Recall that the conditional expectation of *Y* given $X \leq 0$ is defined as:

$$
E[Y|X \le 0] = \int_{-\infty}^{\infty} y f_{Y|X \le 0}(y) dy.
$$

Next, we can express the conditional density function $f_{Y|X\leq0}(y)$ in terms of the joint density $f_{X,Y}(x, y)$ and the marginal density $f_X(x)$:

$$
f_{Y|X\leq0}(y) = \frac{\int_{-\infty}^{0} f_{X,Y}(x,y) dx}{\Pr(X \leq 0)}.
$$

Substitute the definition of $f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)$:

$$
f_{Y|X\leq 0}(y) = \frac{\int_{-\infty}^{0} f_{Y|X}(y|x) f_X(x) dx}{F_X(0)}.
$$

Now, we can calculate the conditional expectation $E[Y|X \leq 0]$:

$$
E[Y|X \le 0] = \int_{-\infty}^{\infty} y \left[\frac{\int_{-\infty}^{0} f_{Y|X}(y|x) f_X(x) dx}{F_X(0)} \right] dy.
$$

Using the property of conditional expectation $E[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy$, we can rewrite the inner integral as:

$$
E[Y|X \le 0] = \frac{\int_{-\infty}^{0} E[Y|X = x] f_X(x) \, dx}{F_X(0)}.
$$

This completes the proof of the given equation:

$$
E[Y|X \le 0] = \frac{\int_{-\infty}^{0} E[Y|X=x] f_X(x) dx}{F_X(0)}.
$$

3. **Solution:**

Let X be a random variable with cumulative distribution function (CDF) $F_X(x)$ and probability density function (PDF) $f_X(x)$.

We want to find the conditional CDF and PDF of *X* given that $a < X \leq b$.

1. Conditional CDF:

The conditional CDF of *X* given $a < X \leq b$, denoted as $F_{X|a < X \leq b}(x)$, is defined as:

$$
F_{X|a
$$

By definition of conditional probability, we have:

$$
F_{X|a
$$

.

Since $Pr(a < X \leq x) = F_X(x) - F_X(a)$ and $Pr(a < X \leq b) = F_X(b) - F_X(a)$, we can rewrite the conditional CDF as:

$$
F_{X|a < X \le b}(x) = \frac{F_X(x) - F_X(a)}{F_X(b) - F_X(a)}, \quad a < x \le b.
$$

2. Conditional PDF:

The conditional PDF of *X* given $a < X \leq b$, denoted as $f_{X|a < X \leq b}(x)$, is obtained by differentiating the conditional CDF $F_{X|a \lt X \leq b}(x)$ with respect to *x*:

$$
f_{X|a
$$

Taking the derivative of $F_{X|a \lt X \leq b}(x)$:

$$
f_{X|a
$$

This is the desired conditional PDF of *X* given $a < X \leq b$. Final Results:

• **Conditional CDF**:

$$
F_{X|a
$$

• **Conditional PDF**:

$$
f_{X|a
$$

4. The random variables *x* and *y* are independent with exponential densities:

$$
f_X(x) = \alpha e^{-\alpha x} U(x), \quad f_Y(y) = \beta e^{-\beta y} U(y),
$$

where $U(x)$ is the unit step function.

Find the densities of the following random variables:

(a) **Density of $2x + y$:**

Let $Z = 2x + y$. Since *x* and *y* are independent random variables, we can find the PDF of *Z* using the convolution formula:

$$
f_Z(z) = \int_0^\infty f_X(x) f_Y(z - 2x) \, dx.
$$

Substituting the PDFs of *x* and *y*, we get:

$$
f_Z(z) = \int_0^{\frac{z}{2}} \alpha e^{-\alpha x} \beta e^{-\beta(z-2x)} dx.
$$

Simplifying the integral, we obtain:

$$
f_Z(z) = \alpha \beta e^{-\beta z} \int_0^{\frac{z}{2}} e^{(2\beta - \alpha)x} dx, \quad z \ge 0.
$$

Evaluating the integral:

$$
f_Z(z) = \alpha \beta e^{-\beta z} \left[\frac{e^{(2\beta - \alpha)x}}{2\beta - \alpha} \right]_0^{\frac{z}{2}}.
$$

$$
f_Z(z) = \frac{\alpha \beta}{2\beta - \alpha} e^{-\beta z} \left(e^{(2\beta - \alpha)\frac{z}{2}} - 1 \right), \quad z \ge 0.
$$

(b) **Density of $x - y$:**

Let $W = x - y$. Since *x* and *y* are independent, we can find the PDF of *W* using the properties of independent random variables and their characteristic functions or moment generating functions. Alternatively, the convolution method can be applied again, resulting in a Laplace distribution:

$$
f_W(w)=\begin{cases} \alpha\beta e^{-\beta w}\int_0^\infty e^{-(\alpha+\beta)x}dx, & w\geq 0,\\ \alpha\beta e^{\alpha w}\int_0^\infty e^{-(\alpha+\beta)y}dy, & w<0. \end{cases}
$$

(c) **Density of $\frac{y}{x}$ ^{***}

Let $U = \frac{y}{x}$ $\frac{y}{x}$. We find the joint density of *x* and *y*, and then use the transformation of variables technique. For $u = \frac{y}{x}$ $\frac{y}{x}$, the joint PDF can be expressed as:

$$
f_U(u) = \int_0^\infty \alpha e^{-\alpha x} \beta e^{-\beta ux} x \, dx, \quad u \ge 0.
$$

Simplifying, we obtain:

$$
f_U(u) = \frac{\alpha \beta}{(\alpha + \beta u)^2}, \quad u \ge 0.
$$

(d) **Density of $\max(x, y)$:**

Let $M = \max(x, y)$. We find the CDF of M:

$$
F_M(m) = \Pr(\max(x, y) \le m) = \Pr(x \le m, y \le m).
$$

Using the independence of *x* and *y*:

$$
F_M(m) = F_X(m)F_Y(m) = (1 - e^{-\alpha m})(1 - e^{-\beta m}), \quad m \ge 0.
$$

Differentiating $F_M(m)$ with respect to m , we get the PDF:

$$
f_M(m) = (\alpha + \beta)e^{-(\alpha + \beta)m} - \alpha\beta me^{-(\alpha + \beta)m}, \quad m \ge 0.
$$

(e) **Density of $\min(x, y)$:**

Let $N = \min(x, y)$. We find the CDF of *N*:

$$
F_N(n) = \Pr(\min(x, y) \le n) = 1 - \Pr(x > n, y > n).
$$

Using the independence of *x* and *y*:

$$
F_N(n) = 1 - Pr(x > n) Pr(y > n) = 1 - e^{-\alpha n} e^{-\beta n}, \quad n \ge 0.
$$

Differentiating $F_N(n)$ with respect to *n*, we get the PDF:

$$
f_N(n) = (\alpha + \beta)e^{-(\alpha + \beta)n}, \quad n \ge 0.
$$

5. **Solution:**

We want to estimate $Y' = a_1 X_1 + a_2 X_2$ such that the mean squared error (MSE) between *Y* and Y' is minimized. That is, we want to find a_1 and a_2 such that:

$$
p = E [(Y - Y')^{2}] = E [(Y - a_{1}X_{1} - a_{2}X_{2})^{2}]
$$

is minimized.

Step 1: Expanding the Mean Squared Error We start by expanding the squared error:

$$
p = E\left[Y^2 - 2Y(a_1X_1 + a_2X_2) + (a_1X_1 + a_2X_2)^2\right].
$$

Using the linearity of expectation, we can separate the expectation as:

$$
p = E[Y^2] - 2a_1E[YX_1] - 2a_2E[YX_2] + a_1^2E[X_1^2] + 2a_1a_2E[X_1X_2] + a_2^2E[X_2^2].
$$

Step 2: Finding the Minimum To find the values of a_1 and a_2 that minimize p , we take the partial derivatives of p with respect to a_1 and a_2 and set them equal to zero:

$$
\frac{\partial p}{\partial a_1} = -2E[YX_1] + 2a_1E[X_1^2] + 2a_2E[X_1X_2] = 0,
$$

$$
\frac{\partial p}{\partial a_2} = -2E[YX_2] + 2a_1E[X_1X_2] + 2a_2E[X_2^2] = 0.
$$

Simplifying these equations, we get a system of linear equations:

$$
\begin{cases} a_1E[X_1^2] + a_2E[X_1X_2] = E[YX_1], \\ a_1E[X_1X_2] + a_2E[X_2^2] = E[YX_2]. \end{cases}
$$

Step 3: Solving the Linear System We can express the system of equations in matrix form as:

$$
\begin{bmatrix} E[X_1^2] & E[X_1X_2] \\ E[X_1X_2] & E[X_2^2] \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} E[YX_1] \\ E[YX_2] \end{bmatrix}.
$$

Let:

$$
\mathbf{A} = \begin{bmatrix} E[X_1^2] & E[X_1 X_2] \\ E[X_1 X_2] & E[X_2^2] \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} E[YX_1] \\ E[YX_2] \end{bmatrix}.
$$

The solution for $a =$ $\lceil a_1 \rceil$ *a*2] is given by:

$$
\mathbf{a} = \mathbf{A}^{-1} \mathbf{b}.
$$

Step 4: Minimum Error The minimum mean squared error *Pmin* can be computed as:

$$
P_{min} = E[Y^2] - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}.
$$

Final Solution 1. The values of *a*¹ and *a*² are given by:

$$
\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \mathbf{A}^{-1} \mathbf{b}.
$$

2. The minimum error is:

$$
P_{min} = E[Y^2] - \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}.
$$

This is the desired solution in terms of the moments of X_1 , X_2 , and Y .

6. **Solution:**

We have a coin with a probability of 0.1 for heads and 0.9 for tails. We toss this coin 100 times. Let *X* be the number of heads obtained in 100 trials. Then *X* follows a Binomial distribution with parameters $n = 100$ and $p = 0.1$, i.e.,

$$
X \sim \text{Binomial}(100, 0.1).
$$

The mean and variance of *X* can be calculated as follows:

$$
\mu = E[X] = n \cdot p = 100 \cdot 0.1 = 10,
$$

$$
\sigma^2 = \text{Var}(X) = n \cdot p \cdot (1 - p) = 100 \cdot 0.1 \cdot 0.9 = 9.
$$

Now, let's solve each part using the given inequalities:

Part A: Using Markov's Inequality

Markov's inequality states that for a non-negative random variable X and $a > 0$:

$$
\Pr(X \ge a) \le \frac{E[X]}{a}.
$$

We want to find the upper bound for the probability that the number of heads is at least 20, i.e., $Pr(X \ge 20)$.

Applying Markov's inequality:

$$
\Pr(X \ge 20) \le \frac{E[X]}{20}.
$$

Substitute $E[X] = 10$:

$$
\Pr(X \ge 20) \le \frac{10}{20} = 0.5.
$$

So, the probability that the number of heads is at least 20 is at most 0.5.

Part B: Using Chebyshev's Inequality

Chebyshev's inequality states that for any random variable X with mean μ and variance σ^2 , and for any $k > 0$:

$$
\Pr(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}
$$

.

We want to find the probability that the number of heads is at least 20. First, calculate *k* such that $|X - \mu|$ ≥ 20 − 10 = 10.

Using $\sigma = \sqrt{9} = 3$:

$$
k = \frac{10}{3}.
$$

Applying Chebyshev's inequality:

$$
\Pr(|X - 10| \ge 10) \le \frac{1}{\left(\frac{10}{3}\right)^2} = \frac{1}{\frac{100}{9}} = \frac{9}{100} = 0.09.
$$

So, the probability that the number of heads is at least 20 is at most 0.09.

7. **Solution:**

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed (iid) random variables with:

$$
E[X_i] = 0 \quad \text{and} \quad \text{Var}(X_i) = \sigma^2.
$$

We define the following quantities:

$$
S_n = X_1 + X_2 + \dots + X_n,
$$

$$
Y_n = \frac{S_n}{\sigma \sqrt{n}} - \frac{S_{2n}}{\sigma \sqrt{2n}}.
$$

We want to find the limit of the sequence Y_n as $n \to \infty$ using the Central Limit Theorem (CLT).

Step 1: Apply the Central Limit Theorem According to the Central Limit Theorem, as $n \to \infty$, the normalized sum $\frac{S_n}{\sigma\sqrt{n}}$ converges in distribution to a standard normal random variable $Z \sim$ $\mathcal{N}(0,1)$:

$$
\frac{S_n}{\sigma\sqrt{n}} \xrightarrow{d} Z_1, \quad \text{as } n \to \infty,
$$

$$
\frac{S_{2n}}{\sigma\sqrt{2n}} \xrightarrow{d} Z_2, \quad \text{as } n \to \infty,
$$

where Z_1 and Z_2 are independent standard normal random variables. Step 2: Limit of Y_n Now, consider the sequence Y_n :

$$
Y_n = \frac{S_n}{\sigma \sqrt{n}} - \frac{S_{2n}}{\sigma \sqrt{2n}}.
$$

As $n \to \infty$, using the results from Step 1, we have:

$$
Y_n \xrightarrow{d} Z_1 - Z_2.
$$

Since Z_1 and Z_2 are independent standard normal random variables, the difference $Z_1 - Z_2$ follows a normal distribution with mean 0 and variance:

$$
Var(Z_1 - Z_2) = Var(Z_1) + Var(Z_2) = 1 + 1 = 2.
$$

Therefore, as $n \to \infty$, the limiting distribution of Y_n is:

$$
Y_n \xrightarrow{d} \mathcal{N}(0,2).
$$

Final Result The limit of the sequence Y_n as $n \to \infty$ is a normal distribution with mean 0 and variance 2:

$$
Y_n \xrightarrow{\mathrm{d}} \mathcal{N}(0,2).
$$