Time: 20 mins

Name: Std. Number: Std. Number:

Prerequisite Quiz

Questions

- 1. Suppose that m and n are positive integers. What is the probability that a randomly chosen positive integer less than mn is not divisible by either m or n?(10 points)
- 2. A simple example of a random variable is the *indicator* of an event A, which is denoted by I_A :

$$
I_A(\omega) = \begin{cases} 1, & if \omega \in A \\ 0, & Otherwise. \end{cases}
$$

- (a) Prove that two events A and B are independent if and only if the associated indicator random variables, I_A and I_B are independent. (6 points)
- (b) If $X = I_A$, find $E[X]$. (4 points)
- 3. Let X be a continuous random variable with the following PDF

$$
F_X(x) = \begin{cases} ce^{-x}, & x > 0\\ 0, & Otherwise. \end{cases}
$$

where c is a positive constant.

- (a) Find c
- (b) Find the CDF of X, $F_X(x)$
- (c) Find $P(1 < X < 3)$

Solutions:

1) We have $mn-1$ integers less than mn . Furthermore, there are $n-1$ multiples of m and $m-1$ multiples of *n* less than *mn*; However, $\frac{mn}{lcm(m,n)}-1$ of these multiples are the same. Hence by the Inclusion-Exclusion law we have $m + n - 1 - gcd(m, n)$ multiples of either m or n. By doing some algebra, the probability of not choosing a multiple of either one would be:

$$
\frac{(m-1)(n-1)+gcd(m,n)-1}{mn-1}
$$

$2)$

(a) We know that I_A is a random variable that maps a 1 to the real number line if ω occurs within an event A and maps a 0 to the real line if ω occurs outside of event A. A similar argument holds for event B . Thus we have,

$$
I_A(\omega) = \begin{cases} 1, & with \ probability \ P(A) \\ 0, & with \ probability \ 1 - P(A) \end{cases}
$$

If the random variables, A and B, are independent, we have $P(A \cap B) = P(A)P(B)$. The indicator random variables, I_A and I_B , are independent if, $P_{I_A,I_B}(x,y) = P_{I_A}(x)P_{I_B}(y)$. First suppose I_A and I_B are independent, we have:

$$
P(A \cap B) = P_{I_A, I_B}(1, 1) = P_{I_A}(1)P_{I_B}(1) = P(A)P(B)
$$

now suppose A and B are independent,

$$
P_{I_A,I_B}(1,1) = P(A \cap B) = P(A)P(B) = P_{I_A}(1)P_{I_B}(1)
$$

\n
$$
P_{I_A,I_B}(0,1) = P(A^c \cap B) = P(A^c)P(B) = P_{I_A}(0)P_{I_B}(1)
$$

\n
$$
P_{I_A,I_B}(1,0) = P(A \cap B^c) = P(A)P(B^c) = P_{I_A}(1)P_{I_B}(0)
$$

\n
$$
P_{I_A,I_B}(1,1) = P(A \cap B) = P(A^c)P(B^c) = P_{I_A}(0)P_{I_B}(0)
$$

(b) If $X = I_A$, we know that

$$
E[X] = E[I_A] = 1.P(A) + 0.(1 - P(A)) = P(A)
$$

 3)a. To find c , we can use Property 2 above, in particular

$$
1 = \int_{-\infty}^{\infty} f_X(u) du
$$

= $\int_{0}^{\infty} ce^{-u} du$
= $c \left[-e^{-x} \right]_{0}^{\infty}$
= c .

Thus, we must have $c = 1$.

b. To find the CDF of X, we use $F_X(x) = \int_{-\infty}^x f_X(u) du$, so for $x < 0$, we obtain $F_X(x) = 0$. For $x \geq 0$, we have

$$
F_X(x) = \int_0^x e^{-u} du = 1 - e^{-x}.
$$

Thus,

$$
F_X(x) = \begin{cases} 1 - e^{-x} & x \ge 0 \\ 0 & \text{otherwise} \end{cases}
$$

c. We can find $P(1 < X < 3)$ using either the CDF or the PDF. If we use the CDF, we have

$$
P(1 < X < 3) = F_X(3) - F_X(1) = \left[1 - e^{-3}\right] - \left[1 - e^{-1}\right] = e^{-1} - e^{-3}.
$$

Equivalently, we can use the PDF. We have

$$
P(1 < X < 3) = \int_1^3 f_X(t)dt
$$
\n
$$
= \int_1^3 e^{-t} dt
$$
\n
$$
= e^{-1} - e^{-3}
$$