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1. (a) The probability that the dart falls within the σ-radius circle centered at (0, 0) can be
calculated as follows:

Pr(x2 + y2 ≤ σ2) =

∫ 2π

0

∫ σ

0

r

2σ2
e−

r2

2σ2 dr dθ = 1− e−1.

(b) The probability that the dart falls in the first quadrant (x > 0, y > 0), due to the indepen-
dence of x and y and the symmetry of Gaussian distribution in each quadrant, is:

Pr(x > 0, y > 0) =

(
1

2

)(
1

2

)
=

1

4
.

(c) The conditional probability that the dart falls within the σ-radius circle centered at (0, 0)
given that it hits in the first quadrant is:

Pr(x2 + y2 ≤ σ2 | x > 0, y > 0) =
Pr(x2 + y2 ≤ σ2 ∩ x > 0 ∩ y > 0)

Pr(x > 0, y > 0)
.

Since x2 + y2 ≤ σ2 is symmetric across all four quadrants, we get:

Pr(x2 + y2 ≤ σ2 | x > 0, y > 0) =
1− e−1

4
÷ 1

4
= 1− e−1.

(d) Let r =
√

x2 + y2 and θ = tan−1
( y
x

)
be the polar coordinates. We have:

Pr[0 ≤ r ≤ R, 0 ≤ θ ≤ Θ] =

∫ Θ

0

∫ R

0
fR,Θ(r, θ) r dr dθ.

The joint probability density function PR,Θ(r, θ) can be derived as:

PR,Θ(r, θ) =
r

2σ2
e−

r2

2σ2 , 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π.

2. Proof:
We want to prove the following equation for the conditional expectation:

E [Y |X ≤ 0] =

∫ 0
−∞E [Y |X = x] fX(x) dx

FX(0)
. (1)
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Recall that the conditional expectation of Y given X ≤ 0 is defined as:

E[Y |X ≤ 0] =

∫ ∞

−∞
y fY |X≤0(y) dy.

Next, we can express the conditional density function fY |X≤0(y) in terms of the joint density
fX,Y (x, y) and the marginal density fX(x):

fY |X≤0(y) =

∫ 0
−∞ fX,Y (x, y) dx

Pr(X ≤ 0)
.

Substitute the definition of fX,Y (x, y) = fY |X(y|x)fX(x):

fY |X≤0(y) =

∫ 0
−∞ fY |X(y|x)fX(x) dx

FX(0)
.

Now, we can calculate the conditional expectation E[Y |X ≤ 0]:

E[Y |X ≤ 0] =

∫ ∞

−∞
y

[∫ 0
−∞ fY |X(y|x)fX(x) dx

FX(0)

]
dy.

Using the property of conditional expectation E[Y |X = x] =
∫∞
−∞ yfY |X(y|x) dy, we can rewrite

the inner integral as:

E[Y |X ≤ 0] =

∫ 0
−∞E[Y |X = x]fX(x) dx

FX(0)
.

This completes the proof of the given equation:

E [Y |X ≤ 0] =

∫ 0
−∞E [Y |X = x] fX(x) dx

FX(0)
.

3. Solution:
Let X be a random variable with cumulative distribution function (CDF) FX(x) and probability
density function (PDF) fX(x).
We want to find the conditional CDF and PDF of X given that a < X ≤ b.
1. Conditional CDF:
The conditional CDF of X given a < X ≤ b, denoted as FX|a<X≤b(x), is defined as:

FX|a<X≤b(x) = Pr(X ≤ x | a < X ≤ b), a < x ≤ b.

By definition of conditional probability, we have:

FX|a<X≤b(x) =
Pr(a < X ≤ x)

Pr(a < X ≤ b)
.
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Since Pr(a < X ≤ x) = FX(x) − FX(a) and Pr(a < X ≤ b) = FX(b) − FX(a), we can rewrite
the conditional CDF as:

FX|a<X≤b(x) =
FX(x)− FX(a)

FX(b)− FX(a)
, a < x ≤ b.

2. Conditional PDF:
The conditional PDF of X given a < X ≤ b, denoted as fX|a<X≤b(x), is obtained by differenti-
ating the conditional CDF FX|a<X≤b(x) with respect to x:

fX|a<X≤b(x) =
d

dx
FX|a<X≤b(x), a < x ≤ b.

Taking the derivative of FX|a<X≤b(x):

fX|a<X≤b(x) =
fX(x)

FX(b)− FX(a)
, a < x ≤ b.

This is the desired conditional PDF of X given a < X ≤ b.
Final Results:

• **Conditional CDF**:

FX|a<X≤b(x) =
FX(x)− FX(a)

FX(b)− FX(a)
, a < x ≤ b.

• **Conditional PDF**:

fX|a<X≤b(x) =
fX(x)

FX(b)− FX(a)
, a < x ≤ b.

4. The random variables x and y are independent with exponential densities:

fX(x) = αe−αx U(x), fY (y) = βe−βy U(y),

where U(x) is the unit step function.
Find the densities of the following random variables:

(a) **Density of 2x+ y:**
Let Z = 2x+ y. Since x and y are independent random variables, we can find the PDF of
Z using the convolution formula:

fZ(z) =

∫ ∞

0
fX(x)fY (z − 2x) dx.

Substituting the PDFs of x and y, we get:

fZ(z) =

∫ z
2

0
αe−αxβe−β(z−2x) dx.

Simplifying the integral, we obtain:

fZ(z) = αβe−βz

∫ z
2

0
e(2β−α)x dx, z ≥ 0.
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Evaluating the integral:

fZ(z) = αβe−βz

[
e(2β−α)x

2β − α

] z
2

0

.

fZ(z) =
αβ

2β − α
e−βz

(
e(2β−α) z

2 − 1
)
, z ≥ 0.

(b) **Density of x− y:**
Let W = x − y. Since x and y are independent, we can find the PDF of W using the
properties of independent random variables and their characteristic functions or moment
generating functions. Alternatively, the convolution method can be applied again, resulting
in a Laplace distribution:

fW (w) =

{
αβe−βw

∫∞
0 e−(α+β)xdx, w ≥ 0,

αβeαw
∫∞
0 e−(α+β)ydy, w < 0.

(c) **Density of y
x :**

Let U = y
x . We find the joint density of x and y, and then use the transformation of

variables technique. For u = y
x , the joint PDF can be expressed as:

fU (u) =

∫ ∞

0
αe−αxβe−βuxx dx, u ≥ 0.

Simplifying, we obtain:
fU (u) =

αβ

(α+ βu)2
, u ≥ 0.

(d) **Density of max(x, y):**
Let M = max(x, y). We find the CDF of M :

FM (m) = Pr(max(x, y) ≤ m) = Pr(x ≤ m, y ≤ m).

Using the independence of x and y:

FM (m) = FX(m)FY (m) = (1− e−αm)(1− e−βm), m ≥ 0.

Differentiating FM (m) with respect to m, we get the PDF:

fM (m) = (α+ β)e−(α+β)m − αβme−(α+β)m, m ≥ 0.

(e) **Density of min(x, y):**
Let N = min(x, y). We find the CDF of N :

FN (n) = Pr(min(x, y) ≤ n) = 1− Pr(x > n, y > n).

Using the independence of x and y:

FN (n) = 1− Pr(x > n)Pr(y > n) = 1− e−αne−βn, n ≥ 0.

Differentiating FN (n) with respect to n, we get the PDF:

fN (n) = (α+ β)e−(α+β)n, n ≥ 0.
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5. Solution:
We want to estimate Y ′ = a1X1 + a2X2 such that the mean squared error (MSE) between Y
and Y ′ is minimized. That is, we want to find a1 and a2 such that:

p = E
[
(Y − Y ′)2

]
= E

[
(Y − a1X1 − a2X2)

2
]

is minimized.
Step 1: Expanding the Mean Squared Error We start by expanding the squared error:

p = E
[
Y 2 − 2Y (a1X1 + a2X2) + (a1X1 + a2X2)

2
]
.

Using the linearity of expectation, we can separate the expectation as:

p = E[Y 2]− 2a1E[Y X1]− 2a2E[Y X2] + a21E[X2
1 ] + 2a1a2E[X1X2] + a22E[X2

2 ].

Step 2: Finding the Minimum To find the values of a1 and a2 that minimize p, we take the
partial derivatives of p with respect to a1 and a2 and set them equal to zero:

∂p

∂a1
= −2E[Y X1] + 2a1E[X2

1 ] + 2a2E[X1X2] = 0,

∂p

∂a2
= −2E[Y X2] + 2a1E[X1X2] + 2a2E[X2

2 ] = 0.

Simplifying these equations, we get a system of linear equations:{
a1E[X2

1 ] + a2E[X1X2] = E[Y X1],

a1E[X1X2] + a2E[X2
2 ] = E[Y X2].

Step 3: Solving the Linear System We can express the system of equations in matrix form as:[
E[X2

1 ] E[X1X2]
E[X1X2] E[X2

2 ]

] [
a1
a2

]
=

[
E[Y X1]
E[Y X2]

]
.

Let:
A =

[
E[X2

1 ] E[X1X2]
E[X1X2] E[X2

2 ]

]
, b =

[
E[Y X1]
E[Y X2]

]
.

The solution for a =

[
a1
a2

]
is given by:

a = A−1b.

Step 4: Minimum Error The minimum mean squared error Pmin can be computed as:

Pmin = E[Y 2]− bTA−1b.

Final Solution 1. The values of a1 and a2 are given by:
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[
a1
a2

]
= A−1b.

2. The minimum error is:

Pmin = E[Y 2]− bTA−1b.

This is the desired solution in terms of the moments of X1, X2, and Y .

6. Solution:
We have a coin with a probability of 0.1 for heads and 0.9 for tails. We toss this coin 100 times.
Let X be the number of heads obtained in 100 trials. Then X follows a Binomial distribution
with parameters n = 100 and p = 0.1, i.e.,

X ∼ Binomial(100, 0.1).

The mean and variance of X can be calculated as follows:

µ = E[X] = n · p = 100 · 0.1 = 10,

σ2 = Var(X) = n · p · (1− p) = 100 · 0.1 · 0.9 = 9.

Now, let’s solve each part using the given inequalities:
Part A: Using Markov’s Inequality
Markov’s inequality states that for a non-negative random variable X and a > 0:

Pr(X ≥ a) ≤ E[X]

a
.

We want to find the upper bound for the probability that the number of heads is at least 20,
i.e., Pr(X ≥ 20).
Applying Markov’s inequality:

Pr(X ≥ 20) ≤ E[X]

20
.

Substitute E[X] = 10:

Pr(X ≥ 20) ≤ 10

20
= 0.5.

So, the probability that the number of heads is at least 20 is at most 0.5.
Part B: Using Chebyshev’s Inequality
Chebyshev’s inequality states that for any random variable X with mean µ and variance σ2, and
for any k > 0:

Pr(|X − µ| ≥ kσ) ≤ 1

k2
.
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We want to find the probability that the number of heads is at least 20. First, calculate k such
that |X − µ| ≥ 20− 10 = 10.
Using σ =

√
9 = 3:

k =
10

3
.

Applying Chebyshev’s inequality:

Pr(|X − 10| ≥ 10) ≤ 1(
10
3

)2 =
1
100
9

=
9

100
= 0.09.

So, the probability that the number of heads is at least 20 is at most 0.09.

7. Solution:
Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (iid) random vari-
ables with:

E[Xi] = 0 and Var(Xi) = σ2.

We define the following quantities:

Sn = X1 +X2 + · · ·+Xn,

Yn =
Sn

σ
√
n
− S2n

σ
√
2n

.

We want to find the limit of the sequence Yn as n → ∞ using the Central Limit Theorem (CLT).
Step 1: Apply the Central Limit Theorem According to the Central Limit Theorem, as n → ∞,
the normalized sum Sn

σ
√
n
converges in distribution to a standard normal random variable Z ∼

N (0, 1):

Sn

σ
√
n

d−→ Z1, as n → ∞,

S2n

σ
√
2n

d−→ Z2, as n → ∞,

where Z1 and Z2 are independent standard normal random variables.
Step 2: Limit of Yn Now, consider the sequence Yn:

Yn =
Sn

σ
√
n
− S2n

σ
√
2n

.

As n → ∞, using the results from Step 1, we have:

Yn
d−→ Z1 − Z2.
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Since Z1 and Z2 are independent standard normal random variables, the difference Z1 − Z2

follows a normal distribution with mean 0 and variance:

Var(Z1 − Z2) = Var(Z1) +Var(Z2) = 1 + 1 = 2.

Therefore, as n → ∞, the limiting distribution of Yn is:

Yn
d−→ N (0, 2).

Final Result The limit of the sequence Yn as n → ∞ is a normal distribution with mean 0 and
variance 2:

Yn
d−→ N (0, 2).
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