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Part 1

Introduction
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Signals

A signal is a function of one or more variables that conveys information

about some (usually physical) phenomenon.

For a function f , in the expression f (t1, t2, . . . , tn), each of the {tk} is

called an independent variable, while the function value itself is referred

to as a dependent variable.

Some examples of signals include:

a voltage or current in an electronic circuit

the position, velocity, or acceleration of an object

a force or torque in a mechanical system

a flow rate of a liquid or gas in a chemical process

a digital image, digital video, or digital audio

a stock market index
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Classification of Signals

Number of independent variables (i.e., dimensionality):

A signal with one independent variable is said to be one dimensional (e.g.,

audio).

A signal with more than one independent variable is said to be

multi-dimensional (e.g., image).

Continuous or discrete independent variables:

A signal with continuous independent variables is said to be continuous

time (CT) (e.g., voltage waveform).

A signal with discrete independent variables is said to be discrete time

(DT) (e.g., stock market index).

Continuous or discrete dependent variable:

A signal with a continuous dependent variable is said to be continuous

valued (e.g., voltage waveform).

A signal with a discrete dependent variable is said to be discrete valued

(e.g., digital image).

A continuous-valued CT signal is said to be analog (e.g., voltage

waveform).

A discrete-valued DT signal is said to be digital (e.g., digital audio).
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Graphical Representation of Signals
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Systems

A system is an entity that processes one or more input signals in order to

produce one or more output signals.
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Classification of Systems

Number of inputs:

A system with one input is said to be single input (SI).

A system with more than one input is said to be multiple input (MI).

Number of outputs:

A system with one output is said to be single output (SO).

A system with more than one output is said to be multiple output (MO).

Types of signals processed:

A system can be classified in terms of the types of signals that it processes.
Consequently, terms such as the following (which describe signals) can
also be used to describe systems:

one-dimensional and multi-dimensional,

continuous-time (CT) and discrete-time (DT), and

analog and digital.

For example, a continuous-time (CT) system processes CT signals and a

discrete-time (DT) system processes DT signals.
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Signal Processing Systems
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Communication Systems
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Control Systems
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Why Study Signals and Systems?

Engineers build systems that process/manipulate signals.

We need a formal mathematical framework for the study of such systems.

Such a framework is necessary in order to ensure that a system will meet

the required specifications (e.g., performance and safety).

If a system fails to meet the required specifications or fails to work

altogether, negative consequences usually ensue.

When a system fails to operate as expected, the consequences can

sometimes be catastrophic.
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System Failure Example: Tacoma Narrows Bridge

The (original) Tacoma Narrows Bridge was a suspension bridge linking

Tacoma and Gig Harbor (WA, USA).

This mile-long bridge, with a 2,800-foot main span, was the third largest

suspension bridge at the time of opening.

Construction began in Nov. 1938 and took about 19 months to build at a

cost of $6,400,000.

On July 1, 1940, the bridge opened to traffic.

On Nov. 7, 1940 at approximately 11:00, the bridge collapsed during a

moderate (42 miles/hour) wind storm.

The bridge was supposed to withstand winds of up to 120 miles/hour.

The collapse was due to wind-induced vibrations and an unstable

mechanical system.

Repair of the bridge was not possible.

Fortunately, a dog trapped in an abandoned car was the only fatality.
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System Failure Example: Tacoma Narrows Bridge

(Continued)

IMAGE OMITTED FOR COPYRIGHT REASONS.
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Section 1.1

Signals
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Signals

Earlier, we were introduced to CT and DT signals.

A CT signal is called a function.

A DT signal is called a sequence.

Although, strictly speaking, a sequence is a special case of a function

(where the domain of the function is the integers), we will use the term

function exclusively to mean a function that is not a sequence.

The nth element of a sequence x is denoted as either x(n) or xn.
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Notation: Functions Versus Function Values

Strictly speaking, an expression like “ f (t)” means the value of the function f

evaluated at the point t.

Unfortunately, engineers often use an expression like “ f (t)” to refer to the

function f (rather than the value of f evaluated at the point t), and this sloppy

notation can lead to problems (e.g., ambiguity) in some situations.

In contexts where sloppy notation may lead to problems, one should be careful to

clearly distinguish between a function and its value.

Example (meaning of notation):

Let f and g denote real-valued functions of a real variable.

Let t denote an arbitrary real number.

Let H denote a system operator (which maps a function to a function).

The quantity f + g is a function, namely, the function formed by adding the

functions f and g.

The quantity f (t)+ g(t) is a number, namely, the sum of: the value of the

function f evaluated at t; and the value of the function g evaluated at t.

The quantity H x is a function, namely, the output produced by the system

represented by H when the input to the system is the function x.

The quantity H x(t) is a number, namely, the value of the function H x

evaluated at t.
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Section 1.2

Properties of Signals
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Even Signals

A function x is said to be even if it satisfies

x(t) = x(−t) for all t.

A sequence x is said to be even if it satisfies

x(n) = x(−n) for all n.

Geometrically, the graph of an even signal is symmetric about the origin.

Some examples of even signals are shown below.

−1−2−3 1 2 3

1

2

−1

−2

t

x(t)

−2−3 2 3

1

2

n

−2

−1

x(n)

−1 1

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 17



Odd Signals

A function x is said to be odd if it satisfies

x(t) =−x(−t) for all t.

A sequence x is said to be odd if it satisfies

x(n) =−x(−n) for all n.

Geometrically, the graph of an odd signal is antisymmetric about the

origin.

An odd signal x must be such that x(0) = 0.

Some examples of odd signals are shown below.
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Periodic Signals

A function x is said to be periodic with period T (or T -periodic) if, for

some strictly-positive real constant T , the following condition holds:

x(t) = x(t +T) for all t.

A T -periodic function x is said to have frequency 1
T

and angular

frequency 2π
T

.

A sequence x is said to be periodic with period N (or N-periodic) if, for

some strictly-positive integer constant N, the following condition holds:

x(n) = x(n+N) for all n.

An N-periodic sequence x is said to have frequency 1
N

and angular

frequency 2π
N

.

A function/sequence that is not periodic is said to be aperiodic.
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Periodic Signals (Continued 1)

Some examples of periodic signals are shown below.
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Periodic Signals (Continued 2)

The period of a periodic signal is not unique. That is, a signal that is

periodic with period T is also periodic with period kT , for every (strictly)

positive integer k.

The smallest period with which a signal is periodic is called the

fundamental period and its corresponding frequency is called the

fundamental frequency.
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Part 2

Continuous-Time (CT) Signals and Systems
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Section 2.1

Independent- and Dependent-Variable Transformations

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 23



Time Shifting (Translation)

Time shifting (also called translation) maps the input signal x to the

output signal y as given by

y(t) = x(t−b),

where b is a real number.

Such a transformation shifts the signal (to the left or right) along the time

axis.

If b > 0, y is shifted to the right by |b|, relative to x (i.e., delayed in time).

If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).
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Time Shifting (Translation): Example
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Time Reversal (Reflection)

Time reversal (also known as reflection) maps the input signal x to the

output signal y as given by

y(t) = x(−t).

Geometrically, the output signal y is a reflection of the input signal x about

the (vertical) line t = 0.
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Time Compression/Expansion (Dilation)

Time compression/expansion (also called dilation) maps the input

signal x to the output signal y as given by

y(t) = x(at),

where a is a strictly positive real number.

Such a transformation is associated with a compression/expansion along

the time axis.

If a > 1, y is compressed along the horizontal axis by a factor of a, relative

to x.

If a < 1, y is expanded (i.e., stretched) along the horizontal axis by a

factor of 1
a
, relative to x.
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Time Compression/Expansion (Dilation): Example
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Time Scaling

Time scaling maps the input signal x to the output signal y as given by

y(t) = x(at),

where a is a nonzero real number.

Such a transformation is associated with a dilation (i.e.,

compression/expansion along the time axis) and/or time reversal.

If |a|> 1, the signal is compressed along the time axis by a factor of |a|.
If |a|< 1, the signal is expanded (i.e., stretched) along the time axis by a

factor of
∣
∣1

a

∣
∣.

If |a|= 1, the signal is neither expanded nor compressed.

If a < 0, the signal is also time reversed.

Dilation (i.e., expansion/compression) and time reversal commute.

Time reversal is a special case of time scaling with a =−1; and time

compression/expansion is a special case of time scaling with a > 0.
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Time Scaling (Dilation/Reflection): Example
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Combined Time Scaling and Time Shifting

Consider a transformation that maps the input signal x to the output signal

y as given by

y(t) = x(at−b),

where a and b are real numbers and a 6= 0.

The above transformation can be shown to be the combination of a

time-scaling operation and time-shifting operation.

Since time scaling and time shifting do not commute, we must be

particularly careful about the order in which these transformations are

applied.

The above transformation has two distinct but equivalent interpretations:

1 first, time shifting x by b, and then time scaling the result by a;
2 first, time scaling x by a, and then time shifting the result by b/a.

Note that the time shift is not by the same amount in both cases.
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Combined Time Scaling and Time Shifting: Example

Given x(t) as shown

below, find x(2t−1).
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Two Perspectives on Independent-Variable Transformations

A transformation of the independent variable can be viewed in terms of

1 the effect that the transformation has on the signal; or
2 the effect that the transformation has on the horizontal axis.

This distinction is important because such a transformation has opposite

effects on the signal and horizontal axis.

For example, the (time-shifting) transformation that replaces t by t−b
(where b is a real number) in x(t) can be viewed as a transformation that

1 shifts the signal x right by b units; or
2 shifts the horizontal axis left by b units.

In our treatment of independent-variable transformations, we are only

interested in the effect that a transformation has on the signal.

If one is not careful to consider that we are interested in the signal

perspective (as opposed to the axis perspective), many aspects of

independent-variable transformations will not make sense.
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Amplitude Scaling

Amplitude scaling maps the input signal x to the output signal y as given

by

y(t) = ax(t),

where a is a real number.

Geometrically, the output signal y is expanded/compressed in amplitude

and/or reflected about the horizontal axis.
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Amplitude Shifting

Amplitude shifting maps the input signal x to the output signal y as

given by

y(t) = x(t)+b,

where b is a real number.

Geometrically, amplitude shifting adds a vertical displacement to x.
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Combined Amplitude Scaling and Amplitude Shifting

We can also combine amplitude scaling and amplitude shifting

transformations.

Consider a transformation that maps the input signal x to the output signal

y, as given by

y(t) = ax(t)+b,

where a and b are real numbers.

Equivalently, the above transformation can be expressed as

y(t) = a
[
x(t)+ b

a

]
.

The above transformation is equivalent to:

1 first amplitude scaling x by a, and then amplitude shifting the resulting

signal by b; or
2 first amplitude shifting x by b/a, and then amplitude scaling the resulting

signal by a.
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Section 2.2

Properties of Signals
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Symmetry and Addition/Multiplication

Sums involving even and odd functions have the following properties:

The sum of two even functions is even.

The sum of two odd functions is odd.

The sum of an even function and odd function is neither even nor odd,

provided that neither of the functions is identically zero.

That is, the sum of functions with the same type of symmetry also has the

same type of symmetry.

Products involving even and odd functions have the following properties:

The product of two even functions is even.

The product of two odd functions is even.

The product of an even function and an odd function is odd.

That is, the product of functions with the same type of symmetry is even,

while the product of functions with opposite types of symmetry is odd.
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Decomposition of a Signal into Even and Odd Parts

Every function x has a unique representation of the form

x(t) = xe(t)+ xo(t),

where the functions xe and xo are even and odd, respectively.

In particular, the functions xe and xo are given by

xe(t) =
1
2
[x(t)+ x(−t)] and xo(t) =

1
2
[x(t)− x(−t)] .

The functions xe and xo are called the even part and odd part of x,

respectively.

For convenience, the even and odd parts of x are often denoted as

Even{x} and Odd{x}, respectively.
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Sum of Periodic Functions

Sum of periodic functions. Let x1 and x2 be periodic functions with

fundamental periods T1 and T2, respectively. Then, the sum y = x1 + x2 is

a periodic function if and only if the ratio T1/T2 is a rational number (i.e.,

the quotient of two integers). Suppose that T1/T2 = q/r where q and r are

integers and coprime (i.e., have no common factors), then the

fundamental period of y is rT1 (or equivalently, qT2, since rT1 = qT2).

(Note that rT1 is simply the least common multiple of T1 and T2.)

Although the above theorem only directly addresses the case of the sum

of two functions, the case of N functions (where N > 2) can be handled by

applying the theorem repeatedly N−1 times.
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Right-Sided Signals

A signal x is said to be right sided if, for some (finite) real constant t0, the

following condition holds:

x(t) = 0 for all t < t0

(i.e., x is only potentially nonzero to the right of t0).

An example of a right-sided signal is shown below.

t

· · ·

x(t)

t0

A signal x is said to be causal if

x(t) = 0 for all t < 0.

A causal signal is a special case of a right-sided signal.

A causal signal is not to be confused with a causal system. In these two

contexts, the word “causal” has very different meanings.
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Left-Sided Signals

A signal x is said to be left sided if, for some (finite) real constant t0, the

following condition holds:

x(t) = 0 for all t > t0

(i.e., x is only potentially nonzero to the left of t0).

An example of a left-sided signal is shown below.

· · ·

t0
t

x(t)

Similarly, a signal x is said to be anticausal if

x(t) = 0 for all t > 0.

An anticausal signal is a special case of a left-sided signal.

An anticausal signal is not to be confused with an anticausal system. In

these two contexts, the word “anticausal” has very different meanings.
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Finite-Duration and Two-Sided Signals

A signal that is both left sided and right sided is said to be finite duration

(or time limited).

An example of a finite duration signal is shown below.

t0 t1
t

x(t)

A signal that is neither left sided nor right sided is said to be two sided.

An example of a two-sided signal is shown below.

t
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Bounded Signals

A signal x is said to be bounded if there exists some (finite) positive real

constant A such that

|x(t)| ≤ A for all t

(i.e., x(t) is finite for all t).

Examples of bounded signals include the sine and cosine functions.

Examples of unbounded signals include the tan function and any

nonconstant polynomial function.
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Signal Energy and Power

The energy E contained in the signal x is given by

E =

∫ ∞

−∞
|x(t)|2 dt.

A signal with finite energy is said to be an energy signal.

The average power P contained in the signal x is given by

P = lim
T→∞

1

T

∫ T/2

−T/2
|x(t)|2 dt.

A signal with (nonzero) finite average power is said to be a power signal.
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Section 2.3

Elementary Signals
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Real Sinusoids

A (CT) real sinusoid is a function of the form

x(t) = Acos(ωt +θ),

where A, ω, and θ are real constants.

Such a function is periodic with fundamental period T = 2π
|ω| and

fundamental frequency |ω|.
A real sinusoid has a plot resembling that shown below.

t

Acos(ωt +θ)

Acosθ
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Complex Exponentials

A (CT) complex exponential is a function of the form

x(t) = Aeλt ,

where A and λ are complex constants.

A complex exponential can exhibit one of a number of distinct modes of

behavior, depending on the values of its parameters A and λ.

For example, as special cases, complex exponentials include real

exponentials and complex sinusoids.
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Real Exponentials

A real exponential is a special case of a complex exponential

x(t) = Aeλt , where A and λ are restricted to be real numbers.

A real exponential can exhibit one of three distinct modes of behavior,

depending on the value of λ, as illustrated below.

If λ > 0, x(t) increases exponentially as t increases (i.e., a growing exponential).

If λ < 0, x(t) decreases exponentially as t increases (i.e., a decaying exponential).

If λ = 0, x(t) simply equals the constant A.

t

Aeλt

A

λ > 0

A

Aeλt

t

λ = 0

A

Aeλt

t

λ < 0
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Complex Sinusoids

A complex sinusoid is a special case of a complex exponential x(t) = Aeλt ,

where A is complex and λ is purely imaginary (i.e., Re{λ}= 0).

That is, a (CT) complex sinusoid is a function of the form

x(t) = Ae jωt ,

where A is complex and ω is real.

By expressing A in polar form as A = |A|e jθ (where θ is real) and using

Euler’s relation, we can rewrite x(t) as

x(t) = |A|cos(ωt +θ)
︸ ︷︷ ︸

Re{x(t)}

+ j |A|sin(ωt +θ)
︸ ︷︷ ︸

Im{x(t)}

.

Thus, Re{x} and Im{x} are the same except for a time shift.

Also, x is periodic with fundamental period T = 2π
|ω| and fundamental

frequency |ω|.
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Complex Sinusoids (Continued)

The graphs of Re{x} and Im{x} have the forms shown below.

|A|cos(ωt +θ)

t

|A|cosθ

|A|

−|A|

t

|A|sin(ωt +θ)

|A|

|A|sinθ

−|A|
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General Complex Exponentials

In the most general case of a complex exponential x(t) = Aeλt , A and λ

are both complex.

Letting A = |A|e jθ and λ = σ+ jω (where θ, σ, and ω are real), and

using Euler’s relation, we can rewrite x(t) as

x(t) = |A|eσt cos(ωt +θ)
︸ ︷︷ ︸

Re{x(t)}

+ j |A|eσt sin(ωt +θ)
︸ ︷︷ ︸

Im{x(t)}

.

Thus, Re{x} and Im{x} are each the product of a real exponential and

real sinusoid.

One of three distinct modes of behavior is exhibited by x(t), depending on

the value of σ.

If σ = 0, Re{x} and Im{x} are real sinusoids.

If σ > 0, Re{x} and Im{x} are each the product of a real sinusoid and a

growing real exponential.

If σ < 0, Re{x} and Im{x} are each the product of a real sinusoid and a

decaying real exponential.
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General Complex Exponentials (Continued)

The three modes of behavior for Re{x} and Im{x} are illustrated below.

t

|A|eσt

σ > 0

t

|A|eσt

σ = 0

t

|A|eσt

σ < 0
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Relationship Between Complex Exponentials and Real

Sinusoids

From Euler’s relation, a complex sinusoid can be expressed as the sum of

two real sinusoids as

Ae jωt = Acosωt + jAsinωt.

Moreover, a real sinusoid can be expressed as the sum of two complex

sinusoids using the identities

Acos(ωt +θ) =
A

2

[

e j(ωt+θ)+ e− j(ωt+θ)
]

and

Asin(ωt +θ) =
A

2 j

[

e j(ωt+θ)− e− j(ωt+θ)
]

.

Note that, above, we are simply restating results from the (appendix)

material on complex analysis.
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Unit-Step Function

The unit-step function (also known as the Heaviside function), denoted

u, is defined as

u(t) =

{

1 if t ≥ 0

0 otherwise.

Due to the manner in which u is used in practice, the actual value of u(0)
is unimportant. Sometimes values of 0 and 1

2
are also used for u(0).

A plot of this function is shown below.

u(t)

0−1 1

1

t

· · ·

· · ·
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Signum Function

The signum function, denoted sgn, is defined as

sgn t =







1 if t > 0

0 if t = 0

−1 if t < 0.

From its definition, one can see that the signum function simply computes

the sign of a number.

A plot of this function is shown below.

1−2−3 2 3
t

· · ·

· · ·1

−1

−1

sgn t
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Rectangular Function

The rectangular function (also called the unit-rectangular pulse

function), denoted rect, is given by

rect(t) =

{

1 if − 1
2
≤ t < 1

2

0 otherwise.

Due to the manner in which the rect function is used in practice, the actual

value of rect(t) at t =± 1
2

is unimportant. Sometimes different values are

used from those specified above.

A plot of this function is shown below.

0− 1
2

1
2

rect(t)

1

t

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 57



Triangular Function

The triangular function (also called the unit-triangular pulse function),

denoted tri, is defined as

tri(t) =

{

1−2 |t| |t| ≤ 1
2

0 otherwise.

A plot of this function is shown below.

0− 1
2

1
2

tri(t)

1

t
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Cardinal Sine Function

The cardinal sine function, denoted sinc, is given by

sinc(t) =
sin t

t
.

By l’Hopital’s rule, sinc 0 = 1.

A plot of this function for part of the real line is shown below.

[Note that the oscillations in sinc(t) do not die out for finite t.]

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10π −5π 0 5π 10π
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Unit-Impulse Function

The unit-impulse function (also known as the Dirac delta function or

delta function), denoted δ, is defined by the following two properties:

δ(t) = 0 for t 6= 0 and∫ ∞

−∞
δ(t)dt = 1.

Technically, δ is not a function in the ordinary sense. Rather, it is what is

known as a generalized function. Consequently, the δ function

sometimes behaves in unusual ways.

Graphically, the delta function is represented as shown below.

t
0

1

δ(t)

t

K

t0

Kδ(t− t0)

0
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Unit-Impulse Function as a Limit

Define

gε(t) =

{

1/ε for |t|< ε/2

0 otherwise.

The function gε has a plot of the form shown below.

0− ε
2

ε
2

gε(t)

t

1
ε

Clearly, for any choice of ε,
∫ ∞
−∞ gε(t)dt = 1.

The function δ can be obtained as the following limit:

δ(t) = lim
ε→0

gε(t).

That is, δ can be viewed as a limiting case of a rectangular pulse where

the pulse width becomes infinitesimally small and the pulse height

becomes infinitely large in such a way that the integral of the resulting

function remains unity.
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Properties of the Unit-Impulse Function

Equivalence property. For any continuous function x and any real

constant t0,

x(t)δ(t− t0) = x(t0)δ(t− t0).

Sifting property. For any continuous function x and any real constant t0,

∫ ∞

−∞
x(t)δ(t− t0)dt = x(t0).

The δ function also has the following properties:

δ(t) = δ(−t) and

δ(at) = 1
|a|δ(t),

where a is a nonzero real constant.
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Representing a Rectangular Pulse Using Unit-Step

Functions

For real constants a and b where a≤ b, consider a function x of the form

x(t) =

{

1 if a≤ t < b

0 otherwise

(i.e., x(t) is a rectangular pulse of height one, with a rising edge at a and

falling edge at b).

The function x can be equivalently written as

x(t) = u(t−a)−u(t−b)

(i.e., the difference of two time-shifted unit-step functions).

Unlike the original expression for x, this latter expression for x does not

involve multiple cases.

In effect, by using unit-step functions, we have collapsed a formula

involving multiple cases into a single expression.
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Representing Functions Using Unit-Step Functions

The idea from the previous slide can be extended to handle any function

that is defined in a piecewise manner (i.e., via an expression involving

multiple cases).

That is, by using unit-step functions, we can always collapse a formula

involving multiple cases into a single expression.

Often, simplifying a formula in this way can be quite beneficial.
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Section 2.4

Continuous-Time (CT) Systems
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CT Systems

A system with input x and output y can be described by the equation

y = H {x},

where H denotes an operator (i.e., transformation).

Note that the operator H maps a function to a function (not a number to

a number).

Alternatively, we can express the above relationship using the notation

x
H−→ y.

If clear from the context, the operator H is often omitted, yielding the

abbreviated notation

x→ y.

Note that the symbols “→” and “=” have very different meanings.

The symbol “→” should be read as “produces” (not as “equals”).
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Block Diagram Representations

Often, a system defined by the operator H and having the input x and

output y is represented in the form of a block diagram as shown below.

System

H

x(t)
Input Output

y(t)
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Interconnection of Systems

Two basic ways in which systems can be interconnected are shown below.

System 1 System 2

H1 H2

y(t)x(t)

Series

System 1

System 2

H1

H2

+
x(t) y(t)

Parallel

A series (or cascade) connection ties the output of one system to the input

of the other.

The overall series-connected system is described by the equation

y = H2

{
H1{x}

}
.

A parallel connection ties the inputs of both systems together and sums

their outputs.

The overall parallel-connected system is described by the equation

y = H1{x}+H2{x}.
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Section 2.5

Properties of (CT) Systems

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 69



Memory and Causality

A system with input x and output y is said to have memory if, for any real

t0, y(t0) depends on x(t) for some t 6= t0.

A system that does not have memory is said to be memoryless.

Although simple, a memoryless system is not very flexible, since its

current output value cannot rely on past or future values of the input.

A system with input x and output y is said to be causal if, for every real t0,

y(t0) does not depend on x(t) for some t > t0.

If the independent variable t represents time, a system must be causal in

order to be physically realizable.

Noncausal systems can sometimes be useful in practice, however, since

the independent variable need not always represent time. For example, in

some situations, the independent variable might represent position.
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Invertibility

The inverse of a system H is another system H −1 such that the

combined effect of H cascaded with H −1 is a system where the input

and output are equal.

A system is said to be invertible if it has a corresponding inverse system

(i.e., its inverse exists).

Equivalently, a system is invertible if its input x can always be uniquely

determined from its output y.

Note that the invertibility of a system (which involves mappings between

functions) and the invertibility of a function (which involves mappings

between numbers) are fundamentally different things.

An invertible system will always produce distinct outputs from any two

distinct inputs.

To show that a system is invertible, we simply find the inverse system.

To show that a system is not invertible, we find two distinct inputs that

result in identical outputs.

In practical terms, invertible systems are “nice” in the sense that their

effects can be undone.
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Bounded-Input Bounded-Output (BIBO) Stability

A system with input x and output y is BIBO stable if, for every bounded x,

y is bounded (i.e., |x(t)|< ∞ for all t implies that |y(t)|< ∞ for all t).

To show that a system is BIBO stable, we must show that every bounded

input leads to a bounded output.

To show that a system is not BIBO stable, we only need to find a single

bounded input that leads to an unbounded output.

In practical terms, a BIBO stable system is well behaved in the sense that,

as long as the system input remains finite for all time, the output will also

remain finite for all time.

Usually, a system that is not BIBO stable will have serious safety issues.

For example, an iPod with a battery input of 3.7 volts and headset output

of ∞ volts would result in one vaporized Apple customer and one big

lawsuit.
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Time Invariance (TI)

A system H is said to be time invariant (TI) if, for every function x and

every real number t0, the following condition holds:

y(t− t0) = H x′(t) where y = H x and x′(t) = x(t− t0)

(i.e., H commutes with time shifts).

In other words, a system is time invariant if a time shift (i.e., advance or

delay) in the input always results only in an identical time shift in the

output.

A system that is not time invariant is said to be time varying.

In simple terms, a time invariant system is a system whose behavior does

not change with respect to time.

Practically speaking, compared to time-varying systems, time-invariant

systems are much easier to design and analyze, since their behavior

does not change with respect to time.
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Additivity, Homogeneity, and Linearity

A system H is said to be additive if, for all functions x1 and x2, the

following condition holds:

H (x1 + x2) = H x1 +H x2

(i.e., H commutes with sums).

A system H is said to be homogeneous if, for every function x and every

complex constant a, the following condition holds:

H (ax) = aH x

(i.e., H commutes with multiplication by a constant).

A system that is both additive and homogeneous is said to be linear.

In other words, a system H is linear, if for all functions x1 and x2 and all

complex constants a1 and a2, the following condition holds:

H (a1x1 +a2x2) = a1H x1 +a2H x2

(i.e., H commutes with linear combinations).

The linearity property is also referred to as the superposition property.

Practically speaking, linear systems are much easier to design and

analyze than nonlinear systems.
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Part 3

Continuous-Time Linear Time-Invariant (LTI) Systems
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Why Linear Time-Invariant (LTI) Systems?

In engineering, linear-time invariant (LTI) systems play a very important

role.

Very powerful mathematical tools have been developed for analyzing LTI

systems.

LTI systems are much easier to analyze than systems that are not LTI.

In practice, systems that are not LTI can be well approximated using LTI

models.

So, even when dealing with systems that are not LTI, LTI systems still play

an important role.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 76



Section 3.1

Convolution
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CT Convolution

The (CT) convolution of the functions x and h, denoted x∗h, is defined

as the function

x∗h(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ.

The convolution result x∗h evaluated at the point t is simply a weighted

average of the function x, where the weighting is given by h time reversed

and shifted by t.

Herein, the asterisk symbol (i.e., “∗”) will always be used to denote

convolution, not multiplication.

As we shall see, convolution is used extensively in systems theory.

In particular, convolution has a special significance in the context of LTI

systems.
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Practical Convolution Computation

To compute the convolution

x∗h(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ,

we proceed as follows:

1 Plot x(τ) and h(t− τ) as a function of τ.
2 Initially, consider an arbitrarily large negative value for t. This will result in

h(t− τ) being shifted very far to the left on the time axis.
3 Write the mathematical expression for x∗ h(t).
4 Increase t gradually until the expression for x∗ h(t) changes form. Record

the interval over which the expression for x∗ h(t) was valid.
5 Repeat steps 3 and 4 until t is an arbitrarily large positive value. This

corresponds to h(t− τ) being shifted very far to the right on the time axis.
6 The results for the various intervals can be combined in order to obtain an

expression for x∗ h(t) for all t.
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Properties of Convolution

The convolution operation is commutative. That is, for any two functions x

and h,

x∗h = h∗ x.

The convolution operation is associative. That is, for any signals x, h1, and

h2,

(x∗h1)∗h2 = x∗ (h1 ∗h2).

The convolution operation is distributive with respect to addition. That is,

for any signals x, h1, and h2,

x∗ (h1 +h2) = x∗h1 + x∗h2.
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Representation of Signals Using Impulses

For any function x,

x(t) =

∫ ∞

−∞
x(τ)δ(t− τ)dτ = x∗δ(t).

Thus, any function x can be written in terms of an expression involving δ.

Moreover, δ is the convolutional identity. That is, for any function x,

x∗δ = x.
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Periodic Convolution

The convolution of two periodic functions is usually not well defined.

This motivates an alternative notion of convolution for periodic signals

known as periodic convolution.

The periodic convolution of the T -periodic functions x and h, denoted

x⊛h, is defined as

x⊛h(t) =

∫
T

x(τ)h(t− τ)dτ,

where
∫

T denotes integration over an interval of length T .

The periodic convolution and (linear) convolution of the T -periodic

functions x and h are related as follows:

x⊛h(t) = x0 ∗h(t) where x(t) =
∞

∑
k=−∞

x0(t− kT)

(i.e., x0(t) equals x(t) over a single period of x and is zero elsewhere).
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Section 3.2

Convolution and LTI Systems
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Impulse Response

The response h of a system H to the input δ is called the impulse

response of the system (i.e., h = H {δ}).
For any LTI system with input x, output y, and impulse response h, the

following relationship holds:

y = x∗h.

In other words, a LTI system simply computes a convolution.

Furthermore, a LTI system is completely characterized by its impulse

response.

That is, if the impulse response of a LTI system is known, we can

determine the response of the system to any input.

Since the impulse response of a LTI system is an extremely useful

quantity, we often want to determine this quantity in a practical setting.

Unfortunately, in practice, the impulse response of a system cannot be

determined directly from the definition of the impulse response.
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Step Response

The response s of a system H to the input u is called the step response of

the system (i.e., s = H {u}).
The impulse response h and step response s of a system are related as

h(t) =
ds(t)

dt
.

Therefore, the impulse response of a system can be determined from its

step response by differentiation.

The step response provides a practical means for determining the impulse

response of a system.
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Block Diagram Representation of LTI Systems

Often, it is convenient to represent a (CT) LTI system in block diagram

form.

Since such systems are completely characterized by their impulse

response, we often label a system with its impulse response.

That is, we represent a system with input x, output y, and impulse

response h, as shown below.

h(t)
x(t) y(t)
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Interconnection of LTI Systems

The series interconnection of the LTI systems with impulse responses h1

and h2 is the LTI system with impulse response h = h1 ∗h2. That is, we

have the equivalences shown below.

h1(t) h2(t) ≡ x(t) y(t)
h1 ∗h2(t)

y(t)x(t)

≡h1(t) h2(t) h2(t) h1(t)
y(t)x(t) y(t)x(t)

The parallel interconnection of the LTI systems with impulse responses

h1 and h2 is a LTI system with the impulse response h = h1 +h2. That is,

we have the equivalence shown below.

h1(t)+h2(t)
y(t)x(t)

h1(t)

h2(t)

≡
+

x(t) y(t)
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Section 3.3

Properties of LTI Systems
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Memory

A LTI system with impulse response h is memoryless if and only if

h(t) = 0 for all t 6= 0.

That is, a LTI system is memoryless if and only if its impulse response h is

of the form

h(t) = Kδ(t),

where K is a complex constant.

Consequently, every memoryless LTI system with input x and output y is

characterized by an equation of the form

y = x∗ (Kδ) = Kx

(i.e., the system is an ideal amplifier).

For a LTI system, the memoryless constraint is extremely restrictive (as

every memoryless LTI system is an ideal amplifier).
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Causality

A LTI system with impulse response h is causal if and only if

h(t) = 0 for all t < 0

(i.e., h is a causal signal).

It is due to the above relationship that we call a signal x, satisfying

x(t) = 0 for all t < 0,

a causal signal.
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Invertibility

The inverse of a LTI system, if such a system exists, is a LTI system.

Let h and hinv denote the impulse responses of a LTI system and its (LTI)

inverse, respectively. Then,

h∗hinv = δ.

Consequently, a LTI system with impulse response h is invertible if and

only if there exists a function hinv such that

h∗hinv = δ.

Except in simple cases, the above condition is often quite difficult to test.
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BIBO Stability

A LTI system with impulse response h is BIBO stable if and only if
∫ ∞

−∞
|h(t)|dt < ∞

(i.e., h is absolutely integrable).
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Eigenfunctions of Systems

An input x to a system H is said to be an eigenfunction of the system H

with the eigenvalue λ if the corresponding output y is of the form

y = λx,

where λ is a complex constant.

In other words, the system H acts as an ideal amplifier for each of its

eigenfunctions x, where the amplifier gain is given by the corresponding

eigenvalue λ.

Different systems have different eigenfunctions.

Of particular interest are the eigenfunctions of LTI systems.
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Eigenfunctions of LTI Systems

As it turns out, every complex exponential is an eigenfunction of all LTI

systems.

For a LTI system H with impulse response h,

H {est}= H(s)est ,

where s is a complex constant and

H(s) =
∫ ∞

−∞
h(t)e−stdt.

That is, est is an eigenfunction of a LTI system and H(s) is the

corresponding eigenvalue.

We refer to H as the system function (or transfer function) of the

system H .

From above, we can see that the response of a LTI system to a complex

exponential is the same complex exponential multiplied by the complex

factor H(s).
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Representations of Signals Using Eigenfunctions

Consider a LTI system with input x, output y, and system function H .

Suppose that the input x can be expressed as the linear combination of

complex exponentials
x(t) = ∑

k

akeskt ,

where the ak and sk are complex constants.

Using the fact that complex exponentials are eigenfunctions of LTI

systems, we can conclude

y(t) = ∑
k

akH(sk)e
skt .

Thus, if an input to a LTI system can be expressed as a linear combination

of complex exponentials, the output can also be expressed as a linear

combination of the same complex exponentials.

The above formula can be used to determine the output of a LTI system

from its input in a way that does not require convolution.
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Part 4

Continuous-Time Fourier Series (CTFS)
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Introduction

The Fourier series is a representation for periodic signals.

With a Fourier series, a signal is represented as a linear combination of

complex sinusoids.

The use of complex sinusoids is desirable due to their numerous attractive

properties.

For example, complex sinusoids are continuous and differentiable. They

are also easy to integrate and differentiate.

Perhaps, most importantly, complex sinusoids are eigenfunctions of LTI

systems.
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Section 4.1

Fourier Series
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Harmonically-Related Complex Sinusoids

A set of complex sinusoids is said to be harmonically related if there

exists some constant ω0 such that the fundamental frequency of each

complex sinusoid is an integer multiple of ω0.

Consider the set of harmonically-related complex sinusoids given by

φk(t) = e jkω0t for all integer k.

The fundamental frequency of the kth complex sinusoid φk is kω0, an

integer multiple of ω0.

Since the fundamental frequency of each of the harmonically-related

complex sinusoids is an integer multiple of ω0, a linear combination of

these complex sinusoids must be periodic.

More specifically, a linear combination of these complex sinusoids is

periodic with period T = 2π/ω0.
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CT Fourier Series

A periodic complex signal x with fundamental period T and fundamental

frequency ω0 =
2π
T

can be represented as a linear combination of

harmonically-related complex sinusoids as

x(t) =
∞

∑
k=−∞

cke jkω0t .

Such a representation is known as (the complex exponential form of) a

(CT) Fourier series, and the ck are called Fourier series coefficients.

The above formula for x is often referred to as the Fourier series

synthesis equation.

The terms in the summation for k = K and k =−K are called the Kth

harmonic components, and have the fundamental frequency Kω0.

To denote that a signal x has the Fourier series coefficient sequence ck,

we write

x(t)
CTFS←→ ck.
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CT Fourier Series (Continued)

The periodic signal x with fundamental period T and fundamental

frequency ω0 =
2π
T

has the Fourier series coefficients ck given by

ck =
1

T

∫
T

x(t)e− jkω0tdt,

where
∫

T denotes integration over an arbitrary interval of length T (i.e.,

one period of x).

The above equation for ck is often referred to as the Fourier series

analysis equation.
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Trigonometric Forms of a Fourier Series

Consider the periodic signal x with the Fourier series coefficients ck.

If x is real, then its Fourier series can be rewritten in two other forms,

known as the combined trigonometric and trigonometric forms.

The combined trigonometric form of a Fourier series has the

appearance

x(t) = c0 +2
∞

∑
k=1

|ck|cos(kω0t +θk),

where θk = arg ck.

The trigonometric form of a Fourier series has the appearance

x(t) = c0 +
∞

∑
k=1

[αk coskω0t +βk sin kω0t] ,

where αk = 2Reck and βk =−2Imck.

Note that the trigonometric forms contain only real quantities.
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Section 4.2

Convergence Properties of Fourier Series
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Convergence of Fourier Series

Since a Fourier series can have an infinite number of terms, and an

infinite sum may or may not converge, we need to consider the issue of

convergence.

That is, when we claim that a periodic signal x(t) is equal to the Fourier

series ∑∞
k=−∞ cke jkω0t , is this claim actually correct?

Consider a periodic signal x that we wish to represent with the Fourier

series
∞

∑
k=−∞

cke jkω0t .

Let xN denote the Fourier series truncated after the Nth harmonic

components as given by

xN(t) =
N

∑
k=−N

cke jkω0t .

Here, we are interested in whether limN→∞ xN(t) is equal (in some sense)

to x(t).
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Convergence of Fourier Series (Continued)

The error in approximating x(t) by xN(t) is given by

eN(t) = x(t)− xN(t),

and the corresponding mean-squared error (MSE) (i.e., energy of the

error) is given by

EN =
1

T

∫
T
|eN(t)|2 dt.

If limN→∞ eN(t) = 0 for all t (i.e., the error goes to zero at every point), the

Fourier series is said to converge pointwise to x(t).

If convergence is pointwise and the rate of convergence is the same

everywhere, the convergence is said to be uniform.

If limN→∞ EN = 0 (i.e., the energy of the error goes to zero), the Fourier

series is said to converge to x in the MSE sense.

Pointwise convergence implies MSE convergence, but the converse is not

true. Thus, pointwise convergence is a much stronger condition than MSE

convergence.
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Convergence of Fourier Series: Continuous Case

If a periodic signal x is continuous and its Fourier series coefficients ck

are absolutely summable (i.e., ∑∞
k=−∞ |ck|< ∞), then the Fourier series

representation of x converges uniformly (i.e., pointwise at the same rate

everywhere).

Since, in practice, we often encounter signals with discontinuities (e.g., a

square wave), the above result is of somewhat limited value.
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Convergence of Fourier Series: Finite-Energy Case

If a periodic signal x has finite energy in a single period (i.e.,∫
T |x(t)|

2
dt < ∞), the Fourier series converges in the MSE sense.

Since, in situations of practice interest, the finite-energy condition in the

above theorem is typically satisfied, the theorem is usually applicable.

It is important to note, however, that MSE convergence (i.e., E = 0) does

not necessarily imply pointwise convergence (i.e., x̃(t) = x(t) for all t).

Thus, the above convergence theorem does not provide much useful

information regarding the value of x̃(t) at specific values of t.

Consequently, the above theorem is typically most useful for simply

determining if the Fourier series converges.
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Convergence of Fourier Series: Dirichlet Case

The Dirichlet conditions for the periodic signal x are as follows:

1 Over a single period, x is absolutely integrable (i.e.,
∫

T |x(t)|dt < ∞).
2 Over a single period, x has a finite number of maxima and minima (i.e., x is

of bounded variation).
3 Over any finite interval, x has a finite number of discontinuities, each of

which is finite.

If a periodic signal x satisfies the Dirichlet conditions, then:

1 The Fourier series converges pointwise everywhere to x, except at the

points of discontinuity of x.
2 At each point t = ta of discontinuity of x, the Fourier series x̃ converges to

x̃(ta) =
1
2

[
x(t−a )+ x(t+a )

]
,

where x(t−a ) and x(t+a ) denote the values of the signal x on the left- and

right-hand sides of the discontinuity, respectively.

Since most signals tend to satisfy the Dirichlet conditions and the above

convergence result specifies the value of the Fourier series at every point,

this result is often very useful in practice.
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Examples of Functions Violating the Dirichlet Conditions
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1/t

· · ·· · · · · ·

1 2

· · ·
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1
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1
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· · · · · ·

· · · · · ·
t
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Gibbs Phenomenon

In practice, we frequently encounter signals with discontinuities.

When a signal x has discontinuities, the Fourier series representation of x

does not converge uniformly (i.e., at the same rate everywhere).

The rate of convergence is much slower at points in the vicinity of a

discontinuity.

Furthermore, in the vicinity of a discontinuity, the truncated Fourier series

xN exhibits ripples, where the peak amplitude of the ripples does not seem

to decrease with increasing N.

As it turns out, as N increases, the ripples get compressed towards

discontinuity, but, for any finite N, the peak amplitude of the ripples

remains approximately constant.

This behavior is known as Gibbs phenomenon.

The above behavior is one of the weaknesses of Fourier series (i.e.,

Fourier series converge very slowly near discontinuities).

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 110



Gibbs Phenomenon: Periodic Square Wave Example
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Section 4.3

Properties of Fourier Series
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Properties of (CT) Fourier Series

x(t)
CTFS←→ ak and y(t)

CTFS←→ bk

Property Time Domain Fourier Domain

Linearity αx(t)+βy(t) αak +βbk

Translation x(t− t0) e− jk(2π/T )t0 ak

Reflection x(−t) a−k

Conjugation x∗(t) a∗−k

Even symmetry x even a even

Odd symmetry x odd a odd

Real x(t) real ak = a∗−k

Property

Parseval’s relation 1
T

∫
T |x(t)|

2
dt = ∑∞

k=−∞ |ak|2
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Linearity

Let x and y be two periodic signals with the same period. If x(t)
CTFS←→ ak

and y(t)
CTFS←→ bk, then

αx(t)+βy(t)
CTFS←→ αak +βbk,

where α and β are complex constants.

That is, a linear combination of signals produces the same linear

combination of their Fourier series coefficients.
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Time Shifting (Translation)

Let x denote a periodic signal with period T and the corresponding

frequency ω0 = 2π/T . If x(t)
CTFS←→ ck, then

x(t− t0)
CTFS←→ e− jkω0t0 ck = e− jk(2π/T )t0ck,

where t0 is a real constant.

In other words, time shifting a periodic signal changes the argument (but

not magnitude) of its Fourier series coefficients.
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Time Reversal (Reflection)

Let x denote a periodic signal with period T and the corresponding

frequency ω0 = 2π/T . If x(t)
CTFS←→ ck, then

x(−t)
CTFS←→ c−k.

That is, time reversal of a signal results in a time reversal of its Fourier

series coefficients.
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Conjugation

For a T -periodic function x with Fourier series coefficient sequence c, the

following properties hold:

x∗(t)
CTFS←→ c∗−k

In other words, conjugating a signal has the effect of time reversing and

conjugating the Fourier series coefficient sequence.
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Even and Odd Symmetry

For a T -periodic function x with Fourier series coefficient sequence c, the

following properties hold:

x is even⇔ c is even; and

x is odd⇔ c is odd.

In other words, the even/odd symmetry properties of x and c always

match.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 118



Real Signals

A signal x is real if and only if its Fourier series coefficient sequence c

satisfies

ck = c∗−k for all k

(i.e., c has conjugate symmetry).

Thus, for a real-valued signal, the negative-indexed Fourier series

coefficients are redundant, as they are completely determined by the

nonnegative-indexed coefficients.

From properties of complex numbers, one can show that ck = c∗−k is

equivalent to

|ck|= |c−k| and arg ck =−argc−k

(i.e., |ck| is even and argck is odd).

Note that x being real does not necessarily imply that c is real.
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Other Properties of Fourier Series

For a T -periodic function x with Fourier-series coefficient sequence c, the
following properties hold:

1 c0 is the average value of x over a single period;
2 x is real and even⇔ c is real and even; and
3 x is real and odd⇔ c is purely imaginary and odd.
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Section 4.4

Fourier Series and Frequency Spectra
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A New Perspective on Signals: The Frequency Domain

The Fourier series provides us with an entirely new way to view signals.

Instead of viewing a signal as having information distributed with respect

to time (i.e., a function whose domain is time), we view a signal as having

information distributed with respect to frequency (i.e., a function whose

domain is frequency).

This so called frequency-domain perspective is of fundamental

importance in engineering.

Many engineering problems can be solved much more easily using the

frequency domain than the time domain.

The Fourier series coefficients of a signal x provide a means to quantify

how much information x has at different frequencies.

The distribution of information in a signal over different frequencies is

referred to as the frequency spectrum of the signal.
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Fourier Series and Frequency Spectra

To gain further insight into the role played by the Fourier series coefficients

ck in the context of the frequency spectrum of the signal x, it is helpful to

write the Fourier series with the ck expressed in polar form as follows:

x(t) =
∞

∑
k=−∞

cke jkω0t =
∞

∑
k=−∞

|ck|e j(kω0t+argck).

Clearly, the kth term in the summation corresponds to a complex sinusoid

with fundamental frequency kω0 that has been amplitude scaled by a

factor of |ck| and time-shifted by an amount that depends on argck.

For a given k, the larger |ck| is, the larger is the amplitude of its

corresponding complex sinusoid e jkω0t , and therefore the larger the

contribution the kth term (which is associated with frequency kω0) will

make to the overall summation.

In this way, we can use |ck| as a measure of how much information a

signal x has at the frequency kω0.
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Fourier Series and Frequency Spectra (Continued)

The Fourier series coefficients ck are referred to as the frequency

spectrum of x.

The magnitudes |ck| of the Fourier series coefficients are referred to as

the magnitude spectrum of x.

The arguments argck of the Fourier series coefficients are referred to as

the phase spectrum of x.

Normally, the spectrum of a signal is plotted against frequency kω0

instead of k.

Since the Fourier series only has frequency components at integer

multiples of the fundamental frequency, the frequency spectrum is

discrete in the independent variable (i.e., frequency).

Due to the general appearance of frequency-spectrum plot (i.e., a number

of vertical lines at various frequencies), we refer to such spectra as line

spectra.
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Frequency Spectra of Real Signals

Recall that, for a real signal x, the Fourier series coefficient sequence c

satisfies

ck = c∗−k

(i.e., c is conjugate symmetric), which is equivalent to

|ck|= |c−k| and argck =−arg c−k.

Since |ck|= |c−k|, the magnitude spectrum of a real signal is always even.

Similarly, since argck =−argc−k, the phase spectrum of a real signal is

always odd.

Due to the symmetry in the frequency spectra of real signals, we typically

ignore negative frequencies when dealing with such signals.

In the case of signals that are complex but not real, frequency spectra do

not possess the above symmetry, and negative frequencies become

important.
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Section 4.5

Fourier Series and LTI Systems
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Frequency Response

Recall that a LTI system H with impulse response h is such that

H {est}= H(s)est , where H(s) =
∫ ∞
−∞ h(t)e−st dt. (That is, complex

exponentials are eigenfunctions of LTI systems.)

Since a complex sinusoid is a special case of a complex exponential, we

can reuse the above result for the special case of complex sinusoids.

For a LTI system H with impulse response h and a complex sinusoid e jωt

(where ω is a real constant),

H {e jωt}= H( jω)e jωt ,

where

H( jω) =

∫ ∞

−∞
h(t)e− jωtdt.

That is, e jωt is an eigenfunction of a LTI system and H( jω) is the

corresponding eigenvalue.

We refer to H( jω) as the frequency response of the system H .
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Fourier Series and LTI Systems

Consider a LTI system with input x, output y, and frequency response

H( jω).

Suppose that the T -periodic input x is expressed as the Fourier series

x(t) =
∞

∑
k=−∞

cke jkω0t , where ω0 = 2π/T .

Using our knowledge about the eigenfunctions of LTI systems, we can

conclude

y(t) =
∞

∑
k=−∞

ckH( jkω0)e
jkω0t .

Thus, if the input x to a LTI system is a Fourier series, the output y is also a

Fourier series. More specifically, if x(t)
CTFS←→ ck then y(t)

CTFS←→ H( jkω0)ck.

The above formula can be used to determine the output of a LTI system

from its input in a way that does not require convolution.
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Filtering

In many applications, we want to modify the spectrum of a signal by

either amplifying or attenuating certain frequency components.

This process of modifying the frequency spectrum of a signal is called

filtering.

A system that performs a filtering operation is called a filter.

Many types of filters exist.

Frequency selective filters pass some frequencies with little or no

distortion, while significantly attenuating other frequencies.

Several basic types of frequency-selective filters include: lowpass,

highpass, and bandpass.
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Ideal Lowpass Filter

An ideal lowpass filter eliminates all frequency components with a

frequency whose magnitude is greater than some cutoff frequency, while

leaving the remaining frequency components unaffected.

Such a filter has a frequency response of the form

H( jω) =

{

1 for |ω| ≤ ωc

0 otherwise,

where ωc is the cutoff frequency.

A plot of this frequency response is given below.

−ωc ωc
ω

1

H( jω)

PassbandStopband Stopband
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Ideal Highpass Filter

An ideal highpass filter eliminates all frequency components with a

frequency whose magnitude is less than some cutoff frequency, while

leaving the remaining frequency components unaffected.

Such a filter has a frequency response of the form

H( jω) =

{

1 for |ω| ≥ ωc

0 otherwise,

where ωc is the cutoff frequency.

A plot of this frequency response is given below.

−ωc ωc
ω

1

H( jω)

· · · · · ·

StopbandPassband Passband
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Ideal Bandpass Filter

An ideal bandpass filter eliminates all frequency components with a

frequency whose magnitude does not lie in a particular range, while

leaving the remaining frequency components unaffected.

Such a filter has a frequency response of the form

H( jω) =

{

1 for ωc1 ≤ |ω| ≤ ωc2

0 otherwise,

where the limits of the passband are ωc1 and ωc2.

A plot of this frequency response is given below.

ω

1

H( jω)

−ωc2 −ωc1 ωc1 ωc2

StopbandStopband StopbandPassband Passband
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Part 5

Continuous-Time Fourier Transform (CTFT)
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Motivation for the Fourier Transform

Fourier series provide an extremely useful representation for periodic

signals.

Often, however, we need to deal with signals that are not periodic.

A more general tool than the Fourier series is needed in this case.

The Fourier transform can be used to represent both periodic and

aperiodic signals.

Since the Fourier transform is essentially derived from Fourier series

through a limiting process, the Fourier transform has many similarities

with Fourier series.
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Section 5.1

Fourier Transform
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Development of the Fourier Transform

The Fourier series is an extremely useful signal representation.

Unfortunately, this signal representation can only be used for periodic

signals, since a Fourier series is inherently periodic.

Many signals are not periodic, however.

Rather than abandoning Fourier series, one might wonder if we can

somehow use Fourier series to develop a representation that can be

applied to aperiodic signals.

By viewing an aperiodic signal as the limiting case of a periodic signal with

period T where T → ∞, we can use the Fourier series to develop a more

general signal representation that can be used for both aperiodic and

periodic signals.

This more general signal representation is called the Fourier transform.
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CT Fourier Transform (CTFT)

The (CT) Fourier transform of the signal x, denoted F {x} or X , is given

by

X(ω) =
∫ ∞

−∞
x(t)e− jωtdt.

The preceding equation is sometimes referred to as Fourier transform

analysis equation (or forward Fourier transform equation).

The inverse Fourier transform of X , denoted F −1{X} or x, is given by

x(t) =
1

2π

∫ ∞

−∞
X(ω)e jωtdω.

The preceding equation is sometimes referred to as the Fourier

transform synthesis equation (or inverse Fourier transform equation).

As a matter of notation, to denote that a signal x has the Fourier transform

X , we write x(t)
CTFT←→ X(ω).

A signal x and its Fourier transform X constitute what is called a Fourier

transform pair.
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Section 5.2

Convergence Properties of the Fourier Transform
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Convergence of the Fourier Transform

Consider an arbitrary signal x.

The signal x has the Fourier transform representation x̃ given by

x̃(t) =
1

2π

∫ ∞

−∞
X(ω)e jωtdω, where X(ω) =

∫ ∞

−∞
x(t)e− jωt dt.

Now, we need to concern ourselves with the convergence properties of

this representation.

In other words, we want to know when x̃ is a valid representation of x.

Since the Fourier transform is essentially derived from Fourier series, the

convergence properties of the Fourier transform are closely related to the

convergence properties of Fourier series.
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Convergence of the Fourier Transform: Continuous Case

If a signal x is continuous and absolutely integrable (i.e.,∫ ∞
−∞ |x(t)|dt < ∞) and the Fourier transform X of x is absolutely integrable

(i.e.,
∫ ∞
−∞ |X(ω)|dω < ∞), then the Fourier transform representation of x

converges pointwise (i.e., x(t) = 1
2π

∫ ∞
−∞

[∫ ∞
−∞ x(t)e− jωtdt

]
e jωtdω for all t).

Since, in practice, we often encounter signals with discontinuities (e.g., a

rectangular pulse), the above result is sometimes of limited value.
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Convergence of the Fourier Transform: Finite-Energy Case

If a signal x is of finite energy (i.e.,
∫ ∞
−∞ |x(t)|2 dt < ∞), then its Fourier

transform representation converges in the MSE sense.

In other words, if x is of finite energy, then the energy E in the difference

signal x̃− x is zero; that is,

E =

∫ ∞

−∞
|x̃(t)− x(t)|2 dt = 0.

Since, in situations of practice interest, the finite-energy condition in the

above theorem is often satisfied, the theorem is frequently applicable.

It is important to note, however, that the condition E = 0 does not

necessarily imply x̃(t) = x(t) for all t.

Thus, the above convergence result does not provide much useful

information regarding the value of x̃(t) at specific values of t.

Consequently, the above theorem is typically most useful for simply

determining if the Fourier transform representation converges.
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Convergence of the Fourier Transform: Dirichlet Case

The Dirichlet conditions for the signal x are as follows:
1 The signal x is absolutely integrable (i.e.,

∫ ∞
−∞ |x(t)|dt < ∞).

2 On any finite interval, x has a finite number of maxima and minima (i.e., x is

of bounded variation).
3 On any finite interval, x has a finite number of discontinuities and each

discontinuity is itself finite.

If a signal x satisfies the Dirichlet conditions, then:
1 The Fourier transform representation x̃ converges pointwise everywhere to

x, except at the points of discontinuity of x.
2 At each point t = ta of discontinuity, the Fourier transform representation x̃

converges to

x̃(ta) =
1
2

[
x(t+a )+ x(t−a )

]
,

where x(t−a ) and x(t+a ) denote the values of the signal x on the left- and

right-hand sides of the discontinuity, respectively.

Since most signals tend to satisfy the Dirichlet conditions and the above

convergence result specifies the value of the Fourier transform

representation at every point, this result is often very useful in practice.
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Section 5.3

Properties of the Fourier Transform
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Properties of the (CT) Fourier Transform

Property Time Domain Frequency Domain

Linearity a1x1(t)+a2x2(t) a1X1(ω)+a2X2(ω)

Time-Domain Shifting x(t− t0) e− jωt0X(ω)

Frequency-Domain Shifting e jω0tx(t) X(ω−ω0)

Time/Frequency-Domain Scaling x(at) 1
|a|X

(
ω
a

)

Conjugation x∗(t) X∗(−ω)

Duality X(t) 2πx(−ω)

Time-Domain Convolution x1 ∗ x2(t) X1(ω)X2(ω)

Frequency-Domain Convolution x1(t)x2(t)
1

2πX1 ∗X2(ω)

Time-Domain Differentiation d
dt

x(t) jωX(ω)

Frequency-Domain Differentiation tx(t) j d
dω X(ω)

Time-Domain Integration
∫ t
−∞ x(τ)dτ 1

jωX(ω)+πX(0)δ(ω)

Property

Parseval’s Relation
∫ ∞
−∞ |x(t)|

2
dt = 1

2π

∫ ∞
−∞ |X(ω)|2 dω
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(CT) Fourier Transform Pairs

Pair x(t) X(ω)

1 δ(t) 1

2 u(t) πδ(ω)+ 1
jω

3 1 2πδ(ω)

4 sgn(t) 2
jω

5 e jω0t 2πδ(ω−ω0)

6 cosω0t π[δ(ω−ω0)+δ(ω+ω0)]

7 sinω0t π
j
[δ(ω−ω0)−δ(ω+ω0)]

8 rect(t/T ) |T |sinc(T ω/2)

9
|B|
π sinc Bt rect ω

2B

10 e−atu(t), Re{a} > 0 1
a+ jω

11 tn−1e−atu(t), Re{a}> 0
(n−1)!
(a+ jω)n

12 tri(t/T ) |T |
2

sinc2(T ω/4)
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Linearity

If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

a1x1(t)+a2x2(t)
CTFT←→ a1X1(ω)+a2X2(ω),

where a1 and a2 are arbitrary complex constants.

This is known as the linearity property of the Fourier transform.
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Translation (Time-Domain Shifting)

If x(t)
CTFT←→ X(ω), then

x(t− t0)
CTFT←→ e− jωt0X(ω),

where t0 is an arbitrary real constant.

This is known as the translation (or time-domain shifting) property of

the Fourier transform.
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Modulation (Frequency-Domain Shifting)

If x(t)
CTFT←→ X(ω), then

e jω0tx(t)
CTFT←→ X(ω−ω0),

where ω0 is an arbitrary real constant.

This is known as the modulation (or frequency-domain shifting)

property of the Fourier transform.
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Dilation (Time- and Frequency-Domain Scaling)

If x(t)
CTFT←→ X(ω), then

x(at)
CTFT←→ 1

|a|X
(ω

a

)

,

where a is an arbitrary nonzero real constant.

This is known as the dilation (or time/frequency-scaling) property of

the Fourier transform.
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Conjugation

If x(t)
CTFT←→ X(ω), then

x∗(t)
CTFT←→ X∗(−ω).

This is known as the conjugation property of the Fourier transform.
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Duality

If x(t)
CTFT←→ X(ω), then

X(t)
CTFT←→ 2πx(−ω)

This is known as the duality property of the Fourier transform.

This property follows from the high degree of symmetry in the forward and

inverse Fourier transform equations, which are respectively given by

X(λ) =

∫ ∞

−∞
x(θ)e− jθλdθ and x(λ) = 1

2π

∫ ∞

−∞
X(θ)e jθλdθ.

That is, the forward and inverse Fourier transform equations are identical

except for a factor of 2π and different sign in the parameter for the

exponential function.

Although the relationship x(t)
CTFT←→ X(ω) only directly provides us with the

Fourier transform of x(t), the duality property allows us to indirectly infer

the Fourier transform of X(t). Consequently, the duality property can be

used to effectively double the number of Fourier transform pairs that we

know.
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Convolution

If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

x1 ∗ x2(t)
CTFT←→ X1(ω)X2(ω).

This is known as the convolution (or time-domain convolution)

property of the Fourier transform.

In other words, a convolution in the time domain becomes a multiplication

in the frequency domain.

This suggests that the Fourier transform can be used to avoid having to

deal with convolution operations.
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Multiplication (Frequency-Domain Convolution)

If x1(t)
CTFT←→ X1(ω) and x2(t)

CTFT←→ X2(ω), then

x1(t)x2(t)
CTFT←→ 1

2π X1 ∗X2(ω) =
1

2π

∫ ∞

−∞
X1(θ)X2(ω−θ)dθ.

This is known as the multiplication (or frequency-domain convolution)

property of the Fourier transform.

In other words, multiplication in the time domain becomes convolution in

the frequency domain (up to a scale factor of 2π).

Do not forget the factor of 1
2π in the above formula!

This property of the Fourier transform is often tedious to apply (in the

forward direction) as it turns a multiplication into a convolution.
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Differentiation

If x(t)
CTFT←→ X(ω), then

dx(t)

dt

CTFT←→ jωX(ω).

This is known as the differentiation property of the Fourier transform.

Differentiation in the time domain becomes multiplication by jω in the

frequency domain.

Of course, by repeated application of the above property, we have that
(

d
dt

)n
x(t)

CTFT←→ ( jω)nX(ω).

The above suggests that the Fourier transform might be a useful tool

when working with differential (or integro-differential) equations.
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Frequency-Domain Differentiation

If x(t)
CTFT←→ X(ω), then

tx(t)
CTFT←→ j

d

dω
X(ω).

This is known as the frequency-domain differentiation property of the

Fourier transform.
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Integration

If x(t)
CTFT←→ X(ω), then

∫ t

−∞
x(τ)dτ

CTFT←→ 1

jω
X(ω)+πX(0)δ(ω).

This is known as the integration property of the Fourier transform.

Whereas differentiation in the time domain corresponds to multiplication

by jω in the frequency domain, integration in the time domain is

associated with division by jω in the frequency domain.

Since integration in the time domain becomes division by jω in the

frequency domain, integration can be easier to handle in the frequency

domain.

The above property suggests that the Fourier transform might be a useful

tool when working with integral (or integro-differential) equations.
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Parseval’s Relation

Recall that the energy of a signal x is given by
∫ ∞
−∞ |x(t)|2 dt.

If x(t)
CTFT←→ X(ω), then

∫ ∞

−∞
|x(t)|2 dt =

1

2π

∫ ∞

−∞
|X(ω)|2 dω

(i.e., the energy of x and energy of X are equal up to a factor of 2π).

This relationship is known as Parseval’s relation.

Since energy is often a quantity of great significance in engineering

applications, it is extremely helpful to know that the Fourier transform

preserves energy (up to a scale factor).
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Even and Odd Symmetry

For a signal x with Fourier transform X , the following assertions hold:

x is even⇔ X is even; and

x is odd⇔ X is odd.

In other words, the forward and inverse Fourier transforms preserve

even/odd symmetry.
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Real Signals

A signal x is real if and only if its Fourier transform X satisfies

X(ω) = X∗(−ω) for all ω

(i.e., X has conjugate symmetry).

Thus, for a real-valued signal, the portion of the graph of a Fourier

transform for negative values of frequency ω is redundant, as it is

completely determined by symmetry.

From properties of complex numbers, one can show that X(ω) = X∗(−ω)
is equivalent to

|X(ω)|= |X(−ω)| and arg X(ω) =−argX(−ω)

(i.e., |X(ω)| is even and arg X(ω) is odd).

Note that x being real does not necessarily imply that X is real.
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Fourier Transform of Periodic Signals

The Fourier transform can be generalized to also handle periodic signals.

Consider a periodic signal x with period T and frequency ω0 =
2π
T

.

Define the signal xT as

xT (t) =

{

x(t) for −T
2
≤ t < T

2

0 otherwise.

(i.e., xT (t) is equal to x(t) over a single period and zero elsewhere).

Let a denote the Fourier series coefficient sequence of x.

Let X and XT denote the Fourier transforms of x and xT , respectively.

The following relationships can be shown to hold:

X(ω) =
∞

∑
k=−∞

ω0XT (kω0)δ(ω− kω0),

ak =
1
T

XT (kω0), and X(ω) =
∞

∑
k=−∞

2πakδ(ω− kω0).
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Fourier Transform of Periodic Signals (Continued)

The Fourier series coefficient sequence ak is produced by sampling XT at

integer multiples of the fundamental frequency ω0 and scaling the

resulting sequence by 1
T

.

The Fourier transform of a periodic signal can only be nonzero at integer

multiples of the fundamental frequency.
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Section 5.4

Fourier Transform and Frequency Spectra of Signals
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Frequency Spectra of Signals

Like Fourier series, the Fourier transform also provides us with a

frequency-domain perspective on signals.

That is, instead of viewing a signal as having information distributed with

respect to time (i.e., a function whose domain is time), we view a signal as

having information distributed with respect to frequency (i.e., a function

whose domain is frequency).

The Fourier transform of a signal x provides a means to quantify how

much information x has at different frequencies.

The distribution of information in a signal over different frequencies is

referred to as the frequency spectrum of the signal.
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Fourier Transform and Frequency Spectra

To gain further insight into the role played by the Fourier transform X in

the context of the frequency spectrum of x, it is helpful to write the Fourier

transform representation of x with X(ω) expressed in polar form as

follows:

x(t) = 1
2π

∫ ∞

−∞
X(ω)e jωtdω = 1

2π

∫ ∞

−∞
|X(ω)|e j[ωt+arg X(ω)]dω.

In effect, the quantity |X(ω)| is a weight that determines how much the

complex sinusoid at frequency ω contributes to the integration result x.

Perhaps, this can be more easily seen if we express the above integral as

the limit of a sum, derived from an approximation of the integral using the

area of rectangles, as shown on the next slide. [Recall that∫ ∞
−∞ f (x)dx = lim∆x→0 ∑∞

k=−∞ ∆x f (k∆x).]
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Fourier Transform and Frequency Spectra (Continued 1)

Expressing the integral (from the previous slide) as the limit of a sum, we

obtain

x(t) = lim
∆ω→0

1
2π

∞

∑
k=−∞

∆ω
∣
∣X(ω′)

∣
∣e j[ω′t+argX(ω′)],

where ω′ = k∆ω.

In the above equation, the kth term in the summation corresponds to a

complex sinusoid with fundamental frequency ω′ = k∆ω that has had its

amplitude scaled by a factor of |X(ω′)| and has been time shifted by an

amount that depends on argX(ω′).

For a given ω′ = k∆ω (which is associated with the kth term in the

summation), the larger |X(ω′)| is, the larger the amplitude of its

corresponding complex sinusoid e jω′t will be, and therefore the larger the

contribution the kth term will make to the overall summation.

In this way, we can use |X(ω′)| as a measure of how much information a

signal x has at the frequency ω′.
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Fourier Transform and Frequency Spectra (Continued 2)

The Fourier transform X of the signal x is referred to as the frequency

spectrum of x.

The magnitude |X(ω)| of the Fourier transform X is referred to as the

magnitude spectrum of x.

The argument argX(ω) of the Fourier transform X is referred to as the

phase spectrum of x.

Since the Fourier transform is a function of a real variable, a signal can

potentially have information at any real frequency.

Earlier, we saw that for periodic signals, the Fourier transform can only be

nonzero at integer multiples of the fundamental frequency.

So, the Fourier transform and Fourier series give a consistent picture in

terms of frequency spectra.

Since the frequency spectrum is complex (in the general case), it is

usually represented using two plots, one showing the magnitude

spectrum and one showing the phase spectrum.
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Frequency Spectra of Real Signals

Recall that, for a real signal x, the Fourier transform X of x satisfies

X(ω) = X∗(−ω)

(i.e., X is conjugate symmetric), which is equivalent to

|X(ω)|= |X(−ω)| and argX(ω) =−arg X(−ω).

Since |X(ω)|= |X(−ω)|, the magnitude spectrum of a real signal is

always even.

Similarly, since argX(ω) =−arg X(−ω), the phase spectrum of a real

signal is always odd.

Due to the symmetry in the frequency spectra of real signals, we typically

ignore negative frequencies when dealing with such signals.

In the case of signals that are complex but not real, frequency spectra do

not possess the above symmetry, and negative frequencies become

important.
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Bandwidth

A signal x with Fourier transform X is said to be bandlimited if, for some

nonnegative real constant B, the following condition holds:

X(ω) = 0 for all ω satisfying |ω|> B.

In the context of real signals, we usually refer to B as the bandwidth of

the signal x.

The (real) signal with the Fourier transform X shown below has bandwidth

B.

−B B

X(ω)

ω

One can show that a signal cannot be both time limited and bandlimited.

(This follows from the time/frequency scaling property of the Fourier

transform.)
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Section 5.5

Fourier Transform and LTI Systems
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Frequency Response of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

Since y(t) = x∗h(t), we have that

Y (ω) = X(ω)H(ω).

The function H is called the frequency response of the system.

A LTI system is completely characterized by its frequency response H .

The above equation provides an alternative way of viewing the behavior of

a LTI system. That is, we can view the system as operating in the

frequency domain on the Fourier transforms of the input and output

signals.

The frequency spectrum of the output is the product of the frequency

spectrum of the input and the frequency response of the system.
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Frequency Response of LTI Systems (Continued 1)

In the general case, the frequency response H is a complex-valued

function.

Often, we represent H(ω) in terms of its magnitude |H(ω)| and argument

argH(ω).

The quantity |H(ω)| is called the magnitude response of the system.

The quantity argH(ω) is called the phase response of the system.

Since Y (ω) = X(ω)H(ω), we trivially have that

|Y (ω)|= |X(ω)| |H(ω)| and argY (ω) = arg X(ω)+ argH(ω).

The magnitude spectrum of the output equals the magnitude spectrum of

the input times the magnitude response of the system.

The phase spectrum of the output equals the phase spectrum of the input

plus the phase response of the system.
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Frequency Response of LTI Systems (Continued 2)

Since the frequency response H is simply the frequency spectrum of the

impulse response h, if h is real, then

|H(ω)|= |H(−ω)| and arg H(ω) =−argH(−ω)

(i.e., the magnitude response |H(ω)| is even and the phase response

argH(ω) is odd).
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Block Diagram Representations of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

Often, it is convenient to represent such a system in block diagram form in

the frequency domain as shown below.

H(ω)
X(ω) Y (ω)

Since a LTI system is completely characterized by its frequency response,

we typically label the system with this quantity.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 173



Frequency Response and Differential Equation

Representations of LTI Systems

Many LTI systems of practical interest can be represented using an

Nth-order linear differential equation with constant coefficients.

Consider a system with input x and output y that is characterized by an

equation of the form

N

∑
k=0

bk

dk

dtk
y(t) =

M

∑
k=0

ak

dk

dtk
x(t) where M ≤ N.

Let h denote the impulse response of the system, and let X , Y , and H

denote the Fourier transforms of x, y, and h, respectively.

One can show that H is given by

H(ω) =
Y (ω)

X(ω)
=

∑M
k=0 ak jkωk

∑N
k=0 bk jkωk

.

Observe that, for a system of the form considered above, the frequency

response is a rational function.
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Section 5.6

Application: Circuit Analysis
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Resistors

A resistor is a circuit element that opposes the flow of electric current.

A resistor with resistance R is governed by the relationship

v(t) = Ri(t)
(
or equivalently, i(t) = 1

R
v(t)

)
,

where v and i respectively denote the voltage across and current through

the resistor as a function of time.

In the frequency domain, the above relationship becomes

V (ω) = RI(ω)
(
or equivalently, I(ω) = 1

R
V (ω)

)
,

where V and I denote the Fourier transforms of v and i, respectively.

In circuit diagrams, a resistor is denoted by the symbol shown below.

v(t)

R
i(t) + −

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 176



Inductors

An inductor is a circuit element that converts an electric current into a

magnetic field and vice versa.

An inductor with inductance L is governed by the relationship

v(t) = L d
dt

i(t)

(

or equivalently, i(t) = 1
L

∫ t

−∞
v(τ)dτ

)

,

where v and i respectively denote the voltage across and current through

the inductor as a function of time.

In the frequency domain, the above relationship becomes

V (ω) = jωLI(ω)
(

or equivalently, I(ω) = 1
jωL

V (ω)
)

,

where V and I denote the Fourier transforms of v and i, respectively.

In circuit diagrams, an inductor is denoted by the symbol shown below.

L
i(t)

v(t)

+ −
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Capacitors

A capacitor is a circuit element that stores electric charge.

A capacitor with capacitance C is governed by the relationship

v(t) = 1
C

∫ t

−∞
i(τ)dτ

(
or equivalently, i(t) =C d

dt
v(t)

)
,

where v and i respectively denote the voltage across and current through

the capacitor as a function of time.

In the frequency domain, the above relationship becomes

V (ω) = 1
jωC

I(ω) (or equivalently, I(ω) = jωCV (ω)) ,

where V and I denote the Fourier transforms of v and i, respectively.

In circuit diagrams, a capacitor is denoted by the symbol shown below.

v(t)

+ −i(t)
C
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Circuit Analysis

The Fourier transform is a very useful tool for circuit analysis.

The utility of the Fourier transform is partly due to the fact that the

differential/integral equations that describe inductors and capacitors are

much simpler to express in the Fourier domain than in the time domain.
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Section 5.7

Application: Filtering
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Filtering

In many applications, we want to modify the spectrum of a signal by

either amplifying or attenuating certain frequency components.

This process of modifying the frequency spectrum of a signal is called

filtering.

A system that performs a filtering operation is called a filter.

Many types of filters exist.

Frequency selective filters pass some frequencies with little or no

distortion, while significantly attenuating other frequencies.

Several basic types of frequency-selective filters include: lowpass,

highpass, and bandpass.
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Ideal Lowpass Filter

An ideal lowpass filter eliminates all frequency components with a

frequency whose magnitude is greater than some cutoff frequency, while

leaving the remaining frequency components unaffected.

Such a filter has a frequency response H of the form

H(ω) =

{

1 for |ω| ≤ ωc

0 otherwise,

where ωc is the cutoff frequency.

A plot of this frequency response is given below.

−ωc ωc

ω

1

H(ω)

PassbandStopband Stopband
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Ideal Highpass Filter

An ideal highpass filter eliminates all frequency components with a

frequency whose magnitude is less than some cutoff frequency, while

leaving the remaining frequency components unaffected.

Such a filter has a frequency response H of the form

H(ω) =

{

1 for |ω| ≥ ωc

0 otherwise,

where ωc is the cutoff frequency.

A plot of this frequency response is given below.

−ωc ωc

ω

1

H(ω)

· · · · · ·

StopbandPassband Passband
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Ideal Bandpass Filter

An ideal bandpass filter eliminates all frequency components with a

frequency whose magnitude does not lie in a particular range, while

leaving the remaining frequency components unaffected.

Such a filter has a frequency response H of the form

H(ω) =

{

1 for ωc1 ≤ |ω| ≤ ωc2

0 otherwise,

where the limits of the passband are ωc1 and ωc2.

A plot of this frequency response is given below.

ω

1

H(ω)

−ωc2 −ωc1 ωc1 ωc2

StopbandStopband StopbandPassband Passband
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Section 5.8

Application: Amplitude Modulation (AM)
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Motivation for Amplitude Modulation (AM)

In communication systems, we often need to transmit a signal using a

frequency range that is different from that of the original signal.

For example, voice/audio signals typically have information in the range of

0 to 22 kHz.

Often, it is not practical to transmit such a signal using its original

frequency range.

Two potential problems with such an approach are:
1 interference; and
2 constraints on antenna length.

Since many signals are broadcast over the airwaves, we need to ensure

that no two transmitters use the same frequency bands in order to avoid

interference.

Also, in the case of transmission via electromagnetic waves (e.g., radio

waves), the length of antenna required becomes impractically large for the

transmission of relatively low frequency signals.

For the preceding reasons, we often need to change the frequency range

associated with a signal before transmission.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 186



Trivial Amplitude Modulation (AM) System

×

c1(t) = e jωct

y(t)x(t)

Transmitter

×

c2(t) = e− jωct

x̂(t)y(t)

Receiver

The transmitter is characterized by

y(t) = e jωctx(t) ⇐⇒ Y (ω) = X(ω−ωc).

The receiver is characterized by

x̂(t) = e− jωcty(t) ⇐⇒ X̂(ω) = Y (ω+ωc).

Clearly, x̂(t) = e jωcte− jωctx(t) = x(t).
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Trivial Amplitude Modulation (AM) System: Example

ωb−ωb
ω

1

X(ω)

Transmitter Input
ωc

C1(ω)

2π

ω

C2(ω)

ω−ωc

2π

Y (ω)

ωc +ωbωc−ωbωb ωc

1

ω

Transmitter Output

ωb−ωb
ω

1

X̂(ω)

Receiver Output
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Double-Sideband Suppressed-Carrier (DSB-SC) AM

×

c(t) = cosωct

y(t)x(t)

Transmitter

×

c(t) = cosωct

H(ω)
x̂(t)v(t)y(t)

H(ω) = 2rect
(

ω
2ωc0

)

Receiver

Suppose that X(ω) = 0 for all ω 6∈ [−ωb,ωb].

The transmitter is characterized by

Y (ω) = 1
2
[X(ω+ωc)+X(ω−ωc)] .

The receiver is characterized by

X̂(ω) = [Y (ω+ωc)+Y (ω−ωc)] rect
(

ω
2ωc0

)

.

If ωb < ωc0
< 2ωc−ωb, we have X̂(ω) = X(ω) (implying x̂(t) = x(t)).
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DSB-SC AM: Example

ωb

X(ω)
1

−ωb
ω

Transmitter Input
ωc−ωc

ω

C(ω)

ππ

ωc0−ωc0
ω

2

H(ω)

−ωc −ωb−ωc−ωc +ωb

Y (ω)

−ωb ωc +ωbωc−ωbωb ωc
ω−2ωc 2ωc

1
2

Transmitter Output

V (ω)

−ωb ωb
ω−2ωc−2ωc −ωb −2ωc +ωb

2ωc2ωc −ωb 2ωc +ωb

1
2

1
4

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)

Receiver Output
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Single-Sideband Suppressed-Carrier (SSB-SC) AM

×

c(t) = cosωct

x(t)
G(ω)

q(t) y(t)

G(ω) = 1− rect( ω
2ωc

)

Transmitter

×

c(t) = cosωct

H(ω)
x̂(t)v(t)y(t)

H(ω) = 4rect( ω
2ωc0

)

Receiver

The basic analysis of the SSB-SC AM system is similar to the DSB-SC

AM system.

SSB-SC AM requires half as much bandwidth for the transmitted signal as

DSB-SC AM.
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SSB-SC AM: Example

ωb

X(ω)
1

−ωb
ω ωc−ωc

ω

C(ω)

ππ

ωc−ωc
ω

G(ω)

· · · 1 · · ·

ωc0−ωc0
ω

4

H(ω)

−ωc −ωb−ωc−ωc +ωb

Q(ω)

−ωb ωc +ωbωc −ωbωb ωc
ω−2ωc 2ωc

1
2

−ωc −ωb−ωc−ωc +ωb

Y (ω)

−ωb ωc +ωbωc −ωbωb ωc
ω−2ωc 2ωc

1
2

V (ω)

−ωb ωb
ω−2ωc−2ωc −ωb−2ωc +ωb

2ωc2ωc−ωb 2ωc +ωb

1
2
1
4

−ωc −ωb ωb ωc
ω

1

−2ωc 2ωc

X̂(ω)
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Section 5.9

Application: Equalization
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Equalization

Often, we find ourselves faced with a situation where we have a system

with a particular frequency response that is undesirable for the application

at hand.

As a result, we would like to change the frequency response of the system

to be something more desirable.

This process of modifying the frequency response in this way is referred to

as equalization. [Essentially, equalization is just a filtering operation.]

Equalization is used in many applications.

In real-world communication systems, equalization is used to eliminate or

minimize the distortion introduced when a signal is sent over a (nonideal)

communication channel.

In audio applications, equalization can be employed to emphasize or

de-emphasize certain ranges of frequencies. For example, equalization

can be used to boost the bass (i.e., emphasize the low frequencies) in the

audio output of a stereo.
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Equalization (Continued)

Ho(ω)
OutputInput

Original System

Ho(ω)
Y (ω)

He(ω)
X(ω)

New System with Equalization

Let Ho denote the frequency response of original system (i.e., without

equalization).

Let Hd denote the desired frequency response.

Let He denote the frequency response of the equalizer.

The new system with equalization has frequency response

Hnew(ω) = He(ω)Ho(ω).

By choosing He(ω) = Hd(ω)/Ho(ω), the new system with equalization

will have the frequency response

Hnew(ω) = [Hd(ω)/Ho(ω)]Ho(ω) = Hd(ω).

In effect, by using an equalizer, we can obtain a new system with the

frequency response that we desire.
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Section 5.10

Application: Sampling and Interpolation
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Sampling and Interpolation

Often, we want to be able to convert between continuous-time and

discrete-time representations of a signal.

This is accomplished through processes known as sampling and

interpolation.

The sampling process, which is performed by an ideal continuous-time

to discrete-time (C/D) converter shown below, transforms a

continuous-time signal x to a discrete-time signal (i.e., sequence) y.

C/D
(with sampling

period T )

x(t) y(n)

The interpolation process, which is performed by an ideal discrete-time

to continuous-time (D/C) converter shown below, transforms a

discrete-time signal y to a continuous-time signal x̂.

D/C
(with sampling

period T )

y(n) x̂(t)

Note that, unless very special conditions are met, the sampling process

loses information (i.e., is not invertible).
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Periodic Sampling

Although sampling can be performed in many different ways, the most

commonly used scheme is periodic sampling.

With this scheme, a sequence y of samples is obtained from a

continuous-time signal x according to the relation

y(n) = x(nT ) for all integer n,

where T is a positive real constant.

As a matter of terminology, we refer to T as the sampling period, and

ωs = 2π/T as the (angular) sampling frequency.

An example of periodic sampling is shown below, where the original

continuous-time signal x has been sampled with sampling period T = 10,

yielding the sequence y.

100 20 30 50 60 70
t

x(t)

40

1

2

3

4

Original Signal

10 2 3 4 5 6 7
n

y(n)

2

3

4

1

Sampled Signal
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Periodic Sampling (Continued)

The sampling process is not generally invertible.

In the absence of any constraints, a continuous-time signal cannot usually

be uniquely determined from a sequence of its equally-spaced samples.

Consider, for example, the continuous-time signals x1 and x2 given by

x1(t) = 0 and x2(t) = sin(2πt).

If we sample each of these signals with the sampling period T = 1, we

obtain the respective sequences

y1(n) = x1(nT ) = x1(n) = 0 and

y2(n) = x2(nT ) = sin(2πn) = 0.

Thus, y1(n) = y2(n) for all n, although x1(t) 6= x2(t) for all noninteger t.

Fortunately, under certain circumstances, a continuous-time signal can be

recovered exactly from its samples.
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Model of Sampling

An impulse train is a signal of the form v(t) = ∑∞
k=−∞ akδ(t− kT ), where

ak and T are real constants (i.e., v(t) consists of weighted impulses

spaced apart by T ).

For the purposes of analysis, sampling with sampling period T and

frequency ωs =
2π
T

can be modelled as shown below.

×
x(t) y(n)s(t)

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT )

The sampling of a continuous-time signal x to produce a sequence y
consists of the following two steps (in order):

1 Multiply the signal x to be sampled by a periodic impulse train p, yielding

the impulse train s.
2 Convert the impulse train s to a sequence y, by forming a sequence from

the weights of successive impulses in s.
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Model of Sampling: Various Signals

0 T 2T 3T
t

x(t)

2

3

4

1

Input Signal (Continuous-Time)

0 T 2T 3T
t

1 1 1 1

p(t)

Periodic Impulse Train

0 T 2T 3T
t

s(t)

2

3

4

1

x(T )

x(0)

x(2T )
x(3T )

Impulse-Sampled Signal

(Continuous-Time)

0 1 2 3
n

y(n)

2

3

4

1

x(T )

x(3T )x(2T )

x(0)

Output Sequence (Discrete-Time)
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Model of Sampling: Characterization

×
x(t) y(n)s(t)

ideal C/D converter

to sequence
impulse train
convert from

p(t) =
∞

∑
k=−∞

δ(t− kT )

In the time domain, the impulse-sampled signal s is given by

s(t) = x(t)p(t) where p(t) =
∞

∑
k=−∞

δ(t− kT ).

In the Fourier domain, the preceding equation becomes

S(ω) = ωs

2π

∞

∑
k=−∞

X(ω− kωs).

Thus, the spectrum of the impulse-sampled signal s is a scaled sum of an

infinite number of shifted copies of the spectrum of the original signal x.
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Model of Sampling: Aliasing

Consider frequency spectrum S of the impulse-sampled signal s given by

S(ω) = ωs

2π

∞

∑
k=−∞

X(ω− kωs).

The function S is a scaled sum of an infinite number of shifted copies of X .

Two distinct behaviors can result in this summation, depending on ωs and

the bandwidth of x.

In particular, the nonzero portions of the different shifted copies of X can
either:

1 overlap; or
2 not overlap.

In the case where overlap occurs, the various shifted copies of X add

together in such a way that the original shape of X is lost. This

phenomenon is known as aliasing.

When aliasing occurs, the original signal x cannot be recovered from its

samples in y.
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Model of Sampling: Aliasing (Continued)

0−ωm ωm

ω

X(ω)

1
Spectrum of Input

Signal

(Bandwidth ωm)

ωm

S(ω)

−ωm−ωs ωsωs−ωm ωs +ωm−ωs +ωm−ωs−ωm 0

1
T

ω

· · · · · ·

Spectrum of Impulse-

Sampled Signal:

No Aliasing Case

(ωs > 2ωm)

ωm

S(ω)

ωs−ωm ωs

0

1
T

· · · · · ·

ω

Spectrum of Impulse-

Sampled Signal:

Aliasing Case

(ωs ≤ 2ωm)
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Model of Interpolation

For the purposes of analysis, interpolation can be modelled as shown

below.

impulse train
sequence to
convert fromy(n) x̂(t)s(t)

H(ω)

ideal D/C converter

H(ω) = T rect
(

T ω
2π

)

The inverse Fourier transform h of H is h(t) = sinc(πt/T ).

The reconstruction of a continuous-time signal x from its sequence y of
samples (i.e., bandlimited interpolation) consists of the following two steps
(in order):

1 Convert the sequence y to the impulse train s, by using the elements in the

sequence as the weights of successive impulses in the impulse train.
2 Apply a lowpass filter to s to produce x̂.

The lowpass filter is used to eliminate the extra copies of the original

signal’s spectrum present in the spectrum of the impulse-sampled signal s.
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Model of Interpolation: Characterization

In more detail, the reconstruction process proceeds as follows.

First, we convert the sequence y to the impulse train s to obtain

s(t) =
∞

∑
n=−∞

y(n)δ(t−nT ).

Then, we filter the resulting signal s with the lowpass filter having impulse

response h, yielding

x̂(t) =
∞

∑
n=−∞

y(n)sinc( π
T
(t−nT )).
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Sampling Theorem

Sampling Theorem. Let x be a signal with Fourier transform X , and

suppose that |X(ω)|= 0 for all ω satisfying |ω|> ωM (i.e., x is

bandlimited to frequencies [−ωM,ωM ]). Then, x is uniquely determined by

its samples y(n) = x(nT ) for all integer n, if

ωs > 2ωM ,

where ωs = 2π/T . The preceding inequality is known as the Nyquist

condition. If this condition is satisfied, we have that

x(t) =
∞

∑
n=−∞

y(n)sinc( π
T
(t−nT )),

or equivalently (i.e., rewritten in terms of ωs instead of T ),

x(t) =
∞

∑
n=−∞

y(n)sinc(ωs

2
t−πn).

We call ωs/2 the Nyquist frequency and 2ωM the Nyquist rate.
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Part 6

Laplace Transform (LT)
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Motivation Behind the Laplace Transform

Another important mathematical tool in the study of signals and systems

is known as the Laplace transform.

The Laplace transform can be viewed as a generalization of the Fourier

transform.

Due to its more general nature, the Laplace transform has a number of

advantages over the Fourier transform.

First, the Laplace transform representation exists for some signals that do

not have Fourier transform representations. So, we can handle a larger

class of signals with the Laplace transform.

Second, since the Laplace transform is a more general tool, it can provide

additional insights beyond those facilitated by the Fourier transform.
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Motivation Behind the Laplace Transform (Continued)

Earlier, we saw that complex exponentials are eigenfunctions of LTI

systems.

In particular, for a LTI system H with impulse response h, we have that

H {est}= H(s)est where H(s) =

∫ ∞

−∞
h(t)e−st dt.

Previously, we referred to H as the system function.

As it turns out, H is the Laplace transform of h.

Since the Laplace transform has already appeared earlier in the context of

LTI systems, it is clearly a useful tool.

Furthermore, as we will see, the Laplace transform has many additional

uses.
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Section 6.1

Laplace Transform
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(Bilateral) Laplace Transform

The (bilateral) Laplace transform of the function x, denoted L{x} or X ,

is defined as

X(s) =

∫ ∞

−∞
x(t)e−st dt.

The inverse Laplace transform of X , denoted L−1{X} or x, is then

given by

x(t) =
1

2π j

∫ σ+ j∞

σ− j∞
X(s)estds,

where Re{s} = σ is in the ROC of X . (Note that this is a contour

integration, since s is complex.)

We refer to x and X as a Laplace transform pair and denote this

relationship as

x(t)
LT←→ X(s).

In practice, we do not usually compute the inverse Laplace transform by

directly using the formula from above. Instead, we resort to other means

(to be discussed later).
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Bilateral and Unilateral Laplace Transforms

Two different versions of the Laplace transform are commonly used:

1 the bilateral (or two-sided) Laplace transform; and
2 the unilateral (or one-sided) Laplace transform.

The unilateral Laplace transform is most frequently used to solve systems

of linear differential equations with nonzero initial conditions.

As it turns out, the only difference between the definitions of the bilateral

and unilateral Laplace transforms is in the lower limit of integration.

In the bilateral case, the lower limit is −∞, whereas in the unilateral case,

the lower limit is 0.

For the most part, we will focus our attention primarily on the bilateral

Laplace transform.

We will, however, briefly introduce the unilateral Laplace transform as a

tool for solving differential equations.

Unless otherwise noted, all subsequent references to the Laplace

transform should be understood to mean bilateral Laplace transform.
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Relationship Between Laplace and Fourier Transforms

Let X and XF denote the Laplace and (CT) Fourier transforms of x,

respectively.

The function X(s) evaluated at s = jω (where ω is real) yields XF(ω).
That is,

X(s)|s= jω = XF(ω).

Due to the preceding relationship, the Fourier transform of x is sometimes

written as X( jω).
The function X(s) evaluated at an arbitrary complex value s = σ+ jω

(where σ = Re{s} and ω = Im{s}) can also be expressed in terms of a

Fourier transform involving x. In particular, we have

X(s)|s=σ+ jω = X ′F(ω),

where X ′
F

is the (CT) Fourier transform of x′(t) = e−σtx(t).
So, in general, the Laplace transform of x is the Fourier transform of an

exponentially-weighted version of x.

Due to this weighting, the Laplace transform of a signal may exist when

the Fourier transform of the same signal does not.
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Laplace Transform Examples
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Section 6.2

Region of Convergence (ROC)
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Left-Half Plane (LHP)

The set R of all complex numbers s satisfying

Re{s}< a

for some real constant a is said to be a left-half plane (LHP).

Some examples of LHPs are shown below.

Im{s}

Re{s}

a < 0

a

Im{s}

Re{s}

a > 0

a
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Right-Half Plane (RHP)

The set R of all complex numbers s satisfying

Re{s}> a

for some real constant a is said to be a right-half plane (RHP).

Some examples of RHPs are shown below.

Re{s}

Im{s}

a

a < 0 Im{s}

a
Re{s}

a > 0
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Intersection of Sets

For two sets A and B, the intersection of A and B, denoted A∩B, is the

set of all points that are in both A and B.

An illustrative example of set intersection is shown below.

1 2

1

2

−1

−2

Im

−2−3 3
Re−1

R1

1 2

1

2

−1

−2

Im

−2−3 3
Re−1

R2

1 2

1

2

−1

−2

Im

−2−3 3
Re−1

R1∩R2
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Region of Convergence (ROC)

As we saw earlier, for a signal x, the complete specification of its Laplace

transform X requires not only an algebraic expression for X , but also the

ROC associated with X .

Two very different signals can have the same algebraic expressions for X .

Now, we examine some of the constraints on the ROC (of the Laplace

transform) for various classes of signals.
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Properties of the ROC

1 The ROC of the Laplace transform X consists of strips parallel to the

imaginary axis in the complex plane.

2 If the Laplace transform X is a rational function, the ROC does not

contain any poles, and the ROC is bounded by poles or extends to

infinity.

3 If the signal x is finite duration and its Laplace transform X(s) converges

for some value of s, then X(s) converges for all values of s (i.e., the ROC

is the entire complex plane).

4 If the signal x is right sided and the (vertical) line Re{s}= σ0 is in the

ROC of the Laplace transform X = L{x}, then all values of s for which

Re{s}> σ0 must also be in the ROC (i.e., the ROC contains a RHP

including Re{s} = σ0).

5 If the signal x is left sided and the (vertical) line Re{s}= σ0 is in the ROC

of the Laplace transform X = L{x}, then all values of s for which

Re{s}< σ0 must also be in the ROC (i.e., the ROC contains a LHP

including Re{s} = σ0).
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Properties of the ROC (Continued)

6 If the signal x is two sided and the (vertical) line Re{s}= σ0 is in the ROC

of the Laplace transform X = L{x}, then the ROC will consist of a strip in

the complex plane that includes the line Re{s} = σ0.

7 If the Laplace transform X of the signal x is rational (with at least one
pole), then:

1 If x is right sided, the ROC of X is to the right of the rightmost pole of X

(i.e., the RHP to the right of the rightmost pole).

2 If x is left sided, the ROC of X is to the left of the leftmost pole of X (i.e., the

LHP to the left of the leftmost pole).

Some of the preceding properties are redundant (e.g., properties 1, 2, 4,

and 5 imply property 7).

Since every function can be classified as one of finite duration, left sided

but not right sided, right sided but not left sided, or two sided, we can infer

from properties 3, 4, 5, and 6 that the ROC can only be of the form of a

LHP, RHP, vertical strip, the entire complex plane, or the empty set. Thus,

the ROC must be a connected region.
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Section 6.3

Properties of the Laplace Transform

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 223



Properties of the Laplace Transform

Property Time Domain Laplace Domain ROC

Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s) At least R1∩R2

Time-Domain Shifting x(t− t0) e−st0 X(s) R

Laplace-Domain Shifting es0tx(t) X(s− s0) R+Re{s0}
Time/Frequency-Domain Scaling x(at) 1

|a|X
(

s
a

)
aR

Conjugation x∗(t) X∗(s∗) R

Time-Domain Convolution x1 ∗ x2(t) X1(s)X2(s) At least R1∩R2

Time-Domain Differentiation d
dt

x(t) sX(s) At least R

Laplace-Domain Differentiation −tx(t) d
ds

X(s) R

Time-Domain Integration
∫ t
−∞ x(τ)dτ 1

s
X(s) At least R∩{Re{s}> 0}

Property

Initial Value Theorem x(0+) = lim
s→∞

sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)
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Laplace Transform Pairs

Pair x(t) X(s) ROC

1 δ(t) 1 All s

2 u(t) 1
s

Re{s}> 0

3 −u(−t) 1
s

Re{s}< 0

4 tnu(t) n!
sn+1 Re{s}> 0

5 −tnu(−t) n!
sn+1 Re{s}< 0

6 e−atu(t) 1
s+a

Re{s}>−a

7 −e−atu(−t) 1
s+a

Re{s}<−a

8 tne−atu(t) n!
(s+a)n+1 Re{s}>−a

9 −tne−atu(−t) n!
(s+a)n+1 Re{s}<−a

10 [cosω0t]u(t) s

s2+ω2
0

Re{s}> 0

11 [sinω0t]u(t) ω0

s2+ω2
0

Re{s}> 0

12 [e−at cosω0t]u(t) s+a

(s+a)2+ω2
0

Re{s}>−a

13 [e−at sin ω0t]u(t) ω0

(s+a)2+ω2
0

Re{s}>−a
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Linearity

If x1(t)
LT←→ X1(s) with ROC R1 and x2(t)

LT←→ X2(s) with ROC R2, then

a1x1(t)+a2x2(t)
LT←→ a1X1(s)+a2X2(s) with ROC R containing R1∩R2,

where a1 and a2 are arbitrary complex constants.

This is known as the linearity property of the Laplace transform.

The ROC always contains the intersection but could be larger (in the case

that pole-zero cancellation occurs).
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Time-Domain Shifting

If x(t)
LT←→ X(s) with ROC R, then

x(t− t0)
LT←→ e−st0X(s) with ROC R,

where t0 is an arbitrary real constant.

This is known as the time-domain shifting property of the Laplace

transform.
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Laplace-Domain Shifting

If x(t)
LT←→ X(s) with ROC R, then

es0tx(t)
LT←→ X(s− s0) with ROC R+Re{s0},

where s0 is an arbitrary complex constant.

This is known as the Laplace-domain shifting property of the Laplace

transform.

As illustrated below, the ROC R is shifted right by Re{s0}.
Im

σmin σmax
Re

R

Re

Im

σmin +Re{s0} σmax +Re{s0}

R+Re{s0}
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Time-Domain/Laplace-Domain Scaling

If x(t)
LT←→ X(s) with ROC R, then

x(at)
LT←→ 1

|a|X
( s

a

)

with ROC R1 = aR,

where a is a nonzero real constant.

This is known as the (time-domain/Laplace-domain) scaling property

of the Laplace transform.

As illustrated below, the ROC R is scaled and possibly flipped left to right.
Im

σmin σmax
Re

R

Im

Re
aσmaxaσmin

aR, a > 0

Im

Re
aσmax aσmin

aR, a < 0
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Conjugation

If x(t)
LT←→ X(s) with ROC R, then

x∗(t)
LT←→ X∗(s∗) with ROC R.

This is known as the conjugation property of the Laplace transform.
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Time-Domain Convolution

If x1(t)
LT←→ X1(s) with ROC R1 and x2(t)

LT←→ X2(s) with ROC R2, then

x1 ∗ x2(t)
LT←→ X1(s)X2(s) with ROC containing R1∩R2.

This is known as the time-domain convolution property of the Laplace

transform.

The ROC always contains the intersection but can be larger than the

intersection (if pole-zero cancellation occurs).

Convolution in the time domain becomes multiplication in the Laplace

domain.

Consequently, it is often much easier to work with LTI systems in the

Laplace domain, rather than the time domain.
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Time-Domain Differentiation

If x(t)
LT←→ X(s) with ROC R, then

dx(t)

dt

LT←→ sX(s) with ROC containing R.

This is known as the time-domain differentiation property of the

Laplace transform.

The ROC always contains R but can be larger than R (if pole-zero

cancellation occurs).

Differentiation in the time domain becomes multiplication by s in the

Laplace domain.

Consequently, it can often be much easier to work with differential

equations in the Laplace domain, rather than the time domain.
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Laplace-Domain Differentiation

If x(t)
LT←→ X(s) with ROC R, then

−tx(t)
LT←→ dX(s)

ds
with ROC R.

This is known as the Laplace-domain differentiation property of the

Laplace transform.
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Time-Domain Integration

If x(t)
LT←→ X(s) with ROC R, then

∫ t

−∞
x(τ)dτ

LT←→ 1

s
X(s) with ROC containing R∩{Re{s} > 0}.

This is known as the time-domain integration property of the Laplace

transform.

The ROC always contains at least R∩{Re{s} > 0} but can be larger (if

pole-zero cancellation occurs).

Integration in the time domain becomes division by s in the Laplace

domain.

Consequently, it is often much easier to work with integral equations in the

Laplace domain, rather than the time domain.
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Initial Value Theorem

For a function x with Laplace transform X , if x is causal and contains no

impulses or higher order singularities at the origin, then

x(0+) = lim
s→∞

sX(s),

where x(0+) denotes the limit of x(t) as t approaches zero from positive

values of t.

This result is known as the initial value theorem.
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Final Value Theorem

For a function x with Laplace transform X , if x is causal and x(t) has a

finite limit as t→ ∞, then

lim
t→∞

x(t) = lim
s→0

sX(s).

This result is known as the final value theorem.

Sometimes the initial and final value theorems are useful for checking for

errors in Laplace transform calculations. For example, if we had made a

mistake in computing X(s), the values obtained from the initial and final

value theorems would most likely disagree with the values obtained

directly from the original expression for x(t).
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More Laplace Transform Examples
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Section 6.4

Determination of Inverse Laplace Transform
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Finding Inverse Laplace Transform

Recall that the inverse Laplace transform x of X is given by

x(t) =
1

2π j

∫ σ+ j∞

σ− j∞
X(s)estds,

where Re{s} = σ is in the ROC of X .

Unfortunately, the above contour integration can often be quite tedious to

compute.

Consequently, we do not usually compute the inverse Laplace transform

directly using the above equation.

For rational functions, the inverse Laplace transform can be more easily

computed using partial fraction expansions.

Using a partial fraction expansion, we can express a rational function as a

sum of lower-order rational functions whose inverse Laplace transforms

can typically be found in tables.
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Section 6.5

Laplace Transform and LTI Systems
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System Function of LTI Systems

Consider a LTI system with input x, output y, and impulse response h. Let

X , Y , and H denote the Laplace transforms of x, y, and h, respectively.

Since y(t) = x∗h(t), the system is characterized in the Laplace domain by

Y (s) = X(s)H(s).

As a matter of terminology, we refer to H as the system function (or

transfer function) of the system (i.e., the system function is the Laplace

transform of the impulse response).

When viewed in the Laplace domain, a LTI system forms its output by

multiplying its input with its system function.

A LTI system is completely characterized by its system function H .

If the ROC of H includes the imaginary axis, then H(s)|s= jω is the

frequency response of the LTI system.
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Block Diagram Representations of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the Laplace transforms of x, y, and h, respectively.

Often, it is convenient to represent such a system in block diagram form in

the Laplace domain as shown below.

H(s)
X(s) Y (s)

Since a LTI system is completely characterized by its system function, we

typically label the system with this quantity.
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Interconnection of LTI Systems

The series interconnection of the LTI systems with system functions H1

and H2 is the LTI system with system function H = H1H2. That is, we

have the equivalences shown below.

H1(s) H2(s) ≡ x(t) y(t)
H1(s)H2(s)

y(t)x(t)

≡H1(s) H2(s) H2(s) H1(s)
y(t)x(t) y(t)x(t)

The parallel interconnection of the LTI systems with impulse responses

H1 and H2 is a LTI system with the system function H = H1 +H2. That is,

we have the equivalence shown below.

H1(s)

H2(s)

≡ H1(s)+H2(s)
y(t)x(t)

+
x(t) y(t)
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Causality

If a LTI system is causal, its impulse response is causal, and therefore

right sided. From this, we have the result below.

Theorem. The ROC associated with the system function of a causal LTI

system is a right-half plane or the entire complex plane.

In general, the converse of the above theorem is not necessarily true.

That is, if the ROC of the system function is a RHP or the entire complex

plane, it is not necessarily true that the system is causal.

If the system function is rational, however, we have that the converse

does hold, as indicated by the theorem below.

Theorem. For a LTI system with a rational system function H , causality

of the system is equivalent to the ROC of H being the right-half plane to

the right of the rightmost pole or, if H has no poles, the entire complex

plane.
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BIBO Stability

Whether or not a system is BIBO stable depends on the ROC of its

system function.

Theorem. A LTI system is BIBO stable if and only if the ROC of its

system function H includes the (entire) imaginary axis (i.e., Re{s} = 0).

Theorem. A causal LTI system with a (proper) rational system function H

is BIBO stable if and only if all of the poles of H lie in the left half of the

plane (i.e., all of the poles have negative real parts).
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Invertibility

A LTI system H with system function H is invertible if and only if there

exists another LTI system with system function Hinv such that

H(s)Hinv(s) = 1,

in which case Hinv is the system function of H −1 and

Hinv(s) =
1

H(s)
.

Since distinct systems can have identical system functions (but with

differing ROCs), the inverse of a LTI system is not necessarily unique.

In practice, however, we often desire a stable and/or causal system. So,

although multiple inverse systems may exist, we are frequently only

interested in one specific choice of inverse system (due to these

additional constraints of stability and/or causality).
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System Function and Differential Equation Representations

of LTI Systems

Many LTI systems of practical interest can be represented using an

Nth-order linear differential equation with constant coefficients.

Consider a system with input x and output y that is characterized by an

equation of the form

N

∑
k=0

bk

dk

dtk
y(t) =

M

∑
k=0

ak

dk

dtk
x(t) where M ≤ N.

Let h denote the impulse response of the system, and let X , Y , and H

denote the Laplace transforms of x, y, and h, respectively.

One can show that H is given by

H(s) =
Y (s)

X(s)
=

∑M
k=0 aksk

∑N
k=0 bksk

.

Observe that, for a system of the form considered above, the system

function is always rational.
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Section 6.6

Application: Circuit Analysis
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Resistors

A resistor is a circuit element that opposes the flow of electric current.

A resistor with resistance R is governed by the relationship

v(t) = Ri(t)
(
or equivalently, i(t) = 1

R
v(t)

)
,

where v and i respectively denote the voltage across and current through

the resistor as a function of time.

In the Laplace domain, the above relationship becomes

V (s) = RI(s)
(
or equivalently, I(s) = 1

R
V (s)

)
,

where V and I denote the Laplace transforms of v and i, respectively.

In circuit diagrams, a resistor is denoted by the symbol shown below.

v(t)

R
i(t) + −
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Inductors

An inductor is a circuit element that converts an electric current into a

magnetic field and vice versa.

An inductor with inductance L is governed by the relationship

v(t) = L d
dt

i(t)

(

or equivalently, i(t) = 1
L

∫ t

−∞
v(τ)dτ

)

,

where v and i respectively denote the voltage across and current through

the inductor as a function of time.

In the Laplace domain, the above relationship becomes

V (s) = sLI(s)
(
or equivalently, I(s) = 1

sL
V (s)

)
,

where V and I denote the Laplace transforms of v and i, respectively.

In circuit diagrams, an inductor is denoted by the symbol shown below.

L
i(t)

v(t)

+ −
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Capacitors

A capacitor is a circuit element that stores electric charge.

A capacitor with capacitance C is governed by the relationship

v(t) = 1
C

∫ t

−∞
i(τ)dτ

(
or equivalently, i(t) =C d

dt
v(t)

)
,

where v and i respectively denote the voltage across and current through

the capacitor as a function of time.

In the Laplace domain, the above relationship becomes

V (s) = 1
sC

I(s) (or equivalently, I(s) = sCV (s)) ,

where V and I denote the Laplace transforms of v and i, respectively.

In circuit diagrams, a capacitor is denoted by the symbol shown below.

v(t)

+ −i(t)
C
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Circuit Analysis

The Laplace transform is a very useful tool for circuit analysis.

The utility of the Laplace transform is partly due to the fact that the

differential/integral equations that describe inductors and capacitors are

much simpler to express in the Laplace domain than in the time domain.
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Section 6.7

Application: Analysis of Control Systems
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Feedback Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback

Signal

input: desired value of the quantity to be controlled

output: actual value of the quantity to be controlled

error: difference between the desired and actual values

plant: system to be controlled

sensor: device used to measure the actual output

controller: device that monitors the error and changes the input of the

plant with the goal of forcing the error to zero
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Stability Analysis of Feedback Control Systems

Often, we want to ensure that a system is BIBO stable.

The BIBO stability property is more easily characterized in the Laplace

domain than in the time domain.

Therefore, the Laplace domain is extremely useful for the stability analysis

of systems.
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Section 6.8

Unilateral Laplace Transform

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 256



Unilateral Laplace Transform

The unilateral Laplace transform of the signal x, denoted UL{x} or X ,

is defined as

X(s) =

∫ ∞

0−
x(t)e−st dt.

The unilateral Laplace transform is related to the bilateral Laplace

transform as follows:

UL{x}(s) =
∫ ∞

0−
x(t)e−st dt =

∫ ∞

−∞
x(t)u(t)e−st dt = L {xu} (s).

In other words, the unilateral Laplace transform of the signal x is simply

the bilateral Laplace transform of the signal xu.

Since UL{x} = L{xu} and xu is always a right-sided signal, the ROC

associated with UL{x} is always a right-half plane.

For this reason, we often do not explicitly indicate the ROC when

working with the unilateral Laplace transform.
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Unilateral Laplace Transform (Continued 1)

With the unilateral Laplace transform, the same inverse transform

equation is used as in the bilateral case.

The unilateral Laplace transform is only invertible for causal signals. In

particular, we have

UL−1{UL{x}}(t) = UL−1{L{xu}}(t)
= L−1{L{xu}}(t)
= x(t)u(t)

=

{

x(t) for t > 0

0 for t < 0.

For a noncausal signal x, we can only recover x for t > 0.
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Unilateral Laplace Transform (Continued 2)

Due to the close relationship between the unilateral and bilateral Laplace

transforms, these two transforms have some similarities in their properties.

Since these two transforms are not identical, however, their properties

differ in some cases, often in subtle ways.
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Properties of the Unilateral Laplace Transform

Property Time Domain Laplace Domain

Linearity a1x1(t)+a2x2(t) a1X1(s)+a2X2(s)

Laplace-Domain Shifting es0tx(t) X(s− s0)

Time/Frequency-Domain Scaling x(at), a > 0 1
a
X
(

s
a

)

Conjugation x∗(t) X∗(s∗)

Time-Domain Convolution x1 ∗ x2(t), x1 and x2 are causal X1(s)X2(s)

Time-Domain Differentiation d
dt

x(t) sX(s)− x(0−)
Laplace-Domain Differentiation −tx(t) d

ds
X(s)

Time-Domain Integration
∫ t

0− x(τ)dτ 1
s
X(s)

Property

Initial Value Theorem x(0+) = lim
s→∞

sX(s)

Final Value Theorem lim
t→∞

x(t) = lim
s→0

sX(s)
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Unilateral Laplace Transform Pairs

Pair x(t), t ≥ 0 X(s)

1 δ(t) 1

2 1 1
s

3 tn n!
sn+1

4 e−at 1
s+a

5 tne−at n!
(s+a)n+1

6 cosω0t s

s2+ω2
0

7 sinω0t ω0

s2+ω2
0

8 e−at cos ω0t s+a

(s+a)2+ω2
0

9 e−at sinω0t ω0

(s+a)2+ω2
0
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Solving Differential Equations Using the Unilateral Laplace

Transform

Many systems of interest in engineering applications can be characterized

by constant-coefficient linear differential equations.

One common use of the unilateral Laplace transform is in solving

constant-coefficient linear differential equations with nonzero initial

conditions.
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Part 7

Discrete-Time (DT) Signals and Systems

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 263



Section 7.1

Independent- and Dependent-Variable Transformations

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 264



Time Shifting (Translation)

Time shifting (also called translation) maps the input signal x to the

output signal y as given by

y(n) = x(n−b),

where b is an integer.

Such a transformation shifts the signal (to the left or right) along the time

axis.

If b > 0, y is shifted to the right by |b|, relative to x (i.e., delayed in time).

If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).
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Time Shifting (Translation): Example

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(n− 1)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(n+ 1)

3
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Time Reversal (Reflection)

Time reversal (also known as reflection) maps the input signal x to the

output signal y as given by

y(n) = x(−n).

Geometrically, the output signal y is a reflection of the input signal x about

the (vertical) line n = 0.

−2−3 2 3

1

−1 10

2

x(n)

3

n −2−3 2 3

1

−1 10

2

x(−n)

3

n
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Downsampling

Downsampling maps the input signal x to the output signal y as given by

y(n) = x(an),

where a is a strictly positive integer.

The output signal y is produced from the input signal x by keeping only

every ath sample of x.

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

−2−3 2 3

1

−1 10

2

n
4−4

x(2n)

3
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Combined Independent-Variable Transformations

Consider a transformation that maps the input signal x to the output signal

y as given by

y(n) = x(an−b),

where a and b are integers and a 6= 0.

Such a transformation is a combination of time shifting, downsampling,

and time reversal operations.

Time reversal commutes with downsampling.

Time shifting does not commute with time reversal or downsampling.

The above transformation is equivalent to:
1 first, time shifting x by b;
2 then, downsampling the result by |a| and, if a < 0, time reversing as well.

If b
a

is an integer, the above transformation is also equivalent to:
1 first, downsampling x by |a| and, if a < 0, time reversing;
2 then, time shifting the result by b

a
.

Note that the time shift is not by the same amount in both cases.
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Section 7.2

Properties of Signals
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Symmetry and Addition/Multiplication

Sums involving even and odd sequences have the following properties:

The sum of two even sequences is even.

The sum of two odd sequences is odd.

The sum of an even sequence and odd sequence is neither even nor odd,

provided that neither of the sequences is identically zero.

That is, the sum of sequences with the same type of symmetry also has

the same type of symmetry.

Products involving even and odd sequences have the following
properties:

The product of two even sequences is even.

The product of two odd sequences is even.

The product of an even sequence and an odd sequence is odd.

That is, the product of sequences with the same type of symmetry is even,

while the product of sequences with opposite types of symmetry is odd.
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Decomposition of a Signal into Even and Odd Parts

Every sequence x has a unique representation of the form

x(n) = xe(n)+ xo(n),

where the sequences xe and xo are even and odd, respectively.

In particular, the sequences xe and xo are given by

xe(n) =
1
2
[x(n)+ x(−n)] and xo(n) =

1
2
[x(n)− x(−n)] .

The sequences xe and xo are called the even part and odd part of x,

respectively.

For convenience, the even and odd parts of x are often denoted as

Even{x} and Odd{x}, respectively.
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Sum of Periodic Sequences

The least common multiple of two (strictly positive) integers a and b,

denoted lcm(a,b), is the smallest positive integer that is divisible by both

a and b.

The quantity lcm(a,b) can be easily determined from a prime factorization

of the integers a and b by taking the product of the highest power for each

prime factor appearing in these factorizations. Example:

lcm(20,6) = lcm(22 ·51,21 ·31) = 22 ·31 ·51 = 60;

lcm(54,24) = lcm(21 ·33,23 ·31) = 23 ·33 = 216; and

lcm(24,90) = lcm(23 ·31,21 ·32 ·51) = 23 ·32 ·51 = 360.

Sum of periodic sequences. For any two periodic sequences x1 and x2

with fundamental periods N1 and N2, respectively, the sum x1 + x2 is

periodic with period lcm(N1,N2).
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Right-Sided Signals

A signal x is said to be right sided if, for some (finite) integer constant n0,

the following condition holds:

x(n) = 0 for all n < n0

(i.e., x is only potentially nonzero to the right of n0).

An example of a right-sided signal is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · ·

A signal x is said to be causal if

x(n) = 0 for all n < 0.

A causal signal is a special case of a right-sided signal.

A causal signal is not to be confused with a causal system. In these two

contexts, the word “causal” has very different meanings.
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Left-Sided Signals

A signal x is said to be left sided if, for some (finite) integer constant n0,

the following condition holds:

x(n) = 0 for all n > n0

(i.e., x is only potentially nonzero to the left of n0).

An example of a left-sided signal is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · ·

A signal x is said to be anticausal if

x(n) = 0 for all n≥ 0.

An anticausal signal is a special case of a left-sided signal.

An anticausal signal is not to be confused with an anticausal system. In

these two contexts, the word “anticausal” has very different meanings.
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Finite-Duration and Two-Sided Signals

A signal that is both left sided and right sided is said to be finite duration

(or time limited).

An example of a finite-duration signal is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

A signal that is neither left sided nor right sided is said to be two sided.

An example of a two-sided signal is shown below.

−2−3 2 3

1

−1 10

x(n)

2

n
4−4

· · · · · ·
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Bounded Signals

A signal x is said to be bounded if there exists some (finite) positive real

constant A such that

|x(n)| ≤ A for all n

(i.e., x(n) is finite for all n).

Examples of bounded signals include any constant sequence.

Examples of unbounded signals include any nonconstant polynomial

sequence.
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Signal Energy

The energy E contained in the signal x is given by

E =
∞

∑
k=−∞

|x(k)|2 .

A signal with finite energy is said to be an energy signal.
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Section 7.3

Elementary Signals
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Real Sinusoids

A (DT) real sinusoid is a sequence of the form

x(n) = Acos(Ωn+θ),

where A, Ω, and θ are real constants.

A real sinusoid is periodic if and only if Ω
2π is a rational number, in which

case the fundamental period is the smallest integer of the form 2πk
|Ω| where

k is a positive integer.

For all integer k, xk(n) = Acos([Ω+2πk]n+θ) is the same sequence.

An example of a periodic real sinusoid with fundamental period 12 is

shown plotted below.

x(n) = cos
(

π
6

n
)

1

−1

12−12

· · ·· · ·
n

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 280



Complex Exponentials

A (DT) complex exponential is a sequence of the form

x(n) = can,

where c and a are complex constants.

Such a sequence can also be equivalently expressed in the form

x(n) = cebn,

where b is a complex constant chosen as b = lna. (This this form is more

similar to that presented for CT complex exponentials).

A complex exponential can exhibit one of a number of distinct modes of

behavior, depending on the values of the parameters c and a.

For example, as special cases, complex exponentials include real

exponentials and complex sinusoids.
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Real Exponentials

A (DT) real exponential is a special case of a complex exponential

x(n) = can,

where c and a are restricted to be real numbers.

A real exponential can exhibit one of several distinct modes of behavior,

depending on the magnitude and sign of a.

If |a|> 1, the magnitude of x(n) increases exponentially as n increases

(i.e., a growing exponential).

If |a|< 1, the magnitude of x(n) decreases exponentially as n increases

(i.e., a decaying exponential).

If |a|= 1, the magnitude of x(n) is a constant, independent of n.

If a > 0, x(n) has the same sign for all n.

If a < 0, x(n) alternates in sign as n increases/decreases.
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Real Exponentials (Continued 1)

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

· · ·
· · ·

|a|> 1, a > 0 [a = 5
4 ; c = 1]

−2−3 2 3

1

−1 10

2

n
4−4

x(n)

3

· · ·
· · ·

|a|< 1, a > 0 [a = 4
5

; c = 1]

−2−3 2 3

1

−1 10
n

4−4

x(n)

· · · · · ·

|a|= 1, a > 0 [a = 1; c = 1]
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Real Exponentials (Continued 2)

−2 2

1

2

n
4−4

x(n)

3

1

2

3

−3 −1

· · ·
· · ·

1 3

|a|> 1, a < 0 [a =− 5
4 ; c = 1]

−2 2

1

2

n
4−4

x(n)

3

1

2

3

· · ·

· · ·
−3 1 3−1

|a|< 1, a < 0 [a =− 4
5

; c = 1]

−2 2

1

n
4−4

x(n)

−1

1 3

· · ·· · ·
−3 −1

|a|= 1, a < 0 [a =−1; c = 1]
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Complex Sinusoids

A complex sinusoid is a special case of a complex exponential x(n) = can,

where c and a are complex and |a|= 1 (i.e., a is of the form e jΩ where Ω

is real).

That is, a (DT) complex sinusoid is a sequence of the form

x(n) = ce jΩn,

where c is complex and Ω is real.

Using Euler’s relation, we can rewrite x(n) as

x(n) = |c|cos(Ωn+ argc)
︸ ︷︷ ︸

Re{x(n)}

+ j |c|sin(Ωn+ argc)
︸ ︷︷ ︸

Im{x(n)}

.

Thus, Re{x} and Im{x} are real sinusoids.

A complex sinusoid is periodic if and only if Ω
2π is a rational number, in

which case the fundamental period is the smallest integer of the form 2πk
|Ω|

where k is a positive integer.
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Complex Sinusoids (Continued)

For x(n) = e j(2π/7)n, the graphs of Re{x} and Im{x} are shown below.

Re{e j(2π/7)n}= cos
(

2π
7

n
)

1

−1

7−7
n

· · · · · ·

Im{e j(2π/7)n}= sin
(

2π
7

n
)

1

−1

7−7
n

· · · · · ·
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General Complex Exponentials

In the most general case of a complex exponential x(n) = can, c and a are

both complex.

Letting c = |c|e jθ and a = |a|e jΩ where θ and Ω are real, and using

Euler’s relation, we can rewrite x(n) as

x(n) = |c| |a|n cos(Ωn+θ)
︸ ︷︷ ︸

Re{x(n)}

+ j |c| |a|n sin(Ωn+θ)
︸ ︷︷ ︸

Im{x(n)}

.

Thus, Re{x} and Im{x} are each the product of a real exponential and

real sinusoid.

One of several distinct modes of behavior is exhibited by x, depending on

the value of a.

If |a|= 1, Re{x} and Im{x} are real sinusoids.

If |a|> 1, Re{x} and Im{x} are each the product of a real sinusoid and

a growing real exponential.

If |a|< 1, Re{x} and Im{x} are each the product of a real sinusoid and

a decaying real exponential.
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General Complex Exponentials (Continued)

The various modes of behavior for Re{x} and Im{x} are illustrated

below.

|a|> 1 |a|< 1

|a|= 1
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Relationship Between Complex Exponentials and Real

Sinusoids

From Euler’s relation, a complex sinusoid can be expressed as the sum of

two real sinusoids as

ce jΩn = ccos Ωn+ jcsinΩn.

Moreover, a real sinusoid can be expressed as the sum of two complex

sinusoids using the identities

ccos(Ωn+θ) =
c

2

[

e j(Ωn+θ)+ e− j(Ωn+θ)
]

and

csin(Ωn+θ) =
c

2 j

[

e j(Ωn+θ)− e− j(Ωn+θ)
]

.

Note that, above, we are simply restating results from the (appendix)

material on complex analysis.
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Unit-Step Sequence

The unit-step sequence, denoted u, is defined as

u(n) =

{

1 if n≥ 0

0 otherwise.

A plot of this sequence is shown below.

−2−3 2 3

1

n−1

u(n)

1

· · ·
0
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Unit Rectangular Pulses

A unit rectangular pulse is a sequence of the form

p(n) =

{

1 if a≤ n < b

0 otherwise

where a and b are integer constants satisfying a < b.

Such a sequence can be expressed in terms of the unit-step sequence as

p(n) = u(n−a)−u(n−b).

The graph of a unit rectangular pulse has the general form shown below.

a−2a−3 a+2 a+3a−1 a+1a

· · ·
n

1

p(n)

b+2b+1bb−1
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Unit-Impulse Sequence

The unit-impulse sequence (also known as the delta sequence), denoted

δ, is defined as

δ(n) =

{

1 if n = 0

0 otherwise.

The first-order difference of u is δ. That is,

δ(n) = u(n)−u(n−1).

The running sum of δ is u. That is,

u(n) =
n

∑
k=−∞

δ(k).

A plot of δ is shown below.

−2−3 2 3

1

n−1

δ(n)

10
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Properties of the Unit-Impulse Sequence

For any sequence x and any integer constant n0, the following identity

holds:

x(n)δ(n−n0) = x(n0)δ(n−n0).

For any sequence x and any integer constant n0, the following identity

holds:

∞

∑
n=−∞

x(n)δ(n−n0) = x(n0).

Trivially, the sequence δ is also even.
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Section 7.4

Discrete-Time (DT) Systems
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DT Systems

A system with input x and output y can be described by the equation

y = H {x},

where H denotes an operator (i.e., transformation).

Note that the operator H maps a function to a function (not a number to

a number).

Alternatively, we can express the above relationship using the notation

x
H−→ y.

If clear from the context, the operator H is often omitted, yielding the

abbreviated notation

x→ y.

Note that the symbols “→” and “=” have very different meanings.

The symbol “→” should be read as “produces” (not as “equals”).
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Block Diagram Representations

Often, a system defined by the operator H and having the input x and

output y is represented in the form of a block diagram as shown below.

System

H

x(n)
Input Output

y(n)
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Interconnection of Systems

Two basic ways in which systems can be interconnected are shown below.

System 1 System 2

H1 H2

y(n)x(n)

Series

System 1

System 2

H1

H2

+
x(n) y(n)

Parallel

A series (or cascade) connection ties the output of one system to the input

of the other.

The overall series-connected system is described by the equation

y = H2

{
H1{x}

}
.

A parallel connection ties the inputs of both systems together and sums

their outputs.

The overall parallel-connected system is described by the equation

y = H1{x}+H2{x}.
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Section 7.5

Properties of (DT) Systems
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Memory and Causality

A system with input x and output y is said to have memory if, for any

integer n0, y(n0) depends on x(n) for some n 6= n0.

A system that does not have memory is said to be memoryless.

Although simple, a memoryless system is not very flexible, since its

current output value cannot rely on past or future values of the input.

A system with input x and output y is said to be causal if, for every integer

n0, y(n0) does not depend on x(n) for some n > n0.

If the independent variable n represents time, a system must be causal in

order to be physically realizable.

Noncausal systems can sometimes be useful in practice, however, since

the independent variable need not always represent time. For example, in

some situations, the independent variable might represent position.
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Invertibility

The inverse of a system H is another system H −1 such that the

combined effect of H cascaded with H −1 is a system where the input

and output are equal.

A system is said to be invertible if it has a corresponding inverse system

(i.e., its inverse exists).

Equivalently, a system is invertible if its input x can always be uniquely

determined from its output y.

Note that the invertibility of a system (which involves mappings between

functions) and the invertibility of a function (which involves mappings

between numbers) are fundamentally different things.

An invertible system will always produce distinct outputs from any two

distinct inputs.

To show that a system is invertible, we simply find the inverse system.

To show that a system is not invertible, we find two distinct inputs that

result in identical outputs.

In practical terms, invertible systems are “nice” in the sense that their

effects can be undone.
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Bounded-Input Bounded-Output (BIBO) Stability

A system with input x and output y is BIBO stable if, for every bounded x,

y is bounded (i.e., |x(n)| < ∞ for all n implies that |y(n)| < ∞ for all n).

To show that a system is BIBO stable, we must show that every bounded

input leads to a bounded output.

To show that a system is not BIBO stable, we need only find a single

bounded input that leads to an unbounded output.

In practical terms, a BIBO stable system is well behaved in the sense that,

as long as the system input remains finite for all time, the output will also

remain finite for all time.

Usually, a system that is not BIBO stable will have serious safety issues.

For example, an iPod with a battery input of 3.7 volts and headset output

of ∞ volts would result in one vaporized Apple customer and one big

lawsuit.
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Time Invariance (TI)

A system H is said to be time invariant (TI) if, for every sequence x and

every integer n0, the following condition holds:

y(n−n0) = H x′(n) where y = H x and x′(n) = x(n−n0)

(i.e., H commutes with time shifts).

In other words, a system is time invariant if a time shift (i.e., advance or

delay) in the input always results only in an identical time shift in the

output.

A system that is not time invariant is said to be time varying.

In simple terms, a time invariant system is a system whose behavior does

not change with respect to time.

Practically speaking, compared to time-varying systems, time-invariant

systems are much easier to design and analyze, since their behavior

does not change with respect to time.
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Additivity, Homogeneity, and Linearity

A system H is said to be additive if, for all sequences x1 and x2, the

following condition holds:

H (x1 + x2) = H x1 +H x2

(i.e., H commutes with sums).

A system H is said to be homogeneous if, for every sequence x and

every complex constant a, the following condition holds:

H (ax) = aH x

(i.e., H commutes with multiplication by a constant).

A system that is both additive and homogeneous is said to be linear.

In other words, a system H is linear, if for all sequences x1 and x2 and all

complex constants a1 and a2, the following condition holds:

H (a1x1 +a2x2) = a1H x1 +a2H x2

(i.e., H commutes with linear combinations).

The linearity property is also referred to as the superposition property.

Practically speaking, linear systems are much easier to design and

analyze than nonlinear systems.
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Part 8

Discrete-Time Linear Time-Invariant (LTI) Systems
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Why Linear Time-Invariant (LTI) Systems?

In engineering, linear-time invariant (LTI) systems play a very important

role.

Very powerful mathematical tools have been developed for analyzing LTI

systems.

LTI systems are much easier to analyze than systems that are not LTI.

In practice, systems that are not LTI can be well approximated using LTI

models.

So, even when dealing with systems that are not LTI, LTI systems still play

an important role.
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Section 8.1

Convolution
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DT Convolution

The (DT) convolution of the sequences x and h, denoted x∗h, is defined

as the sequence

x∗h(n) =
∞

∑
k=−∞

x(k)h(n− k).

The convolution x∗h evaluated at the point n is simply a weighted sum of

elements of x, where the weighting is given by h time reversed and shifted

by n.

Herein, the asterisk symbol (i.e., “∗”) will always be used to denote

convolution, not multiplication.

As we shall see, convolution is used extensively in the theory of (DT)

systems.

In particular, convolution has a special significance in the context of (DT)

LTI systems.
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Practical Convolution Computation

To compute the convolution

x∗h(n) =
∞

∑
k=−∞

x(k)h(n− k),

we proceed as follows:

1 Plot x(k) and h(n− k) as a function of k.
2 Initially, consider an arbitrarily large negative value for n. This will result in

h(n− k) being shifted very far to the left on the time axis.
3 Write the mathematical expression for x∗ h(n).
4 Increase n gradually until the expression for x∗ h(n) changes form. Record

the interval over which the expression for x∗ h(n) was valid.
5 Repeat steps 3 and 4 until n is an arbitrarily large positive value. This

corresponds to h(n− k) being shifted very far to the right on the time axis.
6 The results for the various intervals can be combined in order to obtain an

expression for x∗ h(n) for all n.
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Properties of Convolution

The convolution operation is commutative. That is, for any two sequences

x and h,

x∗h = h∗ x.

The convolution operation is associative. That is, for any sequences x, h1,

and h2,

(x∗h1)∗h2 = x∗ (h1 ∗h2).

The convolution operation is distributive with respect to addition. That is,

for any sequences x, h1, and h2,

x∗ (h1 +h2) = x∗h1 + x∗h2.
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Representation of Sequences Using Impulses

For any sequence x,

x(n) =
∞

∑
k=−∞

x(k)δ(n− k) = x∗δ(n).

Thus, any sequence x can be written in terms of an expression involving δ.

Moreover, δ is the convolutional identity. That is, for any sequence x,

x∗δ = x.
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Circular Convolution

The convolution of two periodic sequences is usually not well defined.

This motivates an alternative notion of convolution for periodic sequences

known as circular convolution.

The circular convolution (also known as the DT periodic convolution) of

the T -periodic sequences x and h, denoted x⊛h, is defined as

x⊛h(n) = ∑
k=〈N〉

x(k)h(n− k) =
N−1

∑
k=0

x(k)h(mod(n− k,N)),

where mod(a,b) is the remainder after division when a is divided by b.

The circular convolution and (linear) convolution of the N-periodic

sequences x and h are related as follows:

x⊛h(n) = x0 ∗h(n) where x(n) =
∞

∑
k=−∞

x0(n− kN)

(i.e., x0(n) equals x(n) over a single period of x and is zero elsewhere).
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Section 8.2

Convolution and LTI Systems
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Impulse Response

The response h of a system H to the input δ is called the impulse

response of the system (i.e., h = H {δ}).
For any LTI system with input x, output y, and impulse response h, the

following relationship holds:

y = x∗h.

In other words, a LTI system simply computes a convolution.

Furthermore, a LTI system is completely characterized by its impulse

response.

That is, if the impulse response of a LTI system is known, we can

determine the response of the system to any input.
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Step Response

The response s of a system H to the input u is called the step response of

the system (i.e., s = H {u}).
The impulse response h and step response s of a system are related as

h(n) = s(n)− s(n−1).

Therefore, the impulse response of a system can be determined from its

step response by (first-order) differencing.
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Block Diagram of LTI Systems

Often, it is convenient to represent a (DT) LTI system in block diagram

form.

Since such systems are completely characterized by their impulse

response, we often label a system with its impulse response.

That is, we represent a system with input x, output y, and impulse

response h, as shown below.

h(n)
x(n) y(n)
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Interconnection of LTI Systems

The series interconnection of the LTI systems with impulse responses h1

and h2 is the LTI system with impulse response h = h1 ∗h2. That is, we

have the equivalences shown below.

h1(n) h2(n) ≡ x(n) y(n)
h1 ∗h2(n)

y(n)x(n)

≡h1(n) h2(n) h2(n) h1(n)
y(n)x(n) y(n)x(n)

The parallel interconnection of the LTI systems with impulse responses

h1 and h2 is a LTI system with the impulse response h = h1 +h2. That is,

we have the equivalence shown below.

h1(n)+h2(n)
y(n)x(n)

h1(n)

h2(n)

≡
+

x(n) y(n)
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Section 8.3

Properties of LTI Systems
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Memory

A LTI system with impulse response h is memoryless if and only if

h(n) = 0 for all n 6= 0.

That is, a LTI system is memoryless if and only if its impulse response h is

of the form

h(n) = Kδ(n),

where K is a complex constant.

Consequently, every memoryless LTI system with input x and output y is

characterized by an equation of the form

y = x∗ (Kδ) = Kx

(i.e., the system is an ideal amplifier).

For a LTI system, the memoryless constraint is extremely restrictive (as

every memoryless LTI system is an ideal amplifier).
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Causality

A LTI system with impulse response h is causal if and only if

h(n) = 0 for all n < 0

(i.e., h is a causal sequence).

It is due to the above relationship that we call a sequence x, satisfying

x(n) = 0 for all n < 0,

a causal sequence.
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Invertibility

The inverse of a LTI system, if such a system exists, is a LTI system.

Let h and hinv denote the impulse responses of a LTI system and its (LTI)

inverse, respectively. Then,

h∗hinv = δ.

Consequently, a LTI system with impulse response h is invertible if and

only if there exists a sequence hinv such that

h∗hinv = δ.

Except in simple cases, the above condition is often quite difficult to test.
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BIBO Stability

A LTI system with impulse response h is BIBO stable if and only if

∞

∑
n=−∞

|h(n)| < ∞

(i.e., h is absolutely summable).
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Eigensequences of Systems

An input x to a system H is said to be an eigensequence of the system H

with the eigenvalue λ if the corresponding output y is of the form

y = λx,

where λ is a complex constant.

In other words, the system H acts as an ideal amplifier for each of its

eigensequences x, where the amplifier gain is given by the corresponding

eigenvalue λ.

Different systems have different eigensequences.

Of particular interest are the eigensequences of (DT) LTI systems.
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Eigensequences of LTI Systems

As it turns out, every complex exponential is an eigensequence of all LTI

systems.

For a LTI system H with impulse response h,

H {zn}= H(z)zn,

where z is a complex constant and

H(z) =
∞

∑
n=−∞

h(n)z−n.

That is, zn is an eigensequence of a LTI system and H(z) is the

corresponding eigenvalue.

We refer to H as the system function (or transfer function) of the

system H .

From above, we can see that the response of a LTI system to a complex

exponential is the same complex exponential multiplied by the complex

factor H(z).
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Representation of Sequences Using Eigensequences

Consider a LTI system with input x, output y, and system function H .

Suppose that the input x can be expressed as the linear combination of

complex exponentials
x(n) = ∑

k

akzn
k ,

where the ak and zk are complex constants.

Using the fact that complex exponentials are eigenfunctions of LTI

systems, we can conclude

y(n) = ∑
k

akH(zk)z
n
k .

Thus, if an input to a LTI system can be expressed as a linear combination

of complex exponentials, the output can also be expressed as linear

combination of the same complex exponentials.

The above formula can be used to determine the output of a LTI system

from its input in a way that does not require convolution.
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Part 9

Discrete-Time Fourier Series (DTFS)

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 325



Introduction

The Fourier series is a representation for periodic sequences.

With a Fourier series, a sequence is represented as a linear combination

of complex sinusoids.

The use of complex sinusoids is desirable due to their numerous attractive

properties.

Perhaps, most importantly, complex sinusoids are eigensequences of (DT)

LTI systems.
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Section 9.1

Fourier Series
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Harmonically-Related Complex Sinusoids

A set of periodic complex sinusoids is said to be harmonically related if

there exists some constant 2π/N such that the fundamental frequency of

each complex sinusoid is an integer multiple of 2π/N.

Consider the set of harmonically-related complex sinusoids given by

φk(n) = e j(2π/N)kn for all integer k.

In the above set {φk}, only N elements are distinct, since

φk = φk+N for all integer k.

Since the fundamental frequency of each of the harmonically-related

complex sinusoids is an integer multiple of 2π
N

, a linear combination of

these complex sinusoids must be N-periodic.
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DT Fourier Series (DTFS)

A periodic complex-valued sequence x with fundamental period N can be

represented as a linear combination of harmonically-related complex

sinusoids as

x(n) = ∑
k=〈N〉

ake j(2π/N)kn,

where ∑k=〈N〉 denotes summation over any N consecutive integers (e.g.,

0,1, . . . ,N−1). (The summation can be taken over any N consecutive

integers, due to the N-periodic nature of x and e j(2π/N)kn.)

The above representation of x is known as the (DT) Fourier series and

the ak are called Fourier series coefficients.

The above formula for x is often called the Fourier series synthesis

equation.

The terms in the summation for k = K and k =−K are called the Kth

harmonic components, and have the fundamental frequency K(2π/N).

To denote that the sequence x has the Fourier series coefficient sequence

a, we write

x(n)
DTFS←→ ak.
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DT Fourier Series (DTFS) (Continued)

A periodic sequence x with fundamental period N has the Fourier series

coefficient sequence a given by

ak =
1
N ∑

n=〈N〉
x(n)e− j(2π/N)kn.

(The summation can be taken over any N consecutive integers due to the

N-periodic nature of x and e− j(2π/N)kn.)

The above equation for ak is often referred to as the Fourier series

analysis equation.

Due to the N-periodic nature of x and e− j(2π/N)kn, the sequence a is also

N-periodic.
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Trigonometric Form of a Fourier Series

Consider the N-periodic sequence x with Fourier series coefficient

sequence a.

If x is real, then its Fourier series can be rewritten in trigonometric form as

shown below.

The trigonometric form of a Fourier series has the appearance

x(n) =







α0 +
N/2−1

∑
k=1

[
αk cos

(
2πkn

N

)
+βk sin

(
2πkn

N

)]
+

αN/2 cosπn N even

α0 +
(N−1)/2

∑
k=1

[
αk cos

(
2πkn

N

)
+βk sin

(
2πkn

N

)]
N odd,

where α0 = a0, αN/2 = aN/2, αk = 2Reak, and βk =−2Imak.

Note that the above trigonometric form contains only real quantities.
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Prelude to the Discrete Fourier Transform (DFT)

Letting a′k = Nak, we can rewrite the Fourier series synthesis and analysis

equations, respectively, as

x(n) = 1
N

N−1

∑
k=0

a′ke j(2π/N)kn and a′k =
N−1

∑
n=0

x(n)e− j(2π/N)kn.

Since x and a′ are both N-periodic, each of these sequences is

completely characterized by its N samples over a single period.

If we only consider the behavior of x and a′ over a single period, this leads

to the equations

x(n) = 1
N

N−1

∑
k=0

a′ke j(2π/N)kn for n = 0,1, . . . ,N−1 and

a′k =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k = 0,1, . . . ,N−1.

As it turns out, the above two equations define what is known as the

discrete Fourier transform (DFT).
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Discrete Fourier Transform (DFT)

The discrete Fourier transform (DFT) X of the sequence x is defined as

X(k) =
N−1

∑
n=0

x(n)e− j(2π/N)kn for k = 0,1, . . .N−1.

The preceding equation is known as the DFT analysis equation.

The inverse DFT x of the sequence X is given by

x(n) = 1
N

N−1

∑
k=0

X(k)e j(2π/N)kn for n = 0,1, . . .N−1.

The preceding equation is known as the DFT synthesis equation.

The DFT maps a finite-length sequence of N samples to another

finite-length sequence of N samples.

The DFT will be considered in more detail later.
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Convergence of Fourier Series

Since the analysis and synthesis equations for (DT) Fourier series involve

only finite sums (as opposed to infinite series), convergence is not a

significant issue of concern.

If an N-periodic sequence is bounded (i.e., is finite in value), its Fourier

series coefficient sequence will exist and be bounded and the Fourier

series analysis and synthesis equations must converge.
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Section 9.2

Properties of Fourier Series
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Properties of (DT) Fourier Series

x(n)
DTFS←→ ak and y(n)

DTFS←→ bk

Property Time Domain Fourier Domain

Linearity αx(n)+βy(n) αak +βbk

Translation x(n−n0) e− jk(2π/N)n0 ak

Modulation e j(2π/N)k0nx(n) ak−k0

Reflection x(−n) a−k

Conjugation x∗(n) a∗−k

Duality an
1
N

x(−k)
Circular convolution x⊛ y(n) Nakbk

Multiplication x(n)y(n) a⊛bk

Even symmetry x even a even

Odd symmetry x odd a odd

Real x(n) real ak = a∗−k

Property

Parseval’s relation 1
N ∑n=〈N〉 |x(n)|2 = ∑k=〈N〉 |ak|2
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Linearity

Let x and y be N-periodic signals. If x(n)
DTFS←→ ak and y(n)

DTFS←→ bk, then

αx(n)+βy(n)
DTFS←→ αak +βbk,

where α and β are complex constants.

That is, a linear combination of signals produces the same linear

combination of their Fourier series coefficients.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 337



Even and Odd Symmetry

For an N-periodic sequence x with Fourier-series coefficient sequence a,

the following properties hold:

x is even⇔ a is even; and

x is odd⇔ a is odd.

In other words, the even/odd symmetry properties of x and a always

match.
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Real Signals

A signal x is real if and only if its Fourier series coefficient sequence a

satisfies

ak = a∗−k for all k

(i.e., a has conjugate symmetry).

From properties of complex numbers, one can show that ak = a∗−k is

equivalent to

|ak|= |a−k| and arg ak =−arga−k

(i.e., |ak| is even and argak is odd).

Note that x being real does not necessarily imply that a is real.
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Other Properties of Fourier Series

For an N-periodic sequence x with Fourier-series coefficient sequence a,
the following properties hold:

1 a0 is the average value of x over a single period;
2 x is real and even⇔ a is real and even; and
3 x is real and odd⇔ a is purely imaginary and odd.
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Section 9.3

Fourier Series and Frequency Spectra
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A New Perspective on Signals: The Frequency Domain

The Fourier series provides us with an entirely new way to view signals.

Instead of viewing a signal as having information distributed with respect

to time (i.e., a function whose domain is time), we view a signal as having

information distributed with respect to frequency (i.e., a function whose

domain is frequency).

This so called frequency-domain perspective is of fundamental

importance in engineering.

Many engineering problems can be solved much more easily using the

frequency domain than the time domain.

The Fourier series coefficients of a signal x provide a means to quantify

how much information x has at different frequencies.

The distribution of information in a signal over different frequencies is

referred to as the frequency spectrum of the signal.
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Fourier Series and Frequency Spectra

To gain further insight into the role played by the Fourier series coefficients

ak in the context of the frequency spectrum of the N-periodic signal x, it is

helpful to write the Fourier series with the ak expressed in polar form as

x(n) =
N−1

∑
k=0

ake jΩ0kn =
N−1

∑
k=0

|ak|e j(Ω0kn+arg ak),

where Ω0 =
2π
N

.

Clearly, the kth term in the summation corresponds to a complex sinusoid

with fundamental frequency kΩ0 that has been amplitude scaled by a

factor of |ak| and time-shifted by an amount that depends on argak.

For a given k, the larger |ak| is, the larger is the amplitude of its

corresponding complex sinusoid e jkΩ0n, and therefore the larger the

contribution the kth term (which is associated with frequency kΩ0) will

make to the overall summation.

In this way, we can use |ak| as a measure of how much information a

signal x has at the frequency kΩ0.
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Fourier Series and Frequency Spectra (Continued 1)

The Fourier series coefficients ak of the sequence x are referred to as the

frequency spectrum of x.

The magnitudes |ak| of the Fourier series coefficients ak are referred to as

the magnitude spectrum of x.

The arguments argak of the Fourier series coefficients ak are referred to

as the phase spectrum of x.

The frequency spectrum ak of an N-periodic signal is N-periodic in the

coefficient index k and 2π-periodic in the frequency Ω = kΩ0.

The range of frequencies between −π and π are referred to as the

baseband.

Often, the spectrum of a signal is plotted against frequency Ω = kΩ0

(over the single 2π period of the baseband) instead of the Fourier series

coefficient index k.
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Fourier Series and Frequency Spectra (Continued 2)

Since the Fourier series only has frequency components at integer

multiples of the fundamental frequency, the frequency spectrum is

discrete in the independent variable (i.e., frequency).

Due to the general appearance of frequency-spectrum plot (i.e., a number

of vertical lines at various frequencies), we refer to such spectra as line

spectra.
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Section 9.4

Fourier Series and LTI Systems
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Frequency Response

Recall that a LTI system H with impulse response h is such that

H {zn}= H(z)zn, where H(z) = ∑∞
n=−∞ h(n)z−n. (That is, complex

exponentials are eigensequences of LTI systems.)

Since a complex sinusoid is a special case of a complex exponential, we

can reuse the above result for the special case of complex sinusoids.

For a LTI system H with impulse response h and a complex sinusoid e jΩn

(where Ω is real),

H
{

e jΩn
}
= H(e jΩ)e jΩn,

where

H(e jΩ) =
∞

∑
n=−∞

h(n)e− jΩn.

That is, e jΩn is an eigensequence of a LTI system and H(e jΩ) is the

corresponding eigenvalue.

The function H(e jΩ) is 2π-periodic, since e jΩ is 2π-periodic.

We refer to H(e jΩ) as the frequency response of the system H .
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Fourier Series and LTI Systems

Consider a LTI system with input x, output y, and frequency response

H(e jΩ).

Suppose that the N-periodic input x is expressed as the Fourier series

x(n) =
N−1

∑
k=0

ake jkΩ0n, where Ω0 =
2π
N
.

Using our knowledge about the eigensequences of LTI systems, we can

conclude

y(n) =
N−1

∑
k=0

akH(e jkΩ0)e jkΩ0n.

Thus, if the input x to a LTI system is a Fourier series, the output y is also

a Fourier series. More specifically, if x(n)
DTFS←→ ak then

y(n)
DTFS←→ H(e jkΩ0)ak.

The above formula can be used to determine the output of a LTI system

from its input in a way that does not require convolution.
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Filtering

In many applications, we want to modify the spectrum of a signal by

either amplifying or attenuating certain frequency components.

This process of modifying the frequency spectrum of a signal is called

filtering.

A system that performs a filtering operation is called a filter.

Many types of filters exist.

Frequency selective filters pass some frequencies with little or no

distortion, while significantly attenuating other frequencies.

Several basic types of frequency-selective filters include: lowpass,

highpass, and bandpass.
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Ideal Lowpass Filter

An ideal lowpass filter eliminates all baseband frequency components

with a frequency whose magnitude is greater than some cutoff frequency,

while leaving the remaining baseband frequency components unaffected.

Such a filter has a frequency response of the form

H(e jΩ) =

{

1 if |Ω| ≤Ωc

0 if Ωc < |Ω| ≤ π,

where Ωc is the cutoff frequency.

A plot of this frequency response is given below.

Passband

−π π
Ω

1

H(e jΩ)

−Ωc Ωc

Stopband Stopband
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Ideal Highpass Filter

An ideal highpass filter eliminates all baseband frequency components

with a frequency whose magnitude is less than some cutoff frequency,

while leaving the remaining baseband frequency components unaffected.

Such a filter has a frequency response of the form

H(e jΩ) =

{

1 if Ωc < |Ω| ≤ π

0 if |Ω| ≤Ωc,

where Ωc is the cutoff frequency.

A plot of this frequency response is given below.

Stopband

1

H(e jΩ)

−π π

Passband Passband

−Ωc Ωc

Ω
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Ideal Bandpass Filter

An ideal bandpass filter eliminates all baseband frequency components

with a frequency whose magnitude does not lie in a particular range, while

leaving the remaining baseband frequency components unaffected.

Such a filter has a frequency response of the form

H(e jΩ) =

{

1 if Ωc1 ≤ |Ω| ≤Ωc2

0 if |Ω|< Ωc1 or Ωc2 < |Ω|< π,

where the limits of the passband are Ωc1 and Ωc2.

A plot of this frequency response is given below.

Stopband

1

H(e jΩ)

−π
Ω

Stopband Passband

π−Ωc2 −Ωc1 Ωc1 Ωc2

Passband Stopband
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Part 10

Discrete-Time Fourier Transform (DTFT)
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Motivation for the Fourier Transform

Fourier series provide an extremely useful representation for periodic

signals.

Often, however, we need to deal with signals that are not periodic.

A more general tool than the Fourier series is needed in this case.

The Fourier transform can be used to represent both periodic and

aperiodic signals.

Since the Fourier transform is essentially derived from Fourier series

through a limiting process, the Fourier transform has many similarities

with Fourier series.
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Section 10.1

Fourier Transform

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 355



Development of the Fourier Transform

The (DT) Fourier series is an extremely useful signal representation.

Unfortunately, this signal representation can only be used for periodic

sequences, since a Fourier series is inherently periodic.

Many signals are not periodic, however.

Rather than abandoning Fourier series, one might wonder if we can

somehow use Fourier series to develop a representation that can also be

applied to aperiodic sequences.

By viewing an aperiodic sequence as the limiting case of an N-periodic

sequence where N→ ∞, we can use the Fourier series to develop a more

general signal representation that can be used for both aperiodic and

periodic sequences.

This more general signal representation is called the (DT) Fourier

transform.
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DT Fourier Transform (DTFT)

The Fourier transform of the sequence x, denoted F {x} or X , is given

by

X(Ω) =
∞

∑
n=−∞

x(n)e− jΩn.

The preceding equation is sometimes referred to as Fourier transform

analysis equation (or forward Fourier transform equation).

The inverse Fourier transform of X , denoted F −1{X} or x, is given by

x(n) = 1
2π

∫
2π

X(Ω)e jΩndΩ.

The preceding equation is sometimes referred to as the Fourier

transform synthesis equation (or inverse Fourier transform equation).

As a matter of notation, to denote that a sequence x has the Fourier

transform X , we write x(n)
DTFT←→ X(Ω).

A sequence x and its Fourier transform X constitute what is called a

Fourier transform pair.
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Section 10.2

Convergence Properties of the Fourier Transform
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Convergence of the Fourier Transform

For a sequence x, the Fourier transform analysis equation (i.e.,

X(Ω) = ∑∞
−∞ x(n)e− jΩn) converges uniformly if

∞

∑
k=−∞

|x(k)|< ∞

(i.e., x is absolutely summable).

For a sequence x, the Fourier transform analysis equation (i.e.,

X(Ω) = ∑∞
−∞ x(n)e− jΩn) converges in the MSE sense if

∞

∑
k=−∞

|x(k)|2 < ∞

(i.e., x is square summable).

For a bounded Fourier transform X , the Fourier transform synthesis

equation (i.e., x(n) = 1
2π

∫
2π X(Ω)e jΩndΩ) will always converge, since the

integration interval is finite.
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Section 10.3

Properties of the Fourier Transform
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Properties of the (DT) Fourier Transform

Property Time Domain Frequency Domain

Linearity a1x1(n)+ a2x2(n) a1X1(Ω)+ a2X2(Ω)

Translation x(n− n0) e− jΩn0X(Ω)

Modulation e jΩ0nx(n) X(Ω−Ω0)

Time Reversal x(−n) X(−Ω)

Conjugation x∗(n) X∗(−Ω)

Downsampling x(Mn) 1
M ∑M−1

k=0 X
(

Ω−2πk
M

)

Upsampling (↑M)x(n) X(MΩ)

Convolution x1 ∗ x2(n) X1(Ω)X2(Ω)

Multiplication x1(n)x2(n)
1

2π

∫
2π X1(θ)X2(Ω−θ)dθ

Freq.-Domain Diff. nx(n) j d
dΩ X(Ω)

Accumulation ∑n
k=−∞ x(k) e jΩ

e jΩ−1
X(Ω)+πX(0)∑∞

k=−∞ δ(Ω− 2πk)

Property

Periodicity X(Ω) = X(Ω+ 2π)

Parseval’s Relation ∑∞
n=−∞ |x(n)|2 = 1

2π

∫
2π |X(Ω)|2 dΩ
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(DT) Fourier Transform Pairs

Pair x(n) X(Ω)

1 δ(n) 1

2 1 2π∑∞
k=−∞ δ(Ω−2πk)

3 u(n) e jΩ

e jΩ−1
+∑∞

k=−∞ πδ(Ω−2πk)

4 anu(n), |a|< 1 e jΩ

e jΩ−a

5 −anu(−n−1), |a|> 1 e jΩ

e jΩ−a

6 a|n|, |a|< 1 1−a2

1−2acos Ω+a2

7 cosΩ0n π∑∞
k=−∞ [δ(Ω−Ω0−2πk)+δ(Ω+Ω0−2πk)]

8 sinΩ0n jπ∑∞
k=−∞ [δ(Ω+Ω0−2πk)−δ(Ω−Ω0−2πk)]

9 (cos Ω0n)u(n) e j2Ω−e jΩ cosΩ0

e j2Ω−2e jΩ cosΩ0+1
+ π

2 ∑∞
k=−∞ [δ(Ω−2πk−Ω0)+δ(Ω−2πk+Ω0)]

10 (sin Ω0n)u(n) e jΩ sinΩ0

e j2Ω−2e jΩ cosΩ0+1
+ π

2 j ∑∞
k=−∞ [δ(Ω−2πk−Ω0)−δ(Ω−2πk+Ω0)]

11 B
π sincBn,0 < B < π ∑∞

k=−∞ rect
(

Ω−2πk
2B

)

12 x(n) =

{

1 if |n| ≤ a

0 otherwise

sin(Ω[a+
1
2
])

sin(Ω/2)
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Periodicity

Recall the definition of the Fourier transform X of the sequence x:

X(Ω) =
∞

∑
n=−∞

x(n)e− jΩn.

For all integer k, we have that

X(Ω+2πk) =
∞

∑
n=−∞

x(n)e− j(Ω+2πk)n

=
∞

∑
n=−∞

x(n)e− j(Ωn+2πkn)

=
∞

∑
n=−∞

x(n)e− jΩn

= X(Ω).

Thus, the Fourier transform X of the sequence x is always 2π-periodic.
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Linearity

If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

a1x1(n)+a2x2(n)
DTFT←→ a1X1(Ω)+a2X2(Ω),

where a1 and a2 are arbitrary complex constants.

This is known as the linearity property of the Fourier transform.
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Translation

If x(n)
DTFT←→ X(Ω), then

x(n−n0)
DTFT←→ e− jΩn0 X(Ω),

where n0 is an arbitrary integer.

This is known as the translation (or time-domain shifting) property of

the Fourier transform.
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Modulation

If x(n)
DTFT←→ X(Ω), then

e jΩ0nx(n)
DTFT←→ X(Ω−Ω0),

where Ω0 is an arbitrary real constant.

This is known as the modulation (or frequency-domain shifting)

property of the Fourier transform.
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Time Reversal

If x(n)
DTFT←→ X(Ω), then

x(−n)
DTFT←→ X(−Ω).

This is known as the time-reversal property of the Fourier transform.
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Conjugation

If x(n)
DTFT←→ X(Ω), then

x∗(n)
DTFT←→ X∗(−Ω).

This is known as the conjugation property of the Fourier transform.
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Downsampling

If x(n)
DTFT←→ X(Ω), then

x(Mn)
DTFT←→ 1

M

M−1

∑
k=0

X
(

Ω−2πk
M

)
.

This is known as the downsampling property of the Fourier transform.
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Upsampling

If x(n)
DTFT←→ X(Ω), then

(↑M)x(n)
DTFT←→ X(MΩ).

This is known as the upsampling property of the Fourier transform.
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Convolution

If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

x1 ∗ x2(n)
DTFT←→ X1(Ω)X2(Ω).

This is known as the convolution (or time-domain convolution)

property of the Fourier transform.

In other words, a convolution in the time domain becomes a multiplication

in the frequency domain.

This suggests that the Fourier transform can be used to avoid having to

deal with convolution operations.
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Multiplication

If x1(n)
DTFT←→ X1(Ω) and x2(n)

DTFT←→ X2(Ω), then

x1(n)x2(n)
DTFT←→ 1

2π

∫
2π

X1(θ)X2(Ω−θ)dθ.

This is known as the multiplication (or time-domain multiplication)

property of the Fourier transform.

Do not forget the factor of 1
2π in the above formula!

This property of the Fourier transform is often tedious to apply (in the

forward direction) as it turns a multiplication into a convolution.
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Frequency-Domain Differentiation

If x(n)
DTFT←→ X(Ω), then

nx(n)
DTFT←→ j d

dΩ X(Ω).

This is known as the frequency-domain differentiation property of the

Fourier transform.
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Accumulation

If x(n)
DTFT←→ X(Ω), then

n

∑
k=−∞

x(k)
DTFT←→ e jΩ

e jΩ−1
X(Ω)+πX(0)

∞

∑
k=−∞

δ(Ω−2πk).

This is known as the accumulation (or time-domain accumulation)

property of the Fourier transform.
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Parseval’s Relation

If x(n)
DTFT←→ X(Ω), then

∞

∑
n=−∞

|x(n)|2 = 1
2π

∫
2π
|X(Ω)|2 dΩ

(i.e., the energy of x and energy of X are equal up to a factor of 2π).

This is known as Parseval’s relation.

Since energy is often a quantity of great significance in engineering

applications, it is extremely helpful to know that the Fourier transform

preserves energy (up to a scale factor).
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Even and Odd Symmetry

For a sequence x with Fourier transform X , the following assertions hold:

1 x is even⇔ X is even; and
2 x is odd⇔ X is odd.

In other words, the forward and inverse Fourier transforms preserve

even/odd symmetry.
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Real Signals

A sequence x is real if and only if its Fourier transform X satisfies

X(Ω) = X∗(−Ω) for all Ω

(i.e., X has conjugate symmetry).

Thus, for a real-valued sequence, the portion of the graph of a Fourier

transform for negative values of frequency Ω is redundant, as it is

completely determined by symmetry.

From properties of complex numbers, one can show that

X(Ω) = X∗(−Ω) is equivalent to

|X(Ω)|= |X(−Ω)| and arg X(Ω) =−arg X(−Ω)

(i.e., |X(Ω)| is even and argX(Ω) is odd).

Note that x being real does not necessarily imply that X is real.
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Duality Between DTFT and CTFS

The DTFT analysis and synthesis equations are, respectively, given by

X(Ω) =
∞

∑
k=−∞

x(k)e− jkΩ and x(n) = 1
2π

∫
2π

X(Ω)e jnΩdΩ.

The CTFS synthesis and analysis equations are, respectively, given by

xc(t) =
∞

∑
k=−∞

a(k)e jk(2π/T )t and a(n) = 1
T

∫
T

xc(t)e
− jn(2π/T )tdt,

which can be rewritten, respectively, as

xc(t) =
∞

∑
k=−∞

a(−k)e− jk(2π/T )t and a(−n) = 1
T

∫
T

xc(t)e
jn(2π/T )tdt.

The CTFS synthesis equation with T = 2π corresponds to the DTFT

analysis equation with X = xc, Ω = t, and x(n) = a(−n).

The CTFS analysis equation with T = 2π corresponds to the DTFT

synthesis equation with X = xc and x(n) = a(−n).

Consequently, the DTFT X of the sequence x can be viewed as a CTFS

representation of the 2π-periodic spectrum X .
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Fourier Transform of Periodic Signals

The Fourier transform can be generalized to also handle periodic signals.

Consider an N-periodic sequence x.

Define the sequence xN as

xN(n) =

{

x(n) for 0≤ n < N

0 otherwise.

(i.e., xN(n) is equal to x(n) over a single period and zero elsewhere).

Let a denote the Fourier series coefficient sequence of x.

Let X and XN denote the Fourier transforms of x and xN , respectively.

The following relationships can be shown to hold:

X(Ω) = 2π
N

∞

∑
k=−∞

XN

(
2πk
N

)
δ
(
Ω− 2πk

N

)
,

ak =
1
N

XN

(
2πk
N

)
, and X(Ω) = 2π

∞

∑
k=−∞

akδ
(
Ω− 2πk

N

)
.
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Fourier Transform of Periodic Signals (Continued)

The Fourier series coefficient sequence a is produced by sampling XN at

integer multiples of the fundamental frequency 2π
N

and scaling the

resulting sequence by 1
N

.

The Fourier transform of a periodic sequence can only be nonzero at

integer multiples of the fundamental frequency.
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Section 10.4

Fourier Transform and Frequency Spectra of Signals
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Frequency Spectra of Signals

Like Fourier series, the Fourier transform also provides us with a

frequency-domain perspective on sequences.

That is, instead of viewing a sequence as having information distributed

with respect to time (i.e., a function whose domain is time), we view a

sequence as having information distributed with respect to frequency (i.e.,

a function whose domain is frequency).

The Fourier transform X of a sequence x provides a means to quantify

how much information x has at different frequencies.

The distribution of information in a sequence over different frequencies is

referred to as the frequency spectrum of the sequence.
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Fourier Transform and Frequency Spectra

To gain further insight into the role played by the Fourier transform X in

the context of the frequency spectrum of x, it is helpful to write the Fourier

transform representation of x with X(Ω) expressed in polar form as

follows:

x(n) = 1
2π

∫
2π

X(Ω)e jΩndΩ = 1
2π

∫
2π
|X(Ω)|e j[Ωn+arg X(Ω)]dΩ.

In effect, the quantity |X(Ω)| is a weight that determines how much the

complex sinusoid at frequency Ω contributes to the integration result x(n).

Perhaps, this can be more easily seen if we express the above integral as

the limit of a sum, derived from an approximation of the integral using the

area of rectangles, as shown on the next slide. [Recall that∫ b
a f (x)dx = limn→∞ ∑n

k=1 f (xk)∆x where ∆x = b−a
n

and xk = a+ k∆x.]
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Fourier Transform and Frequency Spectra (Continued 1)

Expressing the integral (from the previous slide) as the limit of a sum, we

obtain

x(n) = lim
ℓ→∞

1
2π

ℓ

∑
k=1

∆Ω
∣
∣X(Ω′)

∣
∣e j[Ω′n+argX(Ω′)],

where ∆Ω = 2π
ℓ and Ω′ = k∆Ω.

In the above equation, the kth term in the summation corresponds to a

complex sinusoid with fundamental frequency Ω′ = k∆Ω that has had its

amplitude scaled by a factor of |X(Ω′)| and has been time shifted by an

amount that depends on argX(Ω′).

For a given Ω′ = k∆Ω (which is associated with the kth term in the

summation), the larger |X(Ω′)| is, the larger the amplitude of its

corresponding complex sinusoid e jΩ′n will be, and therefore the larger the

contribution the kth term will make to the overall summation.

In this way, we can use |X(Ω′)| as a measure of how much information a

sequence x has at the frequency Ω′.
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Fourier Transform and Frequency Spectra (Continued 2)

The Fourier transform X of the sequence x is referred to as the frequency

spectrum of x.

The magnitude |X(Ω)| of the Fourier transform X is referred to as the

magnitude spectrum of x.

The argument argX(Ω) of the Fourier transform X is referred to as the

phase spectrum of x.

Since the Fourier transform is a function of a real variable, a sequence

can potentially have information at any real frequency.

Earlier, we saw that for periodic sequences, the Fourier transform can only

be nonzero at integer multiples of the fundamental frequency.

So, the Fourier transform and Fourier series give a consistent picture in

terms of frequency spectra.

Since the frequency spectrum is complex (in the general case), it is

usually represented using two plots, one showing the magnitude

spectrum and one showing the phase spectrum.
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Frequency Spectra of Real Signals

Recall that, for a real sequence x, the Fourier transform X of x satisfies

X(Ω) = X∗(−Ω)

(i.e., X is conjugate symmetric), which is equivalent to

|X(Ω)|= |X(−Ω)| and argX(Ω) =−argX(−Ω).

Since |X(Ω)|= |X(−Ω)|, the magnitude spectrum of a real sequence is

always even.

Similarly, since argX(Ω) =−argX(−Ω), the phase spectrum of a real

sequence is always odd.

Due to the symmetry in the frequency spectra of real sequences, we

typically ignore negative frequencies when dealing with such sequences.

In the case of sequences that are complex but not real, frequency spectra

do not possess the above symmetry, and negative frequencies become

important.
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Bandwidth

A sequence x with Fourier transform X is said to be bandlimited if, for

some nonnegative real constant B, X(Ω) = 0 for all Ω satisfying |Ω|> B.

In the context of real sequences, we usually refer to B as the bandwidth

of the signal x.

The (real) sequence with the Fourier transform X shown below has

bandwidth B.

−B B

X(Ω)

Ω

One can show that a sequence cannot be both time limited and

bandlimited. (This follows from the time/frequency scaling property of the

Fourier transform.)
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Section 10.5

Fourier Transform and LTI Systems
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Frequency Response of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

Since y(n) = x∗h(n), we have that

Y (Ω) = X(Ω)H(Ω).

The function H is called the frequency response of the system.

A LTI system is completely characterized by its frequency response H .

The above equation provides an alternative way of viewing the behavior of

a LTI system. That is, we can view the system as operating in the

frequency domain on the Fourier transforms of the input and output

signals.

The frequency spectrum of the output is the product of the frequency

spectrum of the input and the frequency response of the system.
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Frequency Response of LTI Systems (Continued 1)

In the general case, the frequency response H is a complex-valued

function.

Often, we represent H(Ω) in terms of its magnitude |H(Ω)| and argument

argH(Ω).

The quantity |H(Ω)| is called the magnitude response of the system.

The quantity argH(Ω) is called the phase response of the system.

Since Y (Ω) = X(Ω)H(Ω), we trivially have that

|Y (Ω)|= |X(Ω)| |H(Ω)| and argY (Ω) = argX(Ω)+ argH(Ω).

The magnitude spectrum of the output equals the magnitude spectrum of

the input times the magnitude response of the system.

The phase spectrum of the output equals the phase spectrum of the input

plus the phase response of the system.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 390



Frequency Response of LTI Systems (Continued 2)

Since the frequency response H is simply the frequency spectrum of the

impulse response h, if h is real, then

|H(Ω)|= |H(−Ω)| and arg H(Ω) =−arg H(−Ω)

(i.e., the magnitude response |H(Ω)| is even and the phase response

argH(Ω) is odd).
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Block Diagram Representations of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the Fourier transforms of x, y, and h, respectively.

Often, it is convenient to represent such a system in block diagram form in

the frequency domain as shown below.

H(Ω)
X(Ω) Y (Ω)

Since a LTI system is completely characterized by its frequency response,

we typically label the system with this quantity.
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Frequency-Response and Difference-Equation

Representations of LTI Systems

Many LTI systems of practical interest can be represented using an

Nth-order linear difference equation with constant coefficients.

Consider a system with input x and output y that is characterized by an

equation of the form

N

∑
k=0

bky(n− k) =
M

∑
k=0

akx(n− k).

Let h denote the impulse response of the system, and let X , Y , and H

denote the Fourier transforms of x, y, and h, respectively.

One can show that H(Ω) is given by

H(Ω) =
Y (Ω)

X(Ω)
=

∑M
k=0 ak(e

jΩ)−k

∑N
k=0 bk(e jΩ)−k

=
∑M

k=0 ake− jkΩ

∑N
k=0 bke− jkΩ

.

Each of the numerator and denominator of H is a polynomial in e− jΩ.

Thus, H is a rational function in the variable e− jΩ.
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Section 10.6

Application: Filtering
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Filtering

In many applications, we want to modify the spectrum of a signal by

either amplifying or attenuating certain frequency components.

This process of modifying the frequency spectrum of a signal is called

filtering.

A system that performs a filtering operation is called a filter.

Many types of filters exist.

Frequency selective filters pass some frequencies with little or no

distortion, while significantly attenuating other frequencies.

Several basic types of frequency-selective filters include: lowpass,

highpass, and bandpass.
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Ideal Lowpass Filter

An ideal lowpass filter eliminates all baseband frequency components

with a frequency whose magnitude is greater than some cutoff frequency,

while leaving the remaining baseband frequency components unaffected.

Such a filter has a frequency response H of the form

H(Ω) =

{

1 if |Ω| ≤Ωc

0 if Ωc < |Ω| ≤ π,

where Ωc is the cutoff frequency.

A plot of this frequency response is given below.

Passband

−π π
Ω

1

H(Ω)

−Ωc Ωc

Stopband Stopband
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Ideal Highpass Filter

An ideal highpass filter eliminates all baseband frequency components

with a frequency whose magnitude is less than some cutoff frequency,

while leaving the remaining baseband frequency components unaffected.

Such a filter has a frequency response H of the form

H(Ω) =

{

1 if Ωc < |Ω| ≤ π

0 if |Ω| ≤Ωc,

where Ωc is the cutoff frequency.

A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π π

Passband Passband

−Ωc Ωc

Ω
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Ideal Bandpass Filter

An ideal bandpass filter eliminates all baseband frequency components

with a frequency whose magnitude does not lie in a particular range, while

leaving the remaining baseband frequency components unaffected.

Such a filter has a frequency response H of the form

H(Ω) =

{

1 if Ωc1 ≤ |Ω| ≤Ωc2

0 if |Ω|< Ωc1 or Ωc2 < |Ω|< π,

where the limits of the passband are Ωc1 and Ωc2.

A plot of this frequency response is given below.

Stopband

1

H(Ω)

−π
Ω

Stopband Passband

π−Ωc2 −Ωc1 Ωc1 Ωc2

Passband Stopband
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Part 11

Z Transform (ZT)
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Motivation Behind the Z Transform

Another important mathematical tool in the study of signals and systems

is known as the z transform.

The z transform can be viewed as a generalization of the Fourier

transform.

Due to its more general nature, the z transform has a number of

advantages over the Fourier transform.

First, the z transform representation exists for some signals that do not

have Fourier transform representations. So, we can handle a larger class

of signals with the z transform.

Second, since the z transform is a more general tool, it can provide

additional insights beyond those facilitated by the Fourier transform.
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Motivation Behind the Z Transform (Continued)

Earlier, we saw that complex exponentials are eigensequences of LTI

systems.

In particular, for a LTI system H with impulse response h, we have that

H {zn}= H(z)zn where H(z) =
∞

∑
n=−∞

h(n)z−n.

Previously, we referred to H as the system function.

As it turns out, H is the z transform of h.

Since the z transform has already appeared earlier in the context of LTI

systems, it is clearly a useful tool.

Furthermore, as we will see, the z transform has many additional uses.
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Section 11.1

Z Transform
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(Bilateral) Z Transform

The (bilateral) z transform of the sequence x, denoted Z{x} or X , is

defined as

X(z) =
∞

∑
n=−∞

x(n)z−n.

The inverse z transform is then given by

x(n) = 1
2π j

∮
Γ

X(z)zn−1dz,

where Γ is a counterclockwise closed circular contour centered at the

origin and with radius r such that Γ is in the ROC of X .

We refer to x and X as a z transform pair and denote this relationship as

x(n)
ZT←→ X(z).

In practice, we do not usually compute the inverse z transform by directly

using the formula from above. Instead, we resort to other means (to be

discussed later).
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Bilateral and Unilateral Z Transform

Two different versions of the z transform are commonly used:

1 the bilateral (or two-sided) z transform; and
2 the unilateral (or one-sided) z transform.

The unilateral z transform is most frequently used to solve systems of

linear difference equations with nonzero initial conditions.

As it turns out, the only difference between the definitions of the bilateral

and unilateral z transforms is in the lower limit of summation.

In the bilateral case, the lower limit is −∞, whereas in the unilateral case,

the lower limit is 0.

For the most part, we will focus our attention primarily on the bilateral z

transform.

We will, however, briefly introduce the unilateral z transform as a tool for

solving difference equations.

Unless otherwise noted, all subsequent references to the z transform

should be understood to mean bilateral z transform.
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Relationship Between Z and Fourier Transforms

Let X and XF denote the z and (DT) Fourier transforms of x, respectively.

The function X(z) evaluated at z = e jΩ (where Ω is real) yields XF(Ω).
That is,

X(z)|z=e jΩ = XF(Ω).

Due to the preceding relationship, the Fourier transform of x is sometimes

written as X(e jΩ).

The function X(z) evaluated at an arbitrary complex value z = re jΩ (where

r = |z| and Ω = argz) can also be expressed in terms of a Fourier

transform involving x. In particular, we have

X(re jΩ) = X ′F(Ω),

where X ′
F

is the (DT) Fourier transform of x′(n) = r−nx(n).

So, in general, the z transform of x is the Fourier transform of an

exponentially-weighted version of x.

Due to this weighting, the z transform of a sequence may exist when the

Fourier transform of the same sequence does not.
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Z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 11.2

Region of Convergence (ROC)
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Disc

A disc with center 0 and radius r is the set of all complex numbers z

satisfying

|z|< r,

where r is a real constant and r > 0.

Im

Re

r
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Annulus

An annulus with center 0, inner radius r0, and outer radius r1 is the set of

all complex numbers z satisfying

r0 < |z|< r1,

where r0 and r1 are real constants and 0 < r0 < r1.

Im

Re

r1

r0
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Circle Exterior

The exterior of a circle with center 0 and radius r is the set of all complex

numbers z satisfying

|z|> r,

where r is a real constant and r > 0.

Im

r

Re
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Properties of the ROC

1 The ROC consists of concentric circles centered at the origin in the

complex plane.

2 If the sequence x has a rational z transform, then the ROC does not

contain any poles, and the ROC is bounded by poles or extends to

infinity.

3 If the sequence x is finite duration, then the ROC is the entire complex

plane, except possibly the origin (and/or infinity).

4 If the sequence x is right sided and the circle |z|= r0 is in the ROC, then

all (finite) values of z for which |z|> r0 will also be in the ROC (i.e., the

ROC contains all points outside the circle).

5 If the sequence x is left sided and the circle |z|= r0 is in the ROC, then all

values of z for which 0 < |z|< r0 will also be in the ROC (i.e., the ROC

contains all points inside the circle, except possibly the origin).

6 If the sequence x is two sided and the circle |z|= r0 is in the ROC, then

the ROC will consist of a ring that includes this circle (i.e., the ROC is an

annulus centered at the origin containing the circle).
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Properties of the ROC (Continued)

7 If the z transform X of x is rational and x is right sided, then the ROC is

the region outside the outermost pole (i.e., outside the circle of radius

equal to the largest magnitude of the poles of X ). (If x is causal, then the

ROC also includes infinity.)

8 If the z transform X of x is rational and x is left sided, then the ROC is the

region inside the innermost nonzero pole (i.e., inside the circle of radius

equal to the smallest magnitude of the nonzero poles of X and extending

inward to and possibly including the origin). If x is anticausal, then the

ROC also includes the origin.

Some of the preceding properties are redundant (e.g., properties 1, 2, and

4 imply property 7).

The ROC must always be of the form of one of the following:
1 a disc centered at the origin, possibly excluding the origin
2 an annulus centered at the origin
3 the exterior of a circle centered at the origin (possibly excluding infinity)
4 the entire complex plane, possibly excluding the origin (and/or infinity)
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Section 11.3

Properties of the Z Transform
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Properties of the Z Transform

Property Time Domain Z Domain ROC

Linearity a1x1(n)+a2x2(n) a1X1(z)+a2X2(z) At least R1∩R2

Translation x(n−n0) z−n0X(z) R except possible addition/deletion of 0

Z-Domain Scaling anx(n) X(a−1z) |a|R
e jΩ0nx(n) X(e− jΩ0z) R

Time Reversal x(−n) X(1/z) R−1

Upsampling (↑M)x(n) X(zM) R1/M

Conjugation x∗(n) X∗(z∗) R

Convolution x1 ∗ x2(n) X1(z)X2(z) At least R1∩R2

Z-Domain Diff. nx(n) −z d
dz

X(z) R

Differencing x(n)− x(n−1) (1− z−1)X(z) At least R∩ |z|> 0

Accumulation ∑n
k=−∞ x(k) z

z−1
X(z) At least R∩ |z|> 1

Property

Initial Value Theorem x(0) = lim
z→∞

X(z)

Final Value Theorem lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)]
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Z Transform Pairs

Pair x(n) X(z) ROC

1 δ(n) 1 All z

2 u(n) z
z−1

|z|> 1

3 −u(−n−1) z
z−1

|z|< 1

4 nu(n) z
(z−1)2 |z|> 1

5 −nu(−n−1) z
(z−1)2 |z|< 1

6 anu(n) z
z−a

|z|> |a|
7 −anu(−n−1) z

z−a
|z|< |a|

8 nanu(n) az
(z−a)2 |z|> |a|

9 −nanu(−n−1) az
(z−a)2 |z|< |a|

10 (cos Ω0n)u(n) z(z−cosΩ0)
z2−2zcosΩ0+1

|z|> 1

11 (sinΩ0n)u(n) zsin Ω0

z2−2zcosΩ0+1
|z|> 1

12 (an cosΩ0n)u(n) z(z−acosΩ0)
z2−2azcos Ω0+a2 |z|> |a|

13 (an sin Ω0n)u(n) azsinΩ0

z2−2azcos Ω0+a2 |z|> |a|
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Linearity

If x1(n)
ZT←→ X1(z) with ROC R1 and x2(n)

ZT←→ X2(z) with ROC R2, then

a1x1(n)+a2x2(n)
ZT←→ a1X1(z)+a2X2(z) with ROC R containing R1∩R2,

where a1 and a2 are arbitrary complex constants.

This is known as the linearity property of the z transform.

The ROC always contains the intersection but could be larger (in the case

that pole-zero cancellation occurs).
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Translation (Time Shifting)

If x(n)
ZT←→ X(z) with ROC R, then

x(n−n0)
ZT←→ z−n0X(z) with ROC R′,

where n0 is an integer constant and R′ is the same as R except for the

possible addition or deletion of zero or infinity.

This is known as the translation (or time-shifting) property of the z

transform.
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Z-Domain Scaling

If x(n)
ZT←→ X(z) with ROC R, then

anx(n)
ZT←→ X(z/a) with ROC |a|R,

where a is a nonzero constant.

This is known as the z-domain scaling property of the z transform.

As illustrated below, the ROC R is scaled by |a|.
Im

Re
r0 r1

R

Im

Re|a|r0 |a|r1

|a|R
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Time Reversal

If x(n)
ZT←→ X(z) with ROC R, then

x(−n)
ZT←→ X(1/z) with ROC 1/R.

This is known as the time-reversal property of the z transform.

As illustrated below, the ROC R is reciprocated.

Im

Re
r0 r1

R

Im

Re1
r1

1
r0

1/R
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Upsampling

Define (↑M)x(n) as

(↑M)x(n) =

{

x(n/M) if n/M is an integer

0 otherwise.

If x(n)
ZT←→ X(z) with ROC R, then

(↑M)x(n)
ZT←→ X(zM) with ROC R1/M.

This is known as the upsampling (or time-expansion) property of the z

transform.
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Conjugation

If x(n)
ZT←→ X(z) with ROC R, then

x∗(n)
ZT←→ X∗(z∗) with ROC R.

This is known as the conjugation property of the z transform.
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Convolution

If x1(n)
ZT←→ X1(z) with ROC R1 and x2(n)

ZT←→ X2(z) with ROC R2, then

x1 ∗ x2(n)
ZT←→ X1(z)X2(z) with ROC containing R1∩R2.

This is known that the convolution (or time-domain convolution)

property of the z transform.

The ROC always contains the intersection but can be larger than the

intersection (if pole-zero cancellation occurs).

Convolution in the time domain becomes multiplication in the z domain.

This can make dealing with LTI systems much easier in the z domain than

in the time domain.
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Z-Domain Differentiation

If x(n)
ZT←→ X(z) with ROC R, then

nx(n)
ZT←→−z d

dz
X(z) with ROC R.

This is known as the z-domain differentiation property of the z

transform.
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Differencing

If x(n)
ZT←→ X(z) with ROC R, then

x(n)− x(n−1)
ZT←→ (1− z−1)X(z) for ROC containing R∩ |z|> 0.

This is known as the differencing property of the z transform.

Differencing in the time domain becomes multiplication by 1− z−1 in the z

domain.

This can make dealing with difference equations much easier in the z

domain than in the time domain.
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Accumulation

If x(n)
ZT←→ X(z) with ROC R, then

n

∑
k=−∞

x(k)
ZT←→ z

z−1
X(z) for ROC containing R∩ |z|> 1.

This is known as the accumulation property of the z transform.
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Initial Value Theorem

For a sequence x with z transform X , if x is causal, then

x(0) = lim
z→∞

X(z).

This result is known as the initial-value theorem.
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Final Value Theorem

For a sequence x with z transform X , if x is causal and limn→∞ x(n) exists,

then

lim
n→∞

x(n) = lim
z→1

[(z−1)X(z)].

This result is known as the final-value theorem.
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More Z Transform Examples

THIS SLIDE IS INTENTIONALLY LEFT BLANK.
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Section 11.4

Determination of Inverse Z Transform
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Finding the Inverse Z Transform

Recall that the inverse z transform x of X is given by

x(n) = 1
2π j

∮
Γ

X(z)zn−1dz,

where Γ is a counterclockwise closed circular contour centered at the

origin and with radius r such that Γ is in the ROC of X .

Unfortunately, the above contour integration can often be quite tedious to

compute.

Consequently, we do not usually compute the inverse z transform directly

using the above equation.

For rational functions, the inverse z transform can be more easily

computed using partial fraction expansions.

Using a partial fraction expansion, we can express a rational function as a

sum of lower-order rational functions whose inverse z transforms can

typically be found in tables.
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Section 11.5

Z Transform and LTI Systems
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System Function of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the z transforms of x, y, and h, respectively.

Since y(n) = x∗h(n), the system is characterized in the z domain by

Y (z) = X(z)H(z).

As a matter of terminology, we refer to H as the system function (or

transfer function) of the system (i.e., the system function is the z

transform of the impulse response).

When viewed in the z domain, a LTI system forms its output by multiplying

its input with its system function.

A LTI system is completely characterized by its system function H .

If the ROC of H includes the unit circle |z|= 1, then H(z)|z=e jΩ is the

frequency response of the LTI system.
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Block Diagram Representation of LTI Systems

Consider a LTI system with input x, output y, and impulse response h, and

let X , Y , and H denote the z transforms of x, y, and h, respectively.

Often, it is convenient to represent such a system in block diagram form in

the z domain as shown below.

H(z)
X(z) Y (z)

Since a LTI system is completely characterized by its system function, we

typically label the system with this quantity.
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Interconnection of LTI Systems

The series interconnection of the LTI systems with system functions H1

and H2 is the LTI system with system function H = H1H2. That is, we

have the equivalences shown below.

H1(z) H2(z) ≡ x(n) y(n)
H1(z)H2(z)

y(n)x(n)

≡H1(z) H2(z) H2(z) H1(z)
y(n)x(n) y(n)x(n)

The parallel interconnection of the LTI systems with impulse responses

H1 and H2 is a LTI system with the system function H = H1 +H2. That is,

we have the equivalence shown below.

H1(z)

H2(z)

≡ H1(z)+H2(z)
y(n)x(n)

+
x(n) y(n)
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Causality

If a LTI system is causal, its impulse response is causal, and therefore

right sided. From this, we have the result below.

Theorem. A LTI system is causal if and only if the ROC of the system

function is the exterior of a circle including infinity.

Theorem. A LTI system with a rational system function H is causal if and
only if

1 the ROC is the exterior of a circle outside the outermost pole; and
2 with H(z) expressed as a ratio of polynomials in z the order of the

numerator polynomial does not exceed the order of the denominator

polynomial.
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BIBO Stability

Whether or not a system is BIBO stable depends on the ROC of its

system function.

Theorem. A LTI system is BIBO stable if and only if the ROC of its

system function includes the (entire) unit circle (i.e., |z|= 1).

Theorem. A causal LTI system with a rational system function H is BIBO

stable if and only if all of the poles of H lie inside the unit circle (i.e., each

of the poles has a magnitude less than one).
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Invertibility

A LTI system H with system function H is invertible if and only if there

exists another LTI system with system function Hinv such that

H(z)Hinv(z) = 1,

in which case Hinv is the system function of H −1 and

Hinv(z) =
1

H(z)
.

Since distinct systems can have identical system functions (but with

differing ROCs), the inverse of a LTI system is not necessarily unique.

In practice, however, we often desire a stable and/or causal system. So,

although multiple inverse systems may exist, we are frequently only

interested in one specific choice of inverse system (due to these

additional constraints of stability and/or causality).

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 437



System-Function and Difference-Equation Representations

of LTI Systems

Many LTI systems of practical interest can be represented using an

Nth-order linear difference equation with constant coefficients.

Consider a system with input x and output y that is characterized by an

equation of the form

N

∑
k=0

bky(n− k) =
M

∑
k=0

akx(n− k) where M ≤ N.

Let h denote the impulse response of the system, and let X , Y , and H

denote the z transforms of x, y, and h, respectively.

One can show that H(z) is given by

H(z) =
Y (z)

X(z)
=

∑M
k=0 akzk

∑N
k=0 bkzk

.

Observe that, for a system of the form considered above, the system

function is always rational.

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 438



Section 11.6

Application: Analysis of Control Systems
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Feedback Control Systems

+

Sensor

−

Error
Plant

Input Output
Controller

Reference

Feedback

Signal

input: desired value of the quantity to be controlled

output: actual value of the quantity to be controlled

error: difference between the desired and actual values

plant: system to be controlled

sensor: device used to measure the actual output

controller: device that monitors the error and changes the input of the

plant with the goal of forcing the error to zero
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Stability Analysis of Feedback Control Systems

Often, we want to ensure that a system is BIBO stable.

The BIBO stability property is more easily characterized in the z domain

than in the time domain.

Therefore, the z domain is extremely useful for the stability analysis of

systems.
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Section 11.7

Unilateral Z Transform
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Unilateral Z Transform

The unilateral z transform of the sequence x, denoted UZ{x} or X , is

defined as

X(z) =
∞

∑
n=0

x(n)z−n.

The unilateral z transform is related to the bilateral z transform as follows:

UZ{x}(z) =
∞

∑
n=0

x(n)z−n =
∞

∑
n=−∞

x(n)u(n)z−n = Z {xu}(z).

In other words, the unilateral z transform of the sequence x is simply the

bilateral z transform of the sequence xu.

Since UZ{x} = Z{xu} and xu is always a right-sided sequence, the

ROC associated with UZ{x} is always the exterior of a circle.

For this reason, we often do not explicitly indicate the ROC when

working with the unilateral z transform.
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Unilateral Z Transform (Continued 1)

With the unilateral z transform, the same inverse transform equation is

used as in the bilateral case.

The unilateral z transform is only invertible for causal sequences. In

particular, we have

UZ−1{UZ{x}}(n) = UZ−1{Z{xu}}(n)
= Z−1{Z{xu}}(n)
= x(n)u(n)

=

{

x(n) if n≥ 0

0 otherwise.

For a noncausal sequence x, we can only recover x(n) for n≥ 0.
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Unilateral Z Transform (Continued 2)

Due to the close relationship between the unilateral and bilateral z

transforms, these two transforms have some similarities in their properties.

Since these two transforms are not identical, however, their properties

differ in some cases, often in subtle ways.
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Properties of the Unilateral Z Transform

Property Time Domain Z Domain

Linearity a1x1(n)+a2x2(n) a1X1(z)+a2X2(z)

Time Delay x(n−1) z−1X(z)+ x(−1)

Time Advance x(n+1) zX(z)− zx(0)

Z-Domain Scaling anx(n) X(a−1z)

e jΩ0nx(n) X(e− jΩ0z)

Upsampling (↑M)x(n) X(zM)

Conjugation x∗(n) X∗(z∗)
Convolution x1 ∗ x2(n), x1 and x2 are causal X1(z)X2(z)

Z-Domain Diff. nx(n) −z d
dz

X(z)

Differencing x(n)− x(n−1) (1− z−1)X(z)− x(−1)

Accumulation ∑n
k=0 x(k) 1

1−z−1 X(z)

Property

Initial Value Theorem x(0) = lim
z→∞

X(z)

Final Value Theorem lim
n→∞

x(n) = lim
z→1

(z−1)X(z)
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Unilateral Z Transform Pairs

Pair x(n), n≥ 0 X(z)

1 δ(n) 1

2 1 z
z−1

3 n z
(z−1)2

4 an z
z−a

5 ann az
(z−a)2

6 cosΩ0n
z(z−cosΩ0)

z2−2(cosΩ0)z+1

7 sinΩ0n zsin Ω0

z2−2(cosΩ0)z+1

8 |a|n cosΩ0n
z(z−|a|cosΩ0)

z2−2|a|(cosΩ0)z+|a|2

9 |a|n sin Ω0n
z|a|sinΩ0

z2−2|a|(cosΩ0)z+|a|2
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Solving Difference Equations Using the Unilateral Z

Transform

Many systems of interest in engineering applications can be characterized

by constant-coefficient linear difference equations.

One common use of the unilateral z transform is in solving

constant-coefficient linear difference equations with nonzero initial

conditions.
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Part 12

Complex Analysis
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Complex Numbers

A complex number is a number of the form z = x+ jy where x and y are

real numbers and j is the constant defined by j2 =−1 (i.e., j =
√
−1).

The Cartesian form of the complex number z expresses z in the form

z = x+ jy,

where x and y are real numbers. The quantities x and y are called the real

part and imaginary part of z, and are denoted as Rez and Imz,

respectively.

The polar form of the complex number z expresses z in the form

z = r(cos θ+ j sinθ) or equivalently z = re jθ,

where r and θ are real numbers and r ≥ 0. The quantities r and θ are

called the magnitude and argument of z, and are denoted as |z| and

argz, respectively. [Note: e jθ = cos θ+ j sinθ.]
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Complex Numbers (Continued)

Since e jθ = e j(θ+2πk) for all real θ and all integer k, the argument of a

complex number is only uniquely determined to within an additive multiple

of 2π.

The principal argument of a complex number z, denoted Argz, is the

particular value θ of arg z that satisfies −π < θ≤ π.

The principal argument of a complex number (excluding zero) is unique.
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Geometric Interpretation of Cartesian and Polar Forms

Im

Re
x

y
z

Cartesian form:

z = x+ jy

where x = Rez and y = Imz

Im

Re

z

r

θ

Polar form:

z = r(cos θ+ j sinθ) = re jθ

where r = |z| and θ = argz
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The arctan Function

The range of the arctan function is −π/2 (exclusive) to π/2 (exclusive).

Consequently, the arctan function always yields an angle in either the first

or fourth quadrant.

Im

Re

arctan( 1
1
)

(1,1)

−1

1

−1 1

Im

Re

(−1,−1)

π+ arctan(−1
−1

) arctan(−1
−1

)

1

−1

1−1
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The atan2 Function

The angle θ that a vector from the origin to the point (x,y) makes with the

positive x axis is given by θ = atan2(y,x), where

atan2(y,x) ,







arctan(y/x) for x > 0

π/2 for x = 0 and y > 0

−π/2 for x = 0 and y < 0

arctan(y/x)+π for x < 0 and y≥ 0

arctan(y/x)−π for x < 0 and y < 0.

The range of the atan2 function is from −π (exclusive) to π (inclusive).

For the complex number z expressed in Cartesian form x+ jy,

Argz = atan2(y,x).

Although the atan2 function is quite useful for computing the principal

argument (or argument) of a complex number, it is not advisable to

memorize the definition of this function. It is better to simply understand

what this function is doing (namely, intelligently applying the arctan

function).

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 454



Conversion Between Cartesian and Polar Form

Let z be a complex number with the Cartesian and polar form

representations given respectively by

z = x+ jy and z = re jθ.

To convert from polar to Cartesian form, we use the following identities:

x = r cosθ and y = r sin θ.

To convert from Cartesian to polar form, we use the following identities:

r =
√

x2 + y2 and θ = atan2(y,x)+2πk,

where k is an arbitrary integer.

Since the atan2 function simply amounts to the intelligent application of

the arctan function, instead of memorizing the definition of the atan2

function, one should simply understand how to use the arctan function to

achieve the same result.
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Properties of Complex Numbers

For complex numbers, addition and multiplication are commutative. That

is, for any two complex numbers z1 and z2,

z1 + z2 = z2 + z1 and

z1z2 = z2z1.

For complex numbers, addition and multiplication are associative. That is,

for any two complex numbers z1 and z2,

(z1 + z2)+ z3 = z1 +(z2 + z3) and

(z1z2)z3 = z1(z2z3).

For complex numbers, the distributive property holds. That is, for any

three complex numbers z1, z2, and z3,

z1(z2 + z3) = z1z2 + z1z3.
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Conjugation

The conjugate of the complex number z = x+ jy is denoted as z∗ and

defined as

z∗ = x− jy.

Geometrically, the conjugation operation reflects a point in the complex

plane about the real axis.

The geometric interpretation of the conjugate is illustrated below.

Im

Re

z = x+ jy

z∗ = x− jy
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Properties of Conjugation

For every complex number z, the following identities hold:

|z∗|= |z| ,
argz∗ =−argz,

zz∗ = |z|2 ,
Rez = 1

2
(z+ z∗), and

Imz = 1
2 j
(z− z∗).

For all complex numbers z1 and z2, the following identities hold:

(z1 + z2)
∗ = z∗1 + z∗2,

(z1z2)
∗ = z∗1z∗2, and

(z1/z2)
∗ = z∗1/z∗2.
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Addition

Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1 + z2 = (x1 + jy1)+ (x2 + jy2)

= (x1 + x2)+ j(y1 + y2).

That is, to add complex numbers expressed in Cartesian form, we simply

add their real parts and add their imaginary parts.

Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1 + z2 = r1e jθ1 + r2e jθ2

= (r1 cosθ1 + jr1 sinθ1)+ (r2 cosθ2 + jr2 sinθ2)

= (r1 cosθ1 + r2 cosθ2)+ j(r1 sinθ1 + r2 sinθ2).

That is, to add complex numbers expressed in polar form, we first rewrite

them in Cartesian form, and then add their real parts and add their

imaginary parts.

For the purposes of addition, it is easier to work with complex numbers

expressed in Cartesian form.
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Multiplication

Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1z2 = (x1 + jy1)(x2 + jy2)

= x1x2 + jx1y2 + jx2y1− y1y2

= (x1x2− y1y2)+ j(x1y2 + x2y1).

That is, to multiply two complex numbers expressed in Cartesian form, we

use the distributive law along with the fact that j2 =−1.

Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1z2 =
(

r1e jθ1

)(

r2e jθ2

)

= r1r2e j(θ1+θ2).

That is, to multiply two complex numbers expressed in polar form, we use

exponent rules.

For the purposes of multiplication, it is easier to work with complex

numbers expressed in polar form.
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Division

Cartesian form: Let z1 = x1 + jy1 and z2 = x2 + jy2. Then,

z1

z2

=
z1z∗2
z2z∗2

=
z1z∗2
|z2|2

=
(x1 + jy1)(x2− jy2)

x2
2 + y2

2

=
x1x2− jx1y2 + jx2y1 + y1y2

x2
2 + y2

2

=
x1x2 + y1y2 + j(x2y1− x1y2)

x2
2 + y2

2

.

That is, to compute the quotient of two complex numbers expressed in

Cartesian form, we convert the problem into one of division by a real

number.

Polar form: Let z1 = r1e jθ1 and z2 = r2e jθ2 . Then,

z1

z2

=
r1e jθ1

r2e jθ2
=

r1

r2

e j(θ1−θ2).

That is, to compute the quotient of two complex numbers expressed in

polar form, we use exponent rules.

For the purposes of division, it is easier to work with complex numbers

expressed in polar form.
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Properties of the Magnitude and Argument

For any complex numbers z1 and z2, the following identities hold:

|z1z2|= |z1| |z2| ,
∣
∣
∣
∣

z1

z2

∣
∣
∣
∣
=
|z1|
|z2|

for z2 6= 0,

arg z1z2 = arg z1 + argz2, and

arg

(
z1

z2

)

= argz1− argz2 for z2 6= 0.

The above properties trivially follow from the polar representation of

complex numbers.
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Euler’s Relation, and De Moivre’s Theorem

Euler’s relation. For all real θ,

e jθ = cosθ+ j sinθ.

From Euler’s relation, we can deduce the following useful identities:

cosθ = 1
2
(e jθ + e− jθ) and

sinθ = 1
2 j
(e jθ− e− jθ).

De Moivre’s theorem. For all real θ and all integer n,

e jnθ =
(

e jθ
)n

.

[Note: This relationship does not necessarily hold for real n.]
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Roots of Complex Numbers

Every complex number z = re jθ (where r = |z| and θ = argz) has n

distinct nth roots given by

n
√

re j(θ+2πk)/n for k = 0,1, . . . ,n−1.

For example, 1 has the two distinct square roots 1 and −1.
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Quadratic Formula

Consider the equation

az2 +bz+ c = 0,

where a, b, and c are real, z is complex, and a 6= 0.

The roots of this equation are given by

z =
−b±

√
b2−4ac

2a
.

This formula is often useful in factoring quadratic polynomials.

The quadratic az2 +bz+ c can be factored as a(z− z0)(z− z1), where

z0 =
−b−

√
b2−4ac

2a
and z1 =

−b+
√

b2−4ac

2a
.
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Complex Functions

A complex function maps complex numbers to complex numbers. For

example, the function F(z) = z2 +2z+1, where z is complex, is a

complex function.

A complex polynomial function is a mapping of the form

F(z) = a0 +a1z+a2z2 + · · ·+anzn,

where z, a0,a1, . . . ,an are complex.

A complex rational function is a mapping of the form

F(z) =
a0 +a1z+a2z2 + . . .+anzn

b0 +b1z+b2z2 + . . .+bmzm
,

where a0,a1, . . . ,an,b0,b1, . . . ,bm and z are complex.

Observe that a polynomial function is a special case of a rational function.

Herein, we will mostly focus our attention on polynomial and rational

functions.
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Continuity

A function F is said to be continuous at a point z0 if F(z0) is defined and

given by

F(z0) = lim
z→z0

F(z).

A function that is continuous at every point in its domain is said to be

continuous.

Polynomial functions are continuous everywhere.

Rational functions are continuous everywhere except at points where the

denominator polynomial becomes zero.
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Differentiability

A function F is said to be differentiable at a point z = z0 if the limit

F ′(z0) = limz→z0

F(z)−F(z0)
z−z0

exists. This limit is called the derivative of F at the point z = z0.

A function is said to be differentiable if it is differentiable at every point in

its domain.

The rules for differentiating sums, products, and quotients are the same
for complex functions as for real functions. If F ′(z0) and G′(z0) exist, then

1 (aF)′(z0) = aF ′(z0) for any complex constant a;
2 (F +G)′(z0) = F ′(z0)+G′(z0);
3 (FG)′(z0) = F ′(z0)G(z0)+F(z0)G

′(z0);

4 (F/G)′(z0) =
G(z0)F

′(z0)−F(z0)G
′(z0)

G(z0)2 ; and

5 if z0 = G(w0) and G′(w0) exists, then the derivative of F(G(z)) at w0 is

F ′(z0)G
′(w0) (i.e., the chain rule).

A polynomial function is differentiable everywhere.

A rational function is differentiable everywhere except at the points where

its denominator polynomial becomes zero.
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Open Disks

An open disk in the complex plane with center z0 and radius r is the set of

complex numbers z satisfying

|z− z0|< r,

where r is a strictly positive real number.

A plot of an open disk is shown below.

z0

r

Im

Re
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Analyticity

A function is said to be analytic at a point z0 if it is differentiable at every

point in an open disk about z0.

A function is said to be analytic if it is analytic at every point in its domain.

A polynomial function is analytic everywhere.

A rational function is analytic everywhere, except at the points where its

denominator polynomial becomes zero.
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Zeros and Singularities

If a function F is zero at the point z0 (i.e., F(z0) = 0), F is said to have a

zero at z0.

If a function F is such that F(z0) = 0,F (1)(z0) = 0, . . . ,F (n−1)(z0) = 0

(where F (k) denotes the kth order derivative of F), F is said to have an

nth order zero at z0.

A point at which a function fails to be analytic is called a singularity.

Polynomials do not have singularities.

Rational functions can have a type of singularity called a pole.

If a function F is such that G(z) = 1/F(z) has an nth order zero at z0, F is

said to have an nth order pole at z0.

A pole of first order is said to be simple, whereas a pole of order two or

greater is said to be repeated. A similar terminology can also be applied

to zeros (i.e., simple zero and repeated zero).
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Zeros and Poles of a Rational Function

Given a rational function F , we can always express F in factored form as

F(z) =
K(z−a1)

α1(z−a2)
α2 · · · (z−aM)αM

(z−b1)β1(z−b2)β2 · · · (z−bN)βN
,

where K is complex, a1,a2, . . . ,aM ,b1,b2, . . . ,bN are distinct complex

numbers, and α1,α2, . . . ,αN and β1,β2, . . . ,βN are strictly positive

integers.

One can show that F has poles at b1,b2, . . . ,bN and zeros at

a1,a2, . . . ,aM .

Furthermore, the kth pole (i.e., bk) is of order βk, and the kth zero (i.e., ak)

is of order αk.

When plotting zeros and poles in the complex plane, the symbols “o” and

“x” are used to denote zeros and poles, respectively.
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Part 13

Partial Fraction Expansions (PFEs)
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Motivation

Sometimes it is beneficial to be able to express a rational function as a

sum of lower-order rational functions.

This can be accomplished using a type of decomposition known as a

partial fraction expansion.

Partial fraction expansions are often useful in the calculation of inverse

Laplace transforms, inverse z transforms, and inverse CT/DT Fourier

transforms.
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Strictly-Proper Rational Functions

Consider a rational function

F(v) =
αmvm +αm−1vm−1 + . . .+α1v+α0

βnvn +βn−1vn−1 + . . .+β1v+β0

.

The function F is said to be strictly proper if m < n (i.e., the order of the

numerator polynomial is strictly less than the order of the denominator

polynomial).

Through polynomial long division, any rational function can be written as

the sum of a polynomial and a strictly-proper rational function.

A strictly-proper rational function can be expressed as a sum of

lower-order rational functions, with such an expression being called a

partial fraction expansion.
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Partial Fraction Expansions (PFEs)

Any rational function can be expressed in the form of

F(v) =
amvm +am−1vm−1 + . . .+a0

vn +bm−1vm−1 + . . .+b0

.

Furthermore, the denominator polynomial

D(v) = vn +bm−1vm−1 + . . .+b0 in the above expression for F(v) can be

factored to obtain

D(v) = (v− p1)
q1(v− p2)

q2 · · · (v− pn)
qn ,

where the pk are distinct and the qk are integers.

If F has only simple poles, q1 = q2 = · · ·= qn = 1.

Suppose that F is strictly proper (i.e., m < n).

In the determination of a partial fraction expansion of F , there are two
cases to consider:

1 F has only simple poles; and
2 F has at least one repeated pole.
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Simple-Pole Case

Suppose that the (rational) function F has only simple poles.

Then, the denominator polynomial D for F is of the form

D(v) = (v− p1)(v− p2) · · · (v− pn),

where the pk are distinct.

In this case, F has a partial fraction expansion of the form

F(v) =
A1

v− p1

+
A2

v− p2

+ . . .+
An−1

v− pn−1

+
An

v− pn

,

where

Ak = (v− pk)F(v)|v=pk
.

Note that the (simple) pole pk contributes a single term to the partial

fraction expansion.
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Repeated-Pole Case

Suppose that the (rational) function F has at least one repeated pole.

One can show that, in this case, F has a partial fraction expansion of the

form

F(v) =

[
A11

v− p1

+
A12

(v− p1)2
+ . . .+

A1q1

(v− p1)q1

]

+

[
A21

v− p2

+ . . .+
A2q2

(v− p2)q2

]

+ . . .+

[
AP1

v− pP

+ . . .+
APqP

(v− pP)qP

]

,

where

Akl =
1

(qk− l)!

[
dqk−l

dvqk−l
[(v− pk)

qk F(v)]

]∣
∣
∣
∣
v=pk

.

Note that the qkth-order pole pk contributes qk terms to the partial fraction

expansion.

Note that n! = (n)(n−1)(n−2) · · · (1) and 0! = 1.
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Part 14

Epilogue

Copyright c© 2016 Michael D. Adams Lecture Slides Version: 2016-01-25 479



ELEC 486: Multiresolution Signal and Geometry Processing

with C++

If you did not suffer permanent emotional scarring as a result of using
these lecture slides and you happen to be a student at the University of
Victoria, you might consider taking the following course (developed by the
author of these lecture slides) as one of your technical electives (in third or
fourth year):

ELEC 486: Multiresolution Signal and Geometry

Processing with C++

Some further information about ELEC 486 can be found on the next slide,

including the URL of the course web site.
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ELEC 486/586:

Multiresolution Signal and Geometry Processing with C++

normally offered in Summer (May-August) term; only prerequisite

ELEC 310

subdivision surfaces and subdivision wavelets

3D computer graphics, animation, gaming (Toy Story, Blender software)

geometric modelling, visualization, computer-aided design

multirate signal processing and wavelet systems

sampling rate conversion (audio processing, video transcoding)

signal compression (JPEG 2000, FBI fingerprint compression)

communication systems (transmultiplexers for CDMA, FDMA, TDMA)

C++ (classes, templates, standard library), OpenGL, GLUT, CGAL

software applications (using C++)

for more information, visit course web page:

http://www.ece.uvic.ca/˜mdadams/courses/wavelets
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