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Preface to the Second Edition 

Although Sir Arthur Conan Doyle is responsible for most of the quotes in this book, 
perhaps the best description of the life of this book can be attributed to the Grateful 
Dead sentiment, "What a long, strange trip it's been." 

Plans for the second edition started about six years ago, and for a long time we 
struggled with questions about what to add and what to delete. Thankfully, as time 
passed, the answers became clearer as the flow of the discipline of statistics became 
clearer. We see tbe trend moving away from elegant proofs of special cases to algo
rithmic solutions of more complex and practical cases. This does not undermine the 
importance of mathematics and rigor; indeed, we have found that these have become 
more important . But the manner in which they are applied is changing. 

For those familiar with the first edition, we can summarize the changes succinctly 
as follows. Discussion of asymptotic methods has been greatly expanded into its own 
chapter. There is more emphasis on computing and simulation (see Section 5.5 and 
the computer algebra Appendix) ; coverage of the more applicable techniques has 
been expanded or added (for example, bootstrapping, the EM algorithm, p-values, 
logistic and robust regression) ; and there are many new Miscellanea and Exercises. 
We have de-emphasized the more specialized theoretical topics, such as equivariance 
and decision theory, and have restructured some material in Chapters 3-11 for clarity. 

There are two things that we want to note. First, with respect to computer algebra 
programs, although we believe that they are becoming increasingly valuable tools, 
we did not want to force them on the instructor who does not share that belief. 
Thus, the treatment is "unobtrusive" in that it appears only in an appendix, with 
some hints throughout the book where it may be useful. Second, we have changed 
the numbering system to one that facilitates finding things. Now theorems, lemmas, 
examples, and definitions are numbered together; for example, Definition 7.2.4 is 
followed by Example 7.2.5 and Theorem 10.1.3 precedes Example 10.1.4. 

The first four chapters have received only minor changes. We reordered some ma
terial (in particular, the inequalities and identities have been split) , added some new 
examples and exercises, and did some general updating. Chapter 5 has also been re
ordered, witb the convergence section being moved further back, and a new section on 
generating random variables added. The previous coverage of invariance, which was 
in Chapters 7-9 of the first edition, has been greatly reduced and incorporated int.o 
Chapter 6, which otherwise has received only minor editing (mostly the addition of 
new exercises) . Chapter 7 has been expanded and updated, and includes a new section 
on the EM algorithm. Chapter 8 has also received minor editing and updating, and 
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\: '��s� ��e\\T" sjl��?'4 p-values. In Chapter 9 we now put more emphasis on pivoting 
(h8.vJn���hat "guaranteeing an interval" was merely "pivoting the cdf"). Also, 
the rrrateihirihat was in Chapter 10 of the first edition (decision theory) has been re
duced, and small sections on loss function optimality of point estimation, hypothesis 
testing, and interval estimation have been added to the appropriate chapters. 

Chapter 10 is entirely new and attempts to lay out the fundamentals of large sample 
inference, including the delta method, consistency and asymptotic normality, boot
strapping, robust estimators, score tests, etc. Chapter 11 is classic oneway ANOVA 
and linear regression (which was covered in two different chapters in the first edi
tion). Unfortunately, coverage of randomized block designs has been eliminated for 
space reasons. Chapter 12 covers regression with errors-in-variables and contains new 
material on robust and logistic regression. 

After teaching from the first edition for a number of years, we know (approximately) 
what can be covered in a one-year course. From the second edition, it should be 
possible to cover the following in one year: 

Chapter 1: Sections 1-7 Chapter 6: Sections 1-3 
Chapter 2: Sections 1-3 Chapter 7: Sections 1-3 
Chapter 3: Sections 1-6 Chapter 8: Sections 1-3 
Chapter 4: Sections 1-7 Chapter 9: Sections 1-3 
Chapter 5: Sections 1-6 Chapter 10: Sections 1, 3, 4 

Classes that begin the course with some probability background can cover more ma
terial from the later chapters. 

Finally, it is almost impossible to thank all of the people who have contributed in 
some way to making the second edition a reality (and help us correct the mistakes in 
the first edition). To all of our students, friends, and colleagues who took the time to 
send us a note or an e-mail, we thank you. A number of people made key suggestions 
that led to substantial changes in presentation. Sometimes these suggestions were just 
short notes or comments, and some were longer reviews. Some were so long ago that 
their authors may have forgotten, but we haven't. So thanks to Arthur Cohen, Sir 
David Cox, Steve Samuels, Rob Strawderman and Tom Wehrly. We also owe much to 
Jay Beder, who has sent us numerous comments and suggestions over the years and 
possibly knows the first edition better than we do, and to Michael Perlman and his 
class, who are sending comments and corrections even as we write this. 

This book has seen a number of editors. We thank Alex Kugashev, who in the 
mid-1990s first suggested doing a second edition, and our editor, Carolyn Crockett, 
who constantly encouraged us. Perhaps the one person (other than us) who is most 
responsible for this book is our first editor, John Kimmel, who encouraged, published, 
and marketed the first edition. Thanks, John. 

George Casella 
Roger L. Berger 



Preface to the First Edition 

When someone discovers that you are writing a textbook, one (or both) of two ques
tions will be asked. The first is "Why are you writing a book?" and the second is 
"How is your book different from what's out there?" The first question is fairly easy 
to answer. You are writing a book because you are not entirely satisfied with the 
available texts. The second question is harder to answer. The answer can't be put 
in a few sentences so, in order not to bore your audience (who may be asking the 
question only out of politeness) ,  you try to say something quick and witty. It usually 
doesn't work. 

The purpose of this book is to build theoretical statistics (as different from mathe
matical statistics) from the first principles of probability theory. Logical development, 
proofs, ideas, themes, etc . ,  evolve through statistical arguments. Thus, starting from 
the basics of probability, we develop the theory of statistical inference using tech
niques, definitions, and concepts that are statistical and are natural extensions and 
consequences of previous concepts. When this endeavor was started, we were not sure 
how well it would work. The final judgment of our success is, of course, left to the 
reader. 

The book is intended for first-year graduate students majoring in statistics or in 
a field where a statistics concentration is desirable. The prerequisite is one year of 
calculus. (Some familiarity with matrix manipulations would be useful, but is not 
essential. )  The book can be used for a two-semester, or three-quarter, introductory 
course in statistics. 

The first four chapters cover basics of probability theory and introduce many fun
damentals that are later necessary. Chapters 5 and 6 are the first statistical chapters. 
Chapter 5 is transitional (between probability and statistics) and can be the starting 
point for a course in statistical theory for students with some probability background. 
Chapter 6 is somewhat unique, detailing three statistical principles (sufficiency, like
lihood, and invariance) and showing how these principles are important in modeling 
data. Not all instructors will cover this chapter in detail, although we strongly recom
mend spending some time here. In particular, the likelihood and invariance principles 
are treated in detail. Along with the sufficiency principle, these principles, and the 
thinking behind them, are fundamental to total statistical understanding. 

Chapters 7-9 represent the central core of statistical inference, estimation (point 
and interval) and hypothesis testing. A major feature of these chapters is the division 
into methods of finding appropriate statistical techniques and methods of evaluating 
these techniques. Finding and evaluating are of interest to both the theorist and the 
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practitioner, but we feel that it is important to separate these endeavors. Different 
concerns are important, and different rules are invoked. Of further interest may be 
the sections of these chapters titled Other Considerations. Here, we indicate how the 
rules of statistical inference may be relaxed (as is done every day) and still produce 
meaningful inferences. Many of the techniques covered in these sections are ones that 
are used in consulting and are helpful in analyzing and inferring from actual problems. 

The final three chapters can be thought of as special topics, although we feel that 
some familiarity with the material is important in anyone's statistical education. 
Chapter 10 is a thorough introduction to decision theory and contains the most mod
ern material we could include. Chapter 11 deals with the analysis of variance (oneway 
and randomized block) , building the theory of the complete analysis from the more 
simple theory of treatment contrasts. Our experience has been that experimenters are 
most interested in inferences from contrasts, and using principles developed earlier, 
most tests and intervals can be derived from contrasts.  Finally, Chapter 12 treats 
the theory of regression, dealing first with simple linear regression and then covering 
regression with "errors in variables." This latter topic is quite important, not only to 
show its own usefulness and inherent difficulties, but also to illustrate the limitations 
of inferences from ordinary regression. 

As more concrete guidelines for basing a one-year course on this book, we offer the 
following suggestions. There can be two distinct types of courses taught from this 
book. One kind we might label "more mathematical," being a course appropriate for 
students majoring in statistics and having a solid mathematics background (at least 
1 � years of calculus, some matrix algebra, and perhaps a real analysis course). For 
such students we recommend covering Chapters 1-9 in their entirety (which should 
take approximately 22 weeks) and spend the remaining time customizing the course 
with selected topics from Chapters 10-12. Once the first nine chapters are covered, 
the material in each of the last three chapters is self-contained, and can be covered 
in any order. 

Another type of course is "more practical." Such a course may also be a first course 
for mathematically sophisticated students, but is aimed at students with one year of 
calculus who may not be majoring in statistics. It stresses the more practical uses of 
statistical theory, being more concerned with understanding basic statistical concepts 
and deriving reasonable statistical procedures for a variety of situations, and less 
concerned with formal optimality investigations. Such a course will necessarily omit 
a certain amount of material, but the following list of sections can be covered in a 
one-year course: 

Chapter 

1 
2 
3 
4 
5 
6 
7 
8 

Sections 

All 
2.1, 2.2, 2.3 
.3.1,3.2 
4.1, 4.2, 4.3, 4.5 
5.1, 5.2, 5.3.1, 5 .4 
6. 1.1, 6.2.1 
7.1, 7.2.1, 7.2.2, 7.2.3, 7.3.1, 7.3.3, 7.4 
8.1, 8.2.1, 8.2.3, 8.2.4, 8.3.1, 8.3.2, 8.4 
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9 9.1, 9.2.1, 9.2.2, 9.2.4, 9.3.1, 9.4 
11 11.1, 11.2 
12 12.1, 12.2 

ix 

If time permits, there can be some discussion (with little emphasis on details) of the 
material in Sections 4.4, 5.5, and 6.1.2, 6.1.3, 6 .1.4. The material in Sections 11.3 and 
12.3 may also be considered. 

The exercises have been gathered from many sources and are quite plentiful. We 
feel that, perhaps, the only way to master this material is through practice, and thus 
we have included much opportunity to do so. The exercises are as varied as we could 
make them, and many of them illustrate points that are either new or complementary 
to the material in the text. Some exercises are even taken from research papers. (It 
makes you feel old when you can include exercises based on papers that were new 
research during your own student days!) Although the exercises are not subdivided 
like the chapters, their ordering roughly follows that of the chapter. (Subdivisions 
often give too many hints. )  Furthermore, the exercis�s become (again, roughly) more 
challenging as their numbers become higher. 

As this is an introductory book with a relatively broad scope, the topics are not 
covered in great depth. However, we felt some obligation to guide the reader one 
step further in the topics that may be of interest. Thus, we have included many 
references, pointing to the path to deeper understanding of any particular topic. (The 
Encyclopedia of Statistical Sciences, edited by Kotz, Johnson, and Read, provides a 
fine introduction to many topics. )  

To write this book, we have drawn on both our past teachings and current work. We 
have also drawn on many people, to whom we are extremely grateful. We thank our 
colleagues at Cornell, North Carolina State, and Purdue-in particular, Jim Berger, 
Larry Brown, Sir David Cox, Ziding Feng, Janet Johnson, Leon GIeser, Costas Goutis, 
Dave Lansky, George McCabe, Chuck McCulloch, Myra Samuels, Steve Schwager, 
8.lld Shayle Searle, who have given their time and expertise in reading parts of this 
manuscript, offered 8.<;sistance, and taken part in many conversations leading to con
structive suggestions. We also thank Shanti Gupta for his hospitality, and the li
brary at Purdue, which was essential. We are grateful for the detailed reading and 
helpful suggestions of Shay Ie Searle and of our reviewers, both anonymous and non
anonymous (Jim Albert, Dan Coster, and Tom Wehrly).  We also thank David Moore 
and George McCabe for allowing us to use their tables, and Steve Hirdt for supplying 
us with data. Since this book was written by two people who, for most of the time, 
were at least 600 miles apart, we lastly thank Bitnet for making this entire thing 
possible. 

George Casella 
Roger L. Berger 



"We have got to the deductions and the inferences," said Lestrade, winking at me. 
"/ find it hard enough to tackle facts, Holmes, without flying away 

after theories and fancies. " 
Inspector Lestrade to Sherlock Holmes 

The Boscombe Valley Mystery 
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Chapter 1 

Probability Theory 

"You can, for example, never foretell what any one man will do, but you can 
say with precision what an average number will be up to. Individuals vary, but 
percentages remain constant. So says the statistician. " 

Sherlock Holmes 
The Sign of Four 

The subject of probability theory is the foundation upon which all of statistics is 
built, providing a means for modeling populations, experiments, or almost anything 
else that could be considered a random phenomenon. Through these models, statisti
cia.ns are able to draw inferences about populations, inferences based on examination 
of only a part of the whole. 
The theory of probability has a long and rich history, dating back at least to the 

seventeenth century when, at the request of their friend, the Chevalier de Mere, Pascal 
and Fermat developed a mathematical formulation of gambling odds. 
The aim of this chapter is not to give a thorough introduction to probability theory; 

such an attempt would be foolhardy in so short a space. Rather, we attempt to outline 
some of the basic ideas of probability theory that are fundamental to the study of 
statistics. 
Just as statistics builds upon the foundation of probability theory, probability the

ory in turn builds upon set theory, which is where we begin. 

1.1 Set Theory 

One of the main objectives of a statistician is to draw conclusions about a population 
of objects by conducting an experiment. The first step in this endeavor is to identify 
the possible outcomes or, in statistical terminology, the sample space. 

Definition 1.1.1 The set, S, of all possible outcomes of a particular experiment is 
called the sample space for the experiment. 

If the experiment consists of tossing a coin, the sample space contains two outcomes, 
heads and tails; thus, 

S = {H, T} . 
If, on the other hand, the experiment consists of observing the reported SAT scores 
of randomly selected students at a certain university, the sample space would be 
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t t \<\� positive i .. • rs between 200 and 800 that are multiples of ten-that 
is,�· {200, 210, 22O'J''l., 780, 790, 800}. Finally, consider an experiment where the 
obs�ilm� J.{�.Jtit time to a certain stimulus. Here, the sample space would 
consist i>f��numbers, that is, S = (0,00). 

We can classify sample spaces into two types according to the number of elements 
they contain. Sample spaces can be either countable or uncountable; if the elements of 
a sample space can be put into 1-1 correspondence with a subset of the integers, the 
sample space is countable. Of course, if the sample space contains only a finite number 
of elements, it is countable. Thus, the coin-toss and SAT score sample spaces are both 
countable (in fact, finite) ,  whereas the reaction time sample space is uncountable, since 
the positive real numbers cannot be put into 1-1 correspondence with the integers. 
If, however, we measured reaction time to the nearest second, then the sample space 
would be (in seconds) S = {O, 1,2,3, ... }, which is then countable. 

This distinction between countable and uncountable sample spaces is important 
only in that it dictates the way in which probabilities can be assigned. For the most 
part, this causes no problems, although the mathematical treatment of the situations 
is different. On a philosophical level, it might be argued that there can only be count
able sample spaces, since measurements cannot be made with infinite accuracy. (A 
sample space consisting of, say, all ten-digit numbers is a countable sample space. ) 
While in practice this is true, probabilistic and statistical methods associated with 
uncountable sample spaces are, in general, less cumbersome than those for countable 
sample spaces, and provide a close approximation to the true (countable) situation. 

Once the sample space has been defined, we are in a position to consider collections 
of possible outcomes of an experiment. 

Definition 1.1.2 An event is any collection of possible outcomes of an experiment, 
that is, any subset of S (including S itself) . 

Let A be an event, a subset of S. We say the event A occurs if the outcome of the 
experiment is in the set A. When speaking of probabilities, we generally speak of the 
probability of an event, rather than a set. But we may use the terms interchangeably. 

We first need to define formally the following two relationships, which allow us to 
order and equate sets: 

A c B <=> x E A => x E B; 

A = B <=> A c B and B c A. 
(containment) 

(equality) 

Given any two events (or sets) A and B, we have the following elementary set 
operations: 

Union: The union of A and B, written Au B, is the set of elements that belong to 
either A or B or both: 

AU B = {x: x E A or x E B}. 

Intersection: The intersection of A and B, written AnB, is the set of elements that 
belong to both A and B: 

A nB {x:xEAandxEB}. 
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Complementation: The complement of A, written AC, is . the set of all elements 
that are not in A: 

AC = {x : x � A} . 
Example 1.1.3 (Event operations) Consider the experiment of selecting a card 
a.t random from a standard deck and noting its suit: clubs (C), diamonds (D), hearts 
(H), or spades (S) . The sample space is 

S = {C, D, H, S}, 

and some possible events are 
A = {C, D} and B = {D, H, S}. 

From these events we can form 
A U  B = {C, D, H, S}, A n B  = {D}, and AC = {H, S} . 

Furthermore, notice that A u  B = S (the event S) and (A U Bt = 0, where 0 denotes 
the empty set (the set consisting of no elements) . I I  

The elementary set operations can "be combined, somewhat akin to the way addition 
and multiplication can be combined. As long as we are careful, we can treat sets as if 
they were numbers. We can now state the following useful properties of set operations. 

Theorem 1.1.4 For any three events, A, B, and G, defined on a sample space S, 
R. Commutativity A u  B = B U A, 

A n B = B n A; 
h. Associativity A u  (B U G) = (A U B) U G, 

A n  (B n G) = (A n B) n G; 
c. Distributive Laws A n  (B U G) = (A n B) U (A n G ) ,  

A u  ( B  n G) = ( A  U B )  n ( A  U G ) ;  
d .  DeMorgan's Laws (A U Bt = AC n BC, 

(A n B)C = AC U BC . 

Proof: The proof of much of this theorem is left as Exercise 1.3. Also, Exercises 1 .9 
and 1 .10 generalize the theorem. To illustrate the technique, however, we will prove 
the Distributive Law: 

A n  (B U G) = (A n B) U (A n G) . 

(You might be familiar with the use of Venn diagrams to "prove" theorems in set 
theory. We caution that although Venn diagrams are sometimes helpful in visualizing 
a situation, they do not constitute a formal proof. ) To prove that two sets are equal, 
it must be demonstrated that each set contains the other. Formally, then 

A n  (B U G) = {x E S :  x E A and x E (B U G)}; 

(A n B) U (A n G) = {x E S: x E (A n B) or x E (A n G)}. 
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We first show that A n  (B U e) c (A n B) U (A n e). Let x E (A n (B u e)) .  By the 
definition of intersection, it must be that a: E (BU e) , that is, either x E B or x E e. 
Since a: also must be in A, we have that either x E (A n B) or a: E (A n e); therefore, 

a: E « A  n B) U (A n e), 

and the containment is established. 
Now assume x E « A n B) u (A n e) ) .  This implies that x E (An B) or a: E (A n e) .  

If x E (A  n B) ,  then a: is i n  both A and B.  Since a: E B, a: E (B  U e )  and thus 
a: E (A n (B Ue)) .  If, on the other hand, a: E (A n e) ,  the argument is similar, and we 
again conclude that x E (An (BU e) ) .  Thus, we have established (An B) U (An C) c 
A n  (B U e), showing containment in the other direction and, hence, proving the 
Distributive Law. 0 

The operations of union and intersection can be extended to infinite collections of 
sets as well. If A I t  A2, A3, • . •  is a collection of sets, all defined on a sample space S, 
then 

00 U Ai = {a: E S : x E Ai for some i} , 
i=1 

00 
n Ai = {x E S : x E Ai for all i } .  
i=1 

For example, let S = (0, 1] and define Ai = [(l/i), 1] . Then 
00 00 
U Ai U[( l/i) , l] = {x E (0, 1] : x E [ (l/i) , 1] for some i} 
i=l i=1 

= {a: E (O, l] }  (O, l] i  
00 00 
n Ai n [(l/i) , l] = {x E (0, 1] : a: E [ (l/i) , 1] for all i }  
i=l i=l 

= {a: E (0, 1 ] : a: E [1 ,  I ] }  = {I} .  (the point 1) 
It is also possible to define unions and intersections over uncountable collections of 

sets. If r is an index set (a set of elements to be used as indices) ,  then 

U Aa = {x E S :  x E Aa for some a} , 
aEP 
n Aa = {a: E S : x E Aa for all a}. 
aEP 

If, for example, we take r = {all positive real numbers} and Aa = (O, a] ,  then 
UaerAa = (0, 00) is an uncountable union. While uncountable unions and intersec
tions do not play a major role in statistics, they sometimes provide a useful mechanism 
for obtaining an answer (see Section 8.2.3). 

Finally, we discuss the idea of a partition of the sample space. 
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Definition 1.1.5 Two events A and B are disjoint (or mutually exclusive) if AnB = 
0. The events AI, A::l> "  . are pairwise disjoint (or mutually exclusive) if Ai n Aj = 0 
for all i :f:. j. 

Disjoint sets are sets with no points in common. If we draw a Venn diagram for 
two disjoint sets, the sets do not overlap. The collection 

Ai = Ii , i + 1) , i = 0, 1 , 2, . . . , 
consists of pairwise disjoint sets. Note further that U�oAi [0, (0) . 

Definition 1 .1 .6 If AI , A2, • • •  are pairwise disjoint and U�I Ai = S, then the 
collection A I ,  A2, • • •  forms a partition of S. 

The sets Ai = [i, i + 1) form a partition of [0, (0) . In general, partitions are very 
useful, allowing us to divide the sample space into small, nonoverlapping pieces. 

1.2 Basics of Probability Theory 

When an experiment is performed, the realization of the experiment is an outcome in 
the sample space. If the experiment is performed a number of times, different outcomes 
may occur each time or some outcomes may repeat. This "frequency of occurrence" of 
an outcome can be thought of as a probability. More probable outcomes occur more 
. frequently. If the outcomes of an experiment can be described probabilistically, we 
are on our way to analyzing the experiment statistically. 
In this section we describe some of the basics of probability theory. We do not define 

probabilities in terms of frequencies but instead take the mathematically simpler 
axiomatic approach. As will be seen, the axiomatic approach is not concerned with 
the interpretations of probabilities, but is concerned only that the probabilities are 
defined by a function satisfying the axioms. Interpretations of the probabilities are 
quite another matter. The "frequency of occurrence" of an event is one example of a 
particular interpretation of probability. Another possible interpretation is a subjective 
one, where rather than thinking of probability as frequency, we can think of it as a 
belief in the chance of an event occurring. 

1 .2. 1  Axiomatic Foundations 

For each event A in the sample space S we want to associate with A a number 
between zero and one that will be called the probability of A, denoted by P( A). It 
would seem natural to define the domain of P (the set where the arguments of the 
function P(·) are defined) as all subsets of S; that is, for each A c S we define P(A) 
as the probability that A occurs. Unfortunately, matters are not that simple. There 
are some technical difficulties to overcome. We will not dwell on these technicalities; 
although they are of importance, they are usually of more interest to probabilists 
than to statisticians. However, a firm understanding of statistics requires at least a 
passing familiarity with the following. 
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Definition 1.2.1 A collection of subsets of S is called 8. sigma algebra (or Borel 
field) ,  denoted by B, if it satisfies the following three properties: 
a. 0 E B (the empty set is an element of B). 

h. If A E B, then Ac E B (B is closed under complementation) .  

c .  I f  AI ,  A2, . · ·  E B, then U�lAi E B ( B  i s  closed under countable unions) . 

The empty set 0 is a subset of any set. Thus, (/) c S. Property (a) states that this 
subset is always in a sigma algebra. Since 5 = 0c , properties (a) and (b) imply that 
S is always in B also. In addition, from DeMorgan's Laws it follows that B is closed 
under countable intersections. If AI , A2 ,  • • •  E B, then AI ,  A�, . . . E B by property (b) , 
and therefore U�lAr E B. However, using DeMorgan's Law (as in Exercise 1 .9), we 
have 

00 
( 1 .2. 1 )  

Thus, again by property (b) ,  n�l Ai E B. 
Associated with sample space S we can have many different sigma algebras. For 

example, the collection of the two sets {0, S} is a sigma algebra, usually called the 
trivial sigma algebra. The only sigma algebra we will be concerned with is the smallest 
one that contains all of the open sets in a given sample space S. 

Example 1.2.2 (Sigma algebra-I) If 5 is finite or countable, then these techni
calities really do not arise, for we define for a given sample space 5, 

B = {all subsets of S, including 5 itself} .  

I f  S has n elements, there are 21'1 sets in B (see Exercise 1 . 14) . For example, i f  S 
{ I, 2, 3} ,  then B is the following collection of 23 = 8 sets: 

{ I }  { 1 , 2}  { 1 , 2, 3} 
{2} { 1 , 3 }  0 
{3} {2, 3 }  I I  

In general, if  S is  uncountable, it is  not an easy task to describe B. However, B is 
chosen to contain any set of interest. 

Example 1.2.3 (Sigma algebra-II) Let 5 = (-oo, oo), the real line. Then B is 
chosen to contain all sets of the form 

[a, b] , (a, b] '  (a, b) , and [a, b) 

for all real numbers a and b. Also, from the properties of B, it follows that B con
tains all sets that can be formed by taking (possibly countably infinite) unions and 
intersections of sets of the above varieties. 1\ 



Section 1.2 BASICS OF PROBABILITY THEORY 7 

We are now in a position to define a probability function. 

Definition 1 .2.4 Given a sample space S and an associated sigma algebra B, a 
probability function is a function P with domain B that satisfies 

1. P(A) � 0 for all A E B. 

2. peS) = 1 .  
3. If  AI , A2, . . .  E B are pairwise disjoint, then P(U�IAi) = E:1P(Ai ) .  

The three properties given in  Definition 1 .2 .4 are usually referred to  as the Axioms 
of Probability (or the Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of 
probability theory). Any function P that satisfies the Axioms of Probability is called 
8 probability function. The axiomatic definition makes no attempt to tell what partic
ular function P to choose; it merely requires P to satisfy the axioms. For any sample 
space many different probability functions can be defined. Which one(s) reflects what 
is likely to be observed in a particular experiment is still to be discussed. 

Example 1.2.5 (Defining probabilities-I) Consider the simple experiment of 
tossing a fair coin, so S = {H, T} . By a "fair" coin we mean a balanced coin that is 
equally as likely to land heads up as tails up, and hence the reasonable probability 
function is the one that assigns equal probabilities to heads and tails, that is, 

(1 .2.2) P({H}) = P({T}) .  

Note that (1 .2.2) does not follow from the Axioms of Probability but rather i s  out
side of the axioms. We have used a symmetry interpretation of probability (or just 
jntuition) to impose the requirement that heads and tails be equally probable. Since 
S = {H} U {T}, we have, from Axiom 1, P( {H} U {T}) = 1 .  Also, {H} and {T} are 
disjoint, so P( {H} U {T}) = P( {H}) + P( {T}) and 

(1 .2.3) P({H}) + P({T}) = 1 .  
Simultaneously solving ( 1.2.2) and (1 .2.3) shows that P({H}) = P({T}) = � . 

Since (1 .2.2) is based on our knowledge of the particular experiment, not the axioms, 
any nonnegative values for P( {H}) and P( {T}) that satisfy ( 1.2.3) define a legitimate 
probability function. For example, we might choose P({H}) = � and P({T}) = � . I I  

We need general methods of defining probability functions that we know will always 
satisfy Kolmogorov's Axioms. We do not want to have to check the Axioms for each 
new probability function, like we did in Example 1 .2 .5. The following gives a common 
method of defining a legitimate probability function. 

, Theorem 1.2.6 Let S = {Sl > " " sn} be a finite set. Let B be any sigma algebra of 
. subsets of S. Let PI , . . .  , Pn be nonnegative numbers that sum to 1. For any A E B, 
define peA) by 

peA) L Pi · 
{i:s,EA} 
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(The sum over an empty set is defined to be 0.) Then P is a probability junction on 
B. This remains true if S = {81 ' 82, • • .  } is a countable set. 

Proof: We will give the proof for finite S. For any A E B, P(A) = L{i:S,EA} Pi � 0, 
because every Pi � O. Thus, Axiom 1 is true. Now, 

n 
P(S) = L Pi = LPi 1 .  

{i:SiES} ;=1 

Thus, Axiom 2 is true. Let AI " ' "  Ak denote pairwise disjoint events. (B contains 
only a finite number of sets, so we need consider only finite disjoint unions. )  Then, 

Ie Ie 
L L Pj = L P(A;) . i=l {j:sj EA, } i=l 

The first and third equalities are true by the definition of P(A) .  The disjointedness of 
the AiS ensures that the second equality is true, because the same PjS appear exactly 
once on each side of the equality. Thus, Axiom 3 is true and Kolmogorov's Axioms 
are satisfied. 0 

The physical reality of the experiment might dictate the probability assignment, as 
the next example illustrates. 

Example 1.2.7 (Defining probabilities-II) The game of darts is played by 
throwing a dart at a board and receiving a score corresponding to the number assigned 
to the region in which the dart lands. For a novice player, it seems reasonable to 
assume that the probability of the dart hitting a particular region is proportional to 
the area of the region. Thus, a bigger region has a higher probability of being hit. 

Referring to Figure 1 .2 .1 ,  we see that the dart board has radius r and the distance 
between rings is r/5. If we make the assumption that the board is always hit (see 
Exercise 1 . 7  for a variation on this) , then we have 

For example 

P (scoring i points) 
Area of region i 

Area of dart board 

P (scoring 1 point) = _1I'_r
2 
__ 11'--,;( 4;-r...;../_5 ):-2 

lI'r2 

It is easy to derive the general formula, and we find that 

(6 - i)2 - (5 - i)2 ,; P (scoring i points) = 52 , . 1, . . . , 5, 

independent of 11' and r. The sum of the areas of the disjoint regions equals the area of 
the dart board. Thus, the probabilities that have been assigned to the five outcomes 
sum to 1 ,  and, by Theorem 1 .2.6, this is a probability function (see Exercise 1 .8) .  I I 
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Figure 1 .2. 1 .  Dart board for Example 1 . 2. 7  

Before we leave the axiomatic development of probability, there is one further point 

to consider. Axiom 3 of Definition 1 .2.4, which is commonly known as the Axiom of 
Countable Additivity, is not universally accepted among statisticians. Indeed, it can 
be argued that axioms should be simple, self-evident statements. Comparing Axiom 3 
to the other axioms, which are simple and self-evident, may lead us to doubt whether 
it is reasonable to assume the truth of Axiom 3. 

The Axiom of Countable Additivity is rejected by a school of statisticians led 
by deFinetti ( 1972), who chooses to replace this axiom with the Axiom of Finite 
Additivity. 

Axiom of Finite Additivity: If A E B and B E B are disjoint, then 

P(A u B) P(A) + P(B). 

While this axiom may not be entirely self-evident, it is certainly simpler than the 
Axiom of Countable Additivity (and is implied by it see Exercise 1 .12).  

Assuming only finite additivity, while perhaps more plausible, can lead to unex
pected complications in statistical theory - complications that, at this level, do not 
necessarily enhance understanding of the subject. We therefore proceed under the 
assumption that the Axiom of Countable Additivity holds. 

1.2.2 The Calculus of Probabilities 

From the Axioms of Probability we can build up many properties of the probability 
function, properties that are quite helpful in the calculation of more complicated 
probabilities. Some of these manipulations will be discussed in detail in this section; 
others will be left as exercises. 

We start with some (fairly self-evident) properties of the probability function when 
applied to a single event. 
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Theorem 1.2.8 If P is a probability function and A is any set in B, then 
a. P(0) = 0, where 0 is the empty set; 
h. peA) � 1 ;  
c. P(AC) = 1 peA) . 

Proof: It is easiest to prove (c) first. The sets A and A C form a partition of the 
sample space, that is, S = A u  AC. Therefore, 

( 1 .2.4) peA U N)  = peS) = 1 
by the second axiom. Also, A and AC are disjoint, so by the third axiom, 

( 1.2 .5) 
Combining (1 .2 .4) and ( 1 .2.5) gives (c). 

Since peN) � 0, (b) is immediately implied by (c). To prove (a), we use a similar 
argument on S = S u 0. (Recall that both S and 0 are always in B.) Since S and 0 
are disjoint, we have 

and thus P(0) O. 

1 peS) = pes U 0) = peS) + P(0) , 

o 

Theorem 1 .2 .8 contains properties that are so basic that they also have the fla
vor of axioms, although we have formally proved them using only the original three 
Kolmogorov Axioms. The next theorem, which is similar in spirit to Theorem 1 .2.8, 
contains statements that are not so self-evident. 

Theorem 1 .2.9 If P is a probability function and A and B are any sets in B, then 
a. PCB n AC) = PCB} peA n B}; 

h. peA U B)  peA} + PCB} peA n B); 
c.  If A c B, then peA) � PCB) . 

Proof: To establish (a) note that for any sets A and B we have 

and therefore 

( 1 .2.6) PCB) P({B n A} U {B n AC}) = PCB n A) + PCB n AC) , 

where the last equality in ( 1 .2 .6) follows from the fact that B n A and B n AC are 
disjoint. Rearranging ( 1 .2.6) gives (a). 

To establish (b), we use the identity 

( 1 .2 .7) 
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A Venn diagram will show why ( 1 .2.7) holds, although a formal proof i s  not difficult 
(see Exercise 1 .2) . Using (1 .2.7) and the fact that A and B n Ac are disjoint (since A 
and A C are) , we have 

(1 .2.8) 

from (a) . 

peA U B) peA) + PCB n AC) = peA) + PCB) peA n B) 

If A c B, then A n  B = A. Therefore, using (a) we have 

o � PCB n AC) = PCB) - peA), 

establishing (c). o 

Formula (b) of Theorem 1.2.9 gives a useful inequality for the probability of an 
intersection. Since peA U B) � 1 ,  we have from (1 .2.8) , after some rearranging, 

(1.2.9) peA n B) ;::: peA) + PCB) 1. 

This inequality is a special case of what is known as Bonferroni 's Inequality (Miller 
1981 is a good reference) .  Bonferroni's Inequality allows us to bound the probability of 
a simultaneous event (the intersection) in terms of the probabilities of the individual 
events. 

EXample 1.2.10 (BonferronPs Inequality) Bonferroni's Inequality is partic
ularly useful when it is difficult (or even impossible) to calculate the intersection 
probability, but some idea of the size of this probability is desired. Suppose A and 
B are two events and each has probability .95. Then the probability that both will 
occur is bounded below by 

peA n B) ;::: peA) + PCB) 1 = .95 + .95 1 = .90. 

Note that unless the probabilities of the individual events are sufficiently large, the 
Bonferroni bound is a useless (but correct !) negative number. I I  

We close this section with a theorem that gives some useful results for dealing with 
a collection of sets. 

Theorem 1.2.11 If P is a probability junction, then 
a. peA) = 2:::1 peA n Ci) for any partition C1 , C2, • • • ; 
h. P(U�l Ai) :5 2:::1 P{Ai) for any sets AI ,  A2, _ • • • (BoDle 's Inequality) 

Proof: Since C1 , C2, • _ _  form a partition, we have that Ci n Cj = 0 for all i #- j,  and 
S = U�l Ct- Hence, 
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where the last equality follows from the Distributive La.w (Theorem 1 .1.4) . We there
fore have 

Now, since the Ci are disjoint, the sets A n  Ci are a.lso disjoint, and from the properties 
of a probability function we have 

establishing (a) . 
To establish (b) we first construct a disjoint collection Ai , Ai , . . .  , with the property 

that Ub,lAi Ub,lAi, We define Ai by 

(i-l ) 
Ai = Ai\ U Aj , 

)=1 
i 2,3,. ' "  

where the notation A \B denotes the part of A that does not intersect with B. In more 
familiar symbols, A\B = A n Be. It should be easy to see that Ub,lAi Ub,lAi' and 
we therefore have 

where the last equality follows since the Ai are disjoint. To see this, we write 

Now if i > k, the first intersection above will be contained in the set Ak, which will 
have an empty intersection with Ak. If k > i, the argument is similar. Further, by 
construction Ai C Ai, so P(Ai) 5 P(Ai) and we have 

establishing (b) . 

00 00 
I: P (A;) 5 I: P (�) , 
i=l i=l 

o 
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There is a similarity b,tween Boole's Inequality and Bonferroru's Inequality. In 
fact, they are essentially the same thing. We could have used Boole's Inequality to 
derive ( 1.2.9). If we apply Boole's Inequality to AC, we have 

and using the facts that UA� = (nAi)C and P(A!) = 1 - P(Ai) , we obtain 

This becomes, on rearranging terms, 

(1.2 .10) 

which is a more general version of the Bonferroni Inequality of ( 1 .2.9) . 

1 .2.3  Counting 

The elementary process of counting can become quite sophisticated when placed in 
the hands of a statistician. Most often, methods of counting are used in order to 
construct probability assignments on finite sample spaces, although they can be used 
to answer other questions also. 

Example 1.2.12 (Lottery-I) For a number of years the New York state lottery 
operated according to the following scheme. From the numbers 1 ,  2, . . .  , 44, a person 
may pick any six for her ticket. The winning number is then decided by randomly 
selecting six numbers from the forty-four. To be able to calculate the probability of 
winning we first must count how many different groups of six numbers can be chosen 
from the forty-four. I I  

Example 1.2.13 (Tournament) In a single-elimination tournament, such as the 
U.S. Open tennis tournament, players advance only if they win (in contrast to double
elimination or round-robin tournaments) .  If we have 16 entrants, we might be inter
ested in the number of paths a particular player can take to victory, where a path is 
taken to mean a sequence of opponents. I I  

Counting problems, in general, sound complicated, and often we must do our count
ing subject to many restrictions. The way to solve such problems is to break them 
down into a series of simple tasks that are easy to count, and employ known rules 
of combining tasks. The following theorem is a first step in such a process and is 
sometimes known as the Fundamental Theorem of Counting. 

Theorem 1.2.14 If a job consists of k sepamte tasks, the i th of which can be done 
in ni ways, i = 1, . . .  , k, then the entire job can be done in nl x n2 x . . .  x nlc ways. 
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Proof: It suffices to prove the theorem for k = 2 (see Fjcercise 1 . 15). The proof is 
just a matter of careful counting. The first task can be done in nl ways, and for each 
of these ways we have n2 choices for the second task. Thus, we can do the job in 

(1 x n2) + (1 x n2) + . . . + ( 1  x n2) nl x n2 , ..... J 

nl terms 

ways, establishing the theorem for k = 2. o 

Example 1.2.15 (Lottery-II) Although the Fundamental Theorem of Counting 
is a reasonable place to start, in applications there are usually more aspects of a 
problem to consider. For example, in the New York state lottery the first number 
can be chosen in 44 ways, and the second number in 43 ways, making a total of 
44 x 43 = 1 ,892 ways of choosing the first two numbers. However, if a person is 
allowed to choose the same number twice, then the first two numbers can be chosen 
in 44 x 44 = 1 ,936 ways. I I 

The distinction being made in Example 1 .2 .15 is between counting with replacement 
and counting without replacement. There is a second crucial element in any counting 
problem, whether or not the ordering of the tasks is important . To illustrate with the 
lottery example, suppose the winning numbers are selected in the order 12, 37, 35, 9 ,  
13, 22. Does a person who selected 9, 12,  13, 22, 35, 37 qualify as a winner? In other 
words, does the order in which the task is performed actually matter? Taking all of 
these considerations into account, we can construct a 2 X 2 table of possibilities: 

Possible methods of counting 
Without With 

replacement replacement 
Ordered I Unordered �==========�=========� 

Before we begin to count, the following definition gives us some extremely helpful 
notation. 

Definition 1 .2.16 For a positive integer n, n ! (read n factorial) is the product of 
all of the positive integers less than or equal to n .  That is, 

n! = n x (n - 1 )  x (n - 2) x . . .  x 3 x 2 x 1 .  

Furthermore, we define o !  = 1 .  

Let us now consider counting all of the possible lottery tickets under each of these 
four cases. 

.. 

1. Ordered, without replacement From the Fundamental Theorem of Counting, the 
first number can be selected in 44 ways, the second in 43 ways, etc. So there are 

44 x 43 x 42 x 41 x 40 x 39 

possible tickets. 

441 
-

8' = 5,082,517,440 
3 .  
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2. Ordered, with replacement Since each number can now be selected in 44 ways 
(because the chosen number is replaced) ,  there are 

44 x 44 x 44 x 44 x 44 x 44 446 = 7,256,313,856 
possible tickets. 

3. Unordered, without replacement We know the number of possible tickets when the 
ordering must be accounted for, so what we must do is divide out the redundant 
orderings. Again from the Fundamental Theorem, six numbers can be arranged in 
6 x 5 x 4 x 3 x 2 x 1 ways, so the total number of unordered tickets is 

44 x 43 x 42 x 41 x 40 x 39 441 = 7 059 052 6 x 5 x 4 x 3 x 2 x 1 61 381 ' "  
This form of counting plays a central role in much of statistics-so much, in fact, 
that it has earned its own notation. 

Definition 1.2 . 17 For nonnegative integers n and r, where n � r, we define the 
symbol ( � ) ,  read n choose r, as (n) n! 

r - rl (n r) I '  
In our lottery example, the number of possible tickets (unordered, without replace

ment) is (�4 ) .  These numbers are also referred to as binomial coefficients, for reasons 
that will become clear in Chapter 3. 

4. Unordered, with replacement This is the most difficult case to count. You might 
first guess that the answer is 446/(6 x 5 x 4 x 3 x 2 x 1 ) , but this is not correct (it 
is too small). 

To count in this case, it is easiest to think of placing 6 markers on the 44 numbers. 
In fact, we can think of the 44 numbers defining bins in which we can place the six 
markers, M, as shown, for example, in this figure. 

M MM M M M 
1 2 3 4 5 41 42 43 44 

The number of possible tickets is then equal to the number of ways that we can 
put the 6 markers into the 44 bins. But this can be further reduced by noting that 
all we need to keep track of is the arrangement of the markers and the walls of the 
bins. Note further that the two outermost walls play no part. Thus, we have to 
count all of the arrangements of 43 walls (44 bins yield 45 walls, but we disregard 
the two end walls) and 6 markers. We therefore have 43 + 6 49 objects, which 
can be arranged in 491 ways. However, to eliminate the redundant orderings we 
must divide by both 61 and 431 ,  so the total number of arrangements is 

49! 
61 43! = 13,983,816. 

Although all of the preceding derivations were done in terms of an example, it 
should be easy to see that they hold in general. For completeness, we can summarize 
these situations in Table 1 .2 .1 .  
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Ta.ble 1 .2.1.  Number of possible arrangements of size r from n objects 
Without With 

replacement replacement 
Ordered n! 

nr (n - r)! 

Unordered (;) (n + ; 1) 

1 .2.4 Enumerating Outcomes 
The counting techniques of the previous section are useful when the sample space 
S is a finite set and all the outcomes in S are equally likely. Then probabilities of 
events can be calculated by simply counting the number of outcomes in the event. To 
see this, suppose that S = {Sl , " " SN} is a finite sample space. Saying that all the 
outcomes are equally likely means that P( {Si }) liN for every outcome Si. Then, 
using Axiom 3 from Definition 1 .2.4, we have, for any event A, 

8iEA 
# of elements in A 
# of elements in S . 

For large sample spaces, the counting techniques might be used to calculate both 
the numerator and denominator of this expression. 

Example 1.2.18 (Poker) Consider choosing a five-card poker hand from a stan
dard deck of 52 playing cards. Obviously, we are sampling without replacement from 
the deck. But to specify the possible outcomes (possible hands) ,  we must decide 
whether we think of the hand as being dealt sequentially (ordered) or all at once 
(unordered) . If we wish to calculate probabilities for events that depend on the or
der, such as the probability of an ace in the first two cards, then we must use the 
ordered outcomes. But if our events do not depend on the order , we can use the 
unordered outcomes. For this example we use the unordered outcomes, so the sample 
space consists of all the five-card hands that can be chosen from the 52-card deck. 
There are ( 5;)  = 2,598,960 possible hands. If the deck is well shuffled and the cards 
are randomly dealt, it is reasonable to assign probability 1/2,598,960 to each possible 
hand. 

We now calculate some probabilities by counting outcomes in events. What is the 
probability of having four aces? How many different hands are there with four aces? If 
we specify that four of the cards are aces, then there are 48 different ways of specifying 
the fifth card. Thus, 

P(four aces) 
48 

2,598,960 ' 
less than 1 chance in 50,000. Only slightly more complicated counting, using Theorem 
1 .2.14, allows us to calculate the probability of having four of a kind. There are 13 
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ways to specify which denomination there will be four of. After we specify these four 
cards, there are 48 ways of specifying the fifth. Thus, the total number of hands with 
four of a kind is ( 13)(48) and 

. (13) (48) 624 
P(four of a kmd) = 

2,598,960 
= 2,598,960 

To calculate the probability of exactly one pair (not two pairs, no three of a kind, 
etc.) we combine some of the counting techniques. The number of hands with exactly 
one pair is 

(1 .2. 1 1 )  13  (�) c:) 43  = 1 ,098,240. 

Expression (1 .2 .11 ) comes from Theorem 1 .2 .14 because 

13 # of ways to specify the denomination for the pair, 

( �) = # of ways to specify the two cards from that denomination, 

( �2 ) = # of ways of specifying the other three denominations, 

43 # of ways of specifying the other three cards from those denominations. 

Thus, 

P( exactly one pair) 1 ,098,240 
2,598,960 

. 

When sampling without replacement, as in Example 1.2.18, if we want to calculate 
the probability of an event that does not depend on the order, we can use either 
the ordered or unordered sample space. Each outcome in the unordered sample space 
corresponds to r! outcomes in the ordered sample space. So, when counting outcomes 
in the ordered sample space, we use a factor of r! in both the numerator and denom
inator that will cancel to give the same probability as if we counted in the unordered 
sample space. 

The situation is different if we sample with replacement. Each outcome in the 
unordered sample space corresponds to some outcomes in the ordered sample space, 
but the number of outcomes differs. 

Example 1.2.19 (Sampling with replacement) Consider sampling r = 2 items 
from n = 3 items, with replacement. The outcomes in the ordered and unordered 
sample spaces are these. 

Unordered 
Ordered 
Probability 

{ 1 , 1} 
(1 , 1 )  
1/9 

{2, 2} 
(2, 2) 
1/9 

{3, 3} 
(3, 3) 
1/9 

{ 1, 2} 
( 1 , 2) ,  (2, 1) 

2/9 

{1 , 3} 
( 1 , 3) , (3, 1 )  

2/9 

{2 , 3} 
(2, 3) , (3, 2) 

2/9 
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The proba.bilities come from considering the nine outcomes in the ordered sample 
space to be equally likely. This corresponds to the common interpretation of "sampling 
with replacement" ; namely, one of the three items is chosen, each with probability 1 /3; 
the item is noted and replaced; the items are mixed and again one of the three items 
is chosen, each with probability 1/3. It is seen that the six outcomes in the unordered 
sample space are not equally likely under this kind of sampling. The formula for the 
number of outcomes in the unordered sample space is useful for enumerating the 
outcomes, but ordered outcomes must be counted to correctly calculate probabilities. 

I I 

Some authors argue that it is appropriate to assign equal probabilities to the un
ordered outcomes when "randomly distributing r indistinguishable balls into n dis
tinguishable urns." That is, an urn is chosen at random and a ball placed in it, and 
this is repeated r times. The order in which the balls are placed is not recorded so, 
in the end, an outcome such as {I , 3}  means one ball is in urn 1 and one ball is in 
urn 3. 

But here is the problem with this interpretation. Suppose two people observe this 
process, and Observer 1 records the order in which the balls are placed but Observer 2 
does not. Observer 1 will assign probability 2/9 to the event { 1, 3} .  Observer 2,  
who is observing exactly the same process, should also assign probability 2/9 to this 
event. But if the six unordered outcomes are written on identical pieces of paper and 
one is randomly chosen to determine the placement of the balls, then the unordered 
outcomes each have probability 1 /6. So Observer 2 will assign probability 1/6 to the 
event { I ,  3} .  

The confusion arises because the phrase "with replacement" will typically be  inter
preted with the sequential kind of sampling we described above, leading to assigning 
a probability 2/9 to the event { 1 , 3} .  This is the correct way to proceed, as proba
bilities should be determined by the sampling mechanism, not whether the balls are 
distinguishable or indistinguishable. 

Example 1.2.20 (Calculating an average) As an illustration of the distinguish
able/indistinguishable approach, suppose that we are going to calculate all possible 
averages of four numbers selected from 

2, 4, 9, 1 2  

where we draw the numbers with replacement. For example, possible draws are 
{2, 4, 4, 9}  with average 4.75 and {4, 4, 9, 9} with average 6.5. If we are only inter
ested in the average of the sampled numbers, the ordering is unimportant, and thus 
the total number of distinct samples is obtained by counting according to unordered, 
with-replacement sampling. 

The total number of distinct samples is (n+�-l) .  But now, to calculate the proba
bility distribution of the sampled averages, we must count the different ways that a 
particular average can occur. 

The value 4.75 can occur only if the sample contains one 2, two 4s, and one 9 .  
The number of  possible samples that have this configuration i s  given in  the following 
table: 
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Probability 

. 1 2  

.06 

.00 '-----. ....... -

Average 

19 

1 2  

Figure 1 .2.2. HiBtogram of averages of samples with replacement from the four numbers 
{2, 4, 4 ,9} 

Unordered Ordered 

(2, 4, 4, 9) , (2 , 4, 9, 4) , (2, 9, 4, 4) , (4, 2, 4, 9) ,  
{2, 4, 4, 9} (4, 2, 9, 4) , (4, 4, 2, 9), (4, 4, 9, 2) ,  (4, 9, 2, 4) , 

(4, 9, 4, 2} , {9, 2, 4, 4) ,  (9, 4, 2, 4) , (9, 4, 4, 2) 

The total number of ordered samples is nn 44 256, so the probability of drawing 
the unordered sample {2, 4 , 4, 9} is 12/256. Compare this to the probability that we 
would have obtained if we regarded the unordered samples as equally likely - we would 
have assigned probability l/ (n+

�
-l

) = l/m = 1/35 to {2, 4, 4, 9} and to every other 
unordered sample. 

To count the number of ordered samples that would result in {2, 4, 4, 9} ,  we argue 
as follows. We need to enumerate the possible orders of the four numbers {2, 4, 4, 9} , 
so we are essentially using counting method 1 of Section 1 .2.3. We can order the 
sample in 4 x 3 x 2 x 1 = 24 ways. But there is a bit of double counting here, since we 
cannot count distinct arrangements of the two 48. For example, the 24 ways would 
count {9 ,  4, 2, 4} twice (which would be OK if the 4s were different) . To correct this, 
we divide by 2! (there are 2! ways to arrange the two 4s) and obtain 24/2 = 12 ordered 
samples. In general, if there are k places and we have m different numbers repeated 

kl ,  k2, • • •  , km times, then the number of ordered samples is 
kl !k2!�!

' . km! ' 
This type 

of counting is related to the multinomial distribution, which we will see in Section 
4.6. Figure 1 .2.2 is a histogram of the probability distribution of the sample averages, 
reflecting the multinomial counting of the samples. 

There is also one further refinement that is reflected in Figure 1 .2.2. It is possible 
that two different unordered samples will result in the same mean. For example, the 
unordered samples {4, 4 ,  12, 12} and {2, 9, 9, 12} both result in an average value of 8. 
The first sample has probability 3/128 and the second has probability 3/64,  giving the 
value 8 a probability of 9/ 128 .07. See Example A.0.1 in Appendix A for details on 
constructing such a histogram. The calculation that we have done in this example is 
an elementary version of a very important statistical technique known as the bootstrap 
(Efron and Tibshirani 1993) . We will return to the bootstrap in Section 10. 1 .4. I I  
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1.3 Conditional Probabillty and Independence 

All of the probabilities that we have dealt with thus far have been unconditional 
probabilities. A sample space was defined and all probabilities were calculated with 
respect to that sample space. In many instances, however, we are in a position to 
update the sample space based on new information. In such cases, we want to be able 
to update probability calculations or to calculate conditional probabilities. 

Example 1 .3.1 (Four aces) Four cards are dealt from the top of a well-shuffled 
deck. What is the probability that they are the four aces? We can calculate this 
probability by the methods of the previous section. The number of distinct groups of 
four cards is 

Only one of these groups consists of the four aces and every group is equally likely, 
so the probability of being dealt all four aces is 1 /270,725. 

We can also calculate this probability by an "updating" argument, as follows. The 
probability that the first card is an ace is 4/52. Given that the first card is an ace, 
the probability that the second card is an ace is 3/51 (there are 3 aces and 5 1  cards 
left) .  Continuing this argument, we get the desired probability as 

4 3 2 1 1 - x - x - x - = . 52 51 50 49 270,725 II 
In our second method of solving the problem, we updated the sample space after 

each draw of a card; we calculated conditional probabilities. 

Definition 1.3.2 If A and B are events in S, and P(B) > 0, then the conditional 
probability of A given B, written P(AIB), is 

(1 .3. 1 ) P(AIB) P(A n B) 
P(B) 

Note that what happens in the conditional probability calculation is that B becomes 
the sample space: P(BIB) 1 .  The intuition is that our original sample space, S, 
has been updated to B. All further occurrences are then calibrated with respect to 
their relation to B. In particular, note what happens to conditional probabilities of 
disjoint sets. Suppose A and B are disjoint, so P(A n B) = O. It then follows that 
P(AIB) = P{BIA) = O. 

Example 1 .3.3 (Continuation of Example 1.3.1) Although the probability of 
getting all four aces is quite small, let us see how the conditional probabilities change 
given that some aces have already been drawn. Four cards will again be dealt from a 
well-shuffled deck, and we now calculate 

P{4 aces in 4 cards I i aces in i cards) , i = 1 , 2, 3. 
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P (i aces in i cards) 

P( 4 aces in 4 cards) = P(i aces in i cards) 
. 

21 

The numerator has already been calculated, and the denominator can be calculated 
with a similar argument. The number of distinct groups of i cards is ( Si2 ) ,  and 

P( ' . . d ) ( � )  1, aces 1ll t car s = ( 5i2 ) '  

Therefore, the conditional probability is given by 

P(4 . 4 . ds l ' , .  d )  
( Sn (4 - i) 1481 

aces 1ll car t aces m t car s ::= ( 542 )  ( �. ) = 
. (52 - i) 1  

1 
(52-.i ) . 4-. 

For i 1, 2, and 3, the conditional probabilities are .00005, .00082, and .02041, 
respectively. I I  

For any B for which PCB) > 0 ,  it is straightforward to  verify that the probability 
function PC· IB) satisfies Kolmogorov's Axioms (see Exercise 1 .35) . You may suspect 
that requiring P(B) > 0 is redundant. 'Who would want to condition on an event of 
probability O? Interestingly, sometimes this is a particularly useful way of thinking of 
things. However, we will defer these considerations until Chapter 4. 

Conditional probabilities can be particularly slippery entities and sometimes require 
careful thought. Consider the following often-told tale. 

Example 1.3.4 (Three prisoners) Three prisoners, A, B, and C, are on death 
row. The governor decides to pardon one of the three and chooses at random the 
prisoner to pardon. He informs the warden of his choice but requests that the name 
be kept secret for a few days. 

The next day, A tries to get the warden to tell him who had been pardoned. The 
warden refuses. A then asks which of B or C will be executed. The warden thinks for 
a while, then tells A that B is to be executed. 

Warden's reasoning: Each prisoner has a ! chance of being pardoned. Clearly, 
either B or C must be executed, so I have given A no information about whether 
A will be pardoned. 

A's reasoning: Given that B will be executed, then either A or C will be pardoned. 
My chance of being pardoned has risen to ! .  
It should b e  clear that the warden's reasoning is correct, but let us see why. Let 

A, B, and C denote the events that A, B, or C is pardoned, respectively. We know 
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that peA) = PCB) = P(C) = i .  Let W denote the event that the warden says B will 
die. Using (1 .3 .1) ,  A can update his probability of being pardoned to 

P(AIW) = peA n W) 
peW) 

What is happening can be summarized in this table: 

Prisoner pardoned Warden tells A 

A 
A 
B 
C 

B dies } 
C dies 
C dies 
B dies 

each with equal 
probability 

Using this table, we can calculate 

P(W) P(warden says B dies) 
= P(warden says B dies and A pardoned) 

+ P( warden says B dies and C pardoned) 
+ P(warden says B dies and B pardoned) 

1 1 1 (3 + 3 + 0  2 ' 
Thus, using the warden's reasoning, we have 

(1 .3.2) 

P(AIW) = peA n W) 
peW) 

P(warden says B dies and A pardoned) = �----���----���--P( warden says B dies) 
1/6 1 = =:: 
1/2 3 

However, A falsely interprets the event W as equal to the event Be and calculates 

We see that conditional probabilities can be quite slippery and require careful 
interpretation. For some other variations of this problem, see Exercise 1.37. I I  

Re-expressing ( 1.3.1 )  gives a useful form for calculating intersection probabilities, 

(1 .3.3) peA n B) = P(AIB)P(B), 

which is essentially the formula that was used in Example 1.3. 1 .  We can take advan
tage of the symmetry of ( 1 .3.3) and also write 

(1 .3.4) peA n B) = P(BIA)P(A). 
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When faced with seemingly difficult calculations, we can break up our calculations 
according to (1 .3.3) or (1 .3.4) , whichever is easier. Furthermore, we can equate the 
right-hand sides of these equations to obtain (after rearrangement) 

( 1 .3.5) peA) 
P(AIB) = P(BIA) 

P(B) ' 

which gives us a formula for "turning around" conditional probabilities. Equation 
( 1 .3.5) is often called Bayes' Rule for its discoverer, Sir Thomas Bayes (although see 
Stigler 1983) .  

Bayes' Rule h as  a more general form than (1 .3.5) , one that applies to partitions of 
a sample space. We therefore take the following as the definition of Bayes' Rule. 

Theorem 1.3.5 (Bayes' Rule) Let AI , A2, • " be a partition of the sample space, 
and let B be any set. Then, for each i = 1 , 2, . . .  , 

Example 1.3.6 (Coding) When coded messages are sent, there are sometimes 
errors in transmission. In particular, Morse code uses "dots" and "dashes," which are 
known to occur in the proportion of 3:4. This means that for any given symbol, 

3 4 
P(dot sent) = 

7 
and P(dash sent) = 7 ' 

Suppose there is interference on the transmission line, and with probability i a dot 
is mistakenly received as a dash, and vice versa. If we receive a dot, can we be sure 
that a dot was sent? Using Bayes' Rule, we can write 

, . P(dot sent) 
P(dot sent I dot receIved.) = P(dot receIved I dot sent) 

P(d . d) ' ot receive 

Now, from the information given, we know that P(dot sent) = � and P(dot received I 
dot sent) k .  Furthermore, we can also write 

P(dot received) = P(dot received n dot sent) + P(dot received n dash sent) 

= P(dot received I dot sent)P(dot sent) 

+ P(dot received I dash sent)P(dash sent) 

7 3 1 4 25 
B" x

7
+ B" x 7 = 

56
' 

Combining these results, we have that the probability of correctly receiving a dot is 

, (7/8) x (3/7) 21 
P( dot sent I dot receIved) = = , 

25/56 25 
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In some cases it may happen that the occurrence of a. particular event, B, has no 
effect on the probability of another event, A. Symbolica.lly, we are saying that 

( 1 .3.6) P(AIB) = peA) . 

If this holds, then by Bayes' Rule (1.3.5) and using (1 .3.6) we have 

( 1.3.7) P(BIA) P(AIB) PCB) = peA) PCB) PCB), peA) peA) 

so the occurrence of A has no effect on B. Moreover, since P(BIA)P(A) p(A nB) ,  
i t  then follows that 

peA n B) = P(A)P(B), 

which we take as the definition of statistical independence. 

Definition 1.3.7 Two events, A and B, are statistically independent if 

( 1 .3.8) peA n B) = P(A)P(B). 

Note that independence could have been equivalently defined by either (1 .3.6) or 
( 1 .3.7) (as long as either peA) > 0 or PCB) > 0). The advantage of ( 1 .3.8) is that 
it treats the events symmetrically and will be easier to generalize to more than two 
events. 

Many gambling games provide models of independent events. The spins of a roulette 
wheel and the tosses of a pair of dice are both series of independent events. 

Example 1.3.8 (Chevalier de Mere) The gambler introduced at the start of the 
chapter, the Chevalier de Mere, was particularly interested in the event that he could 
throw at least 1 six in 4 rolls of a die. We have 

peat least 1 six in 4 rolls) = 1 - P(no six in 4 rolls) 
4 

= 1 II P(no six on roll i) ,  
i=l 

where the last equality follows by independence of the rolls. On any roll, the proba
bility of not rolling a six is i ,  so 

(_
5
6) 4 

peat least 1 six in 4 rolls) = 1 .518. I I 

Independence of A and B implies independence of the complements also. In fact, 
we have the following theorem. 
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Theorem 1.3.9 If A and B are independent events, then the following pairs are 
also independent: 
a. A and BC, 
h. AC and B, 
c. AC and Be . 

Proof: We will prove only (a) , leaving the rest as Exercise 1 .40. To prove (a) we 
must show that P(A n BC) P(A)P(BC) . From Theorem 1 .2.9a we have 

p(A n Be) = P(A) P(A n B) 
= P(A) - P(A)P(B) (A and B are independent) 

= P(A)(1 - P(B)) 
= P(A)P(BC) .  0 

Independence of more than two events can be defined in a manner similar to (1 .3.8 ) ,  
but we must be carefuL For example, we might think that we could say A, B, and C 
are independent if P(A n B n C) = P(A)P(B)P(C). However, this is not the correct 
condition. 

Example 1 .3.10 (Tossing two dice) Let an experiment consist of tossing two 
dice. For this experiment the sample space is 

S {(I ,  I ) , (1 , 2) ,  . . .  , ( 1, 6) , (2, 1 ) ,  . . .  , (2, 6) ,  . . .  , (6, 1 ) ,  . . .  , (6, 6)} ; 

that is, S consists of the 36 ordered pairs formed from the numbers 1 to 6. Define the 
following events: 

A = {doubles appear} = { (I , 1 ) ,  (2, 2) ,  (3, 3) ,  (4, 4) , (5, 5) , (6, 6)} ,  

B {the sum is between 7 and 10} ,  

C = {the sum is 2 or  7 or 8} . 

The probabilities can be calculated by counting among the 36 possible outcomes. We 
have 

Furthermore, 

1 P(A) = 6'  P(B) 1 
2 '  and 

1 P(C) = 3 '  

P(A n B n C) P(the sum is 8 , composed of double 4s) 

1 
36 
1 1 1  - x  x -
6 2 3  
P(A)P(B)P(C) . 
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However, 

1 1  PCB n C) = P(sum equals 7 or 8) = 
36 

f P(B)P(C). 

Similarly, it can be shown that peA n B) f P(A)P(B)j therefore, the requirement 
peA n B n C) = P(A)P(B)P(C) is not a strong enough condition to guarantee 
pairwise independence. I I 

A second attempt at a general definition of independence, in light of the previ
ous example, might be to define A, B I and C to be independent if all the pairs are 
independent. Alas, this condition also fails. 

Example 1.3.11 (Letters) Let the sample space S consist of the 3! permutations 
of the letters a, b, and c along with the three triples of each letter. Thus, 

{ aaa bbb CCC } 
S == abc bca cba . 

acb bac cab 

Furthermore, let each element of S have probability � .  Define 

Ai = {ith place in the triple is occupied by a} . 

It is then easy to count that 

and 

1 P(Ai) = 3 ' i = 1 , 2, 3, 

so the Ais are pairwise independent. But 

so the Ais do not satisfy the probability requirement. I I  

The preceding two examples show that simultaneous (or mutual) independence of 
a collection of events requires an extremely strong definition. The following definition 
works. 

Definition 1.3.12 A collection of events Ai , . . .  , An are mutually independent if 
for any sub collection Ail ' . . . , Atk , we have 

Ie: 
= II P (Aij ) . 

;=1 
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Example 1.3.13 (Three coin tosses-I) Consider the experiment of tossing a 
coin three times. A sample point for this experiment must indicate the result of each 
toss. For example, HHT could indicate that two heads and then a tail were observed. 
The sample space for this experiment has eight points, namely, 

{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. 

Let Hi, i = 1 , 2, 3, denote the event that the ith toss is a head. For example, 

(1.3.9) HI = {HHH, HHT, HTH, HTT} . 

If we assign probability l to each sample point, then using enumerations such as 
(1 .3.9) , we see that P(H1 ) = P(H2) = P(H3) = � .  This says that the coin is fair and 

. has an equal probability of landing heads or tails on each toss. 
Under this probability model, the events Hi , H2 , and H3 are also mutually inde

pendent. 1b verify this we note that 

To verify the condition in Definition 1 .3. 12, we also must check each pair. For example, 

2 1 1 
P(H1 n H2) = P( {HHH, HHT}) = 8 = 2 . 2 P(HI )P(H2) .  

The equality i s  also true for the other two pairs. Thus, Hi , H2 , and H3 are mutually 
independent. That is, the occurrence of a head on any toss has no effect on any of 
the other tosses. 

It can be verified that the assignment of probability � to each sample point is the 
only probability model that has P(Hr ) = P(H2) = P(H3) = ! and HI , H2 , and H3 
mutually independent. I I  

1.4 Random Variables 

In many experiments it is easier to deal with a summary variable than with the 
original probability structure. For example, in an opinion poll, we might decide to 
ask 50 people whether they agree or disagree with a certain issue. If we record a "1" 
for agree and "0" for disagree, the sample space for this experiment has 250 elements, 
each an ordered string of Is and Os of length 50. We should be able to reduce this to 
a reasonable size! It may be that the only quantity of interest is the number of people 
who agree (equivalently, disagree) out of 50 and, if we define a variable X = number 
of Is recorded out of 50, we have captured the essence of the problem. Note that the 
sample space for X is the set of integers {O, 1 , 2 ,  . . .  , 50} and is much easier to deal 
with than the original sample space. 

In defining the quantity X, we have defined a mapping (a function) from the original 
sample space to a new sample space, usually a set of real numbers. In general, we 
have the following definition. 

Definition 1.4.1 A random variable is a function from a sample space S into the 
real numbers. 
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Example 1 .4.2 (Random variables) In some experiments random variables are 
implicitly used; some examples are these. 

Examples of random variables 

Experiment 

Toss two dice 

Toss a coin 25 times 

Apply different amounts of 
fertilizer to corn plants 

Random variable 

x = sum of the numbers 

X number of heads in 25 tosses 

x = yield/acre I I  

In defining a random variable, we have also defined a new sample space (the range 
of the random variable) . We must now check formally that our probability function, 
which is defined on the original sample space, can be used for the random variable. 

Suppose we have a sample space 

with a probability function P and we define a random variable X with range X = 
{Xl ! " " xm} .  We can define a probability function Px on X in the following way. We 
will observe X = Xi if and only if the outcome of the random experiment is an Sj E S 
such that X(Sj) = Xi. Thus, 

( 1 .4 . 1  ) 

Note that the left-hand side of (1 .4. 1 ) ,  the function Px , is an induced probability 
function on X, defined in terms of the original function P. Equation ( 1 .4 .1)  formally 
defines a probability function, Px, for the random variable X. Of course, we have 
to verify that Px satisfies the Kolmogorov Axioms, but that is not a very difficult 
job (see Exercise 1 .45) .  Because of the equivalence in ( 1 .4. 1 ) ,  we will simply write 
P(X = Xi) rather than Px (X

'
= Xi). 

A note on notation: Random variables will always be denoted with uppercase letters 
and the realized values of the variable (or its range) will be denoted by the corre
sponding lowercase letters. Thus, the random variable X can take the value x. 

Example 1.4.3 (Three coin tosses-II) Consider again the experiment of tossing 
a fair coin three times from Example 1 .3.13.  Define the random variable X to be the 
number of heads obtained in the three tosses. A complete enumeration of the value 
of X for each point in the sample space is 

S HHH HHT HTH THH TTH THT HTT TTT 
3 2 2 2 1  1 1 0 

The range for the random variable X is X = {O, 1 ,  2, 3}.  Assuming that all eight 
points in S have probability k ,  by simply counting in the above display we see that 



Section 1.5 DISTRIBUTION FUNCTIONS 

the induced probability function on X is given by 

x 
Px(X = x) 

o 
1 
'8 

1 
3 
'8 

2 
3 
B 

3 
1 
B 

For example, Px (X 1) P({HTT, THT, TTH}) = i .  

29 

I I  
Example 1 .4.4 (Distribution of a random variable) It may be possible to 
determine Px even if a complete listing, as in Example 1 .4.3, is not possible. Let S 
be the 250 strings of 50 Os and Is, X = number of Is, and X = {O, 1 , 2, . . . , 50} ,  as 
mentioned at the beginning of this section. Suppose that each of the 250 strings is 
equally likely. The probability that X 27 can be obtained by counting all of the 
strings with 27 Is in the original sample space. Since each string is equally likely, it 
follows that 

Px (X 27) = 
# strings with 27 Is = ( �� )  

# strings 250 • 

In general, for any i E X, 

Px (X i) 

The previous illustrations had both a finite S and finite X, and the definition of 
Px was straightforward. Such is also the case if X is countable. If X is uncountable, 
we define the induced probability function, Px, in a manner similar to (1 .4. 1 ) .  For 
any set A c X, 

( 1 .4.2) Px (X E A)  P ({s E S :  X es) E A}) . 

This does define a legitimate probability function for which the Kolmogorov Axioms 
can be verified. (To be precise, we use ( 1 .4.2) to define probabilities only for a cer
tain sigma algebra of subsets of X. But we will not concern ourselves with these 
technicalities. ) 

1.5 Distribution Functions 

With every random variable X, we associate a function called the cumulative distri
bution function of X. 

Definition 1.5.1 The cumulative distribution function or cdf of a random variable 
X, denoted by Fx (x) ,  is defined by 

Fx (x) = Px (X s x), for all x. 
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Figure 1 .5 .1 .  Cdf of Example 1 .5.2 

Example 1.5.2 (Tossing three coins) Consider the experiment of tossing three 
fair coins, and let X = number of heads observed. The cdf of X is 

0 if -00 < x < 0 
1 if O :O:; x < l  8 

(1 .5 .1) Fx (x) = 1 if 1 :O:; x < 2 2" 
7 if 2 :O:; x < 3  8 
1 if 3 :0:;  x < 00. 

The step function Fx(x) is graphed in Figure 1 .5 .1 .  There are several points to note 
from Figure 1 .5 .1 .  Fx is defined for all values of x, not just those in X {O, 1 ,  2, 3}.  
Thus, for example, 

Fx(2.5) P(X :O:; 2.5) = P(X = 0, 1 , or 2) 7 
S · 

Note that Fx has jumps at the values of Xi E X and the size of the jump at Xi is 
equal to P(X = Xi) . Also, Fx (x) = 0 for x < 0 since X cannot be negative, and 
Fx(x) =:; 1 for X � 3 since x is certain to be less than or equal to such a value. I I  

As is apparent from Figure 1 .5 . 1 ,  Fx can be  discontinuous, with jumps at certain 
values of x. By the way in which Fx is defined, however, at the jump points Fx takes 
the value at the top of the jump. (Note the different inequalities in ( 1 .5.1) .) This is 
known as right-continuity-the function is continuous when a point is approached 
from the right. The property of right-continuity is a consequence of the definition of 
the cdf. In contrast, if we had defined Fx(x) Px (X < x) (note strict inequality) ,  
Fx would then b e  left-continuous. The size o f  the jump at any point x i s  equal to 
P(X = x). 

Every cdf satisfies certain properties, some .of which are obvious when we think of 
the definition of Fx(x) in terms of probabilities. 
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Theorem 1.5.3 The junction F{x) is a cdf if and only if the following three con
ditions hold: 

a. lim:.t:-+_ooF(x) = 0 and lim:.t:-+ooF(x) 1 .  

b .  F(x) is a nondecreasing function of x. 

c. F(x) is right-continuous; that is, for every number xo , lim:.t:lzo F(x) F(xo) .  

Outline of  proof: To prove necessity, the three properties can b e  verified by writing 
F in terms of the probability function (see Exercise 1 .48) . To prove sufficiency, that 
if a function F satisfies the three conditions of the theorem then it is a cdf for some 
random variable, is much harder.  It must be established that there exists a sample 
space S,  a probability function P on S, and a random variable X defined on S such 
that F is the cdf of X. 0 

Example 1 .5.4 ( Tossing for a head) Suppose we do an experiment that consists 
of tossing a coin until a head appears. Let p = probability of a head on 8J'Iy given toss, 
and define a random variable X = number of tosses required to get a head. Then, for 
any x = 1 , 2 ,  . . .  , 

( 1 .5.2) P(X = x) (1 _ p)Z-lp, 

since we must get x - I  tails followed by a head for the event to occur and all trials 
are independent. From (1 .5.2) we calculate, for any positive integer x, 

(1.5.3) 
:.t: 

P(X $ x) E p(X = i) 
i=l 

:.t: 

E( 1  p)i-lp. 
i=l 

The partial sum of the geometric series is 

(1.5.4) t =I- 1 ,  

a fact that can be established by induction (see Exercise 1 .50) . Applying ( 1.5.4) to 
our probability, we find that the cdf of the random variable X is 

Fx (x) P(X $ x) 

1 ( 1 - p):.t: 
= 

1 ( 1 - p) P 
1 - (1 pt, x = I, 2, . . . . 

The cdf Fx(x) is flat between the nonnegative integers, as in Example 1 .5.2. 
It is easy to show that if 0 < p < 1 ,  then F x (x) satisfies the conditions of Theorem 

1.5.3. First, 

lim Fx {x) 0 
x�-OrO 
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since Fx(x) = 0 for all x < 0, and 

lim Fx(x) lim 1 - (1 - pyx = 1, x�oo X-+OO 

Section 1.5 

where x goes through only integer values when this limit is taken. To verify property 
(b) , we simply note that the sum in (1 .5 .3) contains more positive terms as x increases. 
Finally, to verify (c) , note that, for any x, Fx (x + €) = Fx(x) if 10 > 0 is sufficiently 
small. Hence, 

lim Fx (x + 10) = Fx (x) , 
€�o 

so Fx(x) is right-continuous. Fx(x) is the cdf of a distribution called the geometric 
distribution (after the series) and is pictured in Figure 1 .5.2. I I  

Example 1.5.5 (Continuous cdf) An example of a continuous cdf is the function 

(1 .5.5) 1 Fx (x) = 
1 ' + e-X 

which satisfies the conditions of Theorem 1 .5.3. For example, 

and 

lim Fx (x) = 0 since lim e-x = 00 
x-+-oo % -+ - 00  

lim Fx(x) = 1 since lim e-x = O. 
%-+00 :£-+00 

Differentiating Fx(x) gives 
d e-x 

-d Fx(x) = 
2 > 0, x ( 1  + e-X ) 
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showing that Fx(x) is increasing. Fx is not only right-continuous, but also continuous. 
This is a special case of the logistic distribution. I I  

Example 1.5.6 (Cdr with jumps) If Fx is not a continuous function of x, it is 
possible for it to be a mixture of continuous pieces and jumps. For example, if we 
modify Fx(x) of (1 .5.5) to be, for some f, 1 > f >  0, 

Fy(y) = { 1��:�
,) f + l + e  y 

if y < 0 

(1 .5.6) 
if y � 0, 

then Fy(y) is the cdf of a random variable Y (see Exercise 1 .47). The function Fy 
has a jump of height f at y = 0 and otherwise is continuous. This model might 
be appropriate if we were observing the reading from a gauge, a reading that could 
(theoretically) be anywhere between -00 and 00. This particular gauge, however, 
sometimes sticks at O. We could then model our observations with Fy, where f is the 
probability that the gauge sticks. I I 

Whether a cdf is continuous or has jumps corresponds to the associated random 
variable being continuous or not. In fact, the association is such that it is convenient 
to define continuous random variables in this way. 

Definition 1.5.7 A random variable X is continuous if Fx (x) is a continuous 
function of x. A random variable X is discrete if Fx (x) is a step function of x. 

We close this section with a theorem formally stating that Fx completely deter
mines the probability distribution of a random variable X. This is true if P(X E A) is 
defined only for events A in [31 , the smallest sigma algebra containing all the intervals 
of real numbers of the form (a, b) , [a, b) , (a, bj , and [a, b]. If probabilities are defined 
for a larger class of events ,  it is possible for two random variables to have the same 
distribution function but not the same probability for every event (see Chung 1974, 
page 27). In this book, as in most statistical applications, we are concerned only with 
events that are intervals, countable unions or intersections of intervals, etc. So we do 
not consider such pathological cases. We first need the notion of two random variables 
being identically distributed. 

Definition 1 .5.8 The random variables X and Y are identically distributed if, for 
every set A E [31 , P(X E A) = P(Y E A) . 

Note that two random variables that are identically distributed are not necessarily 
equal. That is, Definition 1.5.8 does not say that X = Y. 

Example 1 .5.9 (Identically distributed random variables) Consider the ex
periment of tossing a fair coin three times as in Example 1.4.3. Define the random 
variables X and Y by 

X number of heads observed and Y = number of tails observed. 
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The distribution of X is given in Example 1 .4.3, and it is easily verified that the 
distribution of Y is exactly the same. That is, for each k = 0, 1 , 2, 3 ,  we have P(X = 
k) P(Y k) . So X and Y are identically distributed. However, for no sample 
points do we have X(s) = Y(s). I I 

Theorem 1 .5.10 The following two statements are equivalent: 
a. The mndom variables X and Y are identically distributed. 
b. Fx(x) = Fy (x) for every x .  

Proof: To show equivalence we must show that each statement implies the other. 
We first show that (a) => (b). 

Because X and Y are identically distributed, for any set A E 81 , P(X E A) 
P(Y E A) . In particular, for every x, the set (-00, xl is in 81 , and 

Fx(x) P(X E (-oo, x] )  = P(Y E (-00, x]) = Fy(x). 

The converse implication, that (b) => (a) , is much more difficult to prove. The 
above argument showed that if the X and Y probabilities agreed on all sets, then 
they agreed on intervals. We now must prove the opposite; that is, if the X and Y 
probabilities agree on all intervals, then they agree on all sets. To show this requires 
heavy use of sigma algebras; we will not go into these details here. Suffice it to say that 
it is necessary to prove only that the two probability functions agree on all intervals 
(Chung 1974, Section 2.2) . 0 

1 .6 Density and Mass Functions 

Associated with a random variable X and its cdf Fx is another function, called either 
the probability density function (pdf) or probability mass function (pmf). The terms 
pdf and pmf refer, respectively, to the continuous and discrete cases. Both pdfs and 
pmfs are concerned with "point probabilities" of random variables. 

Definition 1.6.1 The probability mass function (pm!) of a discrete random variable 
X is given by 

fx (x) = P(X = x) for all x. 

Example 1.6.2 (Geometric probabilities) For the geometric distribution of 
Example 1 .5.4, we have the pmf 

fx(x) P(X x) { (1 - p).x-lp for x 1 , 2, . . .  
o otherwise. 

Recall that P(X = x) or, equivalently, fx (x) is the size of the jump in the cdf at x. We 
can use the pmf to calculate probabilities. Since we can now measure the probability 
of a single point, we need only sum over all of the points in the appropriate event. 
Hence, for positive integers a and b, with a ::; b, we have 

b 
P(a ::; X ::;  b) = L fx(k) 

k=a k=a 
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. As a special case of this we get 

b 

( 1 .6.1) P(X � b) = 2: fx (k) = Fx(b) . 
k=l 

A widely accepted convention, which we will adopt, is to use an uppercase letter 
for the cdf and the corresponding lowercase letter for the pmf or pdf. 

We must be a little more careful in our definition of a pdf in the continuous case. 
If we naively try to calculate P( X x) for a continuous random variable, we get the 
following. Since {X = x} C {x - f < X � x} for any f > 0, we have from Theorem 
1.2.9(c) that 

P(X = x) � P(x - f < X � x) = Fx(x) - Fx (x to) 
for any f > O. Therefore, 

o � P(X = x) � li
l
m [Fx(x) - Fx(x - f)] 0 

£ 0 
by the continuity of Fx. However, if we understand the purpose of the pdf, its defi
nition will become clear. 

From Example 1.6.2, we see that a pmf gives us "point probabilities." In the discrete 
case, we can sum over values of the pmf to get the cdf (as in (1 .6.1 ) ) .  The analogous 
procedure in the continuous case is to substitute integrals for sums, and we get 

P(X � x) = Fx(x) = i� fx(t) dt. 

Using the Fundamental Theorem of Calculus, if fx (x) is continuous, we have the 
further relationship 

(1.6.2) 
d 

dx Fx (x) fx (x) . 

Note that the analogy with the discrete case is almost exact. We "add up" the "point 
probabilities" fx(x) to obtain interval probabilities. 

Definition 1.6.3 The probability density function or pdf, fx (x) , of a continuous 
random variable X is the function that satisfies 

( 1.6.3) Fx(x) = i� fx (t) dt for all x. 

A note on notation: The expression "X has a distribution given by Fx(x)" is abbrevi
ated symbolically by "X ", Fx(x)," where we read the symbol "rv" as "is distributed 
as." We can similarly write X '" fx(x) or, if X and Y have the same distribution, 
X "' Y. 

In the continuous case we can be somewhat cavalier about the specification of 
interval probabilities. Since P(X = x) = 0 if X is a continuous random variable, 

P(a < X < b) = P(a < X � b) P(a � X < b) = P(a � X � b) . 
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It should be clear that the pdf (or pmf) contains the same information as the cdf. 
This being the case, we can use either one to solve prohlems and should try to choose 
the simpler one. 

Example 1 .6.4 (Logistic probabilities) For the logistic distribution of Example 
1 .5.5 we have 

and, hence, 

1 Fx(x) = -:--+ e-x 

d e-x 
fx (x) = -d Fx(x) = 2 '  x (1 + e-X) 

The area under the curve fx(x) gives us interval probabilities (see Figure 1 .6.1 ) :  

P(a < X < b) Fx (b) - Fx (a) 

= 1� fx(x) dx - 1: fx (x) dx 

= lb fx (x) dx. I I  

There are really only two requirements for a pdf (or prof), both of which are im
mediate consequences of the definition. 

Theorem 1 .6.5 A function fx(x) is a pdf (or pm f) of a random variable X if and 
only if 

a. fx(x) � 0 for all x. 
b. Lxfx(x) = 1 (pmf) or L": fx(x) dx 1 (pdf)· 
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Proof: If ix(x) is a pdf (or pmf), then the two properties are immediate from the 
definitions. In particular, for a pdf, using ( 1 .6 .3) and Theorem 1 . 5.3, we have that 

1 = 2�� Fx(x) 1: ix (t) dt. 

The converse implication is equally easy to prove. Once we have ix(x), we can define 
Fx(x) and appeal to Theorem 1 .5.3. 0 

From a purely mathematical viewpoint, any nonnegative function with a finite 
.positive integral (or sum) can be turned into a pdf or pmf. For example, if h(x) is 
any nonnegative function that is positive on a set A, 0 elsewhere, and 

1 h(x) dx = K < 00 
{:rEA} 

for some constant K > 0, then the function ix (x) = h(x)j K is a pdf of a random 
variable X taking values in A. 

. Actually, the relationship (1 .6.3) does not always hold because Fx(x) may be 
continuous but not differentia.ble. In fact, there exist continuous random variables 
for which the integral relationship does not exist for any ix(x) . These cases are 
rather pathological and we will ignore them. Thus, in this text, we will assume that 
(1.6.3) holds for any continuous random variable. In more advanced texts (for exam-

. pIe, Billingsley 1995, Section 31) a random varia.ble is called absolutely continuous if 
(1 .6.3) holds. 

1.7 Exercises ______________________ _ 

1.1 For each of the following experiments, describe the sample space. 

(a) Toss a coin four times. 

(b) Count the number of insect-damaged leaves on a plant. 

(c) Measure the lifetime (in hours) of a particular brand of light bulb. 

(d) Record the weights of IO-day-old rats. 

(e) Observe the proportion of defectives in a shipment of electronic components. 

1.2 Verify the following identities. 

(a) A\B = A\(A n B) = A n  Be 

(b) B (B n A) U (B n AC) 

(c) B\A B n Ac 

(d) A U  B = A U  (B n AC) 
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1 .3 Finish the proof of Theorem 1 .1 .4. For any events A, B, and C defined on a sample 
space S, show that 

(a) A u  B B U A and A n  B = B n A. (commutativity) 
(b) A u  (B U C) = (A U B) U C and A n  (B n C) = (A  n B) n C.  (associativity) 
(c) {A U B)C AC n Bc and (A n B)C AC u BC• (DeMorgan's Laws) 

1 .4 For events A and B, find formulas for the probabilities of the following events in terms 
of the quantities peA), PCB), and peA n B) . 

(a) either A or B or both 
(b) either A or B but not both 
(c) at least one of A or B 
(d) at most one of A or B 

1.5 Approximately one-third of all human twins are identical (one-egg) and two-thirds are 
fraternal (two-egg) twins. Identical twins are necessarily the same sex, with male and 
female being equally likely. Among fraternal twins, approximately one-fourth are both 
female, one-fourth are both male, and half are one male and one female. Finally, among 
all U.S. births, approximately 1 in 90 is a twin birth. Define the following events: 

A = {a U.S. birth results in twin females} 

B = {a U.S. birth results in identical twins} 

C = {a U.S. birth results in twins} 

(a) State, in words, the event A n  B n C. 
(b) Find peA n B n C) . 

1.6 Two pennies, one with P(head) 
together independently. Define 

u and one with P(head) = w, are to be tossed 

Po = P(O. heads occur), 

Pl = P(l head occurs), 

P2 = P(2 heads occur). 

Can u and w be chosen such that Po = Pl P2? Prove your answer. 

1.7 Refer to the dart game of Example 1.2.7. Suppose we do not assume that the proba
bility of hitting the dart board is 1 ,  but rather is proportional to the area of the dart 
board. Assume that the dart board is mounted on a wall that is hit with probability 
1 ,  and the wall has area A. 

. 

(a) Using the fact that the probability of hitting a region is proportional to area, 
construct a probability function for P(scoring i points), i = 0, . . .  , 5. (No points 
are scored if the dart board is not hit.) 

(b) Show that the conditional probability distribution P(scoring i pointslboard is hit) 
is exactly the probability distribution of Example 1 .2.7. 

1.8 Again refer to the game of darts explained in Example 1 .2.7. 

(a) Derive the general formula for the probability of scoring i points. 
(b) Show that P(scoring i points) is a decreasing function of i, that is, as the points 

increase, the probability of scoring them decreases. 
(c) Show that P(scoring i points) is a probability function according to the Kol

mogorov Axioms. 



Section 1.1 EXERCISES 39 

1.9 Prove the general version of DeMorgan's Laws. Let {AQ: ct E r} be a. (possibly un
countable) collection of sets. Prove tha.t 
(a) (U",AQ)C = nQA:',. (b) (n",A",t uIIIA:;'. 

1 .1 0  Formulate and prove a version of DeMorgan's Laws that applies to a finite collection 
of sets AI " ' "  An. 

1.11 Let S be a sample space. 
(a) Show that the collection B {0, S} is a sigma algebra. 
(b) Let B = {all subsets of S, including S itself}. Show that B is a sigma algebra. 
(c) Show that the intersection of two sigma algebras is a sigma algebra. 

1.12 It was noted in Section 1 .2 .1  that statisticians who follow the deFinetti school do not 
accept the Axiom of Countable Additivity, instead adhering to the Axiom of Finite 
Additivity. 
(a) Show that the Axiom of Countable Additivity implies Finite Additivity. 
(b) Although, by itself, the Axiom of Finite Additivity does not imply Countable 

Additivity, suppose we supplement it with the following. Let Al :) A2 :) . . . :) 
An :) . . .  be an infinite sequence of nested sets whose limit is the empty set, which 
we denote by An 1 0. Consider the following: 

Axiom of Continuity: If An 1 0, then P(An) --> O. 

Prove that the Axiom of Continuity and the Axiom of Finite Additivity imply 
Countable Additivity. 

1.13 If peA) = i and P(BC) = i ,  can A and B be disjoint? Explain. 
1.14 Suppase that a sample space S has n elements. Prove that the number of subsets that 

can be formed from the elements of S is 2n. 
1.15 Finish the proof of Theorem 1 .2 .14. Use the result established for k = 2 as the basis 

of an induction argument. 
1.16 How many different sets of initials can be formed if every person has one surname and 

(a) exactly two given names? (b) either one or two given names? 
( b) either one or two or three given names? 
(Answers: (a) 263 (b) 263 + 262 (c) 264 + 263 + 262) 

1 . 17 In the game of dominoes, each piece is marked with two numbers. The pieces are 
symmetrical so that the number pair is not ordered (so, for example, (2, 6) (6, 2» . 
How many different pieces can be formed using the numbers 1 , 2, . . . , n? 
(Answer: n(n + 1 )/2) 

1.18 If n balls are placed at random into n cells, find the probability that exactly one cell 
remains empty. 
(Answer: (;)n!/nn) 

1.19 If a multivariate function has continuous partial derivatives, the order in which the 
derivatives are calculated does not matter. Thus, for example, the function f(x, y) of 
two variables has equal third partials 

83 8y8x2 f(x, y) . 
(a) How many fourth partial derivatives does a function of three variables have? 
(b) Prove that a function of n variables has ( n+;-1 ) rth partial derivatives. 

1.20 My telephone rings 12  times each week, the calls being randomly distributed among 
the 7 days. What is the probability that I get at least one call each day? 
(Answer: .2285) 
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1.21 A closet contains n pairs of shoes. If 2r shoes are chosen at random (2r < n) , what is 
the probability that there will be no matching pair in the sample? 
(Answer: G�)22r / (��) 

1.22 (a) In a draft lottery containing the 366 days of the year (including February 29), 
what is the probability that the first 180 days drawn (without replacement) are 
evenly distributed among the 12 months? 

(b) What is the probability that the first 30 days drawn contain none from September? 
(Answers: (a) . 167 x 10-8 (b) (3;06) / (3:06) 

1.23 Two people each toss a fair coin n times. Find the probability that they will toss the 
same number of heads. 
(Answer: (�r (2:) ) 

1.24 Two players, A and B, alternately and independently flip a coin and the first player 
to obtain a head wins. Assume player A flips first. 
(a) If the coin is fair, what is the probability that A wins? 
(b) Suppose that P(head) = p, not necessarily j. What is the probability that A 

wins? 
(c) Show that for all p, O < p < I , P(A wins) > 4. (Hint: Try to write peA wins) 

in terms of the events E1 , E2, . . . , where Ei = {head first appears on ith toss} .) 
(Answers: (a) 2/3 (b) I-d'-p)2 ) 

1.25 The Smiths have two children. At least one of them is a boy. What is the probability 
that both children are boys? (See Gardner 1961  for a complete discussion of this 
problem.) 

1 .26 A fair die is cast until a 6 appears. What is the probability that it must be cast more 
than five times? 

1.21 Verify the following identities for n � 2. 
(a) E:=o(-I/' ( � )  = 0 (b) E;=lk (� )  = n2n- 1 
(c) E:=l(-l)k+1k (� )  0 

1.28 A way of approximating large factorials is through the use of Stirling 's Formula: 

n! � V21rn"+(1/2)e-", 

a complete derivation of which is difficult . Instead, prove the easier fact, 

I. n! 
,,:.� n,,+(1/2)e-n =: a constant. 

(Hint: Feller 1968 proceeds by using the monotonicity of the logarithm to establish 
that 

and hence 
l

k 1k+l 
log x dx < log k < log x dx, 

11:-1 II: 
k 1 ,  . . .  , n, 

1" log x dx < log n! < 1"+1 
log x dx. 

Now compare log n! to the average of the two integrals. See Exercise 5.35 for another 
derivation.)  

1 .29 (a) For the situation of  Example 1 .2.20, enumerate the ordered samples that make up 
the unordered samples {4, 4, 12, 12} and {2, 9, 9, 12}. 

(b) Enumerate the ordered samples that make up the unordered samples {4, 4, 12, 12} 
and {2, 9, 9, 12}. 
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(c) Suppose that we had a collection of six numbers, {I ,  2, 7, 8, 14, 20} . What is the 
probability of drawing, with replacement, the unordered sample {2, 7, 7, 8, 14, 14}? 

(d) Verify that an unordered sample of size Ie, from m different numbers repeated kl ' le2 , . . .  , lem. times, has kdk2!�!" km! ordered components, where ki + k2 + . . .  + 
lem. = Ie. 

(e) Use the result of the previous part to establish the identity 

1 .30 For the collection of six numbers, {I , 2, 7, 8, 14, 20} ,  draw a histogram of the distribu
tion of all possible sample averages calculated from samples drawn with replacement. 

1.31 For the ·situation of Example 1 .2.20, the average of the original set of numbers 
{2, 4, 9, 12} is ¥,  which has the highest probability. 

(a) Prove that, in general, if we sample with replacement from the set {XI , X2 • . . •  , xn}, 
the outcome with average (Xl +X2+" +xn)/n is  the most likely, having probability 
n! n-n '  

(b) Use Stirling's Formula (Exercise 1.28) t o  show that n!/nn R: J2mr/en (Hall 1992, 
Appendix I). 

(c) Show that the probability that a particular Xi is missing from an outcome is 
( 1  � )n -+ as n -+ 00. . 

1.32 An employer is about to hire one new employee from a group of N candidates, whose 
future potential can be rated on a scale from 1 to N. The employer proceeds according 
to the following rules: 

(a) Each candidate is seen in succession (in random order) and a decision is made 
whether to hire the candidate. 

(b) Having rejected m-l candidates (m > 1 ) ,  the employer can hire the mth candidate 
only if the mth candidate is better than the previous m - L 

Suppose a candidate is hired on the ith triaL What is the probability that the best 
candidate was hired? 

1.33 Suppose that 5% of men and .25% of women are color-blind. A person is chosen at 
random and that person is color-blind. What is the probability that the person is 
male? (Assume males and females to be in equal numbers. )  

1.34 Two litters of a particular rodent species have been born, one with two brown-haired 
and one gray-haired (litter 1 ) ,  and the other with three brown-haired and two gray
haired (litter 2). We select a litter at random and then select an offspring at random 
from the selected litter. 

(a) What is the probability that the animal chosen is brown-haired? 

(b) Given that a brown-haired offspring was selected, what is the probability that the 
sampling was from litter I? 

1 .35 Prove that if PO is a legitimate probability function and B is a set with P(B) > 0, 
then P(' IB) also satisfies Kolmogorov's Axioms. 

1 .36 If the probability of hitting a target is i ,  and ten shots are fired independently, what 
is the probability of the target being hit at least twice? What is the conditional prob
ability that the target is hit at least twice, given that it is hit at least once? 
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1 .37 Here we look at some variations of Example 1.3.4. 

(a) In the warden's calculation of Example 1 .3.4 it was assumed that jf A were to be 
pardoned, then with equal probability the warden would tell A that either B or C 
would die. However, this need not be the case. The warden can assign probabilities 
'Y and 1 - 'Y to these events, as shown here: 

Prisoner pardoned Warden tells A 

A 
A 
B 
C 

B dies 
C dies 
C dies 
B dies 

with probability 'Y 
with probability 1 - 'Y 

Calculate P(AIW) as a function of 'Y. For what values of 'Y is P(AIW) less than, 
equal to, or greater than t? 

(b) Suppose again that 'Y = 4 ,  as in the example. After the warden tells A that B 
will die, A thinks for a while and realizes that his original calculation was false. 
However, A then gets a bright idea. A asks the warden if he can swap fates with C. 
The warden, thinking that no information has been passed, agrees to this. Prove 
that A's reasoning is now correct and that his probability of survival has jumped 
to i !  

A similar, but somewhat more complicated, problem, the "Monte Hall problem" is 
discussed by Selvin ( 1975). The problem in this guise gained a fair amount of noto
riety when it appeared in a Sunday magazine (vos Savant 1990) along with a correct 
answer but with questionable explanation. The ensuing debate was even reported on 
the front page of the Sunday New York Times (Tierney 1991).  A complete and some
what amusing treatment is given by Morgan et al. ( 1991 )  [see also the response by vos 
Savant 1991]. Chun (1999) pretty much exhausts the problem with a very thorough 
analysis. 

1 .38 Prove each of the following statements. (Assume that any conditioning event has pos
itive probability.) 

(a) If PCB) = 1 ,  then P(AIB) = peA) for any A. 
(b) If A c B, then P(BIA) = 1 and P(AIB) = peAl/PCB) . 
(c) If A and B are mutually exclusive, then 

peA) P(AIA U B) = 
peA) + PCB) 

(d) peA n B n C) = P(AIB n C)P(BIC)P(C) . 
1 .39 A pair of events A and B cannot be simultaneously mutually exclusive and independent. 

Prove that if peA) > 0 and PCB) > 0, then: 

(a) If A and B are mutually exclusive, they cannot be independent. 
(b) If A and B are independent, they cannot be mutually exclusive. 

1.40 Finish the proof of Theorem 1 .3.9 by proving parts (b) and (c) . 
1.41 As in Example 1 .3.6, consider telegraph signals "dot" and "dash" sent in the proportion 

3:4, where erratic transmissions cause a dot to become a dash with probability i and 
a dash to become a dot with probability k .  
(a) If a dash is received, what is the probability that a dash has been sent? 
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(b) Assuming independence between signals, if the message dot-dot was received, 
what is the probability distribution of the four possible messages that could have 
been sent? 

1.42 The inclusion-ea;clusion identity of Miscellanea 1 .8. 1 gets it name from the fact that 
it is proved by the method of inclusion and exclusion (Feller 1968, Section IV.1 ) . Here 
we go into the details. The probability P(Ui=IAi) is the sum of the probabilities of 
all the sample points that are contained in, at least one of the A,s. The method of 
inclusion and exclusion is a recipe for counting these points. 

(a) Let Ele denote the set of all sample points that are contained in exactly k of the 

events AI , A2, . . .  , An. Show that P(Uf=IA;) = L:�l peE, ). 
(b) If EI is not empty, show that peEl ) L:�l P(A.) . 
(c) Without loss of generality, assume that E", is contained in AI ,  A2 , . . .  , Ale. Show 

that peEk} appears k times in the sum PI , (�) times in the sum P2, (�) times in 
the sum Pa, etc. 

(d) Show that 

(See Exercise 1 .27.) 
(e) Show that parts (a) - (c) imply peE;)  = H - P2 = . . .  ± Pn1 establishing 

the inclusion-exclusion identity. 

1.43 For the inclu.sion-exclusion identity of Miscellanea 1 .8 .1 :  
(a)  Derive both Boole's and Bonferroni's Inequality from the inclusion-exclusion iden

tity. 
(b) Show that the g satisfy Pi � Pj if i � j and that the sequence of bounds in 

Miscellanea 1 .8.1 improves as the number of terms increases. 
(c) Typically as the number of terms in the bound increases, the bound becomes more 

usefuL However, Schwager ( 1984) cautions that there are some cases where there 
is not much improvement, in particular if the A,s are highly correlated. Examine 
what happens to the sequence of bounds in the extreme case when Ai = A for 
every i. (See Worsley 1982 and the correspondence of Worsley 1985 and Schwager 
1 985.) 

1.44 Standardized tests provide an interesting application of probability theory. Suppose 
first that a test consists of 20 multiple-choice questions, each with 4 possible answers. 
If the student guesses on each question, then the taking of the exam can be modeled 
as a sequence of 20 independent events. Find the probability that the student gets at 
least 10 questions correct, given that he is guessing. 

1.45 Show that the induced probability function defined in (1 .4 . 1 )  defines a legitimate 
probability function in that it satisfies the Kolmogorov Axioms. 

1.46 Seven balls are distributed randomly into seven cells. Let Xi the number of cells 
containing exactly i balls. What is the probability distribution of Xa? (That is, find 
P(Xa = x) for every possible x.) 

1.41 Prove that the following functions are cdfs. 

(a) � + �tan-l (x), X E (-oo, oo) (b) (l + e-X)-l , X E (-OO, OO) 
(c) e-e-"' , x E (-oo, OO) (d) 1 - e-"' , x E (0, oo) 
(e) the function defined in ( 1 .5.6) 

1.48 Prove the necessity part of Theorem 1 .5.3. 
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1.49 A cdf Fx is stochastically greater than a cdf Fy if Fx (t) � Fy(t) for all t and Fx (t) < 
Fy (t) for some t. Prove that if X ",  Fx and Y '" FYI t hen 

and 

P(X > t) 2: P(Y > t) for every t 

P(X > t) > P(Y > t) for some t, 

that is, X tends to be bigger than Y. 
1.50 Verify formula ( 1.5.4) , the formula for the partial sum of the geometric series. 
1.51 An appliance store receives a shipment of 30 microwa.ve ovens, 5 of which are (unknown 

to the manager) defective. The store manager selects 4 ovens a.t random, without 
replacement, and tests to see if they are defective. Let X = number of defectives 
found. Calculate the pmf and cdf of X and plot the cdf. 

1 . 52 Let X be a continuous random variable with pdf !(x) and cdf F(x) . For a fixed number 
xo, define the function 

g(x) = { !(X)/ [l - F(xo)] x 2: Xo 
o x < Xo . 

Prove that g(x) is a pdf. (Assume that F(xo) < 1.) 
1 .53 A certain river floods every year. Suppose that the low-water mark is set at 1 and the 

high-water mark Y has distribution function 

Fy(y) = P(Y � y) 

(a) Verify that Fy (1/) is a cdf. 
(b) Find h (y), the pdf of Y. 

1 1 - - 1 � 1/ < 00. 
1/2 '  

(c) If the low-water mark is reset at 0 and we use a unit of measurement that is l� of 
that given previously, the high-water mark becomes Z = lO(Y - 1). Find Fz(z) .  

1 .54 For each of the following, determine the value of c t hat makes lex) a pdf. 
(a) lex) c sin x, 0 < x < rr/2 (b) lex) = ce- 1z" -00 < x < 00 

1 .55 An electronic device has lifetime denoted by T. The device has value V 5 if it fails 
before time t = 3; otherwise, it has value V = 2T. Find the cdf of V, if T has pdf 

! (t) = �e-t/(L5) t 0 T 1 .5 , >  . 

1.8 Miscellanea ____________________ _ 

1 .B. l  Bonferroni and Beyond 
The Bonferroni bound of (1 .2.10) ,  or Boole's Inequality (Theorem 1 .2 .11) ,  provides 
simple bounds on the probability of an intersection or union. These bounds can be 
made more and more precise with the following expansion. 
For sets Al ,  A2! . . .  An. we create a new set of nested intersections as follows. Let 

n 
PI = L P(Ai) 

i=l 
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n 
P2 = L P( Ai n Aj) 

l:O:;:i<j�n 
n 

P3 = L 
I:O:;:i<j<k:O:;:n 

Then the inclusion-exclusion identity says that 
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Moreover, the Pi are ordered in that Pi � Pj if i :::; j, and we have the sequence of 
upper and lower bounds 

PI � P(Ui'=1 Ai) > PI - P2 

PI - P2 + P3 � P(Ui'=IAi) > PI - P2 + P3 - P4 

See Exercises 1 .42 and 1 .43 for details. 

These bounds become increasingly tighter as the number of terms increases, and 
they provide a refinement of the original Bonferroni bounds. Applications of these 
bounds include approximating probabilities of runs (Karlin and Ost 1988) and 
multiple comparisons procedures (Naiman and Wynn 1992) .  



Chapter 2 

Transformations and Expectations 

"We want something more than mere theory and preaching now, though. " 
Sherlock Holmes 
A Study in Scarlet 

Often, if we are able to model a phenomenon in terms of a random variable X 
with cdf Fx(x) ,  we will also be concerned with the behavior of functions of X. In 
this chapter we study techniques that allow us to gain information about functions 
of X that may be of interest, information that can range from very complete (the 
distributions of these functions) to more vague (the average behavior). 

2.1 Distributions of Functions of a Random Variable 

If X is a random variable with cdf Fx(x), then any function of X, say g(X), is 
also a random variable. Often g(X) is of interest itself and we write Y = g(X) to 
denote the new random variable g(X). Since Y is a function of X, we can describe 
the probabilistic behavior of Y in terms of that of X. That is, for any set A, 

P(Y E A) = P(g(X) E A),  

showing that the distribution of Y depends on the functions Fx and g. Depending 
on the choice of g, it is sometimes possible to obtain a tractable expression for this 
probability. 

Formally, if we write y = g(x) ,  the function g(x) defines a mapping from the original 
sample space of X, X, to a new sample space, y, the sample space of the random 
variable Y. That is, 

g(x) : X � y. 

We associate with 9 an inverse mapping, denoted by g-l ,  which is a mapping from 
subsets of y to subsets of X, and is defined by 

(2.1 . 1 )  g-l (A) = {x E X: g(x) E A} . 

Note that the mapping g-l takes sets into sets; that is, g-l (A) is the set of points 
in X that g(x) takes into the set A. It is possible for A to be a point set, say A = {y} . 
Then 

g-l ({Y}) = {X E X: g(x) = y} .  
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In this case we often write g-l (y) instead of g-l ( {y}) .  The quantity g-l (y) can still 
be a set, however, if there is more than one x for which g(x) y. If there is only one x 
for which g(x) = y, then g-l (y) is the point set {x} , and we will write g-l (y) = x. If 
the random variable Y is now defined by Y = g(X), we can write for any set A c y, 

(2.1 .2) 

P(Y E A) = P(g(X) E A)  
= P( {X E X': g(x) E A} )  

= P (X E g-l (A)) . 
This defines the probability distribution of Y. It is straightforward to show that this 
probability distribution satisfies the Kolmogorov Axioms. 

If X is a discrete random variable, then X' is countable. The sample space for 
Y = g(X) is Y = {y: y g(x) , x E X},  which is also a countable set . Thus, Y is also 
a discrete random variable. From (2.1.2) ,  the pmf for Y is 

fy(y) = P(Y = y) = 2: P(X = x) = 2: fx (x) , for y E y, 

and Jy (y) = 0 for y rt y. In this case, finding the pmf of Y involves simply identifying 
g-l (y) , for each y E y, and summing the appropriate probabilities. 

Example 2.1.1 (Binomial transformation) A discrete random variable X has 
a binomial distribution if its pmf is of the form 

(2.1 .3) 

where n is a positive integer and 0 � p � 1 .  Values such as n and p that can 
be set to different values, producing different probability distributions, are called 
parameters. Consider the random variable Y = g(X), where g(x) = n - x; that is, 
Y = n - X. Here X = {O, 1 ,  . . .  , n} and Y = {y: y = g(x), x E X} = {O, 1, . . .  , n} . 
For any y E Y, n x = g(x) = y if and only if x = n - y. Thus, g-l (y) is the single 
point x = n - y, and 

Jy(y) 2: fx (x) 

= 

= 

xEg-l(y) 
fx(n y) (

n 
n 

y
) pn-y(1 _ p)n-(n-y) 

(n) ( Definition 1 .2 .17 ) 
y 

(l _ p)ypn-y . implies (�) = (n�y) 
Thus, we see that Y also has a binomial distribution, but with parameters n and I - p. I I  

If X and Y are continuous random variables, then in some cases it is possible to 
find simple formulas for the cdf and pdf of Y in terms of the cdf and pdf of X and 
the function g. In the remainder of this section, we consider some of these cases. 
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sinl(x) 

y F---�-------+--------�------�----
.� 

Figure 2.1 . 1 .  Graph of the transformation y = sin2(x) of Example 2. 1 .2 

The cdf of Y = g (X) is 

(2. 1 .4) 

Fy (y) = P(Y ::; y) 

= P(g (X) ::; y) 
= P({X E X: g(x) ::; y} ) 

= r fx (x) dx. 
J{XEX: g(x):-::;y} 
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Sometimes there may be difficulty in identifying {x E X: g( x) ::; y} and carrying out 
the integration of fx (x) over this region, as the next example shows. 

Example 2.1.2 (Uniform transformation) Suppose X has a uniform distribu
tion on the interval (0, 2n) , that is, 

fx (x) = { 1/(2n) 0 < x -:= 2n 
o otherWIse. 

Consider Y = sin2 (X) . Then (see Figure 2 .1 . 1 )  

(2.1 .5) 

From the symmetry of the function sin2 (x) and the fact that X has a uniform distri
bution, we have 

so 

(2.1 .6) P(Y ::; y) = 2P(X ::; X l )  + 2P(X2 ::; X ::; n) , 

where Xl and X2 are the two solutions to 

sin2 (x) = y, 0 <  X < n. 
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Thus, even though this example dealt with a seemingly simple situation, the resulting 
expression for the cdf of Y was not simple. I I  

When transformations are made, it  is  important to keep track of the sample spaces 
of the random variables; otherwise, much confusion can arise. When the transforma
tion is from X to Y = g(X) , it is most convenient to use 

(2 .1. 7) X {x: fx (x) > O} and y = {y: y = g (x) for some x E X} . 

The pdf of the random variable X is positive only on the set X and is 0 elsewhere. 
Such a set is called the support set of a distribution or, more informally, the support 
of a distribution. This terminology can also apply to a pmf or, in general, to any 
nonnegative function. 

It is easiest to deal with functions g(x) that are monotone, that is, those that satisfy 
either 

u >  v =?  g(u) > g(v) (increasing) or u < v =?  g(u) > g(v) (decreasing) . 

If the transformation x - g(x) is monotone, then it is one-to-one and onto from 
X - y. That is, each x goes to only one y and each y comes from at most one x 
(one-tO-one) . Also, for Y defined as in (2.1.7), for each y E Y there is an x E X such 
that g(x) y (onto) . Thus, the transformation 9 uniquely pairs xs and ys. If 9 is 

' monotone, then g-1 is single-valued; that is, g-l (y) = x if and only if y = g (x) . If 9 
is increasing, this implies that 

(2.1 .8) 

{x E X: g(x) � y} = {x E X: g-l (g(X» � g- l (y) } 

{x E X: x � g-1 (y) } . 

If 9 is decreasing, this implies that 

(2.1 .9) 

{x E X: g(x) � y} = {x E X: g- l (g(X) ) ;:::: g-1 (y) } 
= {x E X: x ;:::: g-l (y) } . 

(A graph will illustrate why the inequality reverses in the decreasing case.) If g(x) is 
an increasing function, then using (2. 1 .4) ,  we can write 

If g(x) is decreasing, we have 

Fy(y) [00 fx (x) dx = 1 _ Fx (g-l (y») . 
Jg-l (y) 

The continuity of X is used to obtain the second equality. We summarize these results 
in the following theorem. 
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Theorem 2.1.3 Let X htlve cdf Fx(x), let Y g(X), and let X and Y be defined 
as in (2. 1. 7). 
a. If 9 is an increasing function on X, Fy (y) = Fx (g-l (y») for y E y. 

b. If 9 is a decreasing function on X and X is a continuous random variable, Fy (y) 
1 - Fx (g-l (y» ) for y E y. 

Example 2.1 .4 (Uniform-exponential relationship-I) Suppose X ",  fx(x) = 
1 if 0 < x < 1 and 0 otherwise, the uniform(O, I )  distribution. It is straightforward 
to check that Fx(x) = x, 0 < x < 1 .  We now make the transformation Y = g(X) = 
- log X. Since 

d 
dxg(x) d 

dx 
- 1  

log x) = - < 0, 
x 

for 0 < x < 1 ,  

g(x) is a decreasing function. As X ranges between 0 and 1 ,  
and 00, that is, Y = (0, 00) .  For y > 0 ,  y = - log x implies x 
Therefore, for y > 0, 

log x ranges between 0 
e-Y , so g-l (y) e-Y . 

Of course, Fy(y) ° for y � O. Note that it was necessary only to verify that 
g(x) logx is monotone on (0, 1 ) ,  the support of X. I I  

If the pdf of Y is continuous, it can be obtained by differentiating the cdr. The 
resulting expression is given in the following theorem. 

Theorem 2.1 .5 Let X have pdf fx (x) and let Y g(X), where 9 is a monotone 
function. Let X and Y be defined by (2. 1 . 7). Suppose that fx (x) is continuous on X 
and that g- l (y) has a continuous derivative on y. Then the pdf of Y is given by 

fy (y) = { fX (g- l (y» 1 !g-l (y) 1 y E Y 

° otherwise. 
(2 .1 . 10) 

Proof: From Theorem 2 .1 .3 we have, by the chain rule, 

{ fX(g- l (y» !g-l (y) if 9 is increasing 

-fX(g-l (y» d�g-l (y) if 9 is decreasing, 

which can be expressed concisely as (2. 1 . 10) . 

Example 2.1 .6 (Inverted gamma pdf) Let Ix (x) be the gamma pdf 

I( ) - 1 n-l -z!fJ x - (n _ 1 ) !,Bn x e , ° < x < 00,  

o 

where ,B is a positive constant and n is a positive integer. Suppose we want to find the 
pdf of g(X) = 1 /  X. Note that here the support sets X and Y are both the interval 
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(0, 00) .  If we let y = g(x) , then g-l (y) = l/y and tg-l (y) = _1/y2 . Applying the 
above theorem, for y E (0, (0), we get 

_ 1 _ e-1 /({Jy) 
( l )n+l 

- (n - l)!,Bn y , 

a special case of a pdf known as the inverted gamma pdf. 

In many applications, the function 9 may be neither increasing nor decreasing; 
hence the above results will not apply. However, it is often the case that 9 will be 
monotone over certain intervals and that allows us to get an expression for Y = g(X) .  
(If 9 i s  not monotone over certain intervals, then we are in  deep trouble. )  

Example 2.1.7 (Square transformation) Suppose X is a continuous random 
variable. For y > 0, the cdf of Y = X2 is 

Fy(y) = P(Y :0:; y) = p(X2 :0:; y) = P( -.jY :O:; X :0:; .jY). 
Because x is  continuous, we can drop the equality from the left endpoint and obtain 

Fy(y) = P(-.jY < X :O:; .jY) 
= P(X :O:; .jY) - P(X :O:; -.jY) = Fx (.jY) - Fx(-.jY). 

The pdf of Y can now be obtained from the cdf by differentiation: 

jy(y) d 
dyFy (y) 
d 

= dy [Fx (.jY) - Fx(-.jY)] 
1 1 

= 2.jY ix(.jY) + 2.jY ix C-.jY), 

where we use the chain rule to differentiate Fx (.jY) and Fx (-.jY) . Therefore, the 
pdf is 

(2.1 . 11 ) fy (y) 1 
2.jY (fx (.jY) + fx (-.jY)) . 

Notice that the pdf of Y in (2. 1 . 11) is expressed as the sum of two pieces, pieces 
that represent the intervals where g (x) = x2 is monotone. In general, this will be the 
case. 1 1  
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Theorem 2.1.8 Let X have pdf fx(x) , let Y = g(X), and define the sample 
space X as in (2. 1 . 7). Suppose there exists a partition, Ao, AI , · . .  , Ak, of X such that 
P(X E Ao) = 0 and fx (x) is continuous on each Ai ' Further, suppose there exist 
junctions 9

1
(X), . . .  , gk (X), defined on Ai , . . .  , Ak, respectively, satisfying 

i. 9(X) = 9i (X), for x E Ai, 
ii. 9i (x) is monotone on Ai, 

iii. the set y = {y: y = 9i (X) for some x E Ai} is the same for each i = 1 , . . .  , k, 
and 
iv. 9i 1 (y) has a continuous derivative on y, for each i 
Then 

1, . . . , k. 

y E Y 

otherwise. 

The important point in Theorem 2. 1.8 is that X can be divided into sets AI , " " Ak 
such that 9(X) is monotone on each Ai. We can ignore the "exceptional set" Ao since 
P(X E Ao) O. It is a technical device that is used, for example, to handle endpoints 
of intervals. It is important to note that each 9i (X) is a one-to-one transformation 
from Ai onto Y . Furthermore, 9i1 (y) is a one-to-one function from Y onto Ai such 
that, for�y E y, 9i1 (y) gives the unique x = 9i1 (y) E Ai for which 9i(X) = y. (See 
Exercise 2.7 for an extension. ) 
Example 2.1.9 (Normal-chi squared relationship) Let X have the standard 
normal distribution, 

fx(x) 1 -x2/2 
.,fiire , -00 < x < 00 . 

Consider Y X2 . The function 9(X) x2 is monotone on (-00, 0) and on (0, 00) .  
The set Y = (0, 00). Applying Theorem 2.1.8, we take 

The pdf of Y is 

Ao = {O} ; 

(-00, 0),  

(0, 00) , 

911 (y) = -..;y; 
921 (y) = ..;y. 

fy(y) = _1_ e- < - .fiiJ 2/ 2 1 _ _ 1_ 1 + _1_ e - ( .fii) 2/2 J _l_ J .,fiir 2v'Y .,fiir 2v'Y 
_ 1 1 -y/2 - ----e .,fiir v'Y ' 0 <  y < 00. 

The pdf of Y is one that we will often encounter, that of a chi squared random variable 
with 1 degree of freedom. I I 
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J:X(z} 
1 

a. b. 

Figure 2. 1 .2. (a) F(x) strictly increasing; (b) F(x) nondecreasing 

SectIon 2.1 

We close this section with a special and very useful transformation. 

Theorem 2.1.10 (Probability integral transformation) Let X have continuous 
cdf Fx (x) and define the random variable Y as Y = Fx(X). Then Y is uniformly 
distributed on (0, 1 ) ,  that is, P(Y $ y) = y, 0 < y < L 

Before we prove this theorem, we will digress for a moment and look at Fil , the 
inverse of the cdf Fx , in some detail. If Fx is strictly increasing, then Fil is well 
defined by 

(2 .1 . 12) 

However, if Fx is constant on some interval, then Fil is not well defined by (2.1 . 12) ,  
88 Figure 2 .1 .2  illustrates. Any x satisfying Xl $ X $ X2 satisfies Fx(x) = y. 

This problem is avoided by defining Fi 1 (y) for 0 < y < 1 by 

(2.1 .13) Fil (y) = inf {x: Fx (x) ? y} , 

a definition that agrees with (2 .1 . 12) when Fx is nonconstant and provides an Fil 
that is single-valued even when Fx is not strictly increasing. Using this definition, in 
Figure 2 . 1.2b, we have Fil (y) = Xl . At the endpoints of the range of y, Fil (y) can 
also be defined. Fil ( I )  = 00 if Fx(x) < 1 for all X and, for any Fx , Fil (O) = -00. 

Proof of Theorem 2.1 .10: For Y = Fx(X) we have, for 0 < y < 1, 

P(Y $ y) = P(Fx (X) $ y) 
= P(Fi 1 [Fx (X)] $ Fil (y)) (Fi!  is increasing) 
= P(X $ Fil (y)) (see paragraph below) 
= Fx (Fil (y)) (definition of Fx) 
= y. (continuity of Fx) 
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At the endpoints we have P(Y :5 Y) = 1 for y � 1 and P(Y :5 Y) 0 for y :5 0, 
showing that Y has a uniform distribution. 

The reasoning behind the equality 

is somewhat subtle and deserves additional attention. If Fx is strictly increasing, then 
it is true that Fi1 (Fx (x)) = x. (Refer to Figure 2 . 1 .2a. ) However, if Fx is flat, it 
may be that Fi (Fx (x)) #: x. Suppose Fx is as in Figure 2. 1 .2b and let x E [Xl , X2J . 
Then Fil (Fx (x)) Xl for any X in this interval. Even in this case, though, the 
probability equality holds, since P(X :5 x) P(X :5 xd for any X E [Xl , X2J. The 
flat cdf denotes a region of 0 probability (P(Xl < X $ x) = Fx (x) FX(XI ) = 0) .  

o 

One application of Theorem 2. 1.10 is in the generation of random samples from a 
particular distribution. If it is required to generate an observation X from a population 
with cdf Fx, we need only generate a uniform random number V, between 0 and 1 ,  
and solve for X in  the equation Fx(x) u .  (For many distributions there are other 
methods of generating observations that take less computer time, but this method is 
still useful because of its general applicability.) 

2.2 Expected Values 

The expected value, or expectation, of a random variable is merely its average value, 
where we speak of "average" value as one that is weighted according to the probability 
distribution. The expected value of a distribution can be thought of as a measure of 
center, as we think of averages as being middle values. By weighting the values of 
the random variable according to the probability distribution, we hope to obtain a 
number that summarizes a typical or expected value of an observation of the random 
variable. 

Definition 2.2.1 The expected value or mean of a random variable g(X), denoted 
by Eg(X), is 

Eg(X) = { I�oo
g(X) fx (X) dX 

LXEX g(x} fx (x) = LXEX g(x)P(X 
if X is continuous 

x) if X is discrete, 

provided that the integral or sum exists. If Elg(X) 1 = 00, we say that Eg(X) does 
not exist. (Ross 1988 refers to this as the "law of the unconscious statistician." We 
do not find this amusing. ) 
Example 2.2.2 (Exponential mean) Suppose X has an exponential (.\) distri
bution, that is, it has pdf given by 

fx (x) o :5 x < 00, .\ > o. 
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Then E X is given by 

EX 

Example 2.2.3 (Binomial mean) If X has a binomial distribution, its pmf is 
given by 

x 0 , 1 , . . .  , n, 

where n is a positive integer, 0 :::; p :::; 1 , and for every fixed pair n and p the pmf 
sums to 1. The expected value of a binomial random variable is given by 

(the x 0 term is 0).  Using the identity x (� )  = n (;:::i ) ,  we have 

E X  = � n (: = �) p�(1 p)n-x 

= � n (n - 1 ) pY+l (I _ p)n-CY+l) 
11=0 y 

np � (n 1 ) pY(1 p)n-l-y 
y=o 

y 

np, 

(substitute y = x - I) 

since the last summation must be 1 ,  being the sum over all possible values of a 
binomial(n - 1 , p) pmf. I I 
Example 2.2.4 (Cauchy mean) A classic example of a random variable whose 
expected value does not exist is a Cauchy random variable, that is, one with pdf 

1 1 
fx(x) = ;: 1 + x2 ' -00 < x < 00. 

It is straightforward to check that J�oo fx(x) dx = 1 , but EIXI 00. Write 

EIXI = Joo �� dx = � foo x dx. 
- 00  'IT 1 + X 'IT 10 + 
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For any positive number M, 

Thus, 

x dx = log(l + X2 ) 1M 
2 0 

EIX I = lim � [
M � dx = 

1 
lim log(l + M2) 00 M-+oo 'IT Jo 1 + X 'IT M-+oo 

and E X does not exist. 
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The process of taking expectations is a linear operation, which means that the 
expectation of a linear function of X can be easily evaluated by noting that for any 
constants a and b, 

(2.2 .1 )  E( aX + b) = aE X + b. 
For example, if X is binomial(n, p) , so that E X  = np, then 

E(X - np) E X  - np np - np O. 

The expectation operator, in fact, has many properties that can help ease calcu
lational effort. Most of these properties follow from the properties of the integral or 
sum, and are summarized in the following theorem. 

Theorem 2.2.5 Let X be a random variable and let a, b, and c be constants. Then 
for any functions gl (x) and g2 (x) whose expectations exist, 
a. E(agl (X) + bg2 (X) + c) = aE gl (X) + bE g2 (X) + c. 
h. If gl (X) 2: 0 for all x, then E g1 (X) ::::: O. 
c. If gl (X) 2: g2(X) for all x, then Eg1 (X) 2:: Eg2(X) .  
d .  If a s  gl (X) S b for all x ,  then a s  Eg1 (X) S b. 

Proof: We will give details for only the continuous case, the discrete case being 
similar. By definition, 

E(agl (X) + bg2 (X) + c) 

1: ( agl (X) + bg2 (x) + c)fx (x) dx 

= 1: agl (x)fx (x) dx + 1: bg2 (x)fx (x) dx + 1: cfx (x) dx 

by the additivity of the integral. Since a, b, and c are constants, they factor out of 
their respective integrals and we have 

E(agl (X) + bg2 (X) + c) 

= a 1: gl (x) fx (x) dx + b 1: g2(x)fx (x) dx + c 1: fx (x) dx 

aEg1 (X) + bEg2(x) + c, 
establishing (a) . The other three properties are proved in a similar manner. 0 
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Example 2.2.6 (Minimizing distance) The expected value of a random variable 
has another property, one that we can think of as relating to the interpretation of 
E X as a good guess at a value of X. 

Suppose we measure the distance between a random variable X and a constant b by 
(X - b)2 .  The closer b is to X, the smaller this quantity is. We can now determine the 
value of b that minimizes E(X - b)2 and, hence, will provide us with a good predictor 
of X. (Note that it does no good to look for a value of b that minimizes (X - b)2 , 
since the answer would depend on X,  making it a useless predictor of X.) 

We could proceed with the minimization of E(X b? by using calculus, but there 
is a simpler method. (See Exercise 2.19 for a calculus-based proof.) Using the belief 
that there is something special about E X, we write 

E(X - b? = E(X - E X + E X (add ±E X, Which) 
changes nothing 

E « X  - E X) + (E X - b» 2 (group terms) 

= E(X - E X)2  + (E X - b)2 + 2E « X - E X) (E X  - b» , 

where we have expanded the square. Now, note that 

E « X E X) (E X  - b» = (E X - b)E(X - E X )  = 0, 

since (E X - b) is constant and comes out of the expectation, and E(X - E X) 
E X - E X = O. This means that 

(2.2.2) 

We have no control over the first term on the right-hand side of (2.2.2) , and the 
second term, which is always greater than or equal to 0, can be made equal to ° by 
choosing b = E X. Hence, 

(2.2 .3) min E(X - b)2 = E(X - E X)2 .  b 
See Exercise 2.18 for a similar result about the median. I I  

When evaluating expectations of nonlinear functions of X ,  we can proceed in one 
of two ways. From the definition of E g(X), we could directly calculate 

(2.2.4) E g(X) = i: g(x)fx(x) dx. 

But we could also find the pdf Jy (y) of Y = g( X) and we would have 

(2.2.5) E g(X) = E Y  = I: yfy (y) dy. 

Example 2.2.7 (Uniform-exponential relationship-II) Let X have a uniform(O, 1) 
distribution, that is, the pdf of X is given by 

fx(x) = { 01 if 0 ::; x ::; 1 
otherwise, 
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and define a new random variable g(X) 10g X.  Then 

E g(X) = E(- log X) = 11 
- log x dx x - x log xl� = L 
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But we also saw in Example 2 .1 .4 that Y = - log X has cdf 1 - e-Y and, hence, pdf 
fy(Y) d�( l - e-Y) = e-Y , 0 < Y < 00, which is a special case of the exponential 
pdf with A L Thus, by Example 2.2.2, E Y = L I I  

2.3 Moments and Moment Generating Functions 

The vario� moments of a distribution are an important class of expectations. 

Definition 2.3.1 For each integer n, the nth moment of X (or Fx(x)), IL�, is 

IL� = E Xn. 

The nth central moment of X, ILn , is 

where IL = IL� E X. 

Aside from the mean, E X, of a random variable, perhaps the most important 
moment is the second central moment, more commonly known as the variance. 

Definition 2.3.2 The variance of a random variable X is its second central moment, 
Var X E(X - E X)2.  The positive square root of Var X is the standard deviation 
of X. 

The variance gives a measure of the degree of spread of a distribution around its 
mean. We saw earlier in Example 2.2.6 that the quantity E(X b)2 is minimized by 
choosing b = E X. Now we consider the absolute size of this minimum. The inter
pretation attached to the variance is that larger values mean X is more variable. At 
the extreme, if Var X E(X - E X)2 = 0, then X is equal to E X  with probability 
1, and there is no variation in X. The standard deviation has the same qualitative 
interpretation: Small values mean X is very likely to be close to E X, and large val
ues mean X is very variable. The standard deviation is easier to interpret in that 
the measurement unit on the standard deviation is the same as that for the original 
variable X. The measurement unit on the variance is the square of the original unit. 

Example 2.3.3 (Exponential variance) Let X have the exponential(>') distri
bution, defined in Example 2.2.2. There we calculated EX = A, and we can now 
calculate the variance by 

Var X 



. ' �l'\IIi: 
eo TRANSFORMATIONS AND EXPECTATIONS 8eetlon 2.3 

4 

3 

2 

I ·  2 3 x 

Figure 2.3.1 .  Exponential densities for >. = 1 , � ,  � 

To complete the integration, we can integrate each of the terms separately, using 
integration by parts on the terms involving x and x2 • Upon doing this, we find that 
Yar X = >.2 . I I 

We see that the variance of an exponential distribution is directly related to the 
parameter >.. Figure 2.3. 1 shows several exponential distributions corresponding to 
different values of >.. Notice how the distribution is more concentrated about its mean 
for smaller values of >.. The behavior of the variance of an exponential, as a function 
of >., is a special case of the variance behavior summarized in the following theorem. 

Theorem 2.3.4 If X is a random variable with finite variance, then for any con
stants a and b, 

Yar(aX + b) = a2 Yar X. 

Proof: From the definition, we have 

Yar(aX + b) E ( (aX + b) E(aX + b))2 

E(aX - aEX)2 

= a2E(X E X)2 

= a2 Yar X. 

(E(aX + b) = aEX + b) 

o 

It is sometimes easier to use an alternative formula for the variance, given by 

(2.3.1 ) Yar X = E X2 - (E X)2 , 

which is easily established by noting 
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Vax X = E(X - E X)2 = E[X2 2XE X + (E X)2] 

= E X2 2(E X)2 + (E X)2 

= E X2 (EX)2 , 
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where we use the fact that E(XE X) = (E X)(E X) = (E X)2 , since E X is a constant. 
We now illustrate some moment calculations with a discrete distribution. 

Example 2.3.5 (Binomial variance) Let X rv binomial(n, p), that is, 

x 0, 1 ,  . . . , n. 

We have previously seen that E X  np. To calculate Var X we first calculate E X2. 
We have 

(2.3.2) 
n 

E X2 = I>2 (:) pZ ( 1 - pt-z . 
z=o . 

In order to sum this series, we must first manipulate the binomial coefficient in a 
manner similar to that used for E X  (Example 2.2.3) . We write 

(2.3.3) x2 (: ) = x
(x 1)7�n - x) ! 

= xn ( : - � ) . 
The summand in (2.3.2) corresponding to x = ° is 0, and using (2.3.3) , we have 

E X2 n t x (: = � ) pZ ( 1 - p)n-z 

= n I:(y + 1 )  (
n - 1) pll+l (l  _ p)n-l-II 

11=0 y (setting y = x 1 )  

np E y (n - 1) pY (l - p)n- l-y + np I: (n - 1 ) pY(l _ p)n-l-II . 
y� Y 1/=0 Y 

Now it is easy to see that the first sum is equal to (n - l)p (since it is the mean of a 
binomial(n - 1 , p», while the second sum is equal to 1. Hence, 

(2.3.4) 

Using (2.3 .1 ) ,  we have 

Calculation of higher moments proceeds in an analogous manner, but usually the 
mathematical manipulations become quite involved. In applications, moments of or
der 3 or 4 are sometimes of interest, but there is usually little statistical reason for 
examining higher moments than these. 
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We now introduce a new function that is associated with a probability distribution, 
the moment generating function (mgf). As its name suggests, the mgf can be used 
to generate moments. In practice, it is easier in many cases to calculate moments 
directly than to use the mgf. However, the main use of the mgf is not to generate 
moments, but to help in characterizing a distribution. This property can lead to some 
extremely powerful results when used properly. 

Definition 2.3.6 Let X be a random variable with cdf Fx . The moment generating 
function (mgf) of X (or Fx) ,  denoted by Mx(t) ,  is 

Mx(t) = E etX , 

provided that the expectation exists for t in some neighborhood of O. That is, there 
is an h > 0 such that, for all t in -h < t < h, EetX exists. If the expectation does 
not exist in a neighborhood of 0, we say that the moment generating function does 
not exist . 

More explicitly, we can write the mgf of X as 

Mx(t) f: etx fx(x) dx if X is continuous, 

or 

if X is discrete. 

It is very easy to see how the mgf generates moments. We summarize the result in 
the following theorem. 

Theorem 2.3.7 If X has mgf Mx(t) , then 

E Xn = Mi:nJ (O) , 
where we define 

Mj;'J (O) = d
d: Mx(t) i . t 

t=O 
That is, the nth moment is equal to the n th derivative of Mx(t) evaluated at t = O. 

Proof: Assuming that we can differentiate under the integral sign (see the nf'xt 
section) ,  we have 

d d 100 
-d Mx (t) = -d etx fx (x) dx t t - 00  

= f: (!etx) fx(x) dx 

= f: (xetX)fx (x) dx 

= E XetX . 
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Thus, 
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d
d 

MX (t) 1 = E XetX 
t t=O 

= EX. 

Proceeding in an analogous manner, we can establish that 

:; MX{t) !
t=O 

= E X"'etX l t=o E X"'. 
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o 

Example 2.3.8 (Gamma mgf) In Example 2.1 .6 we encountered a special case 
of the gamma pdf, 

f{x) 1 a - I  --.;113 
r (a),8a x e , O < x < oo, a > O, ,8 > 0, 

where r( a) denotes the gamma function, some of whose properties are given in Section 
3.3. The mgf is given by 

(2.3.5) 

We now recognize the integrand in (2.3.5) as the kernel of another gamma pdf. 
(The kernel of a function is the main part of the function, the part that remains 
when constants are disregarded.) Using the fact that, for any positive constants a 
and b, 

is a pdf, we have that 

and, hence, 

(2 .3.6) 

Applying (2.3.6) to (2 .3.5) ,  we have 

1 

if 1 t < p '  
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If t � 1/ p, then the quantity (1/ P) - t, in the integrand of (2.3.5), is nonpositive and 
the integral in (2.3.6) is infinite. Thus, the mgf of the gamma distribution exists only 
if t < l/p. (In Section 3.3 we will explore the gamma function in more detail. )  

The mean of the gamma distribution is given by 

E X =  !Mx(t) i = (1 -C;;:)Ot:+l 1 = ap. 
t=O t=o 

Other moments can be calculated in a similar manner. I I  

Example 2.3.9 (Binomial mgf) For a second illustration of calculating a moment 
generating function, we consider a discrete distribution, the binomial distribution. The 
binomial(n, p) pmf is given in (2. 1 .3) .  So 

n n Mx(t) = L etx (:) p3O (l - p)n-x = L (:) (pet)3O ( l  p)n-3O. 
30=0 30=0 

The binomial formula (see Theorem 3 .2.2) gives 

(2.3.7) 

Hence, letting u = pet and v = 1 - p, we have 

I I 

As previously mentioned, the major usefulness of the moment generating function is 
not in its ability to generate moments. Rather, its usefulness stems from the fact that, 
in many cases, the moment generating function can characterize a distribution. There 
are, however, some technical difficulties associated with using moments to characterize 
a distribution, which we will now investigate. 

If the mgf exists, it characterizes an infinite set of moments. The natural question is 
whether characterizing the infinite set of moments uniquely determines a distribution 
function. The answer to this question, unfortunately, is no. Characterizing the set of 
moments is not enough to determine a distribution uniquely because there may be 
two distinct random variables having the same moments. 

Example 2.3.10 (Nonunique moments) Consider the two pdfs given by 

f (x) = _1_e-(IOg3O)2/2 0 <_ x < 00, l ..fii[x ' 

hex) = h (x) [l + sin(21f logx)] ,  0 � x < 00 .  
(The pdf h is  a special case of a lognormal pdf) 

It can be shown that if Xl ""' h ex) ,  then 

r = 0, 1 , . . .  , 
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Figure 2.3.2. Two pdfs with the same moments: h(x) == i;", e-(lOg :z:)2/2 and h(x) 
/l(x)[l + sin(21r log x)] 

SO Xl has all of its moments. Now suppose tha.t X2 rv h(x). We have 

E X� = 100 xrh {x) [1 + sin{21r logx) ] dx 

E Xr + 100 xr II (x) sin{21r logx) dx. 

However, the transformation y log x r shows that this last integral is that of 
an odd function over (-oo, 00) and hence is equal to 0 for r 0, 1 ,  . . . .  Thus, even 
though Xl and X2 have distinct pdfs, they have the same moments for all r. The two 
pdfs are pictured in Figure 2.3.2. 

See Exercise 2.35 for details and also Exercises 2.34, 2.36, and 2.37 for more about 
mgfs and distributions. I I  

The problem of uniqueness of moments does not occur if  the random variables 
have bounded support. If that is the case, then the infinite sequence of moments 
does uniquely determine the distribution (see, for example, Billingsley 1995, Section 
30) . Furthermore, if the mgf exists in a neighborhood of 0, then the distribution is 
uniquely determined, no matter what its support. Thus, existence of all moments is 
not equivalent to existence of the moment generating function. The following theorem 
shows how a distribution can be characterized. 

Theorem 2.3.11  Let Fx {x) and Fy(y) be two cdfs all of whose moments exist. 
a. If X and Y have bounded support, then Fx{u) = Fy (u) for all u if and only if 

E xr = E yr for all integers r = 0, 1 , 2 , . . . . 
b. If the moment genemting functions exist and Mx{t) My{t) for all t in some 

neighborhood of 0, then Fx{u) Fy(u) for all u. 
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In the next theorem, which deals with a sequence of mgfs that converges, we do 
not treat the bounded support case separately. Note that the uniqueness assump
tion is automatically satisfied if the limiting mgf exists in a neighborhood of 0 (see 
Miscellanea 2 .6.1) .  

Theorem 2.3.12 (Convergence of mgfs) Suppose {Xi, i = 1, 2, . . .  } is a se-
quence of random variables, each with mgf MXi (t) . FUrthermore, suppose that 

for all t in a neighborhood of 0, 

and Mx (t) is an mgf. Then there is a unique cdf Fx whose moments are determined 
by Mx(t) and, for all x where Fx (x) is continuous, we have 

,lim Fx; (x) = Fx(x). 
'-00 

That is, convergence, for It I < h, of mgfs to an mgf implies convergence of cdfs. 

The proofs of Theorems 2.3.1 1  and 2.3.12 rely on the theory of Laplace transforms. 
(The classic reference is Widder 1946, but Laplace transforms also get a comprehen
sive treatment by Feller 1971 . )  The defining equation for Mx (t) ,  that is, 

(2.3.8) Mx(t) = I: etxfx (x) dx, 

defines a Laplace transform (Mx (t) is the Laplace transform of fx (x)) .  A key fact 
about Laplace transforms is their uniqueness. If (2.3.8) is valid for all t such that 
I t I < h, where h is some positive number, then given Mx(t) there is only one function 
fx (x) that satisfies (2.3.8) . Given this fact, the two previous theorems are quite 
reasonable. While rigorous proofs of these theorems are not beyond the scope of this 
book, the proofs are technical in nature and provide no real understanding. We omit 
them. 

The possible non uniqueness of the moment sequence is an annoyance. If we show 
that a sequence of moments converges, we will not be able to conclude formally that 
the random variables converge. To do so, we would have to verify the uniqueness of 
the moment sequence, a generally horrible job (see Miscellanea 2.6.1 ) .  However, if 
the sequence of mgfs converges in a neighborhood of 0, then the random variables 
converge. Thus, we can consider the convergence of mgfs as a sufficient, but not 
necessary, condition for the sequence of random variables to converge. 

Example 2.3.13 (Poisson approximation) One approximation that is usually 
taught in elementary statistics courses is that binomial probabilities (see Example 
2.3.5) can be approximated by Poisson probabilities, which are generally easier to 
calculate. The binomial distribution is characterized by two quantities, denoted by n 
and p. It is taught that the Poisson approximation is valid "when n is large and np 
is small," and rules of thumb are sometimes given. 

The Poisson(.:\) pmf is given by 

e-)..':\x 
P(X = x) = --, -,  x = 0 ,  1 , 2, . . . , 

x. 
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where A is a positive constant. The approximation states that if X I'V binomial(n, p) 
and Y I'V Poisson(A) , with A = np, then 

(2.3.9) P(X= x) � P(Y= x) 

for large n and small np. We now show that the mgfs converge, lending credence to 
this approximation. Recall that 

(2.3.10) 

For the Poisson(A) distribution, we can calculate (see Exercise 2.33) 

My(t) e).(e'- l )  , 
and if we define p = A/n , then Mx (t) � My (t) as n ---. 00. The validity of the 
approximation in (2.3.9) will then follow from Theorem 2.3. 12. 
We first must digress a bit and mention an important limit result, one that has wide 

applicability in statistics. The proof of this lemma may be found in many standard 
calculus texts. 

Lemma 2.3.14 Let al , a2 ,  . . .  be a sequence of numbers converging to a, that is, 
limn-+oo an = a . Then 

lim (1 + an )n 
ea'. 11.-+00 n 

Returning to the example, we have 

because A = np. Now set an a (et l )A , and apply Lemma 2.3.14 to get 

lim Mx (t) e).(et-l) My (t), 11._00 

the moment generating function of the Poisson. 
The Poisson approximation can be Quite good even for moderate p and n. In Figure 

2.3.3 we show a binomial mass function along with its Poisson approximation, with 
A = np. The approximation appears to be satisfactory. I I 

We close this section with a useful result concerning mgfs. 

Theorem 2.3.15 For any amstants a and b, the mgf of the random variable aX + b  
is given by 
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Figure 2.3.3. Poisson (dotted line) approximation to the binomial (solid line), n 15, p = .3 

Proof: By definition, 

proving the theorem. 

E (e(I1XH)t) 
= E (e(I1X)tebt) 

ebtE (e(l1t)X) 
= ebt Mx (at), 

2 .4 Differentiating Under an Integral Sign 

(properties of exponentials) 

(ebt is constant) 

(definition of mgf) 

o 

In the previous section we encountered an instance in which we desired to interchange 
the order of integration and differentiation. This situation is encountered frequently in 
theoretical statistics. The purpose of this section is to characterize conditions under 
which this operation is legitimate. We will also discuss interchanging the order of 
differentiation and summation. 

Many of these conditions can be established using standard theorems from calculus 
and detailed proofs can be found in most calculus textbooks. Thus, detailed proofs 
will not be presented here. 

We first want to establish the method of calculating 

(2.4. 1 ) d lb(O) 
dO f (x, 0) dx, 

11(0) 
where -00 < a(O) , b(O) < 00 for all O. The rule for differentiating (2.4.1) is called 
Leibnitz's Rule and is an application of the Fundamental Theorem of Calculus and 
the chain rule. 
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Theorem 2.4.1 (Leibnitz's Rule) If lex, 0), a(O) , and b(O) are differentiable with 
respect to 0, then 

d lb(9) 
dO 

!(x, O) dx 
a(9) 

!(b(O),  0) :
O

b(O) 
d lb(9) 8 !(a(8) , 8) d()a (O) + 88 lex, 0) dx. 

a(9) 

Notice that if a(8) and b{O) are constant, we have a special case of Leibnitz's Rule: 

d lb 
dO a 

lex, 0) dx 
lb 

8 
a 80 

lex, 8) dx. 

Thus, in general, if we have the integral of a differentiable function over a finite range, 
differentiation of the integral poses no problem. If the range of integration is infinite, 
however, problems can arise. 
Note that the interchange of derivative and integral in the above equation equates 

a partial derivative with an ordinary derivative. Formally, this must be the case since 
the left-hand side is a function of only (), while the integrand on the right-hand side 
is a function of both 0 and x. 
The question of whether interchanging the order of differentiation and integration 

is justified is really a question of whether limits and integration can be interchanged, 
since a derivative is a special kind of limit. Recall that if lex, 8) is differentiable, then 

60 we have 

while 

8 
80 

lex, 8) 1. !(x, 8 + b) !(x , O) 
1m .:......:...-'----':----'--'--'---!.. 6-0 b 

I: :0 
lex, 8) dx = I: l� [!{x, (J + b� - lex, (J) ] dx, 

d 100 
dO -00 

lex, 8) dx lim 100 [lex, (J + b) !(x, (J) ] dx. 6-0 -00 6 

Therefore, if we can justify the interchanging of the order of limits and integration, 
differentiation under the integral sign will be justified. Treatment of this problem 
in full generality will, unfortunately, necessitate the use of measure theory, a topic 
that will not be covered in this book. However, the statements and conclusions of 
some important results can be given. The following theorems are all corollaries of 
Lebesgue's Dominated Convergence Theorem (see, for example, Rudin 1976) . 

Theorem 2.4.2 Suppose the function h(x, y) is continuous at Yo for each x, and 
there exists a function g( x) satisfying 
i. I h(x, y) l ::; g(x) for all x and y, 
ii . J�oo g(x) dx < 00. 

Then 

lim 100 
hex, y) dx = 100 

lim h ex, y) dx. 
11 ..... 110 -00 -00 11-110 
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The key condition in this theorem is the existence of a dominating function g(x), 
with a finite integral, which ensures that the integrals cannot be too badly behaved. 
We can now apply this theorem to the case we are considering by identifying hex, y) 
with the difference (f(x, O + 8) - lex, 0))/8. 

Theorem 2.4.3 Suppose lex, 0) is differentiable at e = eo, that is, 

1• f(x, eo + 8) - f(x, (0 ) 
lm ���--���� 0 .... 0 8 

exists for every x, and there exists a function g(x, (0) and a constant 60 > 0 such that 

I' ,  I lex, 00 + 6� ! (x (0) I ��--u'---"--'--'--'- � g(x, Oo) ,  for all x and 18 1 � 80, 

ii. f�oo g(x, eo) ax < 00 .  

Then 

(2.4.2) 

Condition (i) is similar to what is known as a Lipschitz condition, a condition 
that imposes smoothness on a function. Here, condition (i)  is effectively bounding 
the variability in the first derivative; other smoothness constraints might bound this 
variability by a constant ( instead of a function g), or place a bound on the variability 
of the second derivative of !. 

The conclusion of Theorem 2 .4.3 is a little cumbersome, but it is important to realize 
that although we seem to be treating e as a variable, the statement of the theorem 
is for one value of 0. That is, for each value eo for which f(x, O) is differentiable at 
eo and satisfies conditions (i)  and (ii) , the order of integration and differentiation can 
be interchanged. Often the distinction between () and 00 is not stressed and (2.4.2) is 
written 

(2.4.3) d /00 

d() -00 
f(x, ()) dx 

/00 0 
-00 O() f(x, 0) dx. 

Typically, f(x, ()) is differentiable at all (), not at just one value ()o. In this case, 
condition (i) of Theorem 2.4.3 can be replaced by another condition that often proves 
easier to verify, By an application of the mean value theorem, it follows that, for fixed 
x and ()o ,  and 16 1  � 80, 

fex, Oo + 8) - f(x, (0) = � f(x, ()) I 6 O() 8=00+0' (x) 
for some number 6" (x) , where W (x) 1 � 80. Therefore, condition (i)  will be satisfied 
if we find a g(x, ()) that satisfies condition (ii) and 

(2.4.4) I ! f(x, 0) 10=0' I � g(x, ()) for all eJ such that 10' - ()I � 60 , 
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Note that in (2.4.4) Do is implicitly a function of 0, as is the case in Theorem 2.4.3. 
This is permitted since the theorem is applied to each value of 0 individually. From 
(2.4.4) we get the following corollary. 

Corollary 2.4.4 Suppose f(x, O) is differentiable in () and there exists a function 
g(x, O) such that (iL4.4) is satisfied and J�oo g(x, 0) dx < 00 .  Then (2.4.3) holds. 

Notice that both condition (i) of Theorem 2.4.3 and (2.4.4) impose a uniformity 
requirement on the functions to be bounded; some type of uniformity is generally 
needed before derivatives and integrals can be interchanged. 

Example 2.4.5 (Interchanging integration and differentiation-I) Let X 
have the exponential(A) pdf given by f(x )  = ( l/A)e-x/>" 0 < x < 00, and suppose 
we want to calculate 

(2.4.5) 

for integer n > O. If we could move the differentiation inside the integral, we would 
ha.ve 

(2.4.6) 

roo � xn (.!.) e-x/ >. dx io 8A A 

� 1°O�: (� l) e-X/>' dx 

2- E X"'+! - .!. E X'" 
A2 A '  

To justify the interchange of integration and differentiation, we bound the derivative 
of x"'(l/A)e-x/>,. Now 

(since X > 0) 

For some constant bo sa.tisfying 0 < bo < A, take 

x"'e-x/(>'+6o) ( x ) g(x , A) = (A _ bO)2 � + 1 . 
We then have 

1 � (x"'e�x/>. ) 1
>'=>'/

1 $ g(x, A) for all A' such that lA' A I $ 60, 

Since the exponential distribution has all of its moments, J�oo g(x, A) dx < 00 as long 
as A - 60 > 0, so the interchange of integration and differentiation is justified. I I 

The property illustrated for the exponential distribution holds for a large class of 
densities, which will be dealt with in Section 3.4. 
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Notice that (2.4.6) gives us a recursion relation for the moments of the exponential 
distribution, 

(2.4.7) 

making the calculation of the (n + 1 )st moment relatively easy. This type of relation
ship exists for other distributions. In particular, if X has a normal distribution with 
mean IJ. and variance 1 ,  so it has pdf I(x) = ( 1/v21i)e-(x-/J)3/2 , then 

E XnH IJ.E xn � EXn. 

We illustrate one more interchange of differentiation and integration, one involving 
the moment generating function. 

Example 2.4.6 (Interchanging integration and differentiation-II) Again 
let X have a normal distribution with mean IJ. and variance 1 ,  and consider the mgf 
of X, 

Mx (t) = E etX = _1_ jOO etxe- (x-/J)2/2 dx. 
v'2i -00 

In Section 2.3 it was stated that we can calculate moments by differentiation of Mx (t) 
and differentiation under the integral sign was justified: 

(2.4.8) � Mx (t) � E etX = E ! etX = E(Xetx) . 

We can apply the results of this section to justify the operations in (2.4.8) . Notice 
that when applying either Theorem 2.4.3 or Corollary 2.4.4 here, we identify t with 
the variable () in Theorem 2.4.3. The parameter IJ. is treated as a constant. 

From Corollary 2.4.4, we must find a function g(x, t) , with finite integral, that 
satisfies 

(2.4.9) � etze-(Z-J.l.)3/2 1 :5 g(x, t) for all t' such that It' - t ! :5 60, at t=t' 

Doing the obvious, we have 

I ! etxe-(X-/J)2/2 1 = Ixetxe-(X-J.l.)2/2 / :5 !x !etxe-(x-/J)2/2• 

It is easiest to define our function g(x, t) separately for x � 0 and x < O. We take 

. { ! x !e(t-6o)xe-(z-J.l.)2/2 if x < 0 
g(x, t) = 

2 I xl e(t+Co)xe-(x-J.l.) 12 if x ;::.: O. 

It is clear that this function satisfies (2.4.9); it remains to check that its integral is 
finite. 
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For x � 0 we have 

g (x, t) xe-(",2-2"'(f.\+t+6o)+f.\2)/2 . 
We now complete the square in the exponent; that is, we write 

x2 - 2x(/1- + t + 00) + /1-2 
= x2 2x (/1- + t + 60) + (/1- + t + 60)2 - (/1- + t + 00)2 + /1-2 
= (x (/1- + t + 60))2 + /1-2 - (/1- + t + 60)2 , 

and so, for x � 0, 

g (x, t) = xe-[x-(f.\+t+6o)]11 /2e- [f.\2_(f.\+t+60)2]/2 . 
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Since the last exponential factor in this expression does not depend on x, Jooo g(x, t) dx 
is essentially calculating the mean of a normal distribution with mean /1-+t+60 , except 
that the integration is only over [0, 00). However, it follows that the integral is finite 
because the normal distribution has a finite mean (to be shown in Chapter 3). A 
similar development for x < 0 shows that 

g(x, t) Ix le- [",-Cf.\+t-ooW /2e- [f.\2_(f.\+t-6o)2 ]/2 
and so J�oo g(x, t) dx < 00. Therefore, we ha�e found an integrable function satisfying 
(2.4.9) and the operation in (2.4.8) is justified. I I  

We now turn to the question of when it is possible to interchange differentiation 
and summation, an operation that plays an important role in discrete distributions. 
Of course, we are concerned only with infinite sums, since a derivative can always be 
taken inside a finite sum. 

Example 2.4.7 (Interchanging summation and differentiation) Let X be a 
discrete random variable with the geometric distribution 

P(X x} = 0( 1 - 0):2: , x = O, l , . . . , 0 < 0 < l. 
We have that L::=o 0(1 - 0)'" = 1 and, provided that the operations are justified, 

d 00 
dO L 0(1 0):2: 

",=0 
f !i 0(1 - 0)'" 
x=o dO 

00 

L [( 1  Orr - Ox(l 8rr- 1J 
",=0 

1 00 - '" xO(l - 0)"' . 1 - 0 Lt  ",=0 
Since L::=o 0(1 - O)X = 1 for all 0 < 0 < 1 ,  its derivative is O. So we have 

(2.4. 10) 
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Now the first sum in (2.4.10) is equal to 1 and the second Bum is E X; hence (2.4.10) 
becomes 

or 

1 1 
- - -- E X = O  () 1 () , 

E X = �. 
() 

We have, in essence, summed the series 1::'0 x()(1  - () X  by differentiating. I I  
Justification for taking the derivative inside the summation is more straightforward 

than the integration case. The following theorem provides the details. 

Theorem 2.4.8 Suppose that the series E:'o h«(), x) converges for all () in an 
interval (a, b) of real numbers and 
i. 10 h ( 0 , x) is continuous in 0 for each x, 
ii. 1::'0 10 h( (), x) converges uniformly on every closed bounded subinterval of (a, b) . 
Then 

(2.4. 1 1 )  

The condition of  uniform convergence is the key one to  verify in  order to  establish 
that the differentiation can be taken inside the summation. Recall that a series con
verges uniformly if its sequence of partial sums converges uniformly, a fact that we 
use in the following example. 

Example 2.4.9 (Continuation of Example 2.4.7) To apply Theorem 2.4.8 we 
identify 

and 

h«(), x) = 0(1  _ O)X 

fj 
80 h(O, x) = (1 - () X  Ox( l o)'r-1 , 

and verify that 1::=0 10 h(O, x) converges uniformly. Define Sn(O) by 
n 

Sn(O) = L [( 1  - O)X - ()x(l 8)X-1] . 
x=o 

The convergence will be uniform on [e, d ]  C (0, 1 )  if, given f > 0, we can find an N 
such that 

n >  N � I Sn(O) - Soo(8) 1  < f for all 0 E [e, d ] .  
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Recall the partial sum of the geometric series ( 1 .5.3) . If y "#  1 , then we can write 

Applying this, we have 

n 

1 - yn+ l 

I - y 

n 
L ( 1 O)X = _1 ---'---::--'---

x=o 

L Ox( I - Ort- 1 
n 8 o � --(1  _ O)X � 80 x=o x=o 
d n = -0-L(1 - O)X dO x=o 

( 1 - o)n+l ] 
o . 
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Here we Uustifiably) pull the derivative through the finite sum. Calculating this 
derivative gives 

and, hence, 

n 
0) x-I  = ..!-( I_(,,-I_{)-,-) n_+-<1 )_-::-(,-n_+_I-,-) 0-.:.(_1 _()):..-

n 
o 

1 -Sn (0) = --'----'--
( 1 _ (I _ {))n+l )  (n + I )O(l o)n 

() 
= (n + 1 ) ( 1 - (J)n . 

It is clear that, for 0 < 0 < 1 ,  Soo = limn-+oo Sn «()) = O. Since Sn «()) is continuous, 
the convergence is uniform on any closed bounded interval. Therefore, the series of 
derivatives converges lIDiformly and the interchange of differentiation and summation 
is justified. I I 

We close this section with a theorem that is similar to Theorem 2.4.8, but treats 
the case of interchanging the order of summation and integration. 

Theorem 2.4.10 Suppose the series E;:'=o h(O, x) converges uniformly on [a, b] and 
that, for each x, h( 0, x) is a continuous function of O. Then 

f Ib h «(), x) dO. 
x=o a 



76 TRANSFORMATIONS AND EXPECTATIONS Section 2.5 

2.5 Exercises _________________ � ____ _ 

2.1 In each of the following find the pdf of Y. Show that the pdf integrates to l .  
(a) Y = X3 and Ix(x) = 42x5( 1  x) , 0 < x < 1 

(b) Y = 4X + 3 and Ix(x) 7e-7x, O < x < 00 
(c) Y = X2 and fx(x) = 30x2( 1  x)2 , 0 < X < 1 

(See Example A.0.2 in Appendix A.) 

2.2 In each of the following find the pdf of Y. 
(a) Y X2 and fx(x) 1 , 0 <  x < 1 
(b) Y = log X and X has pdf 

I ( ) = (n + m + 1 )1 n(1 _ )m 
X x I I  x x ,  

n. m. 

(c) Y = eX and X has pdf 

0 <  x < 1 ,  m ,  n positive integers 

Ix(x) == � xe-(x/u)2/2 , 0 < x < 00, (12 a positive constant (12 

2.3 Suppose X has the geometric pmf fx (x) = � ( �)'" , x == 0, 1, 2, . . . . Determine the 
probability distribution of Y X/eX + 1) .  Note that here both X and Y are discrete 
random variables. To specify the probability distribution of Y, specify its pmf. 

2 .4 Let >. be a fixed positive constant, and define the function f(x) by I(x) = �>'e-A" if 
x 2:: 0 and f(x) = � >'eA:r if x < o. 
(a) Verify that I(x) is a pdf. 
(b) If X is a random variable with pdf given by I(x) ,  find P(X < t) for all t. Evaluate 

all integrals. 
(c) Find P( IXI < t) for all t. Evaluate all integrals. 

2.5 Use Theorem 2.1 .8 to find the pdf of Y in Example 2 .1 .2. Show that the same answer 
is obtained by differentiating the cdf given in (2.1 .6) .  

2.6 In each of the following find the pdf of Y and show that the pdf integrates to l.  
(a) fx (x) �e-Ia:I , - 00  < x < OOi Y = IX I3 

(b) Ix(x) == � (x + 1)2, -1 < x < 1; Y 1 - X2 

(c) Ix(x) == � (x + 1)2 , - 1  < x < 1; Y = 1 - X2 if X :5 0 and Y = 1 - X if X >  0 

2.7 Let X have pdf Ix (x) � (x + 1 ) ,  - 1 :5 x :5  2. 
(a) Find the pdf of Y = X2. Note that Theorem 2.1.8 is not directly applicable in 

this problem. 
(b) Show that Theorem 2.1 .8 remains valid if the sets Ao, Al , . . •  , A,. contain X, and 

apply the extension to solve part (a) using Ao == 0, Al == (-2, 0), and A2 (0, 2) .  

2.8 In each of  the following show that the given function is  a cdf and find Fx 1 (y) . { o if x < O (a) Fx (x) == 1 e-a: if x � O  
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(b) 17x(x) 1/2 { e:Z;/2 
1 - (e1-X /2) { e"'/4 (c) 17x (x) = 1 _ (e-'" /4) 

EXERCISES 

if x < 0 
if O $ x < 1 
if 1 $ x 

if x < 0 
if x � 0 
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Note that, in part (c) , 17x (x) is discontinuous but (2.1.13) is still the appropriate 
definition of Yj(l ('II) . 

2.9 If the random variable X has pdf { x-I  I(x) = ;T 1 < x < 3 
otherwise, 

find a monotone function u(x) such that the random variable Y = u(X ) has a 
uniform(O, 1) distribution. 

2.10 In Theorem 2.1 .10 the probability integral transform was proved, relating the uniform 
cdf to any continuous cdr. In this exercise we investigate the relationship between 
discrete random variables and uniform random variables. Let X be a discrete random 
variable with cdf 17x (x) and define the random variable Y as Y = 17x (X). 

(a) Prove that Y is stochastically greater than a uniformeD, 1) ;  that is, if U '" uniform 
(0, 1) ,  then 

F(Y > 'II) ;:::: F(U > 'II) = 1 - 'II, for all y, D < 'II < 1 ,  

F(Y > 'II) > F(U > 'II) = 1 - 'II, for some 'll, 0 < 'II < 1 .  

(Recall that stochastically greater was defined in Exercise 1 .49.) 
(b) Equivalently, show that the cdf of Y satisfies 17y(y) $; 'II for all 0 < 'II < 1 and 

17y(y) < 'II for some 0 < 'II < 1 .  (Hint: Let Xo be a jump point of 17x, and 
define Yo = 17x(xo) .  Show that F(Y $ yo) Yo. Now establish the inequality by 
considering 'll = Yo + f. Pictures of the cdfs will help.) 

2.11 Let X have the standard normal pdf, Ix (x) ( 1/.J2i;:)e-x2/2 • 
(a) Find EX2 directly, and then by using the pdf of Y = X2 from Example 2.1.7 and 

calculating E Y. 
(b) Find the pdf of Y lX I ,  and find its mean and variance. 

2.12 A random right triangle can be constructed in the following manner. Let X be a random 
angle whose distribution is uniform on (D, 7r/2). For each X, construct a triangle as 
pictured below. Here, Y = height of the random triangle. For a fixed constant d, find 
the distribution of Y and E Y. 

(d. y) 
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2.13 Consider a sequence of independent coin flips, each of which has probability p of being 
heads. Define a random variable X as the length of the run (of either heads or ta.ils) 
started by the first trial. (For example, X = 3 if either TTTH or HHHT is observed.) 
Find the distribution of X, and find E X. 

2.14 (a) Let X be a continuous, nonnegative random varia.ble [J(x) 0 for x < 0] . Show 
that 

E X  = 100 [1 - .Fx (x)] dx, 
where Fx(x) is the cdf of X .  

(b) Let X be a discrete random variable whose range i s  the nonnega.tive integers. Show 
that 

00 
E X  = L ( 1 - Fx(k)) , 

1<=0 

where Fx (k) = P(X � k). Compare this with part (a). 
2.15 Betteley (1977) provides an interesting addition law for expectations. Let X and Y be 

any two random variables and define 

X A Y = min(X, Y) and X V Y = max(X, Y) .  

Analogous to the probability law peA U B) peA) + PCB) - peA n B),  show that 

E(X V Y) = E X  + E Y  - E(X A Y). 

(Hint: Establish that X + Y = (X V Y) + (X A Y).) 
2.16 Use the result of Exercise 2 .14 to find the mean duration of certain telephone calls, 

where we assume that the duration, T, of a particular call can be described probabilis
tically by peT > t) = ae-,\,t + ( 1  a)e-I't , where a,  A, and f.J, are constants, 0 < a < 1 ,  
A >  0, f.J, > O. 

2.17 A median of a distribution is a value m such that P(X :.::; m) :::: � and P(X :::: m) :::: � .  
(If X i s  continuous, m satisfies f:.:a I(x) dx = f: I(x) dx = i .) Find the median of 
the following distributions. 

(a) I(x) = 3x2, 0 < X < 1 (b) I(x) = 'Ir(I � x2) ' -00 < X < 00 

2.18 Show that if X is a continuous random variable, then 

min E IX - al = E IX - ml ,  
" 

where m is the median of X (see Exercise 2.17).  
2.19 Prove that 

d 2 - E(X - a) = 0 ¢} E X  = a da 
by differentiating the integral. Verify, using calculus, that a = E X is indeed a mini
mum. List the assumptions about Fx and I x that are needed. 

2.20 A couple decides to continue to have children until a daughter is born. What is the 
expected number of children of this couple? (Hint: See Example 1.5.4.) 

2.21 Prove the "two-way" rule for expectations, equation (2.2.5), which says E g(X) = E Y, 
where Y g(X). Assume that g(x) is a monotone function. 
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2.22 Let X have the pdf 

(a) Verify that f(x) is a pdf. 

2.23 Let X have the pdf 

EXERCISES 

(b) Find E X  and Var X. 

1 f(x) = 2 (1 + x), - 1  < x < 1 .  

(a) Find the pdf of Y = X2 . (b) Find E Y and Var Y . 
. 2.24 Compute E X  and Var X for eaCh of the following probability distributions. 

(a) fx (x) = axa-1 , 0 < x < 1, a >  0 
(b) fx (x) = � ,  x = 1 , 2 , . . .  , n, n > 0 an integer 
(c) fx (x) = � (x - 1)2 , 0 < X < 2 
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2.25 Suppose the pdf fx (x) of a random variable X is an even function. (fx (x) is an even 
function if fx (x) = fx (-x) for every x.) Show that 

(a) X and -X are identically distributed. 
(b) Mx (t) is symmetric about O. 

2.26 Let f(x) be a pdf and let a be a number such that, for all f > 0, f(a + €) = f(a - .. } 
Such a pdf is said to be symmetric about the point a. 
(a) Give three examples of symmetric pdfs. 
(b) Show that if X "" f (x) , symmetric, then the median of X (see Exercise 2.17) is 

the number a. 
(c) Show that if X ""  f(x), symmetric, and E X  exists, then E X  = a. 
(d) Show that f(x) = e-x, x � 0, is not a symmetric pdf. 
(e) Show that for the pdf in part (d) , the median is less than the mean. 

2.27 Let f(x) be a pdf, and let a be a number such that if a � x � y, then f(a) � f(x) � 
f(y), and if a � x � y, then f(a) � f(x) � f(y). Such a pdf is called unimodal with 
a mode equal to a. 
(a) Give an example of a unimodal pdf for which the mode is unique. 
(b) Give an example of a unimodal pdf for which the mode is not unique. 
(c) Show that if f(x) is both symmetric (see Exercise 2.26) and unimodal, then the 

point of symmetry is a mode. 
(d) Consider the pdf f(x) = e-x, x � O. Show that this pdf is unimodal. What is its 

mode? 

2.28 Let Ji-n denote the nth central moment of a random variable X. Two quantities of 
interest, in addition to the mean and variance, are 

Ji-3 Ji-4 i:¥3 = -( )3/2 and i:¥4 = 2 '  Ji-2 Ji-2 

The value i:¥3 is called the skewness and i:¥4 is called the kurtosis. The skewness measures 
the lack of symmetry in the pdf (see Exercise 2.26). The kurtosis, although harder to 
interpret, measures the peakedness or flatness of the pdf. 
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(a) Show that if a pdf is symmetric about a point a, then a3 O. 
(b) Calculate as for f(x) = e-"', x � 0, a pdf that is skewed. to the right. 
(c) Calculate a4 for each of the following pdfs and comment on the peakedness .of 

each. 

f(x) 1 _.,2/2 ../fiie , -00 < x < 00 

1 f(x) = 2 '  - 1  < x < 1 

f(x) -00 < x < 00 

Ruppert ( 1987) uses influence functions (see Miscellanea 10.6.4) to explore further the 
meaning of kurtosis, and Groeneveld ( 1991) uses them to explore skewness; see also 
Balanda and MacGillivray (1988) for more on the interpreta.tion of a4. 

2.29 To calculate moments of discrete distributions, it is often easier to work with the 
factorial moments (see Miscellanea 2.6.2). 

(a) Calculate the factorial moment E[X(X - 1)] for the binomial and Poisson distri
butions. 

(b) Use the results of part (a) to calculate the variances of the binomial and Poisson 
distributions. 

(c) A particularly nasty discrete distribution is the beta-binomial, with pmf 

where n, a, and b are integers, and y 0, 1 , 2, . . .  , n. Use factorial moments to 
calculate the variance of the beta-binomial. (See Exercise 4.34 for another approach 
to this calculation.) 

2.30 Find the moment generating function corresponding to 

(a) f(x) = � , 0 < x < c. 

(b) f(x) 2x � ,  c 
O < x < c. 

(c) f(x) = ip e-I:r-al/.8 , -00 < x < 00, -00 < Q < 00, (3 > O. 

(d) P(X = x) = (r + � l ) pr(l _ p)"', x = O, l, . . .  , O < p < l, r > O an integer. 

2.31 Does a distribution exist for which Mx(t) t/( l  t ) , lt l < I? If yes, find it. If no, 
prove it. 

2.32 Let Mx(t) be the moment generating function of X, and define Set) = log(Mx (t». 
Show that 

d
d S(t) \ = E X  and t t=O 

d2 I dt2 
S(t) = Var X. 

t=O 
2.33 In each of the following cases verify the expression given for the moment generating 

function, and in each case use the mgf to calculate E X and Va.r X. 
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(a) P(X = z) = e-:t,- ,  Mx(t) = eA(e'-l ) ,  z = 0, 1, . . . ; >. > 0 
(b) P(X = z) = p( l - p)"' ,  Mx(t) = 1 (IP ple" x = O, l, . . .  ; O < p < l 
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(c) fx (x) = e-("Jf�(2q2) , Mx(t) el't+<72t2/2, -00 < x < 00; -00 < fJ. < 00, U > 0 

2.34 A distribution cannot be uniquely determined by a finite collection of moments, as this 
example from Romano and Siegel ( 1986) shows. Let X have the normal distribution, 
that is, X has pdf 

f ( ) 
1 _",2/2 X X = 

V21r 
e , -00 < x < 00. 

Define a discrete random variable Y by 

p (Y v'3) p (y 1 -vis) = 6' P (Y 0) 
Show that 

E Xr E yr for r 1 , 2, 3, 4, 5. 

2 
3 '  

(Romano and Siegel point out that for any finite n there exists a discrete, and hence 
nonnormal, random variable whose first n moments are equal to those of X.) 

2.35 Fill in the gaps in Example 2.3.10. 

(a) Show that if Xl "-' h (x), then 

0, 1, . . . . 
So h (x) has all of its moments, and all of the moments are finite. 

(b) Now show that 

100 xr /I (x) sin(21r log z) dx = 0 

for all positive integers r, so EXf E X2' for all r. (Romano and Siegel 1986 
discuss an extreme version of this example, where an entire class of distinct pdfs 
have the same moments. Also, Berg 1988 has shown that this moment behavior 
can arise with simpler transforms of the norma.l distribution such as X3.) 

2.36 The lognormal distribution, on which Example 2.3. 10 is based, has an interesting prop
erty. If we have the pdf 

f(x) = _1_e-C10g ",)2/2, 0 $ x < 00 , 
V21rx 

then Exercise 2.35 shows that all moments exist and are finite. However, this dis
tribution does not have a moment generating function, that is, 

Mx(t) 

does not exist. Prove this. 
2.37 Referring to the situation described in Miscellanea 2.6.3: 

(a) Plot the pdfs h and h to illustrate their difference. 
(b) Plot the cumulant generating functions KI and K2 to illustrate their similarity. 
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(c) Calculate the moment generating functions of the pdfs It and /2. Are they simil&.! 
or different? 

(d) How do the pdfs II and h relate to the pdfs described in Example 2.3.10? 

2.38 Let X have the negative binomial distribution with pmf 

2.39 

where 0 < p < 1 and r > 0 is an integer. 

(a) Calculate the mgf of X .  
(b) Define a new random variable by Y = 2pX. Show that, as p l 0 ,  the mgf of  Y 

converges to that of a chi squared random variable with 2r degrees of freedom by 
showing that 

lim My(t) = (-1 1

2 
) r , 

p .... O - t 
1 

jt j < 2 '  
In each o f  the following cases calculate the indicated derivatives, justifying all opera
tions. 

(a) 1z fo'" e--\t dt 
( ) d r1 1 c Cll Jt ? dx 

(b) 1x fooo e--\t dt 
(d) d roo 1 d 

at h (x _ t)2 x 
2.40 Prove 

(Hint: Integrate by parts or differentiate both sides with respect to p.) 

2.6 Miscellanea ____________________ _ 

2.6. 1 Uniqueness of Moment Sequences 
A distribution is not necessarily determined by its moments. But if L�l ;.tr rk I k! 
has a positive radius of convergence, where X '"" Fx and E xr = J.L�, then the 
moment sequence is unique, and hence the distribution is uniquely determined 
(Billingsley 1995, Section 30) .  Convergence of this sum also implies that the moment
generating function exists in an interval, and hence the moment-generating function 
determines the distribution 
A sufficient condition for the moment sequence to be unique is Carleman's Con
dition (Chung 1974) . If X f'V Fx and we denote E Xr = ;.t�, then the moment 
sequence is unique if 

00 1 
L (;.t' ) 1/(2r) = +00. r=l 2r 

This condition is, in general, not easy to verify. 
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Feller (1971) has 8. very complete development of Laplace transforms, of which mgfs 
are a special case. In particular, Feller shows (similar to Billingsley) that whenever 

Mx(t) 

converges on an interval :c::; t < to , to > 0, the distribution Fx is uniquely 
determined. Thus, when the mgf exists,  the moment sequence determines the dis
tribution Fx uniquely. 

It should be clear that using the mgf to determine the distribution is a difficult 
task. A better method is through the use of characteristic junctions, which are 
explained below. Although characteristic functions simplify the characterization of 
a distribution, they necessitate understanding complex analysis. You win some and 
you lose some. 

£.6.2 Other Generating FUnctions 
In addition to the moment generating function, there are a number of other gen
erating functions available. In most cases, the characteristic function is the most 
useful of these. Except for rare circumstances, the other generating functions are 
less useful, but there are situations where they can ease calculations. 

Cumulant generating junction For a random variable X ,  the cumulant generating 
function is the function log[Mx(t)] . This function can be used to generate the 
cumulants of X ,  which are defined (rather circuitously) as the coefficients in the 
Taylor series of the cumulant generating function (see Exercise 2.32). 

Factorial moment generating junction The factorial moment-generating function 
of X is defined as EtX , if the expectation exists. The name comes from the fact 
that this function satisfies 

E{X(X - 1) ·  · · (X - r +  In, 

where the right-hand side is a factorial moment. If X is a discrete random variable, 
then we can write 

E tX = 2::>1: P(X = x) , 
x 

and the factorial moment generating function is called the probability-generating 
junction, since the coefficients of the power series give the probabilities. That is, 
to obtain the probability that X = k, calculate 

1 dk I k' -d k E tX = P(X = k). . t t=l 
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Characteristic function Perhaps the most useful of aU of these types of functions 
is the characteristic function. The characteristic function of X is defined by 

where i is the complex number p, so the above expectation requires complex 
integration. The characteristic function does much more than the mgf does. When 
the moments of Fx exist, 4>x can be used to generate them, much like an mgf. The 
characteristic function always exists and it completely determines the distribution. 
That is, every cdf has a unique characteristic function. So we can state a theorem 
like Theorem 2.3 . 11 ,  for example, but without qualification. 

Theorem 2.6.1 (Convergence of characteristic functions) Suppose XIe, 
k = 1 , 2, . . . , is a sequence of random variables, each with characteristic function 
4>Xk (t) . Furthermore, suppose that 

lim 4>Xk (t )  4>x (t) , for all t in a neighborhood of 0, Ie-co 
and 4>x (t) is a characteristic function. Then, for all X where Fx (x) is continuous, 

A full treatment of generating functions is given by Feller ( 1968) .  Characteristic 
functions can be found in almost any advanced probability text; see Billingsley 
( 1995) or Resnick ( 1999).  

�.6.3 Does the Moment Generating Function Characterize a Distribution? 
In an article with the above title, McCullagh (1994) looks at a pair of densities 
similar to those in Example 2 .3 . 10 but having mgfs 

It = n(O, 1) and 12 = It (x) [1 + � Sin(21rX)] 
with cumulant generating functions 

He notes that although the densities are visibly dissimilar, the cgfs are virtually 
identical, with maximum difference less than 1 .34 x 10-9 over the entire range 
(less than the size of one pixel) .  So the answer to the question posed in the title 
is "yes for mathematical purposes but a resounding no for numerical purposes." 
In constrast, Waller (1995) illustrates that although the mgfs fail to numerically 
distinguish the distributions, the characteristic junctions do a fine job. (Waller et 
al. 1995 and Lucefio 1997 further investigate the usefulness of the characteristic 
function in numerically obtaining the cdfs.) See Exercise 2.37 for details. 



Chapter 3 

Common Families of Distributions 

"How do all these unusuals strike you, Watson?" 
"Their cumulative effect is certainly considerable, and yet each of them is quite 
possible in itself. " 

3.1 Introduction 

Sherlock Holmes and Dr. Watson 
The Adventure of the Abbey Grange 

Statistical distrihutions are used to model populations; as such, we usually deal with 
a family of distributions rather than a single distribution. This family is indexed 
by one or more parameters, which allow us to vary certain characteristics of the 
distribution while staying with one functional form. For example, we may specify that 
the normal distribution is a reasonable choice to model a particular population, but 
we can'not precisely specify the mean. Then, we deal with a parametric family, normal 
distributions with mean Il, where Il is an unspecified parameter, -00 < Il < 00. 
In this chapter we catalog many of the more common statistical distributions, 

some of which we have previously encountered. For each distribution we will give 
its mean and variance and many other useful or descriptive measures that may aid 
understanding. We will also indicate some typical applications of these distributions 
and some interesting and useful interrelationships. Some of these facts are summarized 
in tables at the end of the book. This chapter is by no means comprehensive in its 
coverage of statistical distributions. That task has been accomplished by Johnson and 
Kotz (1969-1972) in their multiple-volume work Distributions in Statistics and in the 
updated volumes by Johnson, Kotz, and Balakrishnan (1994, 1995) and Johnson, 
Kotz, and Kemp (1992) . 

3.2 Discrete Distributions 

A random variable X is said to have a discrete distribution if the range of X, the 
sample space, is countable. In most situations, the random variable has integer-valued 
outcomes. 
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Discrete Uniform Distribution 

A random variable X has a discrete uniform (1, N) distribution if 

(3.2. 1 )  1 P(X = xlN) = N ' x = 1 , 2 , . . . , N, 

where N is a specified integer. This distribution puts equal mass on each of the 
outcomes 1 , 2, . . .  , N. 
A note on notation: When we are dealing with parametric distributions, as will almost 
always be the case, the distribution is dependent on values of the parameters. In 
order to emphasize this fact and to keep track of the parameters, we write them 
in the pmf preceded by a "I" (given) . This convention will also be used with cdfs, 
pdfs, expectations, and other places where it might be necessary to keep track of the 
parameters. When there is no possibility of confusion, the parameters may be omitted 
in order not to clutter up notation too much. 

To calculate the mean and variance of X, recall the identities (provable by induc
tion) 

We then have 

and 

and so 

Ie 
I> = k(k + 1) 

and 
i=l 2 

t i2 = kek + 1) (2k + 1 )  . . 6 1=1 

N N 1 N + l  EX = LXP(X = xlN) = LX N = -2-x=1 x=l 

N 
EX2 = '""' x2 � = eN + 1) (2N + 1) , L...... N 6 x=I 

Var X = EX2 - (EX)2 

= (N + 1 )�2N + 1 )  _ (N; 1 r 
_ (N + 1 ) (N - 1 ) - 12 

• 

This distribution can be generalized so that the sample space is any range of inte
gers, No, No + 1 , . . .  , NI , with pmf P(X = xlNo , Nd = 1/ (N1 No + 1) . 

Hypergeometric Distribution 

The hypergeometric distribution has many applications in finite population sampling 
and is best understood through the classic example of the urn model. 
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Suppose we have a large urn filled with N balls that are identical in every way 
except that M are red and N - M are green. We reach in, blindfolded, and select 
K balls at random (the K balls are taken all at once, a case of sampling without 
replacement). What is the probability that exactly x of the balls are red? 
The total number of samples of size K that can be drawn from the N balls is (�) ,  

as was discussed in Section 1 .2.3. It is required that x of the balls be red, and this 
can be accomplished in ( r;) ways, leaving (�-=-r;) ways of filling out the sample 
with K x green balls. Thus, if we let X denote the number of red balls in a sample 
of size K, then X has a hypergeometric distribution given by 

(3.2.2) P(X = xlN, M, K) 
( r; ) (���) 

(�) x O, l , . . .  , K. 

Note that there is, implicit in (3.2.2) , an additional assumption on the range of X. 
Binomial coefficients of the form (;) have been defined only if n � r,  and so the 
range of X is additionally restricted by the pair of inequalities 

M � x and N - M � K x, 

which can be combined as 

M (N - K) � x � M. 

In many cases K is small compared to M and N, so the range 0 � x � K will be 
contained in the above range and, hence, will be appropriate. The formula for the 
hypergeometric probability function is usually quite difficult to deal with. In fact, it 
is not even trivial to verify that 

K 
LP(X x=o 

K e:) (�-=-r;) 
x )  = L 

(N) 
= 1 . x=O K 

The hypergeometric distribution illustrates the fact that, statistically, dealing with 
finite populations (finite N) is a difficult task. 
The mean of the hypergeometric distribution is given by 

K (M )  ( N-M) K ( M )  ( N-M) 
EX = LX  

x K -x 
LX 

x K-x 
x=o ( �) X= 1 ( �) (summand is 0 at x 0) 

To evaluate this expression, we use the identities (already encountered in Section 2.3) 

x C:) = M C:�ll ) , 
(�) = � (� - � ) , 
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K M ( M-l ) ( N-M )  K ( M-l ) (N-M)  
EX = "'"' x-I K-x = KM "'"' x-I K-x 

� N ( N- l ) N � ( N-l ) x=1 K K-l x=1 K-l 

Section 3.2 

We now can recognize the second sum above as the sum of the probabilities for another 
hypergeometric distribution based on parameter values N - 1 ,  M - 1 ,  and K - 1 . 
This can be seen clearly by defining y = x - I and writing 

K (M-l )  (N-M )  � x-I K-x 
� (N-1 ) x=1 K-l 

K-l ( M- l )  ( CN-1l -CM-1l ) 
= L 11 

K-1-y 

y=o (Z=i ) 
K'-:l 

= L P(Y = y iN - 1 , M - 1 , K - 1) = 1 ,  
11=0 

where Y is a hypergeometric random variable with parameters N - 1, M - 1, and 
K - 1. Therefore, for the hypergeometric distribution, 

EX = KM . N 
A similar, but more lengthy, calculation will establish that 

V X = KM ( (N - M)(N - K) ) ar N N(N - 1) . 

Note the manipulations used here to calculate EX. The sum was transformed to an
other hypergeometric distribution with different parameter values and, by recognizing 
this fact, we were able to sum the series. 

Example 3.2.1 (Acceptance sampling) The hypergeometric distribution has 
application in acceptance sampling, as this example will illustrate. Suppose a retailer 
buys goods in lots and each item can be either acceptable or defective. Let 

N = # of items in a lot, 

M = # of defectives in a lot. 

Then we can calculate the probability that a sample of size K contains x defectives. 
To be specific, suppose that a lot of 25 machine parts is delivered, where a part is 
considered acceptable only if it passes tolerance. We sample 10 parts and find that 
none are defective (all are within tolerance) .  What is the probability of this event if 
there are 6 defectives in the lot of 25? Applying the hypergeometric distribution with 
N = 25, lv.! = 6,K = 10, we have 

P(X = 0) = ( g)2�i� ) = .028, ( 10 ) 
showing that our observed event is quite unlikely if there are 6 (or more!) defectives 
in the lot. I I  
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Binomial Distribution 
The binomial distribution, one of the more useful discrete distributions, is based on 
the idea of a Bernoulli trial. A Bernoulli trial (named for James Bernoulli, one of 
the founding fathers of probability theory) is an experiment with two, and only two, 
possible outcomes. A random variable X has a BernouUi(p) distribution if 

(3.2.3) X { I  with probability p 
o with probability 1 - p, o :$; p :$; 1 .  

The value X = 1 is often termed a "success" and p i s  referred to as the success 
probability. The value X = 0 is termed a "failure." The mean and variance of a 
Bernoulli (p) random variable are easily seen to be 

EX = 1p + 0( 1 - p) p, 
Var X = ( 1  p)2p + (0 - p)2 ( 1 p ) = p(1 pl . 

Many experiments can be modeled as a sequence of Bernoulli trials, the simplest 
being the repeated tossing of a coin; p probability of a head, X = 1 if the coin 
shows heads. Other examples include gambling games (for example, in roulette let 
X 1 if red occurs, so p = probability of red) , election polls (X = 1 if candidate A 
gets a vote) , and incidence of a disease (p = probability that a random person gets 
infected) . 
If n identical Bernoulli trials are performed, define the events 

Ai = {X 1 on the ith trial}, i = 1 , 2, . . .  , n. 

If we assume that the events A I ,  . . .  , An are a collection of independent events (as is 
the case in coin tossing) , it is then easy to derive the distribution of the total number 
of successes in n trials. Define a random variable Y by 

Y = total number of successes in n trials. 

The event {Y = y} will occur only if, out of the events AI, . .  ' , An' exactly y of 
them occur, and necessarily n - y of them do not occur. One particular outcome (one 
particular ordering of occurrences and nonoccurrences) of the n Bernoulli trials might 
be Al n A2 n A3 n . . .  n An-I n A�. This has probability of occurrence 

P(AI n A2 n A� n ·  . . n An- 1 n A�) = pp(1 - p) • . . . •  p(1 p) 
= pY(l _ p)n-y , 

where we have used the independence of the As in this calculation. Notice that the 
calculation is not dependent on which set of y A.s occurs, only that some set of y 
occurs. Furthermore, the event {Y = y} will occur no matter which set of y AiS 
occurs. Putting this all together, we see that a particular sequence of n trials with 
exactly y successes has probability pY (l - p)n-y of occurring. Since there are ( � ) 
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such sequences (the number of orderings of y Is and n - y Os) , we have 

F(Y = y ln , p) = (;) pY(l - p)n-y , y = 0, 1 , 2, . . .  , n, 

and Y is called a binomial( n, p) random variable. 
The random variable Y can be alternatively, and equivalently, defined in the follow

ing way: In a sequence of n identical, independent Bernoulli trials, each with success 
probability p, define the random variables X}, . . . , Xn by 

The random variable 

with probability p 
with probability 1 p. 

has the binomial(n,p) distribution. 
The fact that E;=o F(Y y) = 1 follows from the following general theorem. 

Theorem 3.2.2 (Binomial Theorem) For any real numbers x and y and integer 
n 2: 0, 

n 
(3.2.4) (x + y)n = L (:) xiyn-i. 

.=0 

Proof: Write 

(x + y)n = (x + y)(x + y) . . . . •  (x + y) ,  

and consider how the right-hand side would be calculated. From each factor (x + y)  we 
choose either an x or y, and multiply together the n choices. For each i = 0, 1, . . . , n, 
the number of such terms in which x appears exactly i times is (7 ) .  Therefore, this 
term is of the form (7 )  xiyn-i and the result follows. 0 

If we take x p and y 1 - p in (3.2.4) , we get 
n 

1 = (p + (1 - p)t = L (:) pi (l _  p)n-i, 
i=O 

and we see that each term in the sum is a binomial probability. As another special 
case, take x = y = 1 in Theorem 3.2.2 and get the identity 
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The mean and variance of the binomial distribution have already been derived in 
Examples 2.2.3 and 2.3.5, so we will not repeat the derivations here. For completeness, 
we state them. If X rv binomial(n, p), then 

EX np, Var X np(l - p). 
The mgf of the binomial distribution was calculated in Example 2.3.9. It is 

Mx {t) = [pet + (1 p)f . 

Example 3.2.3 (Dice probabilities) Suppose we are interested in finding the 
probability of obtaining at least one 6 in four rolls of a fair die. This experiment can be 
modeled as a sequence of four Bernoulli trials with success probability p = � = P(die 
shows 6) . Define the random variable X by 

X total number of 6s in four rolls. 
Then X rv binomial ( 4, i) and 

peat least one 6) = P(X > 0) 1 - P(X = 0) 
= 1 (�) (�r (�r 
= 1 _ (�) 4 
= .518. 

Now we consider another game; throw a pair of dice 24 times and ask for the 
probability of at least one double 6. This, again, can be modeled by the binomial 
distribution with success probability p, where 

1 P = P(roll a double 6) = 36 ' 

So, if Y number of double 6s in 24 rolls, Y rv binomial(24, 16 ) and 
peat least one double 6) = P(Y > 0) 

= 1 - P(Y 0) 

= 1 - (204 ) (;6r (�:r4 
1 (�:r4 
.491. 

This is the calculation originally done in the eighteenth century by Pascal at the 
request of the gambler de Mere, who thought both events had the same probability. 
(He began to believe he was wrong when he started losing money on the second bet . ) 

I I 
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Poisson Distribution 

The Poisson distribution is a widely applied discrete distribution and can serve as a 
model for a number of different types of experiments. For example, if we are modeling 
a phenomenon in which we are waiting for an occurrence (such as waiting for a bus, 
waiting for customers to arrive in a bank) , the number of occurrences in a given 
time interval can sometimes be modeled by the Poisson distribution. One of the basic 
assumptions on which the Poisson distribution is built is that, for small time intervals, 
the probability of an arrival is proportional to the length of waiting time. This makes 
it a reasonable model for situations like those indicated above. For example, it makes 
sense to assume that the longer we wait, the more likely it is that a customer will 
enter the bank. See the Miscellanea section for a more formal treatment of this. 
Another area of application is in spatial distributions, where, for example, the Pois

son may be used to model the distribution of bomb hits in an area or the distribution 
of fish in a lake. 
The Poisson distribution has a single parameter A, sometimes called the intensity 

parameter. A random variable X, taking values in the nonnegative integers, has a 
Poisson(A) distribution if 

(3.2.5) P(X e-AXl: 
x lA) = --, -, x 0, 1 , . . . .  x. 

To see that L�o P(X xlA) = 1, recall the Taylor series expansion of eY , 

Thus, 

x=o x=o 

The mean of X is easily seen to be 
00 

EX = L 
x=o 

00 Ax- 1 
Ae-A L 

( )

' 

x 1 .  x=} 

-A L
OO 

AY Ae -, 
y=o y. 

= A  

(substitute y = x - I) 
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A similar calculation will show that 
VarX = A, 

a.nd so the parameter A is both the mean and the variance of the Poisson distribution. 
The mgf can also be obtained by a straightforward calculation, again following from 

the Taylor series of eY• We have 

Mx(t) = e),(e'-l ) .  

(See Exercise 2.33 and Example 2.3.13.) 

Example 3.2.4 (Waiting time) As an example of a waiting-far-occurrence ap
plication, consider a telephone operator who, on the average, handles five calls every 
3 minutes. What is the probability that there will be no calls in the next minute? At 
least two calls? 
If we let X = number of calls in a minute, then X has a Poisson distribution with 

EX = A i .  So 
P(no calls in the next minute) P(X 0) 

e-5/3 (i)O 
O! 

= e-5/3 = . 189; 

P(at least two calls in the next minute) = P(X ? 2) 
= 1 - P(X = 0) - P(X = 1) 

e-5/3 (�) 1 
1 . 189 -

I ! 
= .496. I I  

Calculation of Poisson probabilities can be done rapidly by noting the following 
recursion relation: 

(3.2.6) P(X A x) = -P(X = x - I) ,  x = 1 , 2, . . . .  x 
This relation is easily proved by writing out the pmf of the Poisson. Similar relations 
hold for other discrete distributions. For example, if Y '" binomial(n, p), then 

(3.2.7) P(Y y) (n - y + 1) 
_p_ P (Y y 1 ) .  

Y I - p  
The recursion relations (3.2.6) and (3.2.7) can be used to establish the Poisson 

approximation to the binomial, which we have already seen in Section 2.3, where the 
approximation was justified using mgfs. Set A np and, if p is small, we can write 

n - y + 1 np p(y - 1) A = � -y 1 - p  Y py Y 
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since, for small p, the terms p(y - 1) and py can be ignored. Therefore, to this level 
of approximation, (3.2.7) becomes 
(3.2.8) ...\ P(Y = y) = -P(Y = y - 1) ,  y 

which is the Poisson recursion relation. To complete the approximation, we need only 
establish that P(X = 0) � P(Y = 0), since all other probabilities will follow from (3.2.8) . Now 

upon setting np ...\ . Recall from Section 2.3 that for fixed .A, limn-+oo(l - (...\jn» n = 
e-)., so for large n we have the approximation 

P(Y 0) (1 �) n � e-). P(X = 0), 
completing the Poisson approximation to the binomial. 
The approximation is valid when n is large and p is small, which is exactly when 

it is most useful, freeing us from calculation of binomial coefficients and powers for 
large n. 

Example 3.2.5 (Poisson approximation) A typesetter, on the average, makes 
one error in every 500 words typeset. A typical page contains 300 words. What is the 
probability that there will be no more than two errors in five pages? 
If we assume that setting a word is a Bernoulli trial with success probability p = 5�0 (notice that we are labeling an error as a "success" ) and that the trials are indepen

dent, then X = number of errors in five pages (1500 words) is binomial(1500, 5�0 ) ' 

Thus 

P(no more than two errors) = P(X -::; 2) 
= 

2 ( 1500) (_1 ) :1:  ( 499 ) 1500-:1: � x 500 500 
= .4230, 

which is a fairly cumbersome calculation. If we use the Poisson approximation with 
.A = 1500( 5�O ) = 3, we have 

P(X -::; 2) � e-3 (1 + 3 + 
3;) .4232. 
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. Negative Binomial Distribution 
The binomial distribution counts the number of successes in a fixed number of Bernoulli 
trials. Suppose that, instead, we count the number of Bernoulli trials required to get 
a fixed number of successes. This latter formulation leads to the negative binomial 
distribution. 

In a sequence of independent Bernoulli(p) trials, let the random variable X denote 
the trial at which the rth success occurs, where r is a fixed integer. Then 

(3.2.9) 

and we say that X has a negative binomial(r,p) distribution. 
The derivation of (3.2.9) follows quickly from the binomial distribution. The event 

{X = x} can occur only if  there are exactly r - 1 successes in the first x 1 trials, 
and a success on the xth triaL The probability of r 1 successes in x - I  trials is the 

binomial probability ( �=i ) pr-l (l _ p)x-r, and with probability p there is a success 

on the xth trial. Multiplying these probabilities gives (3.2.9). 
The negative binomial distribution is sometimes defined in terms of the random 

variable Y = number of failures before the rth success. This formulation is statistically 
equivalent to the one given above in terms of X = trial at which the rth success occurs, 
since Y = X - r. Using the relationship between Y and X,  the alternative form of 
the negative binomial distribution is 

(3.2.10) 

Unless otherwise noted, when we refer to the negative binomial(r,p) distribution we 
will use this pmf. 

The negative binomial distribution gets its name from the relationship 

(_ l)y (-r) (-r l ) (-r 2) · · · · · (-r y + 1) 
��(y�} (�y�-�1 )�(y---27) '-' -"�'(2�) (�1�) � 

which is, in fact, the defining equation for binomial coefficients with negative integers 
(see Feller 1968 for a complete treatment) .  Substituting into (3.2. 10) yields 

which bears a striking resemblance to the binomial distribution. 
The fact that E;'o P(Y y) = 1 is not easy to verify but follows from an extension 

of the Binomial Theorem, an extension that includes negative exponents. We will not 
pursue this further here. An excellent exposition on binomial coefficients can be found 
in Feller ( 1968) . 

The mean and variance of Y can be calculated using techniques similar to those 
used for the binomial distribution: 
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EY = LY r Y pr( 1 _p)1I 00 ( + 1 ) 
11=0 y 

_ �  (r + y - l) ! r ( )11 - {:r (y - l) ! (r - l) !P 1 - P 

= f r (r + � 1
1 ) pr(1 - p)1I . 

11=1 y 

Now write z = y 1, and the sum becomes 

EY = � r (r � z) pr (1 _ p)"+l 
= r (1 - p) f ( ( r + 1 ) 

z
+ z - 1 ) pr+ 1 ( 1  p Y p z=o 

( 1 - p) r--- . p 

(summand is negative) binomial pmf 

Since the sum is over all values of a negative binomial(r + 1 , p) distribution, it equals 
1 . A similar calculation will show 

Var Y = r(1 � p) . 
p 

There is an interesting, and sometimes useful, reparameterization of the negative 
binomial distribution in terms of its mean. If we define the parameter Jk = r ( l -p)/p, 
then EY = Jk and a little algebra will show that 

1 Var Y = J.L + -Jk2• r 
The variance is a quadratic function of the mean. This relationship can be useful in 
both data analysis and theoretical considerations (Morris 1982) . 
The negative binomial family of distributions includes the Poisson distribution as 

a limiting case. If r ...... 00 and p ...... 1 such that r ( 1 - p) ...... >', 0 < >. < 00, then 

EY r ( l p) ...... >., p 

VarY = r(1 - p) ...... >. 
p2 ' 

which agree with the Poisson mean and variance. To demonstrate that the negative 
binomial( r, p) ...... Poisson(>.), we can show that all of the probabilities converge. The 
fact that the mgfs converge leads us to expect this (see Exercise 3. 15). 
Example 3.2.6 (Inverse binomial sampling) A technique known as inverse 
binomial sampling is useful in sampling biological populations . If the proportion of 
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individuals possessing a certain characteristic is p and we sample until we see r such 
individuals, then the number of individuals sampled is a negative binomial random 
va.riable. 
For example, suppose that in a population of fruit flies we are interested in the 

proportion having vestigial wings and decide to sample until we have found 100 such 
flies. The probability that we will have to examine at least N flies is (using (3.2.9)) 

P(X � N) 

For given p and N, we can evaluate this expression to determine how many fruit 
flies we are likely to look at. (Although the evaluation is cumbersome, the use of a 
recursion relation will speed things up.) I I  

Example 3.2.6 shows that the negative binomial distribution can, like the Poisson, 
be used to model phenomena in which we are waiting for an occurrence. In the negative 
binomial case we are waiting for a specified number of successes. 

Geometric Distribution 

The geometric distribution is the simplest of the waiting time distributions and is a 
special case of the negative binomial distribution. If we set r = 1 in (3.2.9) we have 

P(X = xlp) p(1 - pyX- I , X = 1 , 2 , . . .  , 

which defines the pmf of a geometric random variable X with success probability p. 
X can be interpreted as the trial at which the first success occurs, so we are "waiting 
for a success." The fact that 2:�1 P(X x) = 1 follows from properties of the 
geometric series. For any number a with l a l  < 1 ,  

I:OO x - I  _ 1 a - --, 
1 a x==l 

which we have already encountered in Example 1 .5.4. 
The mean and variance of X can be calculated by using the negative binomial 

formulas and by writing X = Y + 1 to obtain 

EX EY + l  1 
p and 1 P VarX = -2- ' 

p 

The geometric distribution has an interesting property, known as the "memoryless" 
property. For integers s > t, it is the case that 

(3.2.1 1) P(X > s iX > t) = P(X > s - t ) ;  
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that is, the geometric distribution "forgets" what has occurred. The probability of 
getting an additional 8 - t failures, having already observed t failures, is the same as 
the probability of observing 8 t failures at the start of the sequence. In other words, 
the probability of getting a run of failures depends only on the length of the run, not 
on its position. 

To establish (3.2. 1 1) ,  we first note that for any integer n, 

(3.2.12) 

and hence 

P(X > n )  P(no successes in n trials) 
= ( 1  p)n, 

P(X > s iX > t) 
P(X > s and X > t) 

P(X > t) 

P(X > s) 
P(X > t) 

= (1 p)S-t 
= P(X > s - t) .  

Example 3.2.7 (Failure times) The geometric distribution is sometimes used to 
model "lifetimes" or "time until failure" of components. For example, if the probability 
is .001 that a light bulb will fail on any given day, then the probability that it will 
last at least 30 days is 

00 
P(X > 30) = L .001 ( 1  - .001):1:-1 = ( .999)30 = .970. II 

3:=31 

The memoryless property of the geometric distribution describes a very special 
"lack of aging" property. It indicates that the geometric distribution is not applicable 
to modeling lifetimes for which the probability of failure is expected to increase with 
time. There are other distributions used to model various types of aging; see, for 
example, Barlow and Proschan ( 1975) .  

3.3 ContinuouS Distributions 

In this section we will discuss some of the more common families of continuous distri
butions, those with well-known names. The distributions mentioned here by no means 
constitute all of the distributions used in statistics. Indeed, as was seen in Section 
1 .6 , any nonnegative, integrable function can be transformed into a pdf. 

Uniform Distribution 

The continuous uniform distribution is defined by spreading mass uniformly over an 
interval [a, b] . Its pdf is given by 

{ � if x E [a, b] 
(3.3 .1 ) f (xla, b) = 

0 
- a 

otherwise. 
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It is easy to check that J: f(x) dx = 1 .  We also have 

EX = lb _X_ dX = 
b + a

; 
a b a 2 

lb (x �)2 (b a )2 
Var X = 

a b � dx = 12 

Gamma Distribution 

99 

The gamma family of distributions is a flexible family of distributions on [0, 00) and 
can be derived by the construction discussed in Section 1 .6. If a is a positive constant, 
the integral 

100 to- 1e-t dt 

is finite. If a is a positive integer, the integral can be expressed in closed form; oth
erwise, it cannot. In either case its value defines the gamma function, 

(3.3.2) 

The gamma function satisfies many useful relationships, in particular, 

(3.3.3) r(a + 1) = oT(a) , a >  0, 

which can be verified through integration by parts. Combining (3.3.3) with the easily 
verified fact that r(l) = 1 , we have for any integer n > 0, 

(3.3.4) r(n) (n - I ) ! .  
(Another useful special case, which will be  seen in  (3.3.15) ,  i s  that r(� )  .Ji.) 

Expressions (3.3.3) and (3.3.4) give recursion relations that ease the problems of 
calculating values of the gamma function. The recursion relation allows us to calculate 
e.ny value of the gamma function from knowing only the values of r(c) , 0 < c :::; 1 . 

Since the integrand in (3.3.2) i s  positive, i t  immediately follows that 

(3.3.5) f(t) 0 <  t < 00, 

is a pdf. The full gamma family, however, has two parameters and can b/6 derived by 
changing variables to get the pdf of the random variable X f3T in (3.3.5) , where f3 
is a positive constant. Upon doing this, we get the gamma(a, f3) family, 

(3.3.6) _ 1 0-1 -x/13 f(xla, f3) - r(a)f3o x e , 0 < x < 00, a >  0, f3 > O. 

The parameter a is known as the shape parameter, since it most influences the peaked
ness of the distribution, while the parameter f3 is called the scale parameter, since 
Illost of its influence is on the spread of the distribution. 
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The mean of the gamma( a, {3) distribution is 

(3.3.7) EX xxo.-1e-x/fJ dx. 
1 1"" r(a){3o. 0 

Section 3.3 

To evaluate (3.3.7), notice that the integrand is the kernel of a gamma(a + 1, (3) pdf. 
From (3.3.6) we know that, for any a, {3 > 0, 

(3.3.8) 100 xOt- l e-xlfJ dx = r(a){3Qc , 

so we have 

= a(3. 

(from (3.3.3)) 

Note that to evaluate EX we have again used the technique of recognizing the 
integral as the kernel of another pdf. (We have already used this technique to calculate 
the gamma mgf in Example 2.3.8 and, in a discrete case, to do binomial calculations 
in Examples 2.2.3 and 2.3.5.) 
The variance of the gamma( a, {3) distribution is calculated in a manner analogous 

to that used for the mean. In particular, in calculating EX2 we deal with the kernel 
of a gamma(a + 2, f3) distribution. The result is 

Var X a{32 . 
In Example 2.3.8 we calculated the mgf of a gamma(a, (3) distribution. It is given 

by 
1 t < � . 

Example 3.3.1 (Gamma-Poisson relationship) There is an interesting rela
tionship between the gamma and Poisson distributions. If X is a gamma( a , {3) random 
variable, where a is an integer, then for any x, 
(3.3.9) P(X $ x ) = P(Y ;::: a), 

where Y '" Poisson(xJ {3). Equation (3.3.9) can be established by successive integra
tions by parts, as follows. Since a is an integer, we write r(a) (a - I) ! to get 
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where we use the integration by parts substitution u tct- 1 ,  dv = e-t//J dt. Contin
uing our evalua.tion, we have 

P(X S x) 

(0: P(Y = o: - l ) ,  

where Y ,...., Poisson(x/t3) . Continuing in this manner, we can establish (3.3.9). (See 
Exercise 3.19.) I I  

There are a number of important special cases of the gamma distribution. If  we set 
0: p/2, where p is an integer, and f3 = 2, then the gamma pdf becomes 

(3.3. 10) 
1 

f(x lp) = x(p/2) - le-x!2 0 < x < 00 ,  
r(p/2)2P/2 ' 

which is the chi squared pdf with p degrees of freedom. The mean, variance, and mgf 
of the chi squared distribution can all be calculated by using the previously derived 
gamma formulas. 

The chi squared distribution plays an important role in statistical inference, es
pecially when sampling from a normal distribution. This topic will be dealt with in 
detail in Chapter 5. 

Another important special case of the gamma distribution is obtained when we set 
Q = 1 .  We then have 

(3.3.1 1 )  f(x /f3) = �e-X!f3! 0 < x < 00, 

the exponential pdf with scale parameter 13. Its mean and variance were calculated in 
Examples 2.2.2 and 2.3.3. 

The exponential distribution can be used to model lifetimes, analogous to the use 
of the geometric distribution in the discrete case. In fact, the exponential distribution 
shares the "memoryless" property of the geometric. If X ,...., exponential(13) , that is, 
with pdf given by (3.3. 1 1 ) ,  then for 8 > t ;?: 0, 

since 

P(X > siX > t) = P(X > s - t) , 

P(X Ix ) = P(X > s ,  X > t) 
> s > t P(X > t) 

P(X > s) 
P(X > t) 
roo 1 -x/f3 dx Js f3e = roo le-x/f3 dx Jt f3 

e-s/f3 
- e-t/f3 

(since s > t)  



102 . COMMON FAMILIES OF DISTRIBUTIONS Section 3.3 

= P(X > s - t) . 
Another distribution related to both the exponential and the gamma families is 

the Weibull distribution. If X ,..., exponential(,8), then Y X1h has a Weibull(-y, ,8) 
distribution, 

(3.3. 12) fY(Y h, (3) = �y'Y-l e-l/'/fJ ,  0 < Y < 00, 'Y >  0, f3 > O. 

Clearly, we could have started with the Weibull and then derived the exponential 
as a special case (-y = 1 ) . This is a matter of taste. The Weibull distribution plays 
an extremely important role in the analysis of failure time data (see Kalbfleisch and 
Prentice 1980 for a comprehensive treatment of tMs topic). The Weibull, in particular, 
is very useful for modeling hazard junctions (see Exercises 3.25 and 3.26). 

Normal Distribution 

The normal distribution (sometimes called the Gaussian distribution) plays a central 
role in a large body of statistics. There are three main reasons for this. First, the 
normal distribution and distributions associated with it are very tractable analytically 
(although this may not seem so at first glance). Second, the normal distribution 
has the familiar bell shape, whose symmetry makes it an appealing choice for many 
population models. Although there are many other distributions that are also bell
shaped, most do not possess the analytic tractability of the normal. Third, there is 
the Central Limit Theorem (see Chapter 5 for details) , which shows that, under mild 
conditions, the normal distribution can be used to approximate a large variety of 
distributions in large samples. 
The normal distribution has two parameters, usually denoted by tt and (12 , which 

are its mean and variance. The pdf of the normal distribution with mean tt and 
variance (12 (usually denoted by nett, (12 ) )  is given by 

(3.3.13) f(xltt, (12) = �
(1 

e-(x-IL)2/(2u2 ) , -00 < x < 00. 

If X rv nett, (12) , then the random variable Z (X - tt) /(1 has a n( 0, 1) distribution, 
also known as the standard normal. This is easily established by writing 

P(Z � z) = P ( X; tt � z) 
= P(X � Z(1 + tt) 
= __ e- (X-IL)2/(2u2 ) dx 1 JZU+IL 

�(1 -00 

= � JZ e _t2 /2 dt, (SUbstitute t = 
x - tt) 

v 271" -00 (1 
showing that P(Z � z) is the standard normal cdf. 
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It therefore follows that all normal probabilities can be ca.lculated in terms of the 

standard normal. FUrthermore, calculations of expected values can be simplified by 
carrying out the details in the nCO, 1) case, then transforming the result to the n(j..l, 0'2) 
case. For example, if Z '" nCO, 1 ) , 

and so, if X ",  n(j..l , 0'2) ,  i t follows from Theorem 2.2.5 that 

EX = E(j..l + a Z) j..l + a EZ = j..l. 

Similarly, we have that Var Z = 1 and, from Theorem 2.3.4, Var X 0'2 . 
We have not yet established that (3.3.13) integrates to l over the whole rea.l line. 

By applying the standardizing transformation, we need only to show that 

Notice that the integrand above is symmetric around 0, implying that the integral 
over (-00, 0) is equal to the integral over (0, (0) . Thus, we reduce the problem to 
showing 

(3.3. 14) 

The function e-z2/2 does not have an anti derivative that can be written explicitly 
in terms of elementary functions (that is, in closed form) , so we cannot perform the 
integration directly. In fact, this is an example of an integration that either you know 
how to do or else you can spend a very long time going nowhere. Since both sides of 
(3.3.14) are positive, the equality will hold if we establish that the squares are equaL 
Square the integral in (3.3.14) to obtain 

(100 e-z2/2dZr = (100 e-t2/2 dt) (100 e-u2/2dU) 
= 100 100 e-(t2+u2)/2 dt du. 

The integration variables are just dummy variables, so changing their names is al
lowed. Now, we convert to polar coordinates. Define 

t r cos (J and u r sin e. 

Then t2 + u2 r2 and dt du r dB dr and the limits of integration become 0 < r < 
00, 0 < e < 1f' /2 (the upper limit on (j is 1f' /2 because t and u are restricted to be 
positive) . We now have 
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(X> (00 3 2 Jo Jo e-(t +u )/2 dt du 

which establishes (3.3. 14). 

= � [_e-r2/2 1:] 

7r 
= 2 ' 

Section 3.3 

This integral is closely related to the gamma function; in fact, by making the 
substitution w = �Z2 in (3.3.14) ,  we see that this integral is essentially r(� ) .  If we 
are careful to get the constants correct, we will see that (3.3.14) implies 

(3.3.15) 

The normal distribution is somewhat special in the sense that its two parameters, 
/-L (the mean) and a2 (the variance) , provide us with complete information about the 
exact shape and location of the distribution. This property, that the distribution is 
determined by /-L and a2 , is not unique to the normal pdf, but is shared by a family 
of pdfs called location--scale families, to be discussed in Section 3.5. 
Straightforward calculus shows that the normal pdf (3.3.13) has its maximum at 

x = /-L and inflection points (where the curve changes from concave to convex) at 
/-L ± a. Furthermore, the probability content within 1 ,  2, or 3 standard deviations of 
the mean is 

P(IX /-LI � a) = P( IZI � 1) .6826, 
P( IX - /-LI � 2a) = P(IZI � 2) = .9544, 
P( IX - /-LI � 3a) = P( IZ I � 3) = .9974, 

where X rv n(/-L, (2) ,  Z '" nCO, 1 ) ,  and the numerical values can be obtained from 
many computer packages or from tables. Often, the two-digit values reported are .68, 
.95, and .99, respectively. Although these do not represent the rounded values, they 
are the values commonly used. Figure 3.3. 1 shows the normal pdf along with these 
key features. 
Among the many uses of the normal distribution, an important one is its use as an 

approximation to other distributions (which is partially justified by the Central Limit 
Theorem) . For example, if X rv binomial(n, p) , then EX np and Var X = np(l -p) , 
and under suitable conditions, the distribution of X can be approximated by that of a 
normal random variable with mean /-L np and variance a2 = np( 1 -p) . The "suitable 
conditions" are that n should be large and p should not be extreme (near 0 or 1 ) .  We 
want n large so that there are enough (discrete) values of X to make an approximation 
by a continuous distribution reasonable, and p should be "in the middle" so the 
binomial is nearly symmetric, as is the normal. As with most approximations there 
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Figure 3.3.1.  Standard normal density 

are no absolute rules, and each application should be checked to decide whether the 
approximation is good enough for its intended use. A conservative rule to follow is 
that the approximation will be good if min(np, n(l - p)) � 5. 

Example 3.3.2 (Normal approximation) Let X rv binomial(25, .6) . We can 
a.pproximate X with a normal random variable, Y, with mean J.t = 25(.6) 15 and 
standard deviation (J' ( (25) ( .6) ( .4)) 1/2 2 .45. Thus 

P(X $ 13) � P(Y $ 13) = P (Z $ 
1;�;5) = P(Z $ - .82) = .206, 

while the exact binomial calculation gives 

showing that the normal approximation is good, but not terrific. The approximation 
can be greatly improved, however, by a "continuity correction." To see how this works, 
look at Figure 3.3.2, which shows the binomial(25, .6) pmf and the n(15, (2.45)2 ) 
pdf. We have drawn the binomial pmf using bars of width 1 , with height equal to 
the probability. Thus, the areas of the bars give the binomial probabilities. In the 
approximation, notice how the area of the approximating normal is smaller than the 
binomial area (the normal area is everything to the left of the line at 13, whereas 
the binomial area includes the entire bar at 13 up to 13.5). The continuity correction 
adds this area back by adding ! to the cutoff point. So instead of approximating 
P(X $ 13) , we approximate the equivalent expression (because of the discreteness), 
P(X $ 13.5) and obtain 

P(X $ 13) = P(X $ 13.5) :::::: P(Y $ 13.5} = P(Z $ -.61) = .271, 
a much better approximation. In general, the normal approximation with the continu
ity correction is far superior to the approximation without the continuity correction. 
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7 9 1 1  13 1.5 17 19 21 23 

Figure 3.3.2. Normal(15, (2.45)2) approximation to the binomial(25, .6) 

We also make the correction on the lower end. If X "" binomial ( n, p) and Y "" 

n(np, np( l  p» , then we approximate 

Beta Distribution 

P(X $ x) � P(Y $ x +  1/2) , 

P(X � x) � P(Y ? x - 1/2) .  

The beta family of distributions is a continuous family on (0, 1) indexed by two 
parameters. The beta( 0', (3) pdf is 

1 (3.3 .16) f (xIO', {3) =  
B(0', {3)

xO-1 ( 1 - x),B- 1 , O < x < l, 0' > 0, (3 > 0, 

where B(  0', (3) denotes the beta function, 

B(O', {3) 11 
xO-I ( l  X),B-l dx. 

The beta function is related to the gamma function through the following identity: 

(3.3. 17) B (  
f.l) = r(O')r({3) 0', fJ r(O' + (3) ' 

Equation (3.3 .17) is very useful in dealing with the beta function, allowing us to take 
advantage of the properties of the gamma function. In fact, we will never deal directly 
with the beta function, but rather will use (3 .3.17) for all of our evaluations. 

The beta distribution is one of the few common "named" distributions that give 
probability 1 to a finite interval, here taken to be (0, 1 ) .  As such, the beta is often used 
to model proportions, which naturally lie between 0 and 1. We will see illustrations 
of this in Chapter 4. 

Calculation of moments of the beta distribution is quite easy, due to the particular 
form of the pdf. For n > -0' we have 

EXn = 
1 fl 

xnxo- l ( l  X),B- l  dx 
B (O', (3) 10 

= 1 t x(n+n)- l ( l  x).B- l  dx. B(O', (3) 10 
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Figure 3.3.3. Beta densities 

We now recognize the integrand as the kernel of a beta( a + n, (3) pdf; hence, 

(3.3.18) 
B(O' + n, (3) 

B (O', (3) 
r(O' + n)r(O' + (3) 
r(O' + (3 + n)r(O') ' 
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Using (3.3.3) and (3.3. 18) with n 1 and n 2, we calculate the mean and variance 
of the beta(O', (3) distribution as 

EX 
a 

0' + (3  
and Var X = 0'(3 

(a + (3)2 (0' + (3 + 1 ) " 

As the parameters a and (3 vary, the beta distribution takes on many shapes, as 
shown in Figure 3.3.3. The pdf can be strictly increasing (a > 1 ,  (3 = 1 ) ,  strictly 
decreasing (a = 1 ,  (3 > 1 ) ,  U-shaped (a < 1 ,  (3 < 1 ) ,  or unimodal (a > 1 ,  (3 > 1 ) .  The 
case a (3 yields a pdf symmetric about � with mean � (necessarily) and variance 
(4(20' + 1 ) )- 1 .  The pdf becomes more concentrated as a increases, but stays symmet
ric, as shown in Figure 3.3.4. Finally, if D: (3 = I , the beta distribution reduces to 
the uniform(O, 1 ) ,  showing that the uniform can be considered to be a member of the 
beta family. The beta distribution is also related, through a transformation, to the 
F distribution, a distribution that plays an extremely important role in statistical 
analysis (see Section 5.3) . 

Cauchy Distribution 

The Cauchy distribution is a symmetric, bell-shaped distribution on (-oo, oo) with 
pdf 

(3.3.19) f(xIO) 
1 1 
IT 1 + (x 

-00 < x < 00, -00 < () < 00. 

(See Exercise 3.39 for a more general version of the Cauchy pdf.) To the eye, the 
Cauchy does not appear very different from the normal distribution. However, there 
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Figure 3.3.4. Symmetric beta densities 

is a very great difference, indeed. As we have already seen in Chapter 2, the mean of 
the Cauchy distribution does not exist; that is, 

(3.3.20) E \X \ = JOO ..!.. \x \ dx 00. -00 1f 1 + (x 0)2 

It is easy to see that (3.3.19) defines a proper pdf for all O. Recall that 1t arctan (t) 
( 1  + t2) - l j  hence, 

Joo 1 1 
- 00 1f 1 + (x 

since arctan( ±oo) = ±1f /2. 

1 
100 

0)2 
dx = ;;: arctan(x - 0) -00 = 1 ,  

Since E \X j = 00, i t  follows that no  moments of the Cauchy distribution exist or, 
in other words, all absolute moments equal 00. In particular, the mgf does not exist. 

The parameter e in (3.3.19) does measure the center of the distribution; it is the 
median. If X has a Cauchy distribution with parameter 0, then from Exercise 3.37 
it follows that P (X � 0) = !, showing that 0 is the median of the distribution. 
Figure 3.3.5 shows a Cauchy(O) distribution together with a nCO, 1 ) ,  where we see the 
similarity in shape but the much thicker tails of the Cauchy. 

The Cauchy distribution plays a special role in the theory of statistics. It repre
sents an extreme case against which conjectures can be tested. But do not make the 
mistake of considering the Cauchy distribution to be only a pathological case, for it 
has a way of turning up when you least expect it. For example, it is common practice 
for experimenters to calculate ratios of observations, that is, ratios of random vari
ables. (In measures of growth, it is common to combine weight and height into one 
measurement weight-for-height, that is, weight /height.) A surprising fact is that the 
ratio of two standard normals has a Cauchy distribution (see Example 4.3.6) . Taking 
ratios can lead to ill-behaved distributions. 
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Figure 3.3.5. Standard normal density and Cauchy density 

Lognormal Distribution 

If X is a random variable whose logarithm is normally distributed (that is, log X rv 
n(I-L, O'2) ) ,  then X has a lognormal distribution. The pdf of X can be obtained by 
straightforward transformation of the normal pdf using Theorem 2.1 .5 ,  yielding 

(3.3.21) 

f(x I I-L, 0'2) �o' �e-{lOg X-fJ.) 2 / (2u2 ) ,  0 < x < 00, -00 < I-L < 00, a > 0, 

for the lognormal pdf The moments of X can be calculated directly using (3.3.21) ,  
or by exploiting the relationship to tbe normal and writing 

EX = Ee10gX 
= EeY 
= efJ.+(u2 /2) . 

The last equality is obtained by recognizing the mgf of the normal distribution (set 
t 1 ,  see Exercise 2.33) .  We can use a similar technique to calculate EX2 and get 

Var X = e2(fJ.+u2) e2fJ.+a2 . 
The lognormal distribution is similar in appearance to the gamma distribution, as 

Figure 3.3.6 shows. The distribution is very popular in modeling applications when 
the variable of interest is skewed to the right. For example, incomes are necessarily 
skewed to the right, and modeling with a lognormal allows the use of normal-theory 
statistics on log(income) ,  a very convenient circumstance. 

Double Exponential Distribution 

The double exponential distribution is formed by reflecting the exponential distribution 
around its mean. The pdf is given by 

1 (3.3.22) f(xlI-L, O') = _e-lx-fJ.1 /a , -00 < x < 00, -00 < I-L < 00, a >  O.  
20' 
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Figure 3.3.6. (a) Some lognormal densities; (b) some gamma densities 

The double exponential provides a symmetric distribution with "fat" tails (much 
fatter than the normal) but still retains all of its moments. It is straightforward to 
calculate 

EX = f.L and VarX = 2a2 • 

The double exponential distribution is not bell-shaped. In fact ,  it has a peak (or 
more formally, a point of nondifferentiability) at x f.L. When we deal with this 
distribution analytically, it is important to remember this point. The absolute value 
signs can also be troublesome when performing integrations, and it is best to divide 
the integral into regions around x = f.L:  
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(3.3.23) 

EXPONENTIAL FAMILIES 

EX = [00 �e-lx-�l/u dx 1-00 20" 

1� �e(X-Il)/a dx + roo �e-(:I!-jJ.)/u dx. 
-00 20" } jJ. 20" 
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Notice that we can remove the absolute value signs over the two regions of integration. 
(This strategy is useful, in general, in dealing with integrals containing absolute values; 
divide up the region of integration so the absolute value signs can be removed.) 
Evaluation of (3.3.23) can be completed by performing integration by parts on each 
integral. 

There are many other continuous distributions that have uses in different statis
tical applications, many of which will appear throughout the rest of the book. The 
comprehensive work by Johnson and co-authors, mentioned at the beginning of this 
chapter, is a valuable reference for most useful statistical distributions. 

3.4 Exponential Families 

A family of pdfs or pmfs is called an exponential family if it can be expressed as 

(3.4. 1 ) 

Here h(x) � 0 and tl (X), . . .  , tk(X) are real-valued functions of the observation x (they 
cannot depend on 8), and c(8) � 0 and Wl (8), . . .  , wk(8) are real-valued functions of 
the possibly vector-valued parameter 8 (they cannot depend on x). Many common 
families introduced in the previous section are exponential families. These include the 
continuous families-normal, gamma, and beta, and the discrete families-binomial, 
Poisson, and negative binomial. 

To verify that a family of pdfs or pmfs is an exponential family, we must identify the 
functions h(x), c(8) , wi(8) , and ti(X) and show that the family has the form (3.4.1 ) .  
The next example illustrates this. 

Example 3;4.1 (Binomial exponential family) Let n be a positive integer and 
consider the binomial( n, p) family with 0 < p < 1 .  Then the pmf for this family, for 
x 0, . . . , n and 0 < p < 1 ,  is 

j(x lp) = (:) pX(1 _ p)n-x 

(3.4.2) (: ) ( 1  p)n (G)X 
= (:) ( 1 - p)n exp (log (

1 � 
p
) x) . 
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h(X) = { ( � )  x = O, .
.
. .  , n  

o otherWIse, 
c(p) = ( l - p)n , O < p < l, 

WI (P) = log C�
p) ' O < p < l , and tI (X) = X. 

Then we have 

(3.4.3) f(x lp) = h(x)c(p) exp[wI (P) tI (x)] , 

Section 3.4 

which is of the form (3.4.1)  with k = 1. In particular, note that h(x) > 0 only if 
x = 0, . . . , n and c(p) is defined only if 0 < p < 1 .  This is important, as (3.4.3) must 
match (3.4.2) for all values of x and is an exponential family only if 0 < p < 1 (so the 
functions of the parameter are only defined here) .  Also, the parameter values p = 0 
and 1 are sometimes included in the binomial model, but we have not included them 
here because the set of x values for which f(xlp) > 0 is different for p = 0 and 1 than 
for other p values. I I  

The specific form of (3.4. 1) results in exponential families having many nice math
ematical properties. But more important for a statistical model, the form of (3.4.1) 
results in many nice statistical properties. We next illustrate a calculational shortcut 
for moments of an exponential family. 

Theorem 3.4.2 
then 

(3.4.4) 

If X is a random variable with pdf or pmf of the form (3·4· 1), 

Although these equations may look formidable, when applied to specific cases they 
can work out quite nicely. Their advantage is that we can replace integration or 
summation by differentiation, which is often more straightforward. 

Example 3.4.3 (Binomial mean and variance) From Example 3.4.1 we have 

d d p 1 
-d WI (P) = -d 10g -1 - = 

(1 ) p p - p  p - p  

d d -n 
- log c(p) = -n log( l - p) = -� • 1 - p 

and thus from Theorem 3.4.2 we have 

E ( 1 X) _ n 
p(l - p) -

1 - p 
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and a bit of rearrangement yields E(X) np. The variance identity works in a similar 
manner. " 

The proof of Theorem 3.4.2 is a calculus excursion and is relegated to Exercise 3.3l.  
See also Exercise 3.32 for a special case. 

We now look at another example and some other features of exponential families. 

Example 3.4.4 (Normal exponential family) Let f(xip., 0-2) be the n(p., 0-2) 
family of  pdfs, where 6 = (p., 0-) ,  - 00  < p. < 00 ,  0- > O. Then 

(3.4.6) 

Define 

Then 

1 ( X - p.)2 ) -- exp -../iiio- 20-2 

1 ( p.2 ) ( X2 p.x) -- exp - - exp - - + - . ../iiio- 20-2 20-2 0-2 

hex) = 1 for all Xj 

1 (_p.2 ) c( 6) = c(p., 0-) = ../iiio- exp 
20-2 ' 

-00 < p. < 00, 0- > 0; 

1 
Wl(P., o-) = 2' 0- > OJ 0-

W2(P., 0-) 
p. 

0- > OJ 
0-2 ' 

tl (X) = -x2/2j 

which is the form (3.4 .1)  with k = 2. Note again that the parameter functions are 
defined only over the range of the parameter. I I  

In general, the set of x values for which f(xI6) > 0 cannot depend on 6 in an 
exponential family. The entire definition of the pdf or pmf must be incorporated into 
the form (3.4. 1 ) .  This is most easily accomplished by incorporating the range of x 
into the expression for f(xI6) through the use of an indicator function. 

Definition 3.4.5 The indicator function of a set A, most often denoted by lA(x) , 
is the function 

{ I x  E A lA (x) = 
0 x ¢ A. 

An alternative notation is l(x E A). 

Thus, the normal pdf of Example 3.4.4 would be written 
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Since the indicator function is a function of only x ,  it can be incorporated into the 
function hex) , showing that this pdf is of the form (3.4.1 ) .  

From (3.4.1) ,  since the factor exp( · )  i s  always positive, i t  can be seen that for 
any 0 E e, that is, for any 0 for which c(O) > 0, {x : !(x IO) > O} {x : hex) > 
O}  and this set does not depend on O. So, for example, the set of pdfs given by 
!(xIO) f)-I exp(l - (x/f))) ,  0 < 0 < x < 00, is not an exponential family even 
though we can write f)- l exp(l - (x/f))) h(x)c(f)) exp(w(O)t(x) ) ,  where hex) = el , 
c(O) = 0-1 , w(f)) f)-I , and t(x) = -x. Writing the pdf with indicator functions 
makes this very clear. We have 

!(xIO) = 0-1 exp (1 - (�) ) 1[6,00) (x). 

The indicator function cannot be incorporated into any of the functions of (3.4.1 ) since 
it is not a function of x alone, not a function of (J alone, and cannot be expressed as 
an exponentiaL Thus, this is not an exponential family. 

An exponential family is sometimes reparameterized as 

(3.4.7) 

Here the hex) and ti(X) functions are the same as in the original parameteriza
tion (3.4.1) . The set 'H {TJ (TJb " " TJk) : J�oo hex) exp (2::7=1 TJiti (X)) dx < oo} 
is called the natural parameter space for the family. (The integral is replaced by a 
sum over the values of x for which hex) > 0 if X is discrete. )  For the values of 
TJ E 'H, we must have c"' (TJ) = [J�ooh(x) exp (L�l TJiti (X)) dxr l 

to ensure that 
the pdf integrates to 1. Since the original !(xIO) in (3.4.1 )  is a pdf or pmf, the set 
{TJ = (WI (9) , . . .  , Wk (9)) : 9 E e }  must be a subset of the natural parameter space. 
But there may be other values of TJ E 'H also. The natural parameterization and the 
natural parameter space have many useful mathematical properties. For example, 'H 
is convex. 

Example 3.4.6 (Continuation of Example 3.4.4) To determine the natural 
parameter space for the normal family of distributions, replace Wi (p" 0') with TJi in 
(3.4.6) to obtain 

(3.4.8) 

The integral will be finite if and only if the coefficient on x2 is negative. This means 
TJl must be positive. If TJl > 0, the integral will be finite regardless of the value 
of TJ2 . Thus the natural parameter space is { (TJI , TJ2 ) : TJl > 0, -00 < TJ2 < oo} . 

Identifying (3.4.8) with (3.4.6) , we see that TJ 2 = p,/0'2 and TJl = 1/0'2 . Although 
natural parameters provide a convenient mathematical formulation, they sometimes 
lack simple interpretations like the mean and variance. I I 
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In the representation (3.4.1 )  it is often the case that the dimension of the vector 
8 is equal to k, the number of terms in the sum in the exponent. This need not be 
so, and it is possible for the dimension of the vector 8 to be equal to d < k. Such an 
exponential family is called a curved exponential family. 

Definition 3.4.1 A curved exponential family is a family of densities of the form 
(3.4.1 )  for which the dimension of the vector 8 is equal to d < k. If d = k, the family 
is a full exponential family. (See also Miscellanea 3.8.3.) 

Example 3.4.8 (A curved exponential family) The normal family of Example 
3.4.4 is a full exponential family. However, if we assume that a2 p,2 , the family 
becomes curved. (Such a model might be used in the analysis of variance; see Exercises 
11 . 1  and 1 1 .2 .) We then have 

f(xIJL) 

(3.4.9) 

---=
l
= exp ( (x - JL)2 ) J27rJL2 2JL2 

k exp (-�) exp (- 2�2 + �) . 
For the normal family the full exponential family would have parameter space 

(JL, a2) = � x (0, 00), while the parameter space of the curved family (JL, a2) (JL, JL2) 
is a parabola. I I 

Curved exponential families are useful in many ways. The next example illustrates 
a simple use. 

Example 3.4.9 (Normal approximations) In Chapter 5 we will see that if 
Xl ! " " Xn is a sample from a Poisson(A) popUlation, then the distribution of X = 
EiXdn is approximately 

X rv n(A,  A/n) , 

a curved exponential family. 
The n(A, A/n) approximation is justified by the Central Limit Theorem (Theorem 

5.5.14) . In fact, we might realize that most such CLT approximations will result in 
a curved normal family. We have seen the normal binomial approximation (Example 
3 .3.2) : If Xl , . . . , Xn are iid Bernoulli(p) , then 

X ,..... n(p,p(l  p)/n), 

approximately. For another illustration, see Example 5.5.16. 

Although the fact that the parameter space is a lower-dimensional space has some 
influence on the properties of the family, we will see that curved families still enjoy 
many of the properties of full families. In particular, Theorem 3.4.2 applies to curved 
exponential families. Moreover, full and curved exponential families have other sta
tistical properties, which will be discussed throughout the remainder of the text. For 
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example, suppose we have a large number of data values from a population that has 
a pdf or pmf of the form (3.4. 1 ) .  Then only k numbers (k = number of terms in the 
sum in (3.4.1 »  that can be calculated from the data summarize all the information 
about 0 that is in the data. This "data reduction" property is treated in more detail 
in Chapter 6 (Theorem 6.2. 10) , where we discuss sufficient statistics. 

For more of an introduction to exponential families, see Lehmann ( 1986, Section 2.7) 
or Lehmann and Casella ( 1998, Section 1.5 and Note 1 . 10.6) . A thorough introduction, 
at a somewhat more advanced level, is given in the classic monograph by Brown 
( 1986) . 

3.5 Location and Scale Families 

In Sections 3.3 and 3.4, we discussed several common families of continuous distribu
tions. In this section we discuss three techniques for constructing families of distri
butions. The resulting families have ready physical interpretations that make them 
useful for modeling as well as convenient mathematical properties. 

The three types of families are called location families, scale families, and location
scale families. Each of the families is constructed by specifying a single pdf, say f(x), 
called the standard pdf for the family. Then all other pdfs in the family are generated 
by transforming the standard pdf in a prescribed way. We start with a simple theorem 
about pdfs. 

Theorem 3.5.1 Let f(x) be any pdf and let J.L and 0' > 0 be any given constants. 
Then the function 

g(x lJ.L, O') -;
1 

f (x 
-0' 

J.L) 
is a pdf. 

Proof: To verify that the transformation has produced a legitimate pdf, we need to 
check that (l/O')f« x - J.L)/O') , as a function of x, is a pdf for every value of J.L and 0' 
we might substitute into the formula. That is, we must check that ( l/O')f« x - J.L)/O') 
is nonnegative and integrates to 1. Since f(x) is a pdf, f(x) � 0 for all values of x. 
So, ( l/O')f« x - J.L)/o') � 0 for all values of X, J.L, and 0'. Next we note that 

Joo 1 (x J.L) Joo -f -- dx = f(y) dy 
- 00 0' 0' -00 

= 1,  

as was to be verified. 

(SUbstitute y = 
x 0' J.L ) 

(since fey) is a pdf) 

o 

We now turn to the first of our constructions, that of location families. 

Definition 3.5.2 Let f (x) be any pdf. Then the family of pdfs f(x - J.L) , indexed 
by the parameter J.L, -00 < J.L < 00, is called the location family with standard pdf 
f (x) and J.L is called the location parameter for the family. 
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- 3 5 x 

Figure 3.5.1 .  Two members of the same location family: means at 0 and 2 

To see the effect of introducing the location parameter J.L, consider Figure 3.5. 1 .  At 
x = J.L, f(x - J.L) = f(O) ;  at x J.L + 1 ,  f(x J.L) f(l) ;  and, in general, at x = J.L + a, 
f(x - J.L)  f(a). Of course, f(x - J.I.) for J.I. = 0 is just f (x) . Thus the location 
parameter J.I. simply shifts the pdf f (x) so that the shape of the graph is unchanged 
but the point on the graph that was above x = 0 for f(x) is above x J.I. for f(x J.L) . 
It is clear from Figure 3.5.1 that the area under the graph of f(x) between x = - 1  
and x 2 i s  the same as the area under the graph of f(x J.I. )  between x = J.I. 1 and 
x = J.L + 2. Thus if X is a random variable with pdf f(x - J.I.) , we can write 

P(-l � X � 2 10) = P(J.L 1 � X � J.L + 21J.L) , 

where the random variable X has pdf f(x 0) f (x) on the left of the equality and 
pdf f(x J.L) on the right. 

Several of the families introduced in Section 3.3 are, or have as subfamilies, location 
families. For example, if (J' > 0 is a specified, known number and we define 

f (  ) - 1 _,.,2/(20"2) X - --e -00 < x < 00, 
J2ii(1 

, 

then the location family with standard pdf f (x) is the set of normal distributions 
with unknown mean J.L and known variance (12 . To see this, check that replacing x 
by x J.L in the above formula yields pdfs of the form defined in (3.3.13) .  Similarly, 
the Cauchy family and the double exponential f�ily, with (1 a specified value and 
J.L a parameter, are examples of location families. But the point of Definition 3.5.2 is 
that we can start with any pdf f(x) and generate a family of pdfs by introducing a 
location parameter. 

If X is a random variable with pdf f(x-J.I.), then X may be represented as X = Z + 
J.L, where Z is a random variable with pdf fez). This representation is a consequence 
of Theorem 3.5.6 (with (1 = 1) ,  which will be proved later. Consideration of this 
representation indicates when a location family might be an appropriate model for 
an observed variable X. We will describe two such situations. 

First, suppose an experiment is designed to measure some physical constant J.L. say 
the temperature of a solution. But there is some measurement error involved in the 
observation. So the actual observed value X is Z + J.L, where Z is the measurement 
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error. X will be greater than Jl. if Z > 0 for this observation and less than Jl. if 
Z < O. The distribution of the random measurement error might be well known from 
previous experience in using this measuring device to measure other solutions. If this 
distribution has pdf f(z) , then the pdf of the observed value X is f(x Jl.). 

As another example, suppose the distribution of reaction times of drivers on a 
coordination test is known from previous experimentation. Denote the reaction time 
for a randomly chosen driver by the random variable Z. Let the pdf of Z describing the 
known distribution be f(z) . Now, consider "applying a treatment" to the population. 
For example, consider what would happen if everyone drank three glasses of beer. We 
might assume that everyone's reaction time would change by some unknown amount 
Jl.. (This very simple model, in which everyone's reaction time changes by the same 
amount Jl., is probably not the best model. For example, it is known that the effect 
of alcohol is weight-dependent, so heavier people are likely to be less affected by the 
beers. )  Being open-minded scientists, we might even allow the possibility that Jl. < 0, 
that is, that the reaction times decrease. Then, if we observe the reaction time of a 
randomly selected driver after "treatment," the reaction time would be X Z + Jl. 
and the family of possible distributions for X would be given by f (x - Jl.) . 

If the set of x for which f(x) > 0 is not the whole real line, then the set of x for 
which f (x Jl.) > 0 will depend on Jl.. Example 3.5.3 illustrates this. 

Example 3.5.3 (Exponential location family) Let f(x) 
f(x) = 0, x < O. To form a location family we replace x with x 

f(x lJl.) 
{ �-(X-I') x Jl. 2:: 0 

X - Jl. < O  { �-(X-I') x 2:: Jl. 
x < Jl.. 

e-X, x 2:: 0, and 
Jl. to obtain 

Graphs of f(xlJl.) for various values of Jl. are shown in Figure 3.5.2. As in Figure 3.5. 1 ,  
the graph has been shifted. Now the positive part of  the graph starts at Jl. rather than 
at O. If X measures time, then Jl. might be restricted to be nonnegative so that X 
will be positive with probability 1 for every value of Jl.. In this type of model, where 
Jl. denotes a bound on the range of X, Jl. is sometimes called a threshold parameter. I I 

Figure 3.5.2. E:r;ponential location densities 
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Figure 3.5.3. Members of the same scale family 

The other two types of families to be discussed in this section are scale families and 
location-scale families. 

Definition 3.5.4 Let f(x) be any pdf. Then for any O' > 0, the family of pdfs 
( l/O')f (x/O'), indexed by the parameter O', is called the scale family with standard pdf 
f (x) and O' is called the scale parameter of the family. 

The effect of introducing the scale parameter O' is either to stretch ((1 > 1 )  or to 
contract (O' < 1 )  the graph of f(x) while still maintaining the same basic shape of 
the graph. This is illustrated in Figure 3.5.3. Most often when scale parameters' are 
used, f (x) is either symmetric about 0 or positive only for x > O. In these cases the 
stretching is either symmetric about 0 or only in the positive direction. But, in the 
definition, any pdf may be used as the standard. 

Several of the families introduced in Section 3.3 either are scale families or have 
scale families as subfamilies. These are the gamma family if a is a fixed value and 
{3 is the scale parameter, the normal family if p = 0 and O' is the scale parameter, 
the exponential family, and the double exponential family if p = 0 and (1 is the scale 
parameter. In each case the standard pdf is the pdf obtained by setting the scale 
parameter equal to 1. Then all other members of the family can be shown to be. of 
the form in Definition 3 .5.4. 

Definition 3.5.5 Let f(x) be any pdf. Then for any p, -00 < p < 00, and any 
(1 > 0, the family of pdfs ( l/O')f ( (x - p)/(1), indexed by the parameter (p, O'), is called 
the location-scale family with standard pdf f (x) ; p is called the location parameter 
and O' is called the scale parameter. 

The effect of introducing both the location and scale parameters is to stretch ((1 > 1 )  
or contract ( O'  < 1 )  the graph with the scale parameter and then shift the graph so that 
the point that was above 0 is now above p. Figure 3.5.4 illustrates this transformation 
of f(x) .  The normal and double exponential families are examples of location-scale 
families. Exercise 3.39 presents the Cauchy as a location-scale family. 
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6 x 

Figure 3.5.4. Members of the same location-scale family 

The following theorem relates the transformation of the pdf f(x) that defines a 
location-scale family to the transformation of a random variable Z with pdf f(z). As 
mentioned earlier in the discussion of location families, the representation in terms 
of Z is a useful mathematical tool and can help us understand when a location-scale 
family might be appropriate in a modeling context. Setting a = 1 in Theorem 3.5.6 
yields a result for location (only) families, and setting J.t = 0 yields a result for scale 
(only) families. 

Theorem 3.5.6 Let f(·) be any pdf. Let J.t be any real number, and let a be any 
positive real number. Then X is a mndom variable with pdf (l/a)f((x J.t)/a) if and 
only if there exists a mndom variable Z with pdf fez) and X = a Z + J.t. 

Proof: To prove the "if" part, define g(z) = az+J.t. Then X = g(Z) , 9 is a monotone 
function, g-l (X) = (x - J.t)/a, and I (d/dx)g-l (X) (  = l/a. Thus by Theorem 2. 1.5, 
the pdf of X is 

To prove the "only if" part, define g(x) = (x - J.t)/a and let Z = g(X) . Theorem 
2 .1 .5 again applies: g-l (Z) = az + J.t, \ (d/dz)g-l (Z) 1 = a, and the pdf of Z is 

Also, 

(X - J.t) aZ + J.t = ag(X) + J.t = a  -a- + J.t = X. o 
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An important fact to extract from Theorem 3.5.6 is that the random variable 
Z (X J,l)/a has pdf 

1 (z - 0) fz(z) = 1 f -1- = fez) . 

That is, the distribution of Z is that member of the location-scale family correspond
ing to f..J, 0, a 1 .  This was already proved for the special case of the normal family 
in Section 3.3. 

Often, calculations can be carried out for the "standard" random variable Z with 
pdf fez) and then the corresponding result for the random variable X with pdf 
(l/u)f« x - J,l)/u) can be easily derived. An example is given in the following, which 
is a generalization of a computation done in Section 3.3 for the normal family. 

Theorem 3.5.7 Let Z be a random variable with pdf fez) .  Suppose EZ and Var Z 
exist. If X is a random variable with pdf (l/u)f« x - J,l)/O'), then 

EX uEZ + J,l and Var X = u2Var Z. 

In particular, if EZ = 0 and Var Z 1 ,  then EX J,l and Var X = 0'2. 

Proof: By Theorem 3.5.6, there is a random variable Z· with pdf fez) and X 
0' Z" + J,l. So EX = uEZ· + J,l = uEZ + J,l and Var X = 0'2Var Z· u2Var Z. 0 

For any location-scale family with a finite mean and variance, the standard pdf fez) 
can be chosen in such a way that EZ = 0 and Var Z = 1 .  (The proof that this choice 
can be made is left as Exercise 3.40.) This results in the convenient interpretation 
of J,l and 0'2 as the mean and variance of X, respectively. This is the case for the 
usual definition of the normal family as given in Section 3.3. However, this is not the 
choice for the usual definition of the double exponential family as given in Section 
3.3. There, Var Z = 2. 

Probabilities for any member of a location--scale family may be computed in terms 
of the standard variable Z because 

. 

P( X 5, x) = P ( X ; J,l 5, x 
0' 

J,l) = P ( Z 5, x 
u 

J,l) . 
Thus, if P( Z 5, z)  is tabulated or easily calculable for the standard variable Z, then 
probabilities for X may be obtained. Calculations of normal probabilities using the 
standard normal table are examples of this. 

3.6 Inequalities and Identities 

Statistical theory is literally brimming with inequalities and identities-so many that 
entire books are devoted to the topic. The major work by Marshall and Olkin ( 1979) 
contains many inequalities using the concept of majorization. The older work by 
Hardy, Littlewood, and Polya ( 1952) is a compendium of classic inequalities. In this 
section and in Section 4.7 we will mix some old and some new, giving some idea of the 
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types of results that exist. This section is devoted to those identities and inequalities 
that arise from probabilistic concerns, while those in Section 4.7 rely more on basic 
properties of numbers and functions. 

3. 6. 1  Probability Inequalities 

The most famous, and perhaps most useful, probability inequality is Chebychev's 
Inequality. Its usefulness comes from its wide applicability. As with many important 
results, its proof is almost trivial. 
Theorem 3.6.1 (Chebychev's Inequality) Let X be a random variable and let 
g(x) be a nonnegative function. Then, for any r > 0, 

Proof: 

P (g(X) � r) :=:; Eg(X) . r 

Eg(X) = i: g(x)fx (x) dx 

� f g(x)fx (x) dx 
{",:g("')�r} 

� rf fx (x) dx 
{",:g("')�r} 

= rP (g(X) � r) .  
Rearranging now produces the desired inequality. 

(g is nonnegative) 

(definition) 
o 

Example 3.6.2 (Illustrating Chebychev) The most widespread use of Cheby
chev's Inequality involves means and variances. Let g(x) = (x_p.)2 /u2 , where p. = EX 
and u2 = Var X. For convenience write r = t2 • Then 

p ( X - f.J.)2 > t2) < �E (X - f.J.)2 = � . 
u2 - - t2 (12 t2 

Doing some obvious algebra, we get the inequality 

and its companion 

1 P( IX - p.1 � t(1) :=:; t2 

P( IX 

which gives a universal bound on the deviation IX - f.J.1 in terms of (1. For example, 
taking t = 2, we get 

1 P( IX - f.J.1 � 2(1) :=:; 22 = .25, 

so there is at least a 75% chance that a random variable will be within 2u of its mean 
(no matter what the distribution of X). II 
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While Chebychev's Inequality is widely applicable, it is necessarily conservative. 
(See, for example, Exercise 3.46 and Miscellanea 3.8.2.) In particular, we can often 
get tighter bounds for some specific distributions. 

Example 3.6.3 (A normal probability inequality) If Z is standard normal, 
then 

(3.6. 1 )  for all t > O. 

Compare this with Chebychev's Inequality. For t = 2, Chebychev gives P( IZI :2:: t) � 
.25 but y'C2/'rr ) e-2/2 = .054, a vast improvement. 

To prove (3.6 . 1 ) ,  write 

P(Z � t) 

< 

_1_ 100 e-x2/2 dx .j27i t 

1 100 ':e-x2/2 dx 
t t 

1 e-t2/2 -----
.j27i t 

( since x/t > 1 ) 
for x > t 

and use the fact that PCIZI :2:: t) = 2P(Z :2:: t ) .  A lower bound on P( IZ I � t) can be 
established in a similar way (see Exercise 3.47) . I I 

Many other probability inequalities exist, and almost all of them are similar in 
spirit to Chebychev's. For example, we will see (Exercise 3.45) that 

P(X � a) � e-at Mx(t), 

but, of course, this inequality requires the existence of the mgf. Other inequalities, 
tighter than Chebychev but requiring more assumptions, exist (as detailed in Miscel
lanea 3.8.2) . 

3.6.2 Identities 
In this section we present a sampling of various identities that can be useful not only 
in establishing theorems but also in easing numerical calculations. An entire class of 
identities can be thought of as "recursion relations," a few of which we have already 
seen. Recall that if X is Poisson(>'), then 

(3.6.2) P(X >. 
x + l ) = --P(X 

x + l  
x), 

allowing us to calculate Poisson probabilities recursively starting from P(X = 0) = 
e-A • Relations like (3.6.2) exist for almost all discrete distributions (see Exercise 3.48) . 
Sometimes they exist in a slightly different form for continuous distributions. 
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Theorem 3.6.4 Let XQ,fJ denote a gamma(o., r;) random variable with pdf l(xlo., {3), 
where 0. > 1. Then for any constants a and b, 

(3.6.3) Pea < XQ,e < b) fJ (J(alo., fJ) - f(blo., {3» + P(a < XQ-1,tJ < b) . 

Proof: By definition, 

Pea < XOt,{3 < b) = 
q
:

)fJOt lb xQ-1e-x/fJ dx 

= r(
:

)fJOt [_xOt-1 {3e-x/iJ l� + lb (0: 1)xOt- 2fJe-x//1 dx l '  

where we have done an integration by parts with u = xOt- 1  and dv e-x//1 dx. 
Continuing, we have 

Pea < XOt,tJ < b) = fJ (f(alo:, fJ) 

Using the fact that qo.) = (0: - l)qo: - 1) ,  we see that the last term is Pea < 
Xa.-l,tJ < b) . 0 

If 0: is an integer, repeated use of (3.6.3) will eventually lead to an integral that 
can be evaluated analytically (when 0: = 1 ,  the exponential distribution) . Thus, we 
can easily compute these gamma probabilities. 

There is an entire class of identities that rely on integration by parts. The first 
of these is attributed to Charles Stein, who used it in his work on estimation of 
multivariate normal means (Stein 1973, 1981) .  

Lemma 3.6.5 (Stein's Lemma) Let X ""' n(9, a2) ,  and let 9 be a differentiable 
function satisfying E Ig'(X) 1 < 00. Then 

E [g(X) (X - 9)] = a2Eg'(X). 
Proof: The left-hand side is 

E [g(X) (X - 9)] 
1 100 

rn= g(x) (x 
y27ra -00 

Use integration by parts with u = g(x) and dv = (x 9)e-(x-O)2/20'2 dx to get 

E [g(X) (X 

The condition on g' is enough to ensure that the first term is 0 and what remains on 
the right-hand side is a2Egl(X). 
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Example 3.6.6 (Higher-order normal moments) Stein's Lemma makes calcu
lation of higher-order moments quite easy. For example, if X "-' n(8, a2 ) , then 

EX3 = EX2(X - () + 8) 
= EX2(X - ()) + OEX2 
2a2EX + ()EX2 

= 2a2f) + ()(q2 + (2 ) 
= 38a2 + 03 • 

(g(x) = x2 , g'(x) = 2x) 

I I 

Similar integration-by-parts identities exist for many distributions (see Exercise 
3,49 and Hudson 1978) . One can also get useful identities by exploiting properties of 
8. particular distribution, as the next theorem shows. 

Theorem 3.6.7 Let X� denote a chi squared random variable with p degrees of 
freedom. For any function h( x) , 

(3.6.4) Eh(X�) = pE (h (��+2) ) Xp+2 
provided the expectations exist. 
Proof: The phrase "provided the expectations exist" is a lazy way of avoiding spec
ification of conditions on h. In general, reasonable functions will satisfy (3.6.4). We 
have 

Eh(X2) = h(x)x(p/2)-le-X/2 dx 1 100 
p r(p/2)2P/2 0 

1 roo ( h(X) ) x« p+2)/2)-le-x/2 dx r(p/2)2P/2 10 x ' 

where we have multiplied the integrand by x/x. Now write 

so we have 

r( (p + 2)/2)2(P+2)/2 
p 

Eh(�) = P roo (h (X) ) x« p+2)/2)-le-x/2 dx P r((p + 2)/2)2(p+2)/2 10 x 

_ E (h (X;+2) ) - p 2 . Xp+2 
o 

Some moment calculations are very easy with (3.6.4). For example, the mean of a 
X� is 

EX; = pE (X�+2 ) = pE(l ) = p, Xp+2 
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and the second moment is 

E ( (X�+2) 2 ) ( 2 ) ) P 2 = pE Xp+2 = p(p + 2 . Xp+2 
So Var x� p(p + 2) - p2 = 2p. 

Section 3.6 

We close our section on identities with some discrete analogs of the previous identi
ties. A general version of the two identities in Theorem 3.6.8 is due to Hwang ( 1982). 

Theorem 3.6.8 (Hwang) Let g(x) be a function with -00 < Eg(X) < 00 and 
-00 < g(-1) < 00 .  Then: 
a. If X I'V Poisson()..) ,  

(3.6.5) E ()..g(X)) E (Xg(X 1) ) . 
h. If X I'V negative binomial(r, p) , 

(3.6.6) E ( l - p)g(X)) = E (r + � _ l g(X 1 )) . 

Proof: We will prove part (a), saving part (b) for Exercise 3.50. We have 
00 -A)..X 

E ()..g(X)) = LAg(X) -
€ 

-,-
30= o x. 

Now transform the summation index, writing y = x + 1 .  As x goes from 0 to 00, y 
goes from 1 to 00. Thus 

00 -AAII 
E (Ag(X)) = Lyg(y - 1 )� 

11=1 y. 
00 e-AAY L yg(y 

- 1 ) -, -
11=0 y. 

= E (Xg(X - 1) ) , 

since this last sum is a Poisson(A) expectation. 

(added term is 0) 

o 

Hwang ( 1982) used his identity in a manner similar to Stein, proving results about 
multivariate estimators. The identity has other applications, in particular in moment 
calculations. 
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Example 3.6.9 (Higher-order Poisson moments) For X '" Poisson{A) , take 
g(x) = x2 and use (3.6.5): 

E(AX2 )  = E (X(X - 1)2) E(X3 - 2X2 + X) .  

Therefore, the third moment of a Poisson().) is 

EX3 = )'EX2 + 2EX2 - EX 

= ).(). + ).2) + 2()' + ).2) _ ). 

= ).3 + 3).2 + ).. 

For the negative binomial, the mean can be calculated by taking g(x) = r + x in 
(3.6.6): 

so, rearranging, we get 

or 

(EX) ( 1 - p) - 1)  = -r(l p) 

EX = 
r(l - p) . p 

Other moments can be calculated similarly. I I  

3.7 Exercises ______________________ _ 

3.1 Find expressions for EX and Var X if X is a random varia.ble with the genera.l discrete 
uniform(No, N1) distribution that puts equal probability on each of the values No, No + 
1 ,  . . .  , Nl . Here No :$ Nl and both are integers. 

3.2 A manufacturer receives a lot of 100 parts from a vendor. The lot will be unacceptable if 
more than five of the parts are defective. The manufacturer is going to select randomly 
K parts from the lot for inspection and the lot will be accepted if no defective parts 
are found in the sample. 
(a) How large does K have to be to ensure that the probability that the manufacturer 

accepts an unacceptable lot is less than . 10? 
(b) Suppose the ma.nufact urer decides to accept the lot if there is at most one defective 

in the sample. How large does K have to be to ensure that the probability that 
the manufacturer accepts an unacceptable lot is less than . 10? 

3.3 The flow of traffic at certain street corners can sometimes be modeled as a sequence 
of Bernoulli trials by assuming that the probability of a car passing during any given 
second is a constant p and that there is no interaction between the passing of cars at 
different seconds. If we treat seconds as indivisible time units (trials), the Bernoulli 
model applies. Suppose a pedestrian can cross the street only if no car is to pass during 
the next 3 seconds. Find the probability that the pedestrian has to wait for exactly 4 
seconds before starting to cross. 
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3.4 A man with n keys wants to open his door and tries the keys at random. Exactly one 
key will open the door. Find the mean number of trials if 

(a) unsuccessful keys are not eliminated from further selections. 

(b) unsuccessful keys are eliminated. 

3.5 A standard' drug is known to be effective in 80% of the cases in which it is used. A new 
drug is tested on 100 patients and found to be effective in 85 cases. Is the new drug 
superior? (Hint: Evaluate the probability of observing 85 or more successes assuming 
that the new and old drugs are equally effective.) 

3.6 A large number of insects are expected to be attracted to a certain variety of rose plant. 
A commercial insecticide is advertised as being 99% effective. Suppose 2,000 insects 
infest a rose garden where the insecticide has been applied, and let X = number of 
Burviving insects. 

(a) What probability distribution might provide a reasonable model for this experi
ment? 

(b) Write down, but do not evaluate, an expression for the probability that fewer than 
100 insects survive, using the model in part (a) . 

(c) Evaluate an approximation to the probability in part (b) .  

8 . 7  Let the number of chocolate chips i n  a certain type of cookie have a Poisson distribu
tion. We want the probability that a randomly chosen cookie has at least two chocolate 
chips to be greater than .99. Find the smallest value of the mean of the distribution 
that ensures this probability. 

3.8 Two movie theaters compete for the business of 1 ,000 customers. Assume that each 
customer chooses between the movie theaters independently and with "indifference." 
Let N denote the number of seats in each theater. 

(a) Using a binomial model, find an expression for N that will guarantee that the 
probability of turning away a customer (because of a full house) is less than 1%. 

(b) Use the normal approximation to get a numerical value for N. 

3.9 Often, news stories that are reported as startling "one-in-a-million" coincidences are 
actually, upon closer examination, not rare events and can even be expected to occur. 
A few years ago an elementary school in New York state reported that its incoming 
kindergarten class contained five sets of twins. This, of course, was reported throughout 
the state, with a quote from the principal that this was a "statistical impossibility" . 
Was it? Or was it an instance of what Diaconis and Mosteller (1989) call the "law of 
truly large numbers" ? Let's do some calculations. 

(a) The probability of a twin birth is approximately 1 /90, and we can assume that 
an elementary school will have approximately 60 children entering kindergarten 
(three classes of 20 each) . Explain how our "statistically impossible" event can be 
thought of as the probability of 5 or more successes from a binomial(60, 1 /90). Is 
this even rare enough to be newsworthy? 

(b) Even if the probability in part (a) is rare enough to be newsworthy, consider that 
this could have happened in any school in the county, and in any county in the 
state, and it still would have been reported exactly the same. (The "law of truly 
large numbers" is starting to come into play.) New York state has 62 counties, and 
it is reasonable to assume that each county has five elementary schools. Does the 
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event still qualify as a ''statistical impossibility" , or is it becoming 80mething that 
could be expected to occur? 

( c) If the probability in part (b) still seems small, consider further that this event 
could have happened in any one of the 50 states, during any of the last 10 years, 
and still would have received the same news coverage. 

In addition to Diaconis and Mosteller ( 1989), see Hanley ( 1992) for more on coinci
dences. 

8.10 Shuster ( 1991) describes a number of probability calculations that he did for a court 
case involving the sale of cocaine. A Florida police department seized 496 suspected 
packets of cocaine, of which four were randomly selected and tested and found to 
actually be cocaine. The police then chose two more packets at random and, posing 
as drug dealers, sold the packets to the defendant. These last two packets were lost 
before they could be tested to verify that they were, indeed, cocaine. 

(a) If the original 496 packets were composed of N packets of cocaine and M == 496-N 
noncocaine, show that the probability of selecting 4 cocaine packets and then 2 
noncocaine packets, which is the probability that the defendant is innocent of 
buying cocaine, is 

(b) Maximizing (in M and N) the probability in part (a) maximizes the defendant's 
"innocence probability" . Show that this probability is .022, attained at M 165 
and N 331.  

3.11 The hypergeometric distribution can be approximated by either the binomial or the 
Poisson distribution. (Of course, it can be approximated by other distributions, but in 
this exercise we will concentrate on only these two.) Let X have the hypergeometric 
distribution 

P(X - ""IN M K) - (': )  (�� )  '""  - � , , 
- (�)  , � O, I ,  . . .  , K. 

(a) Show that as N -t oo, M -t 00, and MIN -t p, 

P(X = xIN, M, K) -t (�) P"(l _ p)K-", x = O, l ,  . . .  , K. 

( Stirling's Formula from Exercise 1 .23 may be helpfuL) 

(b) Use the fact that the binomial can be approximated by the Poisson to show that 
if N -t oo, M -t oo, K -t 00, MIN -t 0, and KMIN -t A, then 

P(X e-AA'" xIN, M, K) -t x == 0, 1 ,  . . . .  

(c) Verify the approximation in part (b) directly, without using the Poisson approxi
mation to the binomial. (Lemma 2 .3.14 is helpfuL) 
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3.12 Suppose X has a binomia.l(n,p) distribution a.nd let Y have a negative binomial(r,p) 

distribution. Show that Fx (r - 1) 1 Fy(n - r) . 
3.13 A truncated discrete distribution is one in which a. particular class cannot be observed 

and is eliminated from the sample space. In particular, if X has range 0, 1, 2, . . .  and 
the 0 class cannot be observed (as is usually the case), the O-truncated random variable XT has pmf 

P (X x) P (XT = X) = P (X > O) ' x = 1, 2, . . . .  

Find the pmf, mean, and variance of the O-truncated random varia.ble starting from 

(a) X "" Poisson(.:\). 
(b) X ",  negative binomial(r, p), as in (3.2.10). 

3.14 Starting from the O-truncated negative binomial (refer to Exercise 3.13), if we let r -+  
0, we get an interesting distribution, the logarithmic series distribution. A random 
variable X has a logarithmic series distrihution with parameter p if 

P(X = x) 
-(1 - p)'" 

x logp 
, x 1 , 2, . . .  , O < p < 1 . 

(a) Verify that this defines a legitimate probability function. 
(b) Find the mean and variance of X. (The logarithmic series distribution has proved 

useful in modeling species abundance. See Stua.rt and Ord 1987 for a more detailed 
discussion of this distribution.) 

3.15 In Section 3.2 it was claimed that the Poisson(.:\) distribution is the limit of the negative 
binomial(r,p) distribution as r -+ 00, P -+ 1 ,  and r(l -p) -+ .:\. Show that under these 
conditions the mgf of the negative binomial converges to that of the Poisson. 

3.18 Verify these two identities regarding the gamma function that were given in the text: 

(a) r(a + 1) = ar(a) 

(b) r(� )  = Vi 
3.1 T Establish a formula simila.r to (3.3.18) for the gamma distribution. If X rv gamma(a, (3) ,  

then for any positive constant v, 

EX'" 
(3"'r(v + 0) 

reo) 

3.18 There is an interesting rela.tionship between negative binomial and gamma. random 
variables, which may sometimes provide a useful approximation. Let Y be a negative 
binomial random variable with parameters r and p, where p is the success probability. 
Show that as p --+ 0, the mgf of the random variable pY converges to that of a gamma 
distribution with parameters r and 1 .  

3.19 Show that 

a ::  1, 2, 3, . . . .  

. \ (Hint: Use integration by parts.) Express this formula as a probabilistic relationship 
between Poisson and gamma random variables. 
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•. 20 Let the random variable X have the pdf 

f(x) 2 _",2/2 
..j2ii

e , 0 <  x < 00 . 

(a) Find the mean and variance of X. (This distribution is sometimes called a folded 
normal.) 

(b) If X has the folded normal distribution, find the transformation g(X) = Y and 
values of Q and /3 so that Y ""  gamma(a, /3). 

S.21 Write the integral that would define the mgf of the pdf 

1 1 
f(x) = 11' 1 + x2 ' 

Is the integral finite? (Do you expect it to be?) 
3.22 For each of the following distributions, verify the formulas for EX and Var X given in 

the text. 

(a) Verify Var X if X has a Poisson(>.) distribution. (Hint: Compute EX(X - 1) = 
EX2 EX.) 

(b) Verify Var X if X has a negative binomial(r, p) distribution. 
(c) Verify Var X if X has a gamma(o, f3) distribution. 
(d) Verify EX and Var X if X has a beta(o, f3) distribution. 
(e) Verify EX and Var X if X has a double exponential(j1., a) distribution. 

3.23 The Pareto distribution, with parameters Q and /3, has pdf 

/3oi3 
f(x) = x/9+l ' Q < X < 00 ,  a > 0, /3 > O. 

(a) Verify that f(x) is a pdf. 
(b) Derive the mean and variance of this distribution. 
(c) Prove that the variance does not exist if /3 :$ 2. 

3.24 Many "named" distributions are special cases of the more common distributions al
ready discussed. For each of the following named distributions derive the form of the 
pdf, verify that it is a pdf, and calculate the mean and variance. 

(a) If X "" exponential(f3), then Y = Xl/,,( has the Weibullb, /3) distribution, where 
'Y > 0 is a constant. 

(b) If X rv exponential(/3), then Y (2X/ /3) 1/2 has the Rayleigh distribution. 
(c) If X ",  ga.mma(a, b), then Y 1/X has the inverted gamma IG(a , b) distribution. 

(This distribution is useful in Bayesian estimation of variances; see Exercise 7.23.) 
(d) If X rv gamma(� , /3), then Y = (X//3?/2 has the Maxwell distribution. 
(e) If X ""  exponential(l) ,  then Y = Q - 'Y log X has the Gumbel(o, ,) distribution, 

where -00 < Q < 00 and 'Y > O. (The Gumbel distribution is also known as the 
extreme value distribution.) 

8.25 Suppose the random variable T is the length of life of an object (possibly the lifetime 
of an electrical component or of a subject given a particular treatment). The hazard 
function hT (t) associated with the random variable T is defined by 

h ( ) 1· 
P (t :$ T < t + 6'/T > t) 

T t = Im6 ...... 0 --· 6' 
• 
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Thus, we can interpret hT(t) as the rate of change of the probability that the object 
survives a little past time t, given that the object survives to time t. Show that if T is 
a continuous random variable, then 

h(t) d hT{t) = 1 _ FT(t) = -dt log (1 FT(t» . 

3.26 Verify that the following pdfs have the indicated hazard functions (see Exercise 3.25). 

(a) If T rv exponential(,8), then hT(t) = 1//3. 
(b) 1f T ",  Weibullb, /3) , then hT(t) = bl(3)t"l-I .  
(c) I f  T '" logistic(/-t, ,8), that is, 

then hT(t) = (1/ (3)FT(t) . 
3.21 For each of the following families, show whether all the pdfs in the family are unimodal 

(see Exercise 2.27). 

(a) uniform(a, b) 

(b) gamma( 0, (3) 
(c) n(/-t, (12 ) 
(d) beta(o, ,8) 

3.28 Show that each of the following families is an exponential family. 

(a) normal family with either parameter JJ. or (1 known 
(b) gamma family with either parameter 0 or f3 known or both unknown 
(c) beta family with either parameter 0 or /3 known or both unknown 
(d) Poisson family 
(e) negative binomial family with r known, 0 < p < 1 

3.29 For each family in Exercise 3.28, describe the natural parameter space. 
3.30 Use the identities of Theorem 3.4.2 to 

(a) calculate the variance of a binomial random variable. 
(b) calculate the mean and variance of a beta( a, b) random variable. 

3.31 In this exercise we will prove Theorem 3.4.2. 

(a) Start from the equality 

J f(xI8) h{x)c{9) exp (t, W, (8)ti (X») dx = 1, 

differentiate both sides, and then rearrange terms to establish (3.4.4) . (The fact 
that d� logg(x) = g'(x)/g(x) will be .helpful.) 

(b) Differentiate the above equality a second time; then rearrange to establish (3.4.5) . 

(The fact that £., logg(x) = (g"(X)/g(x» - (g' (x)/g(X» 2 will be helpful.) 
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5.82 (a.) If an exponential fe.,ruly can be written in the form (3.4.7), show tha.t the identities 
of Theorem 3.4.2 simplify to 

E(t;(X» = - a
a 

10g c· (71) ,  '1; 
a2 

Var(t; (X» = - -a 2 10g C· (71) · 
'1; 

(b) Use this identity to calculate the mean and variance of a gamma(a, b) random 
variable. 

S.SS For each of the following families: 
(i) Verify that it is an exponential family. 

(ii) Describe the curve on which the 9 parameter vector lies. 
(iii) Sketch a graph of the curved parameter space. 

(a) n(9, 9) 
(b) n(8, a82),  a known 
(c) gamma(a, I/a) 
(d) f(x/8) = C exp (-(x - 8)4) , C a normalizing constant 

8.34 In Example 3.4.9 we saw that normal approximations can result in curved exponential 
families. For each of the following normal approximations: 
(i) Describe the curve on which the 9 parameter vector lies. 

(ii) Sketch a graph of the curved parameter space. 

(a) Poisson approximation: X ""' n(A, A/n) 
(b) binomial approximation: X ""'  n (p, p(I - p)/n) 
(c) negative binomial approximation: X ""' n(r(I - p)/p, r(I - p)/np2) 

3.35 (a) The norma.l family that approximates a Poisson can also be parameterized as 
n( eO, eO) , where -00 < 9 < 00. Sketch a graph of the parameter space, and 
compare with the approximation in Exercise 3.34(a). 

(b) Suppose that X '" gamma( a, {3) and we assume that EX = J.I.. Sketch a graph of 
the parameter space. 

(c) Suppose that Xi '" gamma(ai' .8i) ,  i 1 , 2, . . . , n, and we assume that EXj = J.I.. 
Describe the para.meter space (a1 , . . .  , an, .81 , . . • , .811.)' 

S.36 Consider the pdf f(x) = ¥ (x6 x8) ,  - 1  < x < L Graph ( I /u)!« x - J.I.)/u) for each 
of the following on the same axes. 
(a) J.I. = 0, u = 1 
(b) J.I. = 3, u = 1 
(c) J.I. 3, u = 2 

3.37 Show that if lex) is a pdf, symmetric about 0, then J.I. is the median of the loca.tion-scale 
pdf (l/u) f« x - J.I.) /u) , -00 < x < 00. 

3.38 Let Z be a random variable with pdf fez). Define ZQ to be a number that satisfies this 
relationship: 

a = P(Z > zQ) = roo f(z)dz. i%a 
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Show that if X is a random va.rla.ble with pdf (l/(1)/(tx - p,)/O') and :e", = 0'%", + 14, 
then P(X > xo) = Q. (Thus if a ta.ble of z'" values were available, then values of XQ 
could be easily computed for any member of the location-scale family.) 

3.39 Consider the Cauchy family defined in Section 3.3. This family can be extended to a. 
location-scale family yielding pdfs of the form 

l(xlp" O') = ( 2) ' 0'1'( 1 + (7) 
1 -00 < x < 00. 

The mean and variance do not exist for the Cauchy distribution. So the parameters 
p, and 0'2 are not the mean and variance. But they do have important meaning. Show 
that if X is a random variable with a Cauchy distribution with parameters p, and 0', 
then: 

(a) p, is the median of the distribution of X, tha.t is, P(X :::: p,) :::: P(X :5 p,) = � .  
(b) p, + (J" and p, - 17 are the quartiles of the distribution of X,  that is, P(  X :::: p, + (1)  = 

P(X :5 p, - u) = i . (Hint: Prove this first for p, = 0 and u = 1 and then use 
Exercise 3.38.)  

3.40 Let I(x) be any pdf with mean p, and variance (12. Show how to create a location-scale 
family based on f (x) such that the standard pdf of the family, say r (x), has mean 0 
and variance L 

3.41 A family of cdfs {F(xlll), ll E e} is stochastically increasing in 0 if 111 > 82 :::} F(xI81) 
is ,stochastically greater than F(xI02) .  (See Exercise 1 .49 for the definition of stochas
tically greater.) 

(a) Show that the n(p" (72) family is stochastically increasing in p, for fixed (12. 
(b) Show that the gamma(Q, (J) family of (3.3.6) is stochastically increasing in !3 (scale 

parameter) for fixed Q (shape parameter) .  

3.42 Refer t o  Exercise 3.41 for the definition of a stochastically increasing family. 

(a) Show that a location family is stochastically increasing in its location parameter. 
(b) Show that a scale family is stochastically increasing in its scale parameter if the 

sample space is [0, 00) . 

3.43 A family of cdfs {F(xIO), 8  E O} is stochastically decreasing in 0 if 81 > 82 :::} F(xI82) 
is stochastically greater than F(xI81) .  (See Exercises 3.41 and 3.42.) 

(a) Prove that if X ",  Fx(xlll), where the sample space of X is (0, 00) and Fx(xlll) is 
stochasticaJly increasing in 0, then FY(YI8) is stochastically decreasing in 8, where 
Y = l/X. 

(b) Prove that if X '" Fx(xI8), where Fx(xIO) is stochastically increasing in 0 and 
8 >  0, then Fx(xI 1 )  is stochastically decreasing in O. 

3.44 For any random variable X for which EX2 and EIXI exist, show that P(IXI :::: b) does 
not exceed either EX2/b2 or EIXI/b, where b is a positive constant. If I(x) = e-% for 
x > 0, show that one bound is better when b = 3 and the other when b = V2. (Notice 
Markov's Inequality in Miscellanea 3.8.2.) 

3.45 Let X be a random variable with moment-generating function Mx(t), -h < t < h. 

(a) Prove that P(X :::: a) :5 e-a.t Mx(t), 0 < t < h. (A proof similar to that used for 
Chebychev's Inequality will work.)  
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(b) Similarly, prove that P(X $ a) $ e-.. t Mx(t) , -h < t < O. 
(c) A special ca.se of part (a) is that P(X � 0) $ EetX for all t > 0 for which 

the mgf is defined. What are general conditions on a function h{t, x) such that 
P(X � 0) $ Eh(t, X} for all t � 0 for which Eh(t, X} exists? (In part (a), 
h(t, x) = et"'.) 

3.46 Calculate P(IX - �x l � k<1x} for X ""' uniform (0, 1) and X ""' exponential(.\), and 
compare your 8.I1Bwers to the bound from Chebychev's Inequality. 

3.47 If Z is a standard normal random varia.ble, prove this companion to the inequa.lity in 
E�ple 3.6.3: 

'8.48 Derive recursion relations, similar to the one given in (3.6.2), for the binomial, negative 
binomial, and hypergeometric distributions. 

3.49 Prove the following analogs to Stein's Lemma, assuming appropriate conditions on the 
function g. 
(a) If X '"  ga.mma(a,,B) , then 

E (g(X} (X - a,B}} = ,BE (Xg'(X}) . 

(b) If X I'v beta(a, ,B), then 

E [g(X) (,B (a _ l ) (I �X»)] E (( 1  X}g'(X») . 

3.50 Prove the identity for the negative binomial distribution given in Theorem 3.6.8, part 
(b). 

3.8 Miscellanea ___ , __________ . _______ _ 

3.8.1 The Poisson Postulates 
The Poisson distribution can be derived from a set of basic assumptions, sometimes 
called the Poisson postulates. These assumptions relate to the physical properties 
of the process under consideration. While, generally speaking, the assumptions are 
not very easy to verify, they do provide an experimenter with a set of guidelines 
for considering whether the Poisson will provide a reasonable modeL For a more 
complete treatment of the Poisson postulates, see the classic text by Feller (1968) 
or Barr and Zehna (1983). 

Theorem 3.8.1 For each t � 0, let Nt be an integer-valued random variable with 
the following properties. (Think of Nt as denoting the number of arrivals in the 
time period from time a to time t.) 
i) No = 0 
ii) s < t =} Ns and Nt - Ns are independent. 

(start with no arrivals) ( arrivals in disjoint time) 
periods are independent 



136 COMMON FAMILIES OF DISTRIBUTIONS Section 3.8 

" 'J N d N N 'd t ' II d ' 'b d ( number of arrivals depends) m s an t+ .. - t are t en tea y tat" ute . only on period length 
. ) lim peNt = 1) _ >. ( arrival probability proportional ) W hO t - to period length, if length is small 
) 1· peNt > 1) - 0 ( l ' ) v lmt-.O t - no simu taneous arnvals 

If i-v hold, then for any integer n, 

peNt = n) = e-).t (>.t)n 
, 

n ! 

that is, Nt rv Poisson(>.t) . 

The postulates may also be interpreted as describing the behavior of objects spa
tially (for example, movement of insects), giving the Poisson application in spatial 
distributions. 

3.8.2 Chebychev and Beyond 
Ghosh and Meeden ( 1977) discuss the fact that Chebychev's Inequality is very 
conservative and is almost never attained. If we write Xn for the mean of the 
random variables Xl , X2, • • •  , Xn, then Chebychev's Inequality states 

1 
J.LI ;,:::: kO') ::; nk2 ' 

They prove the following theorem . 

. Theorem 3.8.2 If 0 < 0' < 00, then 
a. If n = 1 ,  the inequality is attainable for k ;,:::: 1 and unattainable for 0 < k < 1 .  
b .  If n = 2,  the inequality i s  attainable if and only if k 1 .  
c .  If n ;,:::: 3 ,  the inequality i s  not attainable. 

Examples are given for the cases when the inequality is attained. Most of their 
technical arguments are based on the following inequality, known as Markov's 
Inequality. 

Lemma 3.8.3 (Markov's Inequality) If P(Y ;,:::: 0) = 1 and P(Y = 0) < 1 ,  
then, for any r > 0 ,  

EY P(Y ;':::: r) ::; -r 
with equality if and only if P(Y = r) = p 1 - P(Y 0) , 0  < p ::; 1 .  

Markov's Inequality can then be applied to the quantity 

Y = (Xn - J.L)2 
0'2 

to get the above results. 
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One reason Chebychev's Inequality is so loose is that it puts no restrictions on 
the underlying distribution. With the additional restriction of uni111:.odality, we can 
get tighter bounds and the inequalities of Gauss and Vysochanskii-Petunin. (See 
Pukelsheim 1994 for details and elementary calculus-based proofs of these inequal
ities. ) 

Theorem 3.8.4 (Gauss Inequality) Let X '" f, where f is unimodal with 
mode v, and define 72 E(X - v)2 . Then 

{ � 
for all e > ";4/37 

P(IX - vi > e) < e -
- 1 - fa". for all e S ";4/37 . 

Although this is a tighter bound than Chebychev, the dependence on the mode 
limits its usefulness. The extension of Vysochanskii-Petunin removes this limita
tion. 

Theorem 3.8.5 (Vysochanski'i.Petunin Inequality) Let X ",  f, where f is 
unimodal, and define e E(X - a)2 for an arbitrary point a .  Then 

I { 
� for all e ? ";8/3f. 

POX - a > e) < 
2 - � - i for all e S J8l3f.. 

Pukelsheim points out that taking a = J1. = E(X) and e = 30', where 0'2 Var(X) , 
yields 

P(IX 4 
J1.1 > 30') s 81 < .05, 

the so-called three-sigma rule, that the probability is less than 5% that X is more 
than three standard deviations from the mean of the population. 

3.8.3 More on Exponential Families 
Is the lognormal distribution in the exponential family? The density given in 
(3.3.21 )  can be put into the form specified by (3.4. 1 ) .  Hence, we have put the 
lognormal into the exponential family. 

According to Brown (1986, Section 1 . 1 ) ,  to define an exponential family of distri
butions we start with a nonnegative function vex) and define the set .N by 

.N = { o : L e8xv(x) dx < oo} . 
If we let ),(0) = Ix e8xl/(x) dx, the set of probability densities defined by 

e8xl/(x) f(xI O) = ),(0) , x E X, 0 E .N, 
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is an exponential family. The moment-generating function of f(xIO) is 

and hence exists by construction. If the parameter space e is equal to the set N, 
the exponential family is called full. Cases where e is a lower-dimensional subset 
of N give rise to curved exponential families. 
Returning to the lognormal distribution, we know that it does not have an mgf, so 
it can't satisfy Brown's definition of an exponential family. However, the lognor
mal satisfies the expectation identities of Theorem 3.4.2 and enjoys the sufficiency 
properties detailed in Section 6.2. 1  (Theorem 6.2. 10) . For our purposes, these are 
the major properties that we need and the main reasons for identifying a member 
of the exponential family. More advanced properties, which we will not investigate 
here, may need the existence of the mgf. 



Chapter 4 

Multiple Random Variables 

<II confess that I have been blind as a mole, but it is better to learn wisdom late 
than never to learn it at all. " 

4.1 " Joint and Marginal Distributions 

Sherlock Holmes 
The Man with the Twisted Lip 

In previous chapters, we have discussed probability models and computation of prob
ability for events involving only one random variable. These are called univariate 
models. In this chapter, we discuss probability models that involve more than one 
random variable-naturally enough, called multivariate models. 

In an experimental situation, it would be very unusual to observe only the value of 
one random variable. That is, it would be an unusual experiment in which the total 
data collected consisted of just one numeric value. For example, consider an experi
ment designed to gain information about some health characteristics of a population 
of people. It would be a modest experiment indeed if the only datum collected was 
the body weight of one person. Rather, the body weights of several people in the 
population might be measured. These different weights would be observations on dif
ferent random variables, one for each person measured. Multiple observations could 
also arise because several physical characteristics were measured on each person. For 
example, temperature, height, and blood pressure, in addition to weight, might be 
measured. These observations on different characteristics could also be modeled as 
observations on different random variables. Thus, we need to know how to describe 
and use probability models that deal with more than one random variable at a time. 
For the first several sections we will discuss mainly bivariate models, models involving 
two random variables. 

Recall that, in Definition 1 .4. 1 , a (univariate) random variable was defined to be a 
function from a sample space S into the real numbers. A random vector, consisting 
of several random variables, is defined similarly. 

Definition 4.1. 1  An n-dimensional random vector is a function from a sample space 
S into !Rn , n-dimensional Euclidean space. 

Suppose, for example, that with each point in a sample space we associate an 
ordered pair of numbers, that is, a point (x, y) E !R2, where !R2 denotes the plane. Then 
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we have defined a two-dimensional (or bivariate) random vector (X, Y) . Example 4.1.2 
illustrates this. 

Example 4.1.2 (Sample space for dice) Consider the experiment of tossing 
two fair dice. The sample space for this experiment has 36 equally likely points and 
was introduced in Example 1 .3.10. For example, the sample point (3, 3) denotes the 
outcome in which both dice show a 3; the sample point (4, 1 )  denotes the outcome in 
which the first die shows a 4 and the second die a 1; etc. Now, with each of these 36 
points associate two numbers, X and Y. Let 

X = sum of the two dice and Y = Idifference of the two dice l .  

For the sample point (3, 3), X = 3 + 3  = 6 and Y = 1 3  - 3 1  = O. For (4, 1 ) ,  X 5 and 
Y = 3. These are also the values of X and Y for the sample point ( 1 , 4) .  For each of 
the 36 sample points we could compute the values of X and Y. In this way we have 
defined the bivariate random vector (X, Y). 

Having defined a random vector (X, Y), we can now discuss probabilities of events 
that are defined in terms of (X, Y). The probabilities of events defined in terms of 
X and Y are just defined in terms of the probabilities of the corresponding events 
in the sample space S. What is P(X = 5 and Y = 3)7 You can verify that the only 
two sample points that yield X = 5 and Y 3 are (4, 1)  and ( 1 ,  4) .  Thus the event 
"X 5 and Y = 3" will occur if and only if the event { (4, I ) ,  ( 1 , 4) }  occurs. Since 
each of the 36 sample points in S is equally likely, 

Thus, 

P ({ (4, 1 ) ,  ( 1 ,  4)} )  
2 
36 

P(X 5 and Y = 3) 

Henceforth, we will write P(X 5, Y 3) for P(X = 5 and Y 3) .  Read the comma 
as "and." Similarly, P(X = 6, Y = 0) la because the only sample point that yields 
these values of X and Y is (3, 3). For more complicated events, the technique is the 
same. For example, P(X = 7, Y � 4) 3� = ! because the only four sample points 
that yield X 7 and Y ::;  4 are (4, 3) ,  (3, 4) ,  (5, 2), and (2, 5) .  I I  

The random vector (X, Y) defined above is called a discrete random vector because 
it has only a countable (in this case, finite) number of possible values. For a discrete 
random vector, the function lex, y) defined by lex, y) = P(X = x, Y = y) can be 
used to compute any probabilities of events defined in terms of (X, Y). 

Definition 4.1.3 Let (X, Y) be a discrete bivariate random vector. Then the func
tion !(x, y) from lR2 into lR defined by lex, y) = P(X = x, Y = y) is called the 
joint probability mass function or joint pm! of (X, Y). If it is necessary to stress the 
fact that ! is the joint pmf of the vector (X, Y) rather than some other vector, the 
notation !x,y (x, y) will be used. 
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X 
2 3 4 5 6 7 8 9 10  1 1 1 2  

0 1 1 1 1 1 1 
36 36 36 36 36 36 

1 1 1 1 1 1 
18  18 18 18 18 

Y 2 1 1 1 1 
1 8  18  18 18 

3 1 1 1 
18 18 18 

4 1 1 
18 is 

5 1 
18 

Table 4.1 .1 .  Values oj the joint pmJ J(x, y) 

The joint pmf of (X, Y) completely defines the probability distribution of the ran
dom vector (X, Y),  just as the pmf of a discrete univariate random variable completely 
defines its distribution. For the (X, Y) defined in Example 4.1 .2  in terms of the roll of 
a pair of dice, there are 21 possible values of (X, Y) .  The value of I(x, y) for each of 
these 21 possible values is given in Table 4.1 .1 .  Two of these values, 1 (5 , 3) 1

1
8 and 

1(6, 0) l6 ' were computed above and the rest are obtained by similar reasoning. 
The joint pmf I(x, y) is defined for all (x, y) E )R2, not just the 21 pairs in Table 4.1 . 1 .  
For any other (x, y) , I (x, y) = P ( X  X, Y = y) O. 

The joint pmf can be used to compute the probability of any event defined in terms 
of (X, Y).  Let A be any subset of )R2. Then 

P «(X, Y) E A) L I(x, y) . 
(X,lI)EA 

Since (X, Y) is discrete, I(x, y) is nonzero for at most a countable number of points 
(x, y) . Thus, the sum can be interpreted as a countable sum even if A contains an 
uncountable number of points. For example, let A = { (x, y) : x 7 and y � 4} . This 
is a half-infinite line in lR2 • But from Table 4.1 . 1  we see that the only (x, y) E A for 
which I(x, y) is nonzero are (x, y) (7, 1) and (x, y) (7, 3) . Thus, 

1 1 1 
P(X 7, Y � 4) = P « X, Y) E A) = 1(7, 1 )  + 1(7, 3) = 

18 + 18 = g '  
This, of course, is the same value computed in  Example 4.1 .2 by considering the 
definition of (X, Y) and sample points in S. It is usually simpler to work with the 
jOint pmf than it is to work with the fundamental definition. 

Expectations of functions of random vectors are computed just as with univariate 
random variables. Let g(x, y) be a real-valued function defined for all possible values 
(x, y) of the discrete random vector (X, Y) .  Then g(X, Y) is itself a random variable 
and its expected value Eg(X, Y) is given by 

Eg(X, Y) L g(x, y)/(x, y) . 
{X,y)E!R2 

Example 4.1.4 (Continuation of Example 4.1.2) For the (X, Y) whose joint 
pmf is given in Table 4.1 . 1 ,  what is the average value of XY? Letting g(x, y) = xy, we 
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compute EXY = Eg(X, Y) by computing xyf(x, y) for each of the 21 (x, y) points in 
Table 4.1 .1 and summing these 21 terms. Thus, 

1 1 1 1 1 1  
EXY = (2) (0) 36 + (4) (0) 36 + . . .  + (8) (4) 18 + (7) (5) 18 = 13 18 , I I  

The expectation operator continues to have the properties listed in Theorem 2 .2.5 
when the random variable X is replaced by the random vector (X, V). For example, 
if gl (x, y) and g2(X, y) are two functions and a ,  b, a.nd c are constants, then 

E(agl (X, Y) + bg2(X, Y) + c) = aEg1 (X, Y) + bE92(X, Y) + c. 

These properties follow from the properties of sums exactly as in the univariate case 
(see Exercise 4.2) . 

The joint pmf for any discrete bivariate random vector (X, Y) must have certain 
properties. For any (x, y), f(x, y) ;?: 0 since f(x, y) is a probability. Also, since (X, Y) 
is certain to be in lR2 , 

L f (x, y) P ( X, y) E lR2) = 1 .  
(x,y)E!R2 

It turns out that any nonnegative function from lR2 into lR that is nonzero for at most 
a countable number of (x, y) pairs and sums to 1 is the joint pmf for some bivariate 
discrete random vector (X, V). Thus, by defining f(x, y) , we can define a probability 
model for (X, Y) without ever working with the fundamental sample space S. 

Example 4.1.5 (Joint pmf for dice) Define f (x, y)  by 

1 
f(O, O) f(O, I) 6' 

1 
f(I , O) = f(l, l) = 3 ' 
f(x, y) 0 for any other (x, y). 

Then f(x, y) is nonnegative and sums to 1,  so f(x, y) is the joint pmf for some 
bivariate random vector (X, V). We can use f(x, y) to compute probabilities such as 
P(X = Y) = f(O, 0) + f(l , 1) = � .  All this can be done without reference to the 
sample space S. Indeed, there are many sample spaces and functions thereon that 
lead to this joint pmf for (X, V). Here is one. Let S be the 36-point sample space for 
the experiment of tossing two fair dice. Let X 0 if the first die shows at most 2 and 
X = 1 if the first die shows more than 2. Let Y = 0 if the second die shows an odd 
number and Y 1 if the second die shows an even number. It is left as Exercise 4.3 
to show that this definition leads to the above probability distribution for (X, V). I I 

Even if we are considering a probability model for a random vector (X, V), there 
may be probabilities or expectations of interest that involve only one of the random 
variables in the vector. We may wish to know P(X = 2), for instance. The variable X 
is itself a random variable, in the sense of Chapter 1 ,  and its probability distribution 
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is described by its pmf, namely, fx(x) = P(X = x) . (As mentioned earlier, we now 
use the subscript to distinguish fx(x) from the joint pmf fx ,Y (x, y) .) We now call 
fx(x) the marginal pmf of X to emphasize the fact that it is the prof of X but in 
the context of the probability model that gives the joint distribution of the vector 
(X, V).  The marginal pmf of X or Y is easily calculated from the joint pmf of (X, Y) 
as Theorem 4.1 .6 indicates. 

Theorem 4. 1.6 Let (X, Y) be a discrete bivariate random vector with joint pmf 
fx.y (x, y) . Then the marginal pmfs of X and Y, fx(x) = P(X x) and fy (y) = 
P(Y = y), are given by 

fx (x) = Lfx,y(x, y) and fy(y) = L/x,y (x, y ) .  
yE!R xE!R 

Proof: We will prove the result for fx(x) .  The proof for fy(y) is similar. For any 
x E � , let Ax { (x, y) : -00 < y < oo} . That is, Ax is the line in the plane with 
first coordinate equal to x. Then, for any x E �, 

fx(x) P(X = x) 

= P(X = x, -00 < Y < 00) 

= P« X, Y) E Ax) 

(P(-oo < Y < 00) = 1 )  
(definition of Ax) 

= L fx,y (x, y) 
(x,y)EA.r 

L fx,Y (x, y) . o 
yE!R 

Example 4.1.7 (Marginal pmf for dice) Using the result of Theorem 4.1 .6, we 
Can compute the marginal distributions for X and Y from the joint distribution given 
in Table 4. 1 . 1 .  To compute the marginal pmf of Y, for each possible value of Y we 
sum over the possible values of X. In this way we obtain 

fy(O) = fx.y (2, 0) + fx.y (4, 0) + fx,y (6, O) 
+fx,y (8, 0) + fx,Y (lO, 0) + fx.y (12, 0) 
1 = 6 ' 

Similarly, we obtain 

fy(l ) = 158 ' Jy(2) �, fy(3) k ,  fy (4) � ,  fy(5) 1� ' 
Notice that Jy (0) + Jy(l) + Jy(2) + fy (3) + fy (4) + Jy(5) = 1 , as it must, since these 
are the only six possible values of y, I I 

The marginal pmf of X or Y is the same as the pmf of X or Y defined in Chapter I ,  
The marginal pmf of X or Y can be used to compute probabilities or expectations that 
involve only X or Y. But to compute a probability or expectation that simultaneously 
involves both X and Y, we must use the joint pmf of X and y, 
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Example 4.1.8 (Dice probabilities) Using the marginal prof of Y computed in 
Example 4.1 .7, we can compute 

Also, 

1 5 2 2 
P(Y < 3) = fy(O) + jy (l) + fy (2) = (\ + 18 + 9 = 3'  

20 1 1 . 18 I I  

The marginal distributions of  X and Y, described by the marginal pmfs f x (x) and 
fy (y), do not completely descri be the joint distribution of X and Y .  Indeed, there are 
many different joint distributions that have the same marginal distributions. Thus, it 
is hopeless to try to determine the joint pmf, fx,Y (x, y), from knowledge of only the 
marginal pmfs, fx (x) and fy(y). The next example illustrates the point. 

Example 4.1 .9 (Same marginals, different joint pmf) Define a joint pmf by 

f(O, O) = /2 ' f(I , O) = 152 ' f(O, l) = f(l , 1 ) = 1; ' 
f (x, y) = 0 for all other values. 

The marginal pmf of Y is jy(O) = f(O, 0)+ f(l ,  0) � and fy(l) = f(O, 1 )+ f(l ,  1) = 
! .  The marginal pmf of X is fx (O) = � and fx (l ) �. Now check that for the joint 
pmf given in Example 4.1 .5, which is obviously different from the one given here, the 
marginal pmfs of both X and Y are exactly the same as the ones just computed. 
Thus, we cannot determine what the joint pmf is if we know only the marginal pmfs. 
The joint pmf tells us additional information about the distribution of (X, Y) that is 
not found in the marginal distributions. I I  

To this point we have discussed discrete bivariate random vectors. We can also 
consider random vectors whose components are continuous random variables. The 
probability distribution of a continuous random vector is usually described using a 
density function, as in the univariate case. 

Definition 4.1.10 A function f(x, y) from !R2 into !R is  called a joint probability 
density function or joint pdf of the continuous bivariate random vector (X, Y) if, for 
every A C )R2, 

P ((X, Y) E A) If f(x, y) dxdy. 

A joint pdf is used just like a univariate pdf except now the integrals are double 
integrals over sets in the plane. The notation f fA simply means that the limits of 
integration are set so that the function is integrated over all (x, y) E A. Expectations 
of functions of continuous random vectors are defined as in the discrete case with 
integrals replacing sums and the pdf replacing the pm£. That is, if g(x, y) is a real
valued function, then the expected value of g(X, Y) is defined to he 

(4. 1 .2) Eg(X, Y) = I: f�oog(x, y)f(x, y) dxdy. 
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It is important to realize tha.t the joint pdf is defined for all (x, y) E �2. The pdf may 
equal 0 on a large set A if P« X, Y) E A) = 0 but the pdf is defined for the points in 
A. 

The marginal probability density functions of  X and Y are also defined as in  the 
discrete case with integrals replacing sums. The marginal pdfs may be used to compute 
probabilities or expectations that involve only X or Y. Specifically, the marginal pdfs 
of X and Y are given by 

(4.1.3) 
!x(x) I: lex, y) dy, -00 < x < 00, 

fy (y) = I: ! (x, y) dx, -00 < y < 00. 

Any function !(x, y) satisfying lex, y) � 0 for all (x, y) E lJl2 and 

1 = 1:/: !(x, y) dx dy 

is the joint pdf of some continuous bivariate random vector (X, V).  All of these 
concepts regarding joint pdfs are illustrated in the following two examples. 

Example 4.1 .11 (Calculating joint probabilities-I) Define a joint pdf by 

{ 6xy2 !(x, y) = 0 
o < x < 1 and 0 < y < 1 
otherwise. 

(Henceforth, it will be understood that ! (x, y) = 0 for (x, y) values not specifically 
mentioned in the definition.) First, we might check that !(x, y) is indeed a joint pdf. 
That !(x, y) � 0 for all (x, y) in the defined range is fairly obvious. To compute the 
integral of !(x, y) over the whole plane, note that, since !(x, y) is 0 except on the 
unit square, the integral over the plane is the same as the integral over the square. 
Thus we have 

I: I: f(x, y) dx dy 11 11 6xy2 dx dy = 11 3x2y2 1� dy 

= 11 3y2 dy = y3 1� 1 .  

Now, consider calculating a probability such as P(X + Y � 1) .  Letting A { (x ,  y) : 
x + y � I } ,  we can re-express this as P« X, Y) E A). From Definition 4.1 . 10, to 
calculate the probability we integrate the joint pdf over the set A. But the joint pdf 
is 0 except on the unit square. So integrating over A is the same as integrating over 
only that part of A which is in the unit square. The set A is a half-plane in the 
northeast part of the plane, and the part of A in the unit square is the triangular 

. region bounded by the lines x = 1 ,  Y = 1 , and x + y = 1 .  We can write 
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A = { (x ,  y) : X + Y � 1 , 0 < X < 1 , 0 < y < I }  

= { (x ,  y )  : X 2 1 - y ,  0 < X < 1 , 0 < y < I }  

= { (x , y) : l - y ::;: x < l , O < V < l } .  

Section 4 . 1 

This gives us the l imits of integrat ion we need to calculate the probahili ty. We have 

P(X + Y 2: 1 ) = j' j J(x , Y) dX dV = t t 6Xy2 dx dy = � . 
A Jo Jl -V 10 

Using (4 . 1 . 3) , we can calculate the marginal pdf of X or Y. For example, to calculate 
fx (x) , we note that for x 2: 1 or x ::; 0, f(x ,  y) = 0 for all val ues of y. Thus for x 2: 1 
or x ::; 0, 

fx (x) = J: fix, y) dy = a 

For 0 < x < I ,  f(x,  y) is nonzero only if 0 < y < 1 .  Thus for 0 < x < 1 ,  

J� 1 1 1 
f x (x ) :-c: f( .'L ,  y) dy "-= 6xy2 dy ;-c 2xy3 j = 2x . 

-

� 
0 0 

This marginal pdf of X can now be used to calculate pro babil ities involving only X .  
For example , ( 1  3) 2 5 P _ < X < - = { 4  2x dx = _ .  2 4 J J 16  '2 

Example 4 . 1 . 1 2  (Calculating joint probabilities-II) As another example of a 
joint pdf, let f(x ,  y) = e v , O < x < y < 00 .  Although e Y does not depend on x ,  
J(x ,  y )  certainly i s  a function of x since the set where I(x ,  y )  i s  nonzero depends on 
x. This is made more obvious by us ing an indi cat or [unction to wrl te 

I(x ,  y) = e - ' Y  I{ (u,v) :o<u<v<oo}  (x ,  V) ·  
To calcu late P ( X  + Y 2: 1 ) ,  we could integrate the joint pdf over the region that i s  the 

intersection of the set A = { (x,  y) : x + y 2 I} and the set. where f(x ,  y) is nonzero. 

Graph these sets and notice that this region is an unbounded region (lighter shading 

in Figure 4. 1 . 1) with three sides given by t he lines x = y, x + y = I ,  and x = O. To 

integrate over this region we would have to break the region into at least two parts 

in order to write the appropr iate limits of integration . 
The integrat ion is easier over the intersection of the set B = { (x ,  y) : X + y < I}  

and the set where f(x,  y) i s  nonzero , t h e  triangular region (darker shading in Figure 
4 . 1 . 1) bounded by the lines x = y, x + y = 1 ,  and x c:..: O. Thus 

P(X + Y :::: 1) = 1 - P(X + Y < 1 ) = 1 - 1 � l -x
e -Y dY dx 

1 
- 1 12 ( - X  - ( I - X) ) d - 2 - 1 /2 - 1  - - e - e  x - e - e . 

o 
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y 

2 

O L-----�------�2---- x 

Figure 4 . 1 . 1 . Regions for Example 4 . 1 . 12 

This illustrates that it is almost always helpful to graph the sets of interest in deter
mining the appropriate limits of integration for problems such as this. I I  

The joint probability distribution of (X, Y) can be completely described with the 
joint cd] (cumulative distr ibution function) rather than with the joint pmf or joint 
pdf. The joint cdf is the function F(x ,  y) defined by 

F(x , y) = P(X ::; x, Y � y) 

for all (x ,  y) E �2 . The joint cdf is usually not very handy to use for a discrete 
random vector. But for a continuous bivariate random vector we have the important 
relationship ,  as in the univariate case, 

From the bivariate Fundamental Theorem of Calcu lus, this implies that 

(4 . 1 .4)  a2 F(x, y) = ! ( ) ax oy x, y 

at continuity points of f(x, y) . This relationship is useful in situations where an ex
pression for F(x, y) can be found. The mixed part ial derivative can be computed to 
find the joint pdf. 

4.2 Conditional Distributions and Independence 

Oftentimes when two random variables, (X, V) , are observed , the values of the two 
variables are related. }'or example,  suppose that , in sampling from a human popu
lation , X denotes a person's height and Y denotes the same person 's weight .  Surely 
we would think it more likely that Y > 200 pounds if we were told that X = 73 
inches than if we were told that X = 4 1 inches . Knowledge about the value of X 
gives us some information about the value of Y even if it does not tell us the value of 
Y exactly. Condit ional probabilities regarding Y given knowledge of the X value can 
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be computed using the joint distribution of (X, Y) . Sometimes, however, knowledge 
about X gives us no information about Y. We will discuss these topics concerning 
conditional probabilities in this section. 

If (X, Y) is a discrete random vector, then a conditional probability of the form, 
P(Y = y lX = x) is interpreted exactly as in Definition 1 .3 .2. For a countable (maYbe 
finite) number of x values, P(X = x) > O. For these values of x, P(Y = y lX x) is 
simply P(X = x, Y = y)/P(X = x}, according to the definition. The event {Y = y} 
is the event A in the formula and the event {X = x} is the event B. For a fixed value '  
of x , P(Y y lX = x) could be  computed for all possible values of  y . In this way the 
probability of various values of y could be assessed given the knowledge that X = x '  
was observed. This computation can be simplified by noting that in terms of the joint 
and marginal pmfs of X and Y, the above probabilities are P(X = x, Y = y) = f(x, y) 
and P(X x) = fx(x) . This leads to the following definition. 

Definition 4.2.1 Let (X, Y) be a discrete bivariate random vector with joint prof 
f(x, y) and marginal pmfs fx (x) and fy(y) . For any x such that P(X = x) = fx(x) > 
0, the conditional pmf ofY given that X = x is the function of y denoted by f(ylx) 
and defined by 

f(ylx) = P(Y = ylX x) = ��(:1· 
For any y such that P(Y = y )  fy(y) > 0 ,  the conditional pmf of X given that 
Y = y is the function of x denoted by f(xly) and defined by 

f(x, y) f(xly) = P(X = xlY = y) = -- . fy (y) 
Since we have called f(ylx) a prof, we should verify that this function of y does 

indeed define a pmf for a random variable. First, f(ylx) ? ° for every y since f(x, y) ;::: 
o and fx(x) > O. Second, 

"f( I ) = Ly f(x, y) 
7 y x  fx (x) 

fx (x) 
fx{x) 1 .  

Thus, f(ylx) is indeed a prof and can be used in the usual way t o  compute probabilities 
involving Y given the knowledge that X = x occurred. 

Example 4.2.2 (Calculating conditional probabilities) Define the joint pmf 
of (X, Y) by 

f(O, 10) = f(O, 20) = 128 '  f(l , 10) = f(l , 30) = 138 ' 

f(1 , 20) = 1� '  and f(2, 30) 1� ' 

We can use Definition 4.2. 1 to compute the conditional prof of Y given X for each of 
the possible values of X, x = 0, 1 , 2. First, the marginal pmf of X is 
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Ix (0) 1(0, 10) + 1(0, 20) 
4 

18 ' 

Ix ( 1) 1(1 , 10) + 1(1 ,  20) + 1( 1 , 30) 

4 
Ix (2) = 1(2, 30) = 

18 

10 
18 ' 

149 

For x = 0, I(O, y) is positive only for y = 10 and y = 20. Thus l(yIO) is positive only 
for y = 10 and y = 20, and 

1(1010) = 1(0, 10) = � 
Ix (0) 18 

1(20 10) = 1(0, 20) = � . 
Ix(O) 2 

1 
2 '  

That is, given the knowledge that X 0 ,  the conditional probability distribution 
for Y is the discrete distribution that assigns probability � to each of the two points 
y = 10 and y = 20. 

For x = 1 ,  I(Y I 1 )  is positive for y = 10, 20, and 30, and 

and for x = 2, 

1(101 1 )  1(301 1 ) 

1(201 1 ) = 1� = 4 
10 10 ' 1 8 

1(3012) = = 1. 

3 

= 10 ' 

The latter result reflects a fact that is also apparent from the joint pmf. If we know 
that X = 2, then we know that Y must be 30. 

Other conditional probabilities can be computed using these conditional pmfs. For 
example, 

or 

P(Y > 10 IX = 1) 1(201 1 )  + 1(301 1 )  = 

P(Y > 10IX = 0) 1(20,0) = � .  I I  

If  X and Y are continuous random variables, then P(X x) = 0 for every value of 
x. To compute a conditional probability such as P(Y > 200lX = 73) , Definition 1 .3 .2 
cannot be used since the denominator, P(X = 73) , is O. Yet in actuality a value of  X 
is observed. If, to the limit of our measurement, we see X = 73, this knowledge might 
give us information about Y (as the height and weight example at the beginning of 
this section indicated) .  It turns out that the appropriate way to define a conditional 
probability distribution for Y given X = x, when X and Y are both continuous, is 
analogous to the discrete case with pdfs replacing pmfs (see Miscellanea 4.9.3). 
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Definition 4.2.3 Let (X, Y) be a continuous bivariate random vector with joint 
pdf f(x, y) and marginal pdfs fx(x) and Jy (y) . For any x such that fx(x) > 0, the 
conditional pdf of Y given that X = x is the function of y denoted by f(Ylx) and 
defined by 

f(ylx) f(x, y) 
fx (x) . 

For any y such that fy(y) > 0, the conditional pdf of X given that Y = y is the 
function of x denoted by f(xly) and defined by 

f(x, y) 
fy (y) . 

To verify that f(xIY) and f(ylx) are indeed pdfs, the same steps can be used as in 
the earlier verification that Definition 4.2.1 had defined true pmfs with integrals now 
replacing sums. 

In addition to their usefulness for calculating probabilities, the conditional pdfs or 
pmfs can also be used to calculate expected values. Just remember that f(ylx) as a 
function of y is a pdf or pmf and use it in the same way that we have previously used 
unconditional pdfs or pmfs. If g(Y) is a function of Y, then the conditional expected 
value of g(Y) given that X = x is denoted by E(g(Y) Ix) and is given by 

E(g(Y) lx) = Lg(y)f (Ylx) and E(g(Y) jx) = f: g(y)f (ylx) dy 
y 

in the discrete and continuous cases, respectively. The conditional expected value has 
all of the properties of the usual expected value listed in Theorem 2.2.5. Moreover, 
E(YIX) provides the best guess at Y based on knowledge of X,  extending the result 
in Example 2.2.6. (See Exercise 4.13.) 

Example 4.2.4 (Calculating conditional pdfs) As in Example 4.1.12, let the 
continuous random vector (X, Y) have joint pdf f(x, y) e-Y , O < x < y < 00. 
Suppose we wish to compute the conditional pdf of Y given X = x. The marginal pdf 
of X is computed as follows. If x � 0, f(x, y) = 0 for all values of y, so fx (x) O. If 
x > 0, f(x, y) > 0 only if y > x. Thus 

fx (x) = 100 
f(x, y) dy = 100 e-Y dy = e-X • 

-00 x 

Thus, marginally, X has an exponential distribution. From Definition 4.2.3, the con
ditional distribution of Y given X = x can be computed for any x > 0 (since these 
are the values for which fx (x) > 0).  For any such x, 

and 

f(Y lx) = f(x, y) = e-Y = e-(Y-x)
, if y > x, fx (x) e-X 

f(ylx) = f(x, y) = � = 0 if Y � x. fx(x) e-X ' 
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Thus, given X x, Y has an exponential distribution, where x is the location pa
rameter in the distribution of Y and (3 1 is the scale parameter. The conditional 
distribution of Y is different for every value of x. It then follows that 

E(YIX x) 100 ye-(Y-X) dy = 1 + x. 

The variance of the probability distribution described by f(y lx) is called the con
ditional variance ofY given X = x. Using the notation Var(Ylx) for this, we have, 
using the ordinary definition of variance, 

Applying this definition to our example, we obtain 

Var(Ylx) = 100 y2e-(y-x) dy (100 ye- (Y-X) dY) 2 1 .  

I n  this case the conditional variance o f  Y given X x is the same for all values 
of x. In other situations, however, it may be different for different values of x. This 
conditional variance might be compared to the unconditional variance of Y. The 
marginal distribution of Y is gamma(2, 1 ) ,  which has Var Y 2. Given the knowledge 
that X = x, the variability in Y is considerably reduced. I I  

A physical situation for which the model in Example 4 .2.4 might be used is  this. 
Suppose we have two light bulbs. The lengths of time each will burn are random 
variables denoted by X and Z. The lifelengths X and Z are independent and both 
have pdf e-x, x > O. The first bulb will be turned on. As soon as it burns out, the 
second bulb will be turned on. Now consider observing X, the time when the first 
bulb burns out, and Y = X +Z, the time when the second bulb burns out. Given that 
X x is when the first burned out and the second is started, Y Z + x. This is like 
Example 3.5.3. The value x is acting as a location parameter, and the pdf of Y ,  in this 
case the conditional pdf of Y given X = x, is f(y lx) = fz(y - x) = e-(Y-x) , y > x. 

The conditional distribution of Y given X = x is possibly a different probability 
distribution for each value of x. Thus we really have a family of probability distribu
tions for Y, one for each x. When we wish to describe this entire family, we will use the 
phrase "the distribution of Y IX." If, for example, X is a positive integer-valued ran
dom variable and the conditional distribution of Y given X = x is binomial(x, p) , then 
we might say the distribution ofY IX is binomial(X, p) or write Y IX rv binomial(X, p). 
Whenever we use the symbol YIX or have a random variable as the parameter of a 
probability distribution, we are describing the family of conditional probability dis
tributions. Joint pdfs or pmfs are sometimes defined by specifying the conditional 
f(y lx) and the marginal fx(x) . Then the definition yields f (x, y) f (y lx)fx (x) .  
These types of models are discussed more in Section 4 .4. 

Notice also that E(g(Y) lx) is a function of x. That is, for each value of x, E(g(Y) lx) 
is a real number obtained by computing the appropriate integral or sum. Thus, 
E(g(Y) IX) is a random variable whose value depends on the value of X. If X = x, 
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the value of the random variable E(g{Y) IX) is  E(g(Y) lx). Thus, in Example 4.2.4, 
we can write E(YIX) = 1 + X.  

In all the previous examples, the conditional distribution of Y given X = x was 
different for different values of x. In some situations, the knowledge that X x does 
not give us any more information about Y than what we already had. This important 
relationship between X and Y is called independence. Just as with independent events 
in Chapter 1 , it is more convenient to define independence in a symmetric fashion 
and then derive conditional properties like those we just mentioned. This we now do. 

Definition 4.2.5 Let (X, Y)  be a bivariate random vector with joint pdf or pmf 
f(x, y) and marginal pdfs or pmfs fx (x) and fy(y). Then X and Y are called inde
pendent random variables if, for every x E � and y E �, 

(4.2.1 ) f(x, y) = fx (x)fy(y). 
If X and Y are independent, the conditional pdf of Y given X = x is 

f(ylx) f(x, y) 
fx (x) 
fx(x)fy(y) 

fx (x) 
= fy(y), 

( definition) 

(from (4.2.1) ) 

regardless of the value of x. Thus, for any A c � and x E �, P(Y E Alx) 
IA f(y ix) dy = IA fy (y) dy = P(Y E A) . The knowledge that X = x gives us no 
additional information about Y.  

Definition 4.2.5 is used in two different ways. We might start with a joint pdf or 
pmf and then check whether X and Y are independent. To do this we must verify 
that (4.2.1) is true for every value of x and y. Or we might wish to define a model 
in which X and Y are independent . Consideration of what X and Y represent might 
indicate that knowledge that X = x should give us no information about Y. In this 
case we could specify the marginal distributions of X and Y and then define the joint 
distribution as the product given in (4.2 . 1 ) . 
Example 4.2.6 (Checking independence-I) Consider the discrete bivariate ran
dom vector (X, Y), with joint pmf given by 

f(10, 1) = f(20, 1) = f(20, 2) = 110 ,  
f(1O, 2) = f(1O, 3) = � , and f(20, 3) = to ' 

The marginal pmfs are easily calculated to be 

1 1 3 1 fx(1O) = fx (20) 2 and fy (l ) = 5 '  fy(2) = 10 ' and fy(3) = 2 ' 
The random variables X and Y are not independent because (4 .2 .1) is not true for 
every x and y . For example, 

1 1 1  f(10, 3) = 5 =1= 2 2  = fx( 1O)fy (3) . 
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The relationship (4.2.1 )  must hold for every choice of x and y if X and Y are to be 
independent. Note that 1(10, 1 )  1� H Ix(lO)fy(l) . That (4.2 .1 )  holds for 
some values of x and y does not ensure that X and Y are independent. All values 
must be checked. I I  

The verification that X and Y are independent by direct use of (4.2 .1 )  would 
require the knowledge of fx(x) and fy(y). The following lemma makes the verification 
somewhat easier. 

Lemma 4.2.7 Let (X, Y) be a bivariate random vector with joint pdj or pmj f(x, y) . 
Then X and Y are independent random variables if and only ij there exist junctions 
g(x) and hey) such that, for every x E lR and y E lR, 

f(x, y) = g(x)h(y) . 
Proof: The "only if" part i s  proved by defining g (x) = fx(x) and hey) = fy(y) and 
using (4.2 . 1 ) .  To prove the "if" part for continuous random variables, suppose that 
f(X, y) = g (x)h(y). Define 

I: g (x) dx = c and I: hey) dy = d, 

where the constants c and d satisfy 

(4.2.2) 

cd = (I: g(x) dX) (I: hey) dY) 
I: I: g(x)h(y) dx dy 

= 1:/: f(x, y) dx dy 
= 1. (f(x, y) is a joint pdf) 

Furthermore, the marginal pdfs are given by 

(4.2.3) 

fx (x) I: g(x)h(y) dy = g(x)d and fy(y) = I: g(x)h(y) dx h(y)c. 

Thus, using (4.2.2) and (4.2.3) ,  we have 

f(x, y) = g(x)h(y) = g (x)h(y)cd = fx (x)fy(y), 
showing that X and Y are independent. Replacing integrals with sums proves the 
lemma for discrete random vectors. 0 

Example 4.2.8 (Checking independence-II) Consider the joint pdf f (x, y) = 

3�4 x2y4e-y-(xj2\ x > 0 and y > O. If we define 

x > O  
x ::; o and y > O  

y � o, 
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then f(x, y) g(x)h(y) for all x E !R and all y E !R. By Lemma 4.2.7, we conclude that 
X and Y are independent random variables. We do not have to compute marginal 
pd&. n 

If X and Y are independent random variables, then from (4.2 . 1 ) it is clear that 
f(x, y) > 0 on the set { (x, y) : x E A and y E B}, where A = {x : fx (x) > O} 
and B = {y : jy(y) > O} . A set of this form is called a cross-product and is usually 
denoted by A x B. Membership in a cross-product can be checked by considering the x 
and y values separately. If f(x, y) is a joint pdf or pmf and the set where f(x, y) > 0 
is not a cross-product, then the random variables X and Y with joint pdf or pm! 
f(x, y) are not independent. In Example 4.2.4, the set 0 < x < y < 00 is not a cross
product. To check membership in this set we must check that not only 0 < x < 00 
and 0 < y < 00 but also x < y. Thus the random variables in Example 4.2.4 are not 
independent. Example 4.2.2 gives an example of a joint pmf that is positive on a set 
that is not a cross-product. 

Example 4.2.9 (Joint probability model) As an example of using independence 
to define a joint probability model, consider this situation. A student from an ele
mentary school in Kansas City is randomly selected and X = the number of living 
parents of the student is recorded. Suppose the marginal distribution of X is 

fx (O) = .01, fx ( l ) .09, and fx(2) = .90. 

A retiree from Sun City is randomly selected and Y = the number of living parents 
of the retiree is recorded. Suppose the marginal distribution of Y is 

fy (O) = .70, jy (! ) .25, and fy(2) = .05. 

It seems reasonable to assume that these two random variables are independent. 
Knowledge of the number of parents of the student tells us nothing about the number 
of parents of the retiree. The only joint distribution of X and Y that reflects this 
independence is the one defined by (4.2.1 ) . Thus, for example, 

f(O, O) = fx (O)jy(O) = .0070 and f(O, I ) fx (O)fy ( l ) .0025. 

This joint distribution can be used to calculate quantities such as 

P(X = Y) = f(O, 0) + f(l , 1) + f(2, 2) 
= ( .01)( .70) + ( .09) ( .25) + ( .90) (.05) = .0745. 

Certain probabilities and expectations are easy to calculate if X and Y are inde
pendent, as the next theorem indicates. 

Theorem 4.2.10 Let X and Y be independent random variables. 
a. For any A c lR and B c lR , P(X E A, Y E B) P(X E A)P(Y E B); that is, 

the events {X E A} and {Y E B} are independent events. 
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b. Let g(x) be a function only of x and h(y) be a function only of y. Then 
E (g(X)h(Y) ) = (Eg(X)) (Eh(Y)) .  

Proof: For continuous random variables, part (b) is proved by noting that 

E (g(X)h(Y)) [: [: g(x)h(y)f(x, y) dx dy 

[:[: g (x)h(y)fx (x)fy (y) dx dy 
= [: h(y)fy(y) [: g(x)fx (x) dx dy 
= ([: g(x)fx (x) dX) ([: h(y)fy(y) dY) 
= (Eg(X)) (Eh(Y)) . 

(by (4.2 .1 ) )  

The result for discrete random variables is proved by replacing integrals by sums. 
Part (a) can be proved by a series of steps similar to those above or by the following 
argument. Let g(x) be the indicator function of the set A. Let h(y) be the indicator 
function of the set B. Note that g(x)h(y) is the indicator function of the set C C !R2 
defined by C = { (x , y) : X E A, y E B}. Also note that for an indicator function such 
as g (x), Eg(X) P(X E A). Thus using the expectation equality just proved, we 
have 

P(X E A, Y E B) = P « X, Y) E C) = E (g(X)h(Y)) 
= (Eg(X)) (Eh(Y)) = P(X E A)P(Y E B). D 

Example 4.2.11  (Expectations of independent variables) Let X and Y be 
independent exponential( 1 )  random variables. From Theorem 4.2.10  we have 

P(X � 4, Y < 3) = P(X � 4)P(Y < 3) = e-4 (1 - e-3). 
Letting g(x) = x2 and h(y) = y, we see that 

E(X2y) = (EX2) (EY) = (Var X + (EX)2) EY = ( 1  + 12) 1  = 2. I I  

The following result concerning sums of independent random variables is a simple 
consequence of Theorem 4.2. 10. 

Theorem 4.2.12 Let X and Y be independent random variables with moment gen
erating functions Mx (t) and My(t) . Then the moment generating function of the 
TrLndom variable Z X + Y is given by 

Mz (t) Mx(t)My (t ) . 
Proof: Using the definition of  the mgf and Theorem 4.2.10, we have 

Mz(t) EetZ = Eet(x+y) = E(etXetY) = (Eetx ) (EetY) = Mx(t)My (t) . D 
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Example 4.2.13 (Mgf of a sum of normal variables) Sometimes Theorem 
4.2 .12  can be used to easily derive the distribution of Z from knowledge of the distri
bution of X and Y. For example, let X fV n(p., (72 ) and Y rv n(-y, r2) be independent 
normal random variables. From Exercise 2 .33, the mgfs of X and Y are 

Mx(t) = exp(p.t + (72t2/2) and My(t) = exp(-yt + r2t2/2). 
Thus, from Theorem 4.2.12, the mgf of Z = X + Y is 

Mz(t) = Mx(t)My(t ) = exp ( p, + "()t + «(72 + r2)t2/2) . 
This is the mgf of a normal random variable with mean p. + "( and variance (T2 + r2. 
This result is important enough to be stated as a theorem. I I  

Theorem 4.2.14 Let X fV n(p" (72 ) and Y rv n(-y, r2) be independent normal random 
variables. Then the random variable Z = X + Y has a n(p. + ,,(, (T2 + r2) distribution. 

If f(x, y) is the joint pdf for the continuous random vector (X, Y) ,  (4.2 .1 )  may fail 
to hold on a set A of (x, y) values for which fAf dx dy = O. In such a case X and Y 
are still called independent random variables. This reflects the fact that two pdfs that 
differ only on a set such as A define the same probability distribution for (X,Y). To 
see this, suppose f(x, y) and rex, y) are two pdfs that are equal everywhere except 
on a set A for which fA f dx dy = O. Let (X, Y) have pdf f(x, y), let (X", Y")  have 
pdf rex, y) , and let B be any subset of lR2. Then 

P « X, Y) E B) Lj f{x, y) dX dY 

[ j f(x, Y) dX dY lBnA< 
= [ jr(x, y) dx dy lBnAc 
= L j f" (x, y) dx dy = P« X· , Y*) E B) . 

Thus (X, Y) and (X", Y*) have the same probability distribution. So, for example, 
f(x, y) = cX-Y ,  x > 0 and y > 0, is a pdf for two independent exponential random 
variables and satisfies (4.2.1 ) .  But, rex, y) , which is equal to f(x, y) except that 
r (x, y) = 0 if x y, is also the pdf for two independent exponential random variables 
even though (4.2 . 1 )  is not true on the set A = { (Xl x) : X > o}. 

4.3 Bivariate Transformations 

In Section 2 . 1 , methods of finding the distribution of a function of a random variable 
were discussed. In this section we extend these ideas to the case of bivariate random 
vectors. 

Let (X, Y) be a bivariate random vector with a known probability distribution. 
Now consider a new bivariate random vector (U, V) defined by U = g1 (X, Y) and V = 
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92 (X, Y), where 91 (x, y) and 92(X, y) are some specified functions. If B is any subset of 
!R2, then (U, V) E B if and only if (X, Y) E A, where A = { (x, y) : (gdX, y) , g2 (X, y)) E 
B}. Thus P« U, V) E B) = P« X, Y) E A), and the probability distribution of (U, V) 
is completely determined by the probability distribution of (X, Y). 

If (X, Y) is a discrete bivariate random vector, then there is only a countable set 
of values for which the joint pmf of (X, Y) is positive. Call this set A. Define the 
set 13 = ((u, v) : u gl (X, y)  and v g2(X, y) for some (x, y) E A}. Then 13 is the 
countable set of possible values for the discrete random vector (U, V) . And if, for any 
(u, v) E 13, Att.v is defined to be { (x, y) E A : 91 (x, y) u and 92 (x, y)  = v} ,  then the 
joint pmf of (U, V), fu,v (u, v ) ,  can be computed from the joint pmf of (X, Y) by 

(4.3.1) fu,v (u, v) P(U = u,  V = v) = P« X, Y) E Auv ) = L fx,y (x, y) . 
(x,Y) EAuv 

Example 4.3.1 (Distribution of the sum of Poisson variables) Let X and 
Y be independent Poisson random variables with parameters 8 and )., respectively. 
Thus the joint pmf of (X, Y) is 

8xe-() ).Ye-A 
fx,Y (x, y) = , x = 0, 1 , 2 ,  . . . , Y 0, 1 , 2 ,  . . . .  

The set A is { (x, y) : x = 0, 1 , 2 , . . . and y = 0, 1 , 2 ,  . . . } .  Now define U = X + Y 
and V Y. That is, g1 (X, y) x + y  and g2 (X, y)  y. We will describe the set 
13, the set of possible (u, v )  values. The possible values for v are the nonnegative 
integers. The variable v = y and thus has the same set of possible values. For a 
given value of v ,  u x + y = x + v must be an integer greater than or equal to v 
since x is a nonnegative integer. The set of all possible (u, v) values is thus given by 
13 = { (u, v )  : v = 0, 1 , 2, . . . and u = v, v + 1 ,  v + 2, . . . } .  For any (u, v) E 13, the only 
(x, y) value satisfying x + y = u and y = v is x = u v and y v. Thus, in this 
example, Auv always consists of only the single point (u - v, v). From (4.3. 1 )  we thus 
obtain the joint pmf of (U, V) as 

8u-ve-0 ).ve-A ° 1 2 
fu,v (u, v) = fx,y (u v, v )  = 

( ) 1 --, - ,  V " '
1
" "  

2 u v .  v .  u v , v + , v + , . . . . 

In this example it is interesting to compute the marginal pmf of U. For any fixed 
nonnegative integer u, fu,v (u, v) > ° only for v = 0, 1 ,  . . .  , u. This gives the set of v 
values to sum over to obtain the marginal pmf of U. It is 

f ( 
_ � 8tt.-ve-0 ).ve-A _ -(9+A) � 8u-v ).V 

u u)
- � (u v) !  - e � (u v) ! v ! ' 

u = 0, 1 , 2, . . . . 

This can be simplified by noting that, if we multiply and divide each term by u! ,  we 
can use the Binomial Theorem to obtain 

fu (u) 
-(O+A) tt. - (O+A) e , L (U) .vOu-v = e 

I (8 + )')tt. , u = 0, 1 , 2, . . . .  

U. v=o v u. 

This is the pmf of a Poisson random variable with parameter 8 + ). . This result is 
significant enough to be stated as a theorem. I I 
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Theorem 4.3.2 if X ""'  Poisson(O) and Y '" Poisson(A) and X and Y are indepe� 
dent, then X + Y f'V Poisson(O + A) . 

If (X, Y) is a continuous random vector with joint pdf fx,Y (x, y) , then the joint pdf 
of (U, V) can be expressed in terms of fx ,Y (x, V) in a manner analogous to (2. 1 .8). As, 
before, A = {(x, V) : fx,Y (x , V) > O} and B = { (u, v ) : u = gl (X, V) and v = 92 (X, y) 
for some (x, V) E A}. The joint pdf fu,v (u, v )  will be positive on the set B. For the 
simplest version of this result we assume that the transformation u 91 (x, V) and 
v 92 (x, V) defines a one-to-one transformation of A onto B. The transformation is 
onto because of the definition of B. We are assuming that for each (u, v )  E B there is 
only one (x, V) E A such that (u, v) = (91 (x, y) , 92(X, y} ) .  For such a one-to-one, onto 
transformation, we can solve the equations u = 91 (X , y) and v 92(X, y) for x and 71 
in terms of u and v .  We will denote this inverse transformation by x = hI (u, v) and 
y = h2(u, v). The role played by a derivative in the univariate case is now played by 
a quantity called the Jacobian of the transformation. This function of (u, v) ,  denoted' 
by J, is the determinant of a matrix of partial derivatives. It is defined by 

8x 8x 
J 8u 8v 

8y 8y 
8u 8v 

where 

8x 8h1 (u, v) 8x 
= 

8h1 (u, v) 
8u 8u 8v 8v 

8x 8y 8y 8x 
8u 8v - 8u 8v ' 

8y 
= 

8h2(U, v} 
8u 8u and 8y 8h2(u, v) 

8v :=:: fJv . 
We assume that J is not identically 0 on B. Then the joint pdf of (U, V) is 0 outside 
the set B and on the set B is given by 

(4.3.2) 

where PI is the absolute value of J. When we use (4.3.2), it is sometimes just as 
difficult to determine the set B and verify that the transformation is one-to-one as 
it is to substitute into formula (4.3.2) .  Note these parts of the explanations in the 
following examples. 

Example 4 .3.3 (Distribution of the product of beta variables) Let X "" 
beta(a, (3) and Y '" beta(a + (3, -y) be independent random variables. The joint pdf 
of (X, Y) is 

f ( ) = rea + (3) 0.-1 ( 1  _ )13-1 rea + (3 + -y) 0.+13-1 ( 1  _ )/,-1 X,Y x, y r(n)r({3) x x r(a + {3)r(-y) Y y ,  

o < x < 1 ,  0 < y < 1 .  

Consider the transformation U = XY and V = X. The set of possible values for V 
is 0 < v < 1 since V X.  For a fixed value of V v, U must be between 0 and v 
since X V = v and Y is between 0 and 1 .  Thus, this transformation maps the set 
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.A onto the set B = {(u, v) : 0 < u < v < 1} .  For any (u, v) E B, the equations u = xy 
and v = x can be uniquely solved for x = h1 (u, v) = v and y = h2 (u, v) = u/v. Note 
that if considered as a transformation defined on all of !R2, this transformation is not 
one-to-one. Any point (0, y) is mapped into the point (0, 0) . But as a function defined 
:>nly on A, it is a one-to-one transformation onto 13. The Jacobian is given by 

ax ax 

J = au ov oy oy 
au ov 

o 1 
1 u = 
v -:;? 

1 
v 

Thus, from (4.3.2) we obtain the joint pdf as 

:(4.3.3) fu,v (u, v)  r(a + (3 + ')') a- I f3- 1 (U) Q+f1- 1 ( 
r(a)r({3)r(f) v ( 1  - v) V 1 

�) 1'-l � , 
V V 

O < u < v < L  
The marginal distribution of V = X is, of course, a beta(a, (3) distribution. But the 
distribution of U is also a beta distribution: 

fu(u) = 11 
fu,v (u, v)dv 

rea + (3 + ')') a-1 J1 ( U  = r(a)r({3)r(,),) u 
u V 

) f3-1 ( U)1'- l ( U )  
u 1 - - - dv. V v2 

The expression (4.3.3) was used but some tenns have been rearranged. Now make the 
univariate change of Yariable y = (u/v - u)/(l - u) so that dy = -u/[v2 (1 - u)]dv to 
obtain 

To obtain the second identity we recognized the integrand as the kernel of a beta 
pdf and used (3.3. 17) . Thus we see that the marginal distribution of U is beta{a, (3+')') . 

I I 

Example 4.3.4 (Sum and difference of normal variables) Let X and Y be 
independent, standard normal random variables. Consider the transformation U = X+y and V = X -Yo In the notation used above, U 91 (X, y) where 91 (X, y) = x+y 
and V = 92 (X, Y) where 92 (X, y) = x - y. The joint pdf of X and Y is, of course, 
Ix.y (x, y) = (27r)- 1 exp(-x2/2) exp(-y2/2) , -00 < x < 00, -00 < y < 00. So the set 
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A �2. To determine the set B on which fu,v(u, v) is positive, we must determine 
all the values that 

. 

(4.3.4) u = X + Y and v = x - y 

take on as (x, y) range over the set A = !R2 • But we can set u to be any number and 
v to be any number and uniquely solve equations (4.3.4) for x and y to obtain 

. 

(4.3.5) 
u + v  x = hl (U, V) = -2- and u v y = h2(u, v) = -

2
-' 

This shows two things. For any (u, v) E !R2 there i s  an  (x, y)  E A (defined by (4.3.5)) 
such that u x + y and v = x - y. So 8, the set of all possible (u, v )  values, is !R2• 
Since the solution (4.3.5) is unique, this also shows that the transformation we have 
considered is one-to-one. Only the (x, y) given in (4.3.5) will yield u = x + y and 
v = x - y. From (4.3.5) the partial derivatives of x and y are easy to compute. We 
obtain 

ax ax 1 1 

J =  au av 2 2 1 
ay &y = 1 1 = - 2 ' 

- - -
au av 2 2 

Substituting the expressions (4.3.5) for x and y into fx.y (x, y) and using I JI = �, we 
obtain the joint pdf of (U, V) from (4.3.2) as 

fu.v(u, v) = ix,y (hl (U, v) , h2(U, v)) IJ I = 
2
� e- ((u+V)/2)2/2e-((U-V)/2 )2/2� 

for -00 < u < 00 and -00 < v < 00.  Multiplying out the squares in the exponen
tials, we see that the terms involving uv cancel. Thus after some simplification and 
rearrangement we obtain 

iu.v(u, v) = (�J2e-u2/4) (�J2e-v2/4) . 

The joint pdf has factored into a function of u and a function of v. By Lemma 
4.2 . 7, U and V are independent. From Theorem 4.2.14, the marginal distribution of 
U = X + Y is n(O, 2 ) .  Similarly, Theorem 4.2.1 2  could be used to find that the marginal 
distribution of V is also n(O, 2 ) .  This important fact, that sums and differences of 
independent normal random variables are independent normal random variables, is 
true regardless of the means of X and Y, so long as Var X = Var Y. This result is 
left as Exercise 4.27. Theorems 4.2. 1 2  and 4.2 .14 give us the marginal distributions 
of U and V. But the more involved analysis here is required to determine that U and 
V are independent. I I  

In Example 4.3.4, we found that U and V are independent random variables. There 
is a much simpler, but very important, situation in which new variables U and V, de
fined in terms of original variables X and Y, are independent. Theorem 4.3.5 describes 
this. 
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, Theorem 4.3.5 Let X and Y be independent random variables. Let g(a;) be a func
tion only of a; and h(y) be a function only of y. Then the random variables U = g (X) 
and V = heY) are independent. 

Proof: We will prove the theorem assuming U and V are continuous random vari
ables. For any u E 1R and v E 1R , define 

Au = {x : g{x) � u} and Bv = {y : h(y) � v} .  
Then the joint cdf of (U, V )  is 

Fu,v (u, v) = P(U � u, V � v )  (definition of  cdf) 

= P(X E Au, Y E Bv) (definition of U and V) 

= P(X E Au)P{Y E Bv) .  (Theorem 4.2.10) 

The joint pdf of (U, V) is 

fj2 -
fu,v {u, v) = 8u8v Fu,v {u, v) 

= (:UP(X E Au)) (:VP(Y E Bv)) , 
(by (4.1 .4)) 

where, as the notation indicates, the first factor is a function only of u and the second 
factor is a function only of v. Hence, by Lemma 4.2.7, U and V are independent . 0 

It may be that there is only one function, say U = gl (X, Y), of interest. In such 
cases, this method may still be used to find the distribution of U. If another convenient 
function, V = g2 (X, Y), can be chosen so that the resulting transformation from 
(X, Y) to (U, V) is one-to-one on A, then the joint pdf of (U, V) can be derived using 
(4.3.2) and the marginal pdf of U can be obtained from the joint pdf. In the previous 
example, perhaps we were interested only in U XY. We could choose to define 
V = X, recognizing that the resulting transformation is one-to-one on A. Then we 
would proceed as in the example to obtain the marginal pdf of U. But other choices, 
such as V = Y, would work as well (see Exercise 4.23) .  

Of course, in many situations, the transformation of interest is not one-to-one. 
Just as Theorem 2.1 .8 generalized the univariate method to many-to-one functions, 
the same can be done here. As before, A = { (x, y) : fx,Y (x, y) > o}. Suppose 
Ao, At ,  . . .  , Ak form a partition of A with these properties. The set Ao, which may 
be empty, satisfies P« X, Y) E Ao) = O. The transformation U = 91 (X, Y) and 
V = 92 (X, Y) is a one-to-one transformation from Ai onto B for each i = 1 , 2, . . .  , k. 
Then for each i ,  the inverse functions from B to Ai can be found. Denote the ith 
inverse by x = hli (u, v) and y = h2i {U, v). This ith inverse gives, for (u, v) E B, the 
unique (x, y) E Ai such that (u, v) = (gl (X, y), g2 (X, y) ) .  Let Ji denote the Jacobian 
computed from the ith inverse. Then assuming that these Jacobians do not vanish 
identically on B, we have the following representation of the joint pdf, fu,v (u, v) :  

(4.3.6) 
k 

fu,v (u, v )  L fx,Y (hli ( u, v ) ,  h2i (U, v)) IJi l · 
i=l 
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Example 4.3.6 (Distribution of the ratio of normal variables) Let X and 
Y be independent n(O, 1 )  random variables. Consider the transformation U = X/Y 
and V = IY I . (U and V can be defined to be any value, say ( 1 , 1 ) ,  if Y 0 since 
P(Y = 0) = 0.) This transformation is not one-to-one since the points (x, y) and 
(-x, -y) are both mapped into the same (u, v) point . But if we restrict consideration 
to either positive or negative values of y, then the transformation is one-to-one. In 
the above notation, let 

Al { (x, y) : y > O} , A2 = { (x, y) : y < O} , and Ao = { (x, y) : y = O} . 

Ao, AI , and A2 form a partition of A = 3{2 and P« X, Y) E Ao) = P(Y = 0) = O. ' 
For either Al  or A2 , if (x, y) E Ai, V = lu i  > 0, and for a fixed value of v = Iyl, 
u x/y can be any real number since x can be Ally real number. Thus, B = { (u, v) : ' 
v > O} is the image of both Al and A2 under the transformation. FUrthermore, the : 
inverse transformations from B to Al and B to A2 are given by x = hll (u, v) = uv, 
y h2l (U, V) = v, and x = h12 (U, V) -uv, y = h22 (U, V) = -v. Note that the 
first inverse gives positive values of y and the second gives negative values of y. The 
Jacobians from the two inverses are Jl = h v. Using 

from (4.3.6) we obtain 

fu,v(u, v ) 

fx,Y {x, y) = 2�e-x2/2e-y2/2, 

-00 < U < 00, 0 < v < 00. 

From this the marginal pdf of U can be computed to be 

fu (u) = r:ro �e-(U2+1)v2/2 dv Jo 7r 

- e-(u +1)%/2 dz z = v2) (change of variable) 
1 100 2 

27r 0 
1 2 ( integrand is kernel of ) 

27r (u2 + 1 )  exponential (/3  = 2/( u2 + 1 ) ) pdf 

1 
7r(u2 + 1) '  -00 < u < 00. 

So we see that the ratio of two independent standard normal random variables is a 
Cauchy random variable. (See Exercise 4.28 for more relationships between normal 
and Cauchy random variables.) \I 

4.4 Hierarchical Models and Mixture Distributions 

In the cases we have seen thus far, a random variable has a single distribution, possibly 
depending on parameters. While, in general, a random variable can have only one 
distribution, it is often easier to model a situation by thinking of things in a hierarchy. 
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Example 4.4.1 (Binomial-Poisson hierarchy) Perhaps the most classic hierar
chical model is the following. An insect lays a large number of eggs, each surviving 
with probability p. On the average, how many eggs will survive? 

The "large number" of eggs laid is a random variable, often taken to be Poisson(A). 
Furthermore, if we assume that each egg's survival is independent, then we have 
Bernoulli trials. Therefore, if we let X = number of survivors and Y = number of 
eggs laid, we have 

X I Y  '" binomial(Y, p), 

Y '" Poisson (A) , 

8 hierarchical model. (Recall that we use notation such as X I Y  rv binomial(Y,p) to : mean that the conditional distribution of X given Y = y is binomial(y , p) . )  I I 

The advantage of the hierarchy is that complicated processes may be modeled by 
8 sequence of relatively simple models placed in a hierarchy. Also, dealing with the 

. hierarchy is no more difficult than dealing with conditional and marginal distributions. 

Example 4.4.2 (Continuation of Example 4.4.1) The random variable of in
terest, X = number of survivors, has the distribution given by 

00 
P(X x) LP(X x, Y y)  

y=o 
00 

L P(X = x lY = y)P(Y = y) 
y=o 

( definit ion of ) 
conditional probability 

(conditional prObability) 
is 0 if y < x 

since X I Y  = y is binomial(y,p) and Y is Poisson(A) .  I f  we now simplify this last 
expression, canceling what we can and multiplying by AX / AX, we get 

P(X 

( sum is a kernel for ) 
a Poisson distribution 

80 X rv Poisson(Ap). Thus, any marginal inference on X is with respect to a Pois
SOn(Ap) distribution, with Y playing no part at all. Introducing Y in the hierarchy 
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was mainly to aid our understanding of the model. There was an added bonus in 
that the parameter of the distribution of X is the product of two parameters, each 
relatively simple to understand. 

The answer to the original question is now easy to compute: 

EX = .>.p, 

so, on the average, .>.p eggs will survive. If we were interested only in this mean and did 
not need the distribution, we could have used properties of conditional expectations. 

I I 

Sometimes, calculations can be greatly simplified be using the following theorem. 
Recall from Section 4.2 that E(Xly) is a function of y and E(XI Y) is a random 
variable whose value depends on the value of Y. 

Theorem 4.4.3 If X and Y are any two random variables, then 
(4.4.1 ) EX = E (E(XIY)) , 

provided that the expectations exist. 
Proof: Let f(x, y) denote the joint pdf of X and Y. By definition, we have 

(4.4.2) EX = J J xf(x, y) dx dy = / [/ xf(x !y) dX) fy (y) dy, 
where f(xly) and fy(y) are the conditional pdf of X given Y = y and the marginal pdf 
of Y, respectively. But now notice that the inner integral in (4.4.2) is the conditional 
expectation E(Xly), and we have 

EX = / E(Xly)fy (y) dy = E (E(X IY)) , 

as desired. Replace integrals by sums to prove the discrete case. o 

Note that equation (4.4.1 ) contains an abuse of notation, since we have used the 
"E" to stand for different expectations in the same equation. The "E" in the left
hand side of (4.4.1) is expectation with respect to the marginal distribution of X. 
The first "E" in the right-hand side of (4.4. 1 )  is expectation with respect to the 
marginal distribution of Y, while the second one stands for expectation with respect 
to the conditional distribution of XIY. However, there is really no cause for confusion 
because these interpretations are the only ones that the symbol "E" can take! 

We can now easily compute the expected number of survivors in Example 4.4. 1 .  
From Theorem 4.4.3 we have 

EX = E (E(XIY))  = E(pY) 

p.>.. 
(since XIY tv binomial(Y, p)) 

(since Y tv POisson(.>.)) 
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The term mixture distribution in the title of this section refers to a distribution 
arising from a hierarchical structure. Although there is no standardized definition for 
this term, we will use the following definition, which seems to be a popular one. 

Definition 4.4.4 A random variable X is said to have a mixture distribution if the 
distribution of X depends on a quantity that also has a distribution. 

Thus, in Example 4.4.1 the Poisson(),p) distribution is a mixture distribution since 
it is the result of combining a binomial(Y, p) with Y ('oJ Poisson(),). In general, we can 
say that hierarchical models lead to mixture distributions. 

There is nothing to stop the hierarchy at two stages, but it should be easy to 
see that any more complicated hierarchy can be treated as a two-stage hierarchy 
theoretically. There may be advantages, however, in modeling a phenomenon as a 
multistage hierarchy. It may be easier to understand. 

Example 4.4.5 (Generalization of Example 4.4.1)  Consider a generalization 
of Example 4.4.1 ,  where instead of one mother insect there are a large number of 
mothers and one mother is chosen at random. We are still interested in knowing 
the average number of survivors, but it is no longer clear that the number of eggs 
laid follows the same Poisson distribution for each mother. The following three-stage 
hierarchy may be more appropriate. Let X = number of survivors in a litter; then 

XIY 'V binomial(Y, p) ,  

YIA 'V Poisson(A) , 

A rv exponential(.8), 

where the last stage of the hierarchy accounts for the variability across different 
mothers. 

The mean of X can easily be calculated as 

completing the calculation. 

EX :: E (E(XIY)) 

E(pY) 

= E (E(PYIA)) 

= E(pA) 

= P.8, 

(as before) 

(exponential expectation) 

I I  

In this example we have used a slightly different type of model than before in that 
two of the random variables are discrete and one is continuous. Using these models 
should present no problems. We can define a joint density, f(x, y, ),)j conditional 
densities, f(xly) , f(xly, ),) , etc.; and marginal densities, f(x) , f(x, y), etc. as before. 
Simply understand that, when probabilities or expectations are calculated, discrete 
variables are summed and continuous variables are integrated. 
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Note that this three-stage model can also be thought of as a two-stage hierarchy 
by combining the last two stages. If YIA rv Poisson(A) and A '" exponential(,8) , then 

P(Y y) = P(Y = y, O < A < oo) 

= 100 fey, A) dA 

100 f(YIA)f(A) dA 

= [00 [
e-A All ] ':e-A/J3 dA 

Jo y! ,8 

== � (00 Alle-A(1+,B-l ) dA ,8y! JQ 
== 
,8�! r(y + 1 ) ( 1 +1

,8_1 ) 11+1 
(1 �,8) ( 1 +1

,8_1) II 

( gamma ) pdf kernel 

This expression for the pmf of Y is the form (3.2. 10) of the negative binomial pmf. 
Therefore, our three-stage hierarchy in Example 4.4.5 is equivalent to the two-stage 
hierarchy 

XIY '" binomial(Y, p) ,  

Y rv negative binomial (p = 1 � ,8 , r = 1) . 
However, in terms of understanding the model, the three-stage model is much easier 
to understand! 

A useful generalization is a Poisson-gamma mixture, which is a generalization of a 
part of the previous model. If we have the hierarchy 

YIA '" Poisson(A), 

A rv gamma(o:, ,8) ,  

then the marginal distribution of Y i s  negative binomial (see Exercise 4.32) . This 
model for the negative binomial distribution shows that it can be considered to be 
a "more variable" Poisson. Solomon (1983) explains these and other biological and 
mathematical models that lead to the negative binomial distribution. (See Exercise 
4.33.) 

Aside from the advantage in aiding understanding, hierarchical models can often 
make calculations easier. For example, a distribution that often occurs in statistics is 
the noncentral chi squared distribution. With p degrees of freedom and noncentrality 
parameter A, the pdf is given by 

00 
xp/2+k-le-x/2 Ake-A (4.4.3) f(x IA,p) = (;r(P/2 + k)2P/2+k k! ' 
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an extremely messy expression. Calculating EX, for example, looks like quite a chore. 
However, if we examine the pdf closely, we see that this is a mixture distribution, 
made up of central chi squared densities (like those given in (3.2.10» and Poisson 
distributions. That is, if we set up the hierarchy 

XIK ", X;+2K' 
K '" Poisson(>') , 

then the marginal distribution of X is given by (4.4.3) . Hence 

EX = E(E(X]K) 
= E(p + 2K) 
= p + 2>', 

a relatively simple calculation. Var X can also be calculated in this way. 
We close this section with one more hierarchical model and illustrate one more 

conditional expectation calculation. 

Example 4.4.6 (Beta-binomial hierarchy) One generalization of the binomial 
distribution is to allow the success probability to vary according to a distribution. A 
standard model for this situation is 

XIP '" binomia1(P) , i = 1 ,  . . " n, 

P '" beta(Q, m. 

By iterating the expectation, we calculate the mean of X as 
Q EX = E[E(XIP)] = E[nP] = n--

f3
' 

a +  
\I 

Calculating the variance of X is only slightly more involved. We can make use of 
a formula for conditional variances, similar in spirit to the expected value identity of 
Theorem 4.4.3. 
Theorem 4.4.1 (Conditional variance identity) For any two random variables 
X and Y, 
(4.4.4) Var X = E (Var(XIY» + Var (E(XIY)) , 

provided that the expectations exist. 
Proof: By definition, we have 

Var X = E ([X - EX]2) = E ( [X - E(XIY) + E(XIY) - EX]2) , 
where in the last step we have added and subtracted E(XIY). Expanding the square 
in this last expectation now gives 

(4.4.5) 
Var X = E ([X - E(Xly)]2) + E ( [E(XIY) - EX]2 ) 

+ 2E ( [X E(XIY)] [E(XIY) - EX]) . 
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The last term in this expression is equal to 0, however, which can easily be seen by 
iterating the expectation: 
(4.4.6) 

E ( [X - E(XIY)] (E(XIY) - EX]) E (E { [X - E(XIY)] [E(XIY) - EXl !Y}) . 
In the conditional distribution X IY , X is the random variable. So in the expression 

E {[X - E(XIY)] [E(X IY) - EX] IY} , 
E(X IY) and EX are constants. Thus, 

E {[X E(XIY)] [E(XIY) - EX] IY} = (E(XIY) - EX) (E { [X - E(XIY)l I Y}) 
(E(XIY) - EX) (E(XIY) E(XIY)) 

= (E(XIY) - EX) (0) 

O. 
Thus, from (4.4.6) , we have that E((X E(XIY)) (E(XIY) - EX)) = E(O) = O. 
Referring back to equation (4.4.5), we see that 

and 

E ([X - E(XIY)]2) = E (E { [X - E(XIYWIY}) 
= E (Var(X IY) ) 

E ([E(X IY) - EX]2) Var (E(X IY)) , 
establishing (4.4.4) . 0 
Example 4.4.8 (Continuation of Example 4.4.6) To calculate the variance of 
X, we have from (4.4.4 ) ,  

Var X = Var (E(X IP)) + E (Var(X IP)) . 
Now E(X IP) nP, and since P f'V beta(o:, ,B) ,  

2 0:{3 Var (E(XIP)) Var(nP) = n (0: + {3)2(o: + 13 + 1 ) ' 
Also, since X IP is binomial(n, P) , Var(XIP) nP(1 P). We then have 

E [Var(XIP)] nE [P(I - P)] = n:);frh 10
1 
p(1 p)pQ- 1 ( 1 _ p)f3-1dp. 

Notice that the integrand is the kernel of another beta pdf (with parameters a + 1 
and {3 + 1 ) so 

r(a + {3) [r(o: + l)r({3 + 1 ) ] 0:{3 E (Var(XIP)) = nr(a)r({3) r(a + {3 + 2) = 
n (0: + {3)(a + 13 + 1) ' 

Adding together the two pieces and simplifying, we get 
al3(a + {3 + n) Var X n (a + 13)2 (a + 13 + 1 ) ' 
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4.li Covariance and Correlation 

In earlier sections, we have discussed the absence or presence of a relationship be
tween two random variables, independence or nonindependence. But if there is a 
relationship, the relationship may be strong or weak. In this section we discuss two 
numerical measures of the strength of a relationship between two random variables, 
the covariance and correlation. 

To illustrate what we mean by the strength of a relationship between two random 
variables,  consider two different experiments. In the first, random variables X and Y 
are measured, where X is the weight of a sample of water and Y is the volume of 
the same sample of water. Clearly there is a strong relationship between X and Y. If 
(X, Y) pairs are measured on several samples and the observed data pairs are plotted, 
the data points should fall on a straight line because of the physical relationship 
between X and Y. This will not be exactly the case because of measurement errors, 
impurities in the water, etc. But with careful laboratory technique, the data points 
will fall very nearly on a straight line. Now consider another experiment in which X 
and Y are measured, where X is the body weight of a human and Y is the same 
human's height. Clearly there is also a relationship between X and Y here but the 
relationship is not nearly as strong. We would not expect a plot of (X, Y) pairs 
measured on different people to form a straight line, although we might expect to 
see an upward trend in the plot. The covariance and correlation are two measures 
that quantify this difference in the strength of a relationship between two random 
variables. 

Throughout this section we will frequently be referring to the mean and variance 
of X and the mean and variance of Y. For these we will use the notation EX = /Lx, 
EY = /Ly, Var X = 01, and Var Y a� . We will assume throughout that 0 < ai < 
00 and 0 < a� < 00. 

Definition 4.5.1 The covariance of X and Y is the number defined by 

Cov(X, Y) = E ( X  /Lx) (Y - /LY)) . 

Definition 4.5.2 The correlation oj X and Y is the number defined by 

Cov(X, Y) 
PXY = . 

aXay 

The value PXy is also called the correlation coefficient. 
If large values of X tend to be observed with large values of Y and small values of 

X with small values of Y, then Cov(X, Y) will be positive. If X >  /Lx, then Y > /LY 
is likely to be true and the prod uet (X - /Lx) (Y - /Ly) will be positive. If X < /LX, 
then Y < /LY is likely to be true and the product (X - /Lx ) (Y /LY) will again be 
positive. Thus Cov(X, Y) E(X /Lx ) (Y /LY) > O. If large values of X tend to be 
observed with small values of Y and small values of X with large values of Y, then 
Cov(X, Y) will be negative because when X > /Lx , Y will tend to be less than /LY 
and vice versa, and hence (X - /Lx)(Y /LY) will tend to be negative. Thus the sign 
of Cov{X, Y) gives information regarding the relationship between X and Y. 
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But Cov (X, Y )  c a n  be any number and a given value of  Cov ( X ,  Y) , say COV (X, Y) = 

3, does not in itsel f give information about  the strength of the re l ationship between 
X and Y. On the other hand , the correlation is always between - 1  and 1 ,  with the 
values - 1 and 1 i ndicating a perfect linear rel ationship between X and Y. This is 
proved in Theorem 4 . 5 . 7. 

Before investigating these proper ties of covariance and correlat ion, we will first 

calculate these measures in a given example. This cal cu lat.ion will be simpl ified by 
the following result . 

Theorem 4 . 5 . 3  FOT any random variables X and YJ 

Cov(X, Y )  = EXY - /-tx/-ty · 

Proof: Cov(X, Y) = E ( X  - j.£x ) (Y  - f.1.y) 
= E (XY - P,x Y - j.£y X + J-1XJ-LY) (expanding t h e  pro duct) 

= EXY - fLx EY - fLy EX + /-Lx fLY (fLX and fLy are constants) 

= EXY - fLx fLy - {.Ly J.tx + J.tx J-Ly 
= EXY - J.txj.£Y · o 

Example 4. 5 .4 (Correlation-I) Let the joint pdf of (X, Y) be f(x,  y) = 1 ,  0 < 
x < 1 ,  x < 1) < x + 1 .  See Figure 4 . 5 . 1 .  The marginal distribution of X is uniform(O, 1 )  
s o  fL X  = } and a3c = /2 · The marginal pdf of Y is fy (y) = y, 0 < y < 1 ,  and 
fy(y) = 2 - y, 1 :s; y < 2) with J-Ly = 1 and a? = i · Vve also have 

y 

2 

.5 

EX Y 
= l' lX+ l xy dy dx = 11 �xy2 1 :+ 1  dx 
= l' (x2 + �x) dx = 172 

y 

�--�---L--�----L---� __ -L x  

. 5  1 . 5 

a .  b.  

Figure 4 . 5 . 1 . (a) Region where f(x ,  y) > 0 JOT Example 4 . 5. 4 ;  (b) Tegion where f(x, y) > 0 
for Example 4 · 5 . 8  
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Proof: The mean of aX + bY is E(aX + bY) aEX + bEY = a/lx + b/lY . Thus 

Var(aX + bY) = E ( aX + bY ) - (a/lX + b/ly))2 

= E (a(X - /lx )  + b(Y - /ly) )2 

E (a2(X - /lX)2 + b2(y /Ly)2 + 2ab(X - /Lx) (Y - /LY) ) 
= a2E(X /Lx)2 + b2E(Y - /Ly)2 + 2abE(X fix ) (Y - /lY) 

= a2Var X + b2Var Y + 2abCov(X, Y) . 

If X and Y are independent, then, from Theorem 4.5.5, Cov(X, Y) = 0 and the second 
equality is immediate from the first. 0 

From Theorem 4.5.6 we see that if X and Y are positively correlated (Cov(X, Y) 
> 0),  then the variation in X + Y is greater than the sum of the variations in X 
and Y. But if they are negatively correlated, then the variation in X + Y is less than 
the sum. For negatively correlated random variables, large values of one tend to be 
observed with small values of the other and in the sum these two extremes cancel. 
The result, X + Y, tends not to have as many extreme values and hence has smaller 
variance. By choosing a 1 and b = - 1  we get an expression for the variance of the 
difference of two random variables, and similar arguments apply. 

The nature of the linear relationship measured by covariance and correlation is 
somewhat explained by the following theorem. 

Theorem 4.5.7 For any mndom variables X and Y, 

a. -1 � PXY � 1 .  
b. Ipxy l  = 1 if and only if there exist numbers a '# 0 and b such that P(Y 

aX + b) = 1. If PXY = 1, then a > 0, and if PXY = -I,  then a < O .  

Proof: Consider the function h( t) defined by 

h(t) = E « X  - /Lx ) t  + (Y /LY ))2 . 

Expanding this expression, we obtain 

h(t) = eE(X - /lx)2 + 2tE(X - /lx)(Y - /LY) + E(Y /Ly)2 

= t2ai + 2tCov(X, Y) + a� . 

This quadratic function of t is greater than or equal to 0 for all values of t since it is 
the expected value of a nonnegative random variable. Thus, this quadratic function 
can have at most one real root and thus must have a nonpositive discriminant. That 
is, 

This is equivalent to 

(2Cov(X, y))2 4aia� � O. 

-axay � Cov(X, Y) � aXay . 
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Dividing by axo"y yields 

COVARIANCE AND CORRELATION 

-1 < Cov(X, Y) 
PXy � 1. 

- aXay 

173 

Also, Ipxyl = 1 if and only if the discriminant is equal to O. That is, Ipxy l = 1 if and 
only if h(t) has a single root. But since « X  - J..Lx)t + (Y fLy) )2 :::: 0, the expected 
value h(t) = E« X  - J..Lx) t  + (Y  J..Ly ))2 = 0 if and only if 

This is equivalent to 

P( [(X J..Lx) t  + (Y  - J..LY)] 2 0) 1. 

P« X J..Lx ) t  + (Y - J..LY) 0) 1 .  

This is  P(Y aX + b) 1 with a = -t and b = J..Lxt  + J..Ly ,  where t is  the root of 
h(t). Using the quadratic formula, we see that this root is t = -Cov(X, Y)/ai . Thus 
a -t has the same sign as PXy,  proving the final assertion. 0 

In Section 4.7 we will prove a theorem called the Cauchy-Schwarz Inequality. This 
theorem has as a direct consequence that p Xy is bounded between -1 and 1 , and we 
will see that, with this inequality, the preceding proof can be shortened. 

If there is a line y = ax + b, with a 1= 0, such that the values of (X, Y) have a high 
probability of being near this line, then the correlation between X and Y will be near 
1 or -1. But if no such line exists, the correlation will be near O. This is an intuitive 
notion of the linear relationship that is being measured by correlation. This idea will 
be illustrated further in the next two examples. 

Example 4.5.8 (Correlation-II) This example is similar to Example 4.5.4, but we 
develop it differently to illustrate other model building and computational techniques. 
Let X have a uniform(O, l)  distribution and Z have a uniform(O, 110 ) distribution. 
Suppose X and Z are independent. Let Y = X + Z and consider the random vector 
(X, V). The joint distribution of (X, Y) can be derived from the joint distribution of 
(X, Z) using the techniques of Section 4.3. The joint pdf of (X, Y) is 

I(x, y) 10, 1 
o < x < 

1 , x < y < x + 1 0 '  

Rather than using the formal techniques of Section 4.3, we can justify this as follows. 
Given X = x, Y = x + Z. The conditional distribution of Z given X x is just 
uniform(O, 1� ) since X and Z are independent. Thus x serves as a location parameter 
in the conditional distribution of Y given X = x, and this conditional distribution 
is just uniform(x, x + 110 ) ' Multiplying this conditional pdf by the marginal pdf of X 
(uniform(O, l) )  yields the joint pdf above. This representation of Y X + Z makes 
the computation of the covariance and correlation easy. The expected values of X 
and Y are EX = � and EY = E{X + Z) = EX + EZ = � + 2� = �� ,  giving 

Cov(X, Y) = EXY (EX)(EY) 

EX(X + Z) - (EX) (E(X + Z)) 
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d. For any constants a and b, the distribution of aX + bY is n(aJ1.X + bJ1.Y, a2al + b2a� + 2abpoxay). 
We will leave the verification of properties (a) , (b) , and (d) as exercises (Exercise 

4.45). Assuming (a) and (b) are true, we will prove (c) . We have by definition 

Cov(X, Y) PXY = aXay 
E(X - J1.x) (Y - J1.y) = 

Make the change of variable 

Then x = axt + J1.x , Y = (aysjt) + J1.Y, and the Jacobian of the transformation is 
J = axoy jt. With this change of variable, we obtain 

PXy = 1:/: sf (axt + J1.x , a:s + J1.Y) l axt
ay ! ds dt 

= I: I: s (27rlTxay VI - p2) -1 

X exp ( - 2(1 � p2) (t2 - 2ps + (i) 2)) lTlt�y ds dt. 
Noting that It I = Jt2 and t2 2ps + (� )  2 (II-t) 2 + ( 1  - p2)t2 , we can rewrite 

this as 

The inner integral is ES, where S is a normal random variable with ES = pt2 and 
Var S = ( 1 - p2)t2 , Thus the inner integral is pt2 . Hence we have 

JOO pt2 (
t2 ) PXy = -00 ..;2ir exp - 2"  dt. 

But this integral is pET2 , where T is a n(O, 1) random variable. Hence ET2 1 and 
PXy = p. 
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All the conditional distributions of Y given X = x and of X given Y = y are also 
normal distributions. Using the joint and marginal pdfs given above, it is straightfor
ward to verify that the conditional distribution of Y given X = x is 

n(tty + p(aY/ux) (x - ttx ) , a}(1 - p2) ) . 

As p converges to 1 or -1 ,  the conditional variance a} (I - p2) converges to O. Thus, 
the conditional distribution of Y given X = x becomes more concentrated about the 
point IlY+p(Uy lux ) (x-ttx ) , and the joint probability distribution of (X, Y) becomes 
more concentrated about the line y = Ily + p(ay lax ) (x Ilx ) . This illustrates again 
the point made earlier that a correlation near 1 or - 1 means that there is a line 
y = ax + b about which the values of (X, Y) cluster with high probability. 

Note one important fact: All of the normal marginal and conditional pdfs are de
rived from the starting point of bivariate normality. The derivation does not go in the 
opposite direction. That is, marginal normality does not imply joint normality. See 
Exercise 4.47 for an illustration of this. 

4.6 Multivariate Distributions 

At the beginning of this chapter, we discussed observing more than two random 
variables in an experiment. In the previous sections our discussions have concentrated 
on a bivariate random vector (X, Y). In this section we discuss a multivariate random 
vector (Xl , . . .  , Xn) .  In the example at the beginning of this chapter, temperature, 
height, weight, and blood pressure were observed on an individual. In this example, 
n 4 and the observed random vector is (Xl , X2 , X3, X4) , where Xl is temperature, 
X2 is height, etc. The concepts from the earlier sections, including marginal and 
conditional distributions, generalize from the bivariate to the multivariate setting. 
We introduce some of these generalizations in this section. 
A note on notation: We will use boldface letters to denote multiple variates. Thus, 
we write X to denote the random variables Xl , . . .  , Xn and x to denote the sample 
Xl , · . .  , xn. 

The random vector X = (Xl , . .  ' , Xn) has a sample space that is a subset of !Rn• 
If (Xl , . . .  , Xn) is a discrete random vector (the sample space is countable) ,  then the 
joint pmf of (Xl , . . .  , Xn)  is the function defined by f(x) = f(xl , . . .  , xn) P(XI = 
Xl , . . .  I Xn = xn) for each (XI , . . .  , xn) E lRn. Then for any A c !Rn, 
(4.6. 1 )  P(X E A) = L f(x). 

xEA 

If (XI " " , Xn) is a continuous random vector, the joint pdf of (XI " " , Xn ) is a 
function f (x I , . . .  , Xn) that satisfies 

(4.6.2) P(X E A) J " ' l  f(x)dx = J " ' l  f(Xb " " Xn) dXI . . .  dXn. 

These integrals are n-fold integrals with limits of integration set so that the integration 
is over all points x E A. 
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Let g(x) = g(X I ,  . . .  , xn) be a real-valued function defined on the sample space of 
X. Then g(X) is a random variable and the expected value of g(X) is 

(4.6.3) Eg(X) = 1: " · 1: g(x)f(x)dx and Eg(X) = 
x
�

n
g(X)f(X) 

in the continuous and discrete cases, respectively. These and other definitions are 
analogous to the bivariate definitions except that now tbe integrals or sums are over 
tbe appropriate subset of 1Rn rather than 1R2. 

The marginal pdf or pmf of any subset of the coordinates of (Xl , . . .  , Xn) can be 
computed by integrating or summing the joint pdf or pmf over all possible values of 
the other coordinates. Thus, for example, the marginal distribution of (Xl , . . . , X�:) ,  
the first k coordinates of (Xl , '  . .  , Xn), i s  given by the pdf or pmf 

(4.6.4) 

or 

(4.6.5) 

for every (XI , ' . .  , Xk) E 1Rk . The conditional pdf or pmf of a subset of the coordinates 
of (Xl . . . .  , Xn) given the values of the remaining coordinates is obtained by dividing 
the joint pdf or pmf by the marginal pdf or pmf of the remaining coordinates. Thus, 
for example, if f(XI , ' "  , Xk)  > 0, the conditional pdf or pmf of (Xk+1 , " " Xn) given 
Xl = Xl , . ' "  Xk = Xk is the function of (Xk+l .  . . .  , xn) defined by 

(4.6.6) 

These ideas are illustrated in the following example. 

Example 4.6.1 (Multivariate pdfs) Let n = 4 and 

0 < Xi < 1 , i  = 1 , 2, 3, 4  
otherwise. 

This nonnegative function is the joint pdf of a random vector (XI , X2, Xa, X4) and 
it can be verified that 

1: 1: 1: 1: f(XI , X2, Xa, X4) dXI dX2 dxa dX4 

fl 
t fl 

fI 3 
= 10 10 10 10 4 (xr + x� + x� + x�) dxl dX2 dxa dX4 

= 1 . 
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This joint pdf can be used to compute probabilities such as 

Note how the limits of integration restrict the integration to those values of (Xl ,  X2. X3, 
X4) that are in the event in question and for which I(xl , X2 . X3. X4 )  > O. Each of the 
four terms, �xf,  �x�, etc., can be integrated separately and the results summed. For 
example, 

hI 11 
1
i 
1
! �xi dXl dX2 dX3 dX4 = 

2
!

6
' 

The other three integrals are 1�4 ' 634 ' and ;516 ' Thus 

Using (4.6.4) , we can obtain the marginal pdf of (X1 , X2)  by integrating out the 
variables X3 and X4 to obtain 

j(Xl , X2) = i:i: j(XI , X2 , X3 , X4 ) dx3 dx4 

[
1 r 3 ( 2 2 2 2 ) 3 2 2 1 = 10 10 4' Xl + X2 + X3 + X4 dx3 dX4 = 4'(Xl + X2) + '2 

for 0 < Xl < 1 and 0 < X2 < 1. Any probability or expected value that involves only 
Xl and X2 can be computed using this marginal pdf. For example, 

EX1X2 i: i: xlx21(X1 , X2) dx1 dX2 

= 1
1 11 

X1X2 (� (xi + X�) + i) dx1 dx2 

= 1
1 
1
1 (�X�X2 + �X1X� + iX1X2) dXl dX2 

= 1
1 C3

6x2 + �x� + �X2) dX2 :2 + :2 + � 5 

For any (Xt . X2 )  with 0 < Xl < 1 and 0 < X2 < 1 . !(Xl , X2) > 0 and the conditional 
pdf of (X3 , X4 )  given Xl Xl and X2 = X2 can be found using (4.6.6). For any such 
(Xl ,  X2) ,  I(xll X2 , X3, X4 )  > 0 if 0 < X3 < 1 and 0 < X4 < 1 , and for these values of 
(X3, X4) , the conditional pdf is 
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/( 
I ) /(X1, X2, X3, X4) X3 , X4 X1 , x2 = 

( ) f Xl , X2 
_ i (x� + x� + x� + xn 
- ! (x� + x� ) + � 

x� + x� + x� + x� 
xI + X� + i 

For example, the conditional pdf of (X3• X4) given Xl 

This can be used to compute 

Section 4.6 

1 1 ( ) � 5 9 2 9 2 i h 1 1  + 1 1  X3 + UX4 dX3 dx4 
4 

f i ( 5 1 11 9 2) Jo 44 + 704 + 44X4 dx4 

5 1 11 3 203 = 88 + 1408 + 352 = 1408 ' 
Before giving examples of computations with conditional and marginal distributions 

for a discrete multivariate random vector, we will introduce an important family of 
discrete multivariate distributions. This family generalizes the binomial family to the 
situation in which each trial has n (rather than two) distinct possible outcomes. 

Definition 4.6.2 Let n and m be positive integers and let Pl , ' "  , Pn be num
bers satisfying 0 :::; Pi :::; 1 ,  i = 1 ,  . . .  , n ,  and L:�lPi = 1 .  Then the random vec
tor (Xl , "  . , Xn) has a multinomial distribution with m trials and cell probabilities 
PI .  . . .  , Pn if the joint pmf of (Xl , . . . , Xn) is 

n Xi 
m! ll Pi. , i=l X • •  

on the set of (Xl , . . . , xn) such that each Xi is a nonnegative integer and L:�=l Xi m .  

The multinomial distribution is a model for the following kind of experiment. The 
experiment consists of m independent trials. Each trial results in one of n distinct 
possible outcomes. The probability of the ith outcome is Pi on every trial. And Xi 
is the count of the number of times the ith outcome occurred in the m trials. For 
n = 2 , this is just a binomial experiment in which each trial has n = 2 possible 
outcomes and Xl counts the number of "successes" and X2 = m Xl counts the 
number of "failures" in m trials. In a general multinomial experiment, there are n 

different possible outcomes to count. 
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Example 4.6.3 (Multivariate pmf) Consider tossing a six-sided die ten times. 
Suppose the die is unbalanced so that the probability of observing a· 1 is ll ' the 
probability of observing a 2 is ll ' and, in general, the probability of observing an 
i is 2\ '  Now consider the random vector (Xl , . .  " X6) ,  where Xi counts the num
ber of times i comes up in the ten tosses. Then (Xl , . . .  , X6) has a multinomial 
distribution with m = 10 trials, n 6 possible outcomes, and cell probabilities 

PI = :A , P2 = ;1 " " , P6 = ;1 ' The formula in Definition 4.6.2 may be used to 
calculate the probability of rolling four 6s, three 5s, two 4s, and one 3 to be 

10! ( 1 ) ° ( 2 ) ° ( 3 ) 1 ( 4 ) 2 ( 5 ) 3 ( 6 ) 4 

f(O, O, 1 , 2 , 3, 4) = 010!! 121314! 21  21 21  21  21  21  

= .0059. I I 

The factor m!/(xl ! · · · ·  ,xn ! )  is called a multinomial coefficient. It is the number 
of ways that m objects can be divided into n groups with Xl in the first group, X2 
in the second group, . . .  , and Xn in the nth group. A generalization of the Binomial 
Theorem 3.2.2 is the Multinomial Theorem. 

Theorem 4.6.4 (Multinomial Theorem) Let m and n be positive integers. Let A 
be the set of vectors x = (Xl , . . .  , Xn) such that each Xi is a nonnegative integer and 
L:�lxi = m. Then, for any real numbers PI , · · · , Pn ,  

( )m """ ml Xl X Pl + . . . + Pn = L...t PI . . . . 'Pn n • 
xEA Xl ! · · · · 'Xn ! 

Theorem 4.6.4 shows that a multinomial pmf sums to 1. The set A is the set of 
points with positive probability in Definition 4.6.2. The sum of the pmf over all those 
points is, by Theorem 4.6.4, (PI + . . . + Pn)m = 1m = 1 .  

Now we consider some marginal and conditional distributions for the multinomial 
model. Consider a single coordinate Xi' If the occurrence of the ith outcome is labeled 
a "success" and anything else is labeled a "failure," then Xi is the count of the 
number of successes in m independent trials where the probability of a success is Pi 
on each trial. Thus Xi should have a binomial(m, pi) distribution. To verify this the 
marginal distribution of Xi should be computed using (4.6.5). For example, consider 
the marginal pmf of Xn. For a fixed value of Xn E {O, l , . . .  , n } ,  to compute the 
marginal pmf f(xn) ,  we must sum over all possible values of (Xl , ' "  , xn-t} . That is, 
we must sum over all (Xl > . . .  , xn-d such that the XiS are all nonnegative integers 
a.nd L:7:1

1Xi = m - Xn . Denote this set by 13. Then 
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But using the facts that Xl + . . .  + Xn-l = m - Xn and PI + . . .  + Pn-l = 1 - Pn and 
Theorem 4.6.4, we see that the last summation is 1 .  Hence the marginal distribution 
of Xn is binomial(m,Pn) '  Similar arguments show that each of the other coordinates 
is marginally binomially distributed. 

Given that Xn = Xn ,  there must have been m - Xn trials that resulted in one of the 
first n - 1 outcomes. The vector (Xl , "  . , Xn-d counts the number of these m - Xn 
trials that are of each type. Thus it seems that given Xn = Xn ,  (Xl , " " Xn-l )  might 
have a multinomial distribution. This is true. From (4.6.6) , the conditional pmf of 
(Xl , . . .  , Xn- I ) given Xn Xn is 

(m - Xn) ! ( PI ) :%:1 ( Pn-l ) :%:n-1 = Xl '· · · · 'Xn-l ! 1 - Pn •
. . . •  1 - Pn 

This is the pmf of a multinomial distribution with m - Xn trials and cell probabilities 
pI I(l - Pn) ,  . . .  , Pn-I/(l - Pn) .  In fact, the conditional distribution of any subset of 
the coordinates of (Xl " ' " Xn) given the values of the rest of the coordinates is a 
multinomial distribution. 

We see from the conditional distributions that the coordinates of the vector (Xl , 
. . . , Xn) are related. In particular, there must be some negative correlation. It turns 
out that all of the pairwise covariances are negative and are given by (Exercise 4.39) 

Thus, the negative correlation is greater for variables with higher succesS probabilities. 
This makes sense, as the variable total is constrained at m, so if one starts to get big, 
the other tends not to. 

Definition 4.6.5 Let X!, . . .  , Xn be random vectors with joint pdf or pmf 
I(XI , '  . .  , xn). Let IXi (xd denote the marginal pdf or pmf of Xi' Then Xl , . . .  , Xn 
are called mutually independent random vectors if, for every (Xl ,  . . .  , xn) ,  

n 
I(XI , " " Xn) = Ix1 (xd . . . .  ·/xn (xn) = II IXi (Xi) ' 

i;l 

If the XiS are all one-dimensional, then Xl , . . .  , Xn are called mutually independent 
random variables. 
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If XI , . . . , Xn are mutually independent, then knowledge about the values of some 
coordinates gives us no information about the values of the other coordinates. Using 
Definition 4.6.5, one can show that the conditional distribution of any subset of the 
coordinates, given the values of the rest of the coordinates, is the same as the marginal 
distribution of the subset. Mutual independence implies that any pair, say Xi and 
Xj , are pairwise independent. That is, the bivariate marginal pdf or pmf, J( Xi , X j )  \ 

satisfies Definition 4.2.5. But mutual independence implies more than pairwise inde
pendence. As in Example 1 .3. 1 1 ,  it is possible to specify a probability distribution for 
(Xl , . . . , Xn) with the property that each pair, (Xi , Xj ) ,  is pairwise independent but 
Xl , . . . , Xn are not mutually independent. 
Mutually independent random variables have many nice properties. The proofs of 

the following theorems are analogous to the proofs of their counterparts in Sections 
4.2 and 4 .3. 

Theorem 4.6.6 (Generalization of Theorem 4.2.10) Let Xb . . . , Xn be mutu
ally independent random variables. Let 91 , . . .  , 9n be real-valued functions such that 
gi (Xi ) is a function only of Xi ,  i = 1 ,  . . . , n .  Then 

Theorem 4.6.7 (Generalization of Theorem 4.2.12) Let Xb " " Xn be mutu
ally independent random variables with mgfs M Xl (t) , . . .  , M Xn (t) . Let Z = XI + . . .  + 
Xn. Then the mgf of Z is 

. 

Mz (t) = MXl (t) · · · · .Mxn (t) . 

In particular, if Xl , . . . , Xn all have the same distribution with mgf Mx (t), then 

Mz (t) (Mx (t)t · 

Example 4.6.8 (Mgf of a sum of gamma variables) Suppose Xl , '  . . , Xn are 
mutually independent random variables, and the distribution of Xi is gamma( ai' ,8) . 
From Example 2.3.8, the mgf of a gamma(a, ,8) distribution i s M(t) ( 1  ,8t) -o:.  
Thus, if Z = Xl + . . .  + Xn, the mgf of Z i s 

This is the mgf of a gamma(al + . . .  + an , ,8) distribution. Thus, the sum of inde
pendent gamma random variables that have a common scale parameter ,8 also has a 
gamma distribution. I I  

A generalization of Theorem 4.6.7 is obtained if we consider a sum of linear functions 
of independent random variables. 

Corollary 4.6.9 Let X! , . . .  , Xn be mutually independent random variables with 
mgfs MXl (t) ,  . . .  , MXn (t) . Let al , . . . , an and bl , . • .  , bn be fixed constants. Let Z = 
(a1X1 + bI ) + . . . + (anXn + bn) ·  Then the mgf of Z is 

Mz(t) = (et(:Ebi» ) Mxl (alt) • . · . •  Mxn (ant) . 
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Proof: From the definition, the mgf of Z is 

Mz(t) = EetZ 

= EetE(aiXi+bi ) 

Section 4.8 

= (et(Ebi » )E(eta,Xl • . . .
• 
etanXn ) (properties of exp�nentials) 

and expectatIOns 

= (et(Eb; ) )Mxl (alt) . · · · ·Mxn (ant) , (Theorem 4.6.6) 

as was to be shown. o 

Undoubtedly, the most important application of Corollary 4.6.9 is to the case of 
normal random variables. A linear combination of independent normal random vari
ables is normally distributed. 
Corollary 4.6.10 Let Xl , . . .  , Xn be mutually independent random variables with 
Xi '" n(f..Li ,  0';) .  Let al , . . · , an and bl , . . .  , bn be fixed constants. Then 

Proof: Recall that the mgf of a n(j.L, 0'2) random variable is M(t) = ejJ.t+a2t2/2 . 
Substituting into the expression in Corollary 4.6.9 yields 

Mz(t) = (et(Ebd)ejJ.lal t+a�ait2/2 • . . . •  ejJ.nant+a�a�t2/2 

= e( (E(aijJ.;+b;) t+(Ea�ant2/2)
, 

the mgf of the indicated normal distribution. o 

Theorem 4.6.11  (Generalization of Lemma 4.2.1) Let XI ,  . . .  , Xn be random 
vectors. Then Xl , . . .  , Xn are mutually independent random vectors if and only if 
there exist functions Yi(Xi) ,  i = 1 ,  . . .  , n, such that the joint pdf or pmf of (Xl ,  . . .  , Xn) 
can be written as 

f(xI , . . .  , xn) = Yl(Xl ) · · · ·  ·Yn(xn). 

Theorem 4.6.12 (Generalization of Theorem 4.3.5) Let XI . . . .  , Xn be inde-
pendent random vectors. Let Yi(Xi) be a function only of Xi , i = 1 ,  . . . , n .  Then the 
random variables Ui = Yi(Xi) , i = 1 ,  . . .  , n, are mutually independent. 

We close this section by describing the generalization of a technique for finding the 
distribution of a transformation of a random vector. We will present the generalization 
of formula (4.3.6) that gives the pdf of the new random vector in terms of the pdf 
of the original random vector. Note that to fully understand the remainder of this 
section, some knowledge of matrix algebra is required. (See, for example, Searle 1982.) 
In particular, we will need to compute the determinant of a matrix. This is the only 
place in the book where such knowledge is required. 
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Let (Xl , ' " , Xn)  be a random vector with pdf fX (Xl , ' "  , xn) .  Let A = {x :fx (x) > 
O}. Consider a new random vector (U} ,  . . .  , Un) ,  defined by U} 91 (XI . " " Xn) ,  U2 = 
92 (X1 " "  , Xn) ,  . . . , Un 9n (X1 " " , Xn) . Suppose that Ao, A} , . . .  , Ak form a parti

tion of A with these properties. The set Ao, which may be empty, satisfies 

P((X1 ,  . . .  , Xn) E Ao) = O. The transformation (Ul ,  . . .  , Un) = (91 (X) , · . .  , 9n(X) )  
is a one-to-one transformation from Ai onto 5 for each i = 1 , 2,  . . .  , k. Then for 

each i ,  the inverse functions from 5 to Ai can be found. Denote the ith inverse by 

Xl = hli (Ub " "  Un), X2 = h2i (U1 , . · · ,  un) ,  . . .  , Xn hni(U1 ,  . . .  , Un) ·  This ith inverse 

gives, for (UI , " " Un) E 5, the unique (x} , . . . , Xn) E Ai such that (Ul , . · . ,  un) = 
(gl (XI , . . .  , xn ) ,  . . . , 9n (XI , . . . , xn ) ) .  Let Ji denote the Jacobian computed from the 

ith inverse. That is, 

aXl aXl aXl ahli (u) ah1i (u) ahli(u) 
aU1 aU2 aUn aU1 aU2 Gun 
aX2 aX2 aX2 ah2i (u) ah2i (u) ah2i (u) 

Ji = aU1 aU2 aUn aUl aU2 aUn 

aXn aXn aXn ahn� (u) ahn'i (u) ahn: (u) 
aU1 Gu2 aUn aU1 aU2 aUn 

the determinant of an n x n matrix. Assuming that these Jacobians do not vanish 
identically on 5, we have the following representation of the joint pdf, fu (  Ul , . . .  , un) ,  
for u E 5 :  

k 

(4.6.7) fu(u} , . . .  , un) = L fx(hli(Ul > " " un) , . " , hni (U1 ,  . . .  , un) ) IJi l ·  
i=l 

Example 4.6.13 (Multivariate change of variables) Let (X} , X2 , X3, X4 ) have 
joint pdf 

Consider the transformation 

This transformation maps the set A onto the set 5 {u : 0 < Ui < 00, i 1 , 2 , 3, 4} .  
The transformation is one-ta-one, so k = 1 ,  and the inverse is 

The Jacobian of the inverse is 

J = 

1 0 0 0 
1 1 0 0  
1 1 1 0 
1 1 1  1 

= 1. 
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Since the matrix is triangular, the determinant is equal to the product of the diagonal 
elements. Thus, from (4.6.7) we obtain 

fu(ul , " " U4) = 24e-t.ll- (Ul+U2)-(Ul+U�+U3)-(Ul+U2+U3+U4) 
= 24e-4ul-3u2-2j.13-U4 

on B. From this the marginal pdfs of Ul , U2, Ua, and U4 can be calculated. It turns 
out that fu(ui) (5 i)e- (5-i)u" O  < Ui; that is, Ui rv exponential(lj(5 i ) ) .  From 
Theorem 4.6. 1 1  we see that UI , U2 • U3, and U4 are mutually independent random 
variables. II 

The model in Example 4.6. 13 can arise in the following way. Suppose Y1 , Y2 , Yj ,  and 
Y4 are mutually independent random variables, each with an exponential( l )  distribu
tion. Define Xl min(Yl .  Y2 , Yj ,  Y4) , X2 second smallest value of (Y1 ,  Y2 , Yj ,  Jt4) ,  
Xa second largest value o f  (Yl ,  Y2 , Y3 , Y4) ,  and X4 = max(Yl l  Y2 , Y3 , Y4) .  These 
variables will be called order statistics in Section 5.5. There we will see that the joint 
pdf of (X! ,  X2 ,  Xa ,  X4 )  is the pdf given in Example 4.6.13. Now the variables U2, 
Ua , and U4 defined in the example are called the spacings between the order statis
tics. The example showed that, for these exponential random variables (Y1 ,  • . •  , Yn) ,  
the spacings between the order statistics are mutually independent and also have 
exponential distributions. 

4.7 Inequalities 

In Section 3.6 we saw inequalities that were derived using probabilistic arguments. In 
this section we will see inequalities that apply to probabilities and expectations but 
are based on arguments that use properties of functions and numbers. 

4. . 7. 1  Numerical Inequalities 
The inequalities in this subsection, although often stated in terms of expecta.tions, 
rely mainly on properties of numbers. In fact, they are all based on the following 
simple lemma. 

Lemma 4.7.1 Let a and b be any positive numbers, and let p and q be any positive 
numbers (necessarily greater than 1) satisfying 

(4.7.1 ) 

Then 

(4.7.2) 

1 1 
- + - = 1. P q 

1 1 -aP + -bq > ab p q -

with equality if and only if aP = bq• 
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Proof: Fix b, and consider the function 

1 1 g (a) = -aP + -bq - abo p q 
To minimize g (a) , differentiate and set equal to 0: 

!:..g(a) = 0 � aP-1 - b = 0 =? b = aP-1 • da 

187 

A check of the second derivative will establish that this is indeed a minimum. The 
value of the function at the minimum is 

�aP + � (aP-1t - aaP-1  = �aP + �aP _ aP ((P 1)q = P fOllOWS) 
p q p q from (4.7. 1 )  

= 0. (again from (4.7. 1 ) )  
Hence the minimum is 0 and (4.7.2) is established. Since the minimum is  unique 
(why?) , equality holds only if aP-1 = b, which is equivalent to aP = bq, again from 
(4.7.1 ) .  0 

The first of our expectation inequalities, one of the most used and most important, 
follows easily from the lemma. 

Theorem 4.7.2 (HOlder's Inequality) Let X and Y be any two random variables, 
and let p and q satisfy (4. 7. 1}. Then 

(4.7.3) 
Proof: The first inequality follows from - IXYI ::; XY ::; IXY I and Theorem 2.2.5. 
To prove the second inequality, define 

a IX I 
and b 

(EIX IP) l/P 
IY I 

Applying Lemma 4.7. 1 ,  we get 

1 IX IP 1 IYlq IXYI --- + - -- > . p E IXIP q E IYlq - (E IXIP)l/P (EIYl q)l/q 

Now take expectations of both sides. The expectation of the left-hand side is 1, and 
rearrangement gives (4.7.3) .  0 

Perhaps the most famous special case of Holder's Inequality is that for which p 
q = 2. This is called the Cauchy-Schwarz Inequality. 

Theorem 4.7.3 (Cauchy-Schwarz Inequality) For any two random variables X 
and Y, 
(4.7.4) 
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Example 4.7.4 (Covariance inequality) If X and Y have means fJ,x and fJ,y and 
variances O"� and O"� , respectively, we can apply the Cauchy-Schwarz Inequality to 
get 

Squaring both sides and using statistical notation, we have 

(Cov(X, y))2 � O"�O"� . 
Recalling the definition of the correlation coefficient, p, we have proved that 0 � 
p2 � 1. Furthermore, the condition for equality in Lemma 4.7. 1 still carries over, and 
equality is attained here only if X - fJ,x = c(Y p,y) ,  for some constant c. That is, 
the correlation is ±1  if and only if X and Y are linearly related. Compare the ease 
of this proof to the one used in Theorem 4.5.7, before we had the Cauchy-Schwarz 
Inequality. I I  

Some other special cases of Holder's Inequality are often useful. If we set Y == 1 in 
(4.7.3) , we get 

(4.7.5) EIXI � {E( IX IP) } l/P , 1 < p  < 00. 

For 1 < r < p, if we replace IX I by IX lr  in (4.7.5), we obtain 

EIX l r  � {E( IX lpr)}l/p . 
Now write 8 = pr (note that 8 > r) and rearrange terms to get 

(4.7.6) {EIXn I/r � {EIXn l/S ,  1 < r < 8 < 00 ,  

which i s  known as Liapounov '8 Inequality. 
Our next named inequality is similar in spirit to Holder's Inequality and, in fact, . 

follows from it. 

Theorem 4.7.5 (Minkowski's Inequality) Let X and Y be any two random vari
ables. Then for 1 � p < 00, 

(4.7.7) 

Proof: Write 

EIX + Y IP = E ( IX + YI IX + YIP-I ) 
(4.7.8) � E ( IX I IX + YIP-I) + E ( IY I IX + YIP-I) , 

where we have used the fact that IX + YI :5 IX I + WI (the triangle inequality; see 
Exercise 4.64). Now apply HOlder's Inequality to each expectation on the right-hand 
side of (4.7.8) to get 

E( IX + Y IP) � [E( IXIP)f/P [EIX + Ylq(P- l )] l/q 

+ [E( IY IP)] l/P [E IX + Ylq(p-l)] l/q, 
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where q satisfies IIp+  1/q = 1 .  Now divide through by [E( IX + Ylq(P_I») ] l/q . Noting 
that q(p 1 )  = p and 1 - 1/q = lip, we obtain (4.7.7) . 0 

The preceding theorems also apply to numerical sums where there is no explicit 
reference to an expectation. For example, for numbers ail bi, i = 1 , . . .  , n, the inequal
ity 

(4.7.9) 
1 1 

+ 
P q 

1 , 

is a version of Holder's Inequality. To establish (4.7.9) we can formally set up an 
expectation with respect to random variables taking values al , . • .  , an and bI , . • .  , bn . 
(This is done in Example 4.7.8.) 

An important special case of (4.7.9) occurs when bi l ,p  = q 2 .  We then have 

4. 7.2 Functional Inequalities 
The inequalities in this section rely on properties of real-valued functions rather than 
on any statistical properties. In many cases, however, they prove to be very useful. 
One of the most useful is Jensen's Inequality, which applies to convex functions. 

Def:l.nition 4.1.6 A function g (x) is convex if g (>.x+ ( 1  >')y) :-:; >.g(x) + ( 1 - >')g(1/) , 
for all x and y, and 0 < >. < 1 .  The function g (x) is concave if -g(x) is convex. 

Informally, we can think of convex functions as functions that "hold water" -that 
is, they are bowl-shaped (g(x) = x2 is convex) , while concave functions "spill water" 
(g(x) logx is concave) . More formally, convex functions lie below lines connecting 
any two points (see Figure 4.7. 1 ) .  As >. goes from 0 to 1 ,  >.g(xI J + ( 1  >.)g(X2) 

2 g(X) 

XI 2 

Figure 4.7. 1 .  Convex function and tangent lines at Xl and X2 
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Figure 4.7.2. Graphical illustration of Jensen's Inequality 

defines a line connecting g(x! ) and g(X2 ) '  This line lies above g(x) if g(x) is convex. 
Furthermore, a convex function lies above all of its tangent lines (also shown in Figure 
4.7. 1 ) ,  and that fact is the basis of Jensen's Inequality. 

Theorem 4.7.7 (Jensen's Inequality) For any random variable X, if g(x) is a 
convex junction, then 

Eg(X) � g(EX) . 
Equality holds if and only if, for every line a + bx that is tangent to g(x) at x EX, 
P(g(X) = a + bX) = 1 .  

Proof: To establish the inequality, let l (x) b e  a tangent line to g(x) at the point 
g(EX). (Recall that EX is a constant.) Write l (x) a + bx for some a and b. The 
situation is illustrated in Figure 4.7.2. 

Now, by the convexity of 9 we have g(x) � a + bx. Since expectations preserve 
inequalities, 

as was to be shown. 

Eg(X) � E(a + bX) 

= a + bEX 

= l(EX) 
g(EX) , 

(linearity of expectation,) 
Theorem 2.2.5 

(definition of l(x)) 
(l is  tangent at EX) 

If g (x) is linear, equality follows from properties of expectations (Theorem 2.2.5 ) .  
For the "only if" part see Exercise 4.62. 0 

One immediate application of Jensen's Inequality shows that EX2 � (EX)2 , since 
g(x) = x2 is convex. Also, if x is positive, then l/x is convex; hence E(l/ X) � l/EX, 
another useful application. 

To check convexity of a twice differentiable function is quite easy. The function g(x) 
is convex if g"(X) � 0, for all x, and g(x) is concave if g"(X) :5 0,  for all x. Jensen's 
Inequality applies to concave functions as well. If 9 is concave, then Eg(X) :5 g{EX). 



Section 4.1 INEQUALITIES 191 

Example 4.7.8 (An inequality for means) Jensen's Inequality can be used to 
prove an inequality between three different kinds of means. If al , . . . , an are positive 
numbers, define 

I 
aA = (al + a2 + . . .  + an) ,  

n 

ao [al a2· · · ·  .an]
l/n , 

I 
aH = -..,.--------:-1 (.1. + .1. + . . .  + ..!.. ) n 41 a2 an 

(arithmetic mean) 

(geometric mean) 

(harmonic mean) 

An inequality relating these means is 

To apply Jensen's Inequality, let X be a random variable with range al l '  . .  , an and 
P(X = ai ) lin , i = 1 ,  . . . , n. Since log x is a concave function, Jensen's Inequality 
shows that E(log X) � log(EX); hence, 

1 n 
log aG = -L log ai = E(Iog X) � log(EX) 

n i=l 

so aG � aA. Now again use the fact that log x is concave to get 

log � = log (! t�) = log E � 2: E (log 
X
l ) = -E(log X). 

aH n i=l ai 

Since E(Iog X) 10g aG , it then follows that 10g(l/aH) 2: log(l/aG) ,  or aG 2: aH · I I 

The next inequality merely exploits the definition of covariance, but sometimes 
proves to be useful. If X is a random variable with finite mean J-L and g(x) is a 
nondecreasing function, then 

since 

E (g(X)(X - J-L») 2: 0, 

E(g(X)(X J-L» 

= E (g(X)(X J-L)I(-co.o) (X J-L»)  + E (g(X)(X - J-L)I[o.co) (X - J-L»)  

2: E (g(J-L) (X J-L)IC-oo•o) (X - J-L»)  

+ E (g(J-L)(X J-L)I[o.oo) (X J-L») (since g is nondecreasing) 

= g(J-L)E(X - J-L) 

O. 

A generalization of this argument can be used to establish the following inequality 
(see Exercise 4.65). 
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Theorem 4.7.9 (Covariance Inequality) Let X be any random variable and g(x) 
and h(x) any junctions such that Eg(X) , Eh(X) ,  and E(g(X)h(X) exist. 

a. If g(x) is a nondecreasing function and hex) is a nonincreasing junction, then 

E (g(X)h(X))  $. (Eg(X) )  (Eh(X) ) . 

h. If g(x) and hex) are either both nondecreasing or both nonincreasing, then 

E (g(X)h(X) )  � (Eg(X)) (Eh(X) ) . 

The intuition behind the inequality is easy. In case (a) there is negative correlation 
between 9 and h, while in case (b) there is positive correlation. The inequalities merely 
reflect this fact. The usefulness of the Covariance Inequality is that it allows us to 
bound an expectation without using higher-order moments. 

4.8 Exercises ______________________ _ 

4.1 A random point (X, Y) is distributed uniformly on the square with vertices ( 1 , 1 ) ,  
( 1 , -1) ,  (-1 , 1 ) ,  a.nd (-1 , -1 ) .  That is, the joint pdf is  f(x, y) � on the square. 
Determine the probabilities of the following events. 

(a) X2 + y2 < 1 
(b) 2X Y > 0 
(c) IX + YI < 2 

4.2 Prove the following properties of bivariate expectations (the bivariate analog to The
orem 2 .2.5) . For random variables X and Y, functions gI (X, y) and g2 (X, y) , and con
stants a, b, and c: 

(a) E(agl (X, Y) + bg2(X, Y) + c) = aE(g1 (X, Y» + bE(g2(X, Y» + c. 
(b) If gl (X, y) � 0, then E(g1 (X, Y» � O. 
(c) If g1(X, y) � g2 (X, y), then E(gl (X, Y» � E(g2(X, Y» . 
(d) If a $. g1 (x, y) $. b, then a $. E(g1 (X, Y» $. b. 

4.3 Using Definition 4.1 . 1 ,  show that the ra.ndom vector (X, Y) defined at the end of 
Example 4.1 .5 has the pmf given in that example. 

4.4 A pdf is defined by 

f(x ) = { c(x + 2y) if 0 < � < 1 and 0 < x < 2 , Y 0 otherWIse. 

(a) Find the value of C. 
(b) Find the marginal distribution of X. 
( c) Find the joint cdf of X a.nd Y. 
(d) Find the pdf of the random variable Z 9/ (X + 1 )  2 • 

4.5 (a) Find P(X > V'Y) if X and Y are jointly distributed with pdf f(x, y) = x + y, 0 $. x $. 1 ,  0 $. y $. 1 .  

(b) Find P(X2 < Y < X) i f  X a.n d  Y are jointly distributed with pdf f(x, y) = 2x, 0 $. x $. 1 ,  0 $. Y $. 1 .  
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4.6 A and B agree to meet at a certain place between 1 PM and 2 PM. Suppose they 
arrive at the meeting place independently and randomly during the hour. Find the 
distribution of the length of time that A waits for B. (If B arrives before A, define A's 
waiting time as 0.) 

4.7 A woman leaves for work between 8 AM and 8:30 AM and takes between 40 and 50 
minutes to get there. Let the random variable X denote her time of departure, and 
the random variable Y the travel time. Assuming that these variables are independent 
and uniformly distributed, find the probability that the woman arrives at work before 
9 AM. 

4.8 Referring to Miscellanea 4.9. 1 .  

(a) Show that P(X m l M  = m) = P(X = 2mlM = m) = 1/2, and verify the 
expressions for P(M = x iX = x) and P(M = xj21X = x). 

(b) Verify that one should trade only if 7T(x/2) < 27T(X), and if 7T is the exponential('x) 
density, show that it is optimal to trade if x < 2 log 2/ A. 

(c) For the classical approach, show that P(Y == 2xl X  = m) = 1 and P(Y = x/2 1X = 
2m) 1 and that your expected winning if you trade or keep your envelope is 
E(Y) 3m/2. 

4.9 Prove that if the joint cdf of X and Y satisfies 

Fx.y(x, y) = Fx (x)Fy (y) , 

then for any pair of intervals (a, b), and (e, d), 

Pea -;; X -;; b, e -;; Y -;; d) = Pea -;; X -;; b)P(c -;; Y -;; d) . 

4.10 The random pair (X, Y) has the distribution 

X 
1 2 3 

2 1 1 1 12 6" 12 
Y 3  1 0 1 6' li 

4 0 1 0 3" 
(a) Show that X and Y are dependent. 
(b) Give a probability table for random variables U and V that have the same marginals 

as X and Y but are independent. 

4. 1 1  Let U the number of trials needed to get the first head and V the number of trials 
needed to get two heads in repeated tosses of a fair coin. Are U and V independent 
random variables? 

4.12 If a stick is broken at random into three pieces, what is the probability that the pieces 
can be put together in a triangle? (See Gardner 1961 for a complete discussion of this 
problem.) 

4.13 Let X and Y be random variables with finite means. 

(a) Show that 

min E (Y g(X))2 = E (Y - E(YIX))2 , 9(") 
where g(x) ranges over all functions. (E(YIX) is sometimes called the regression 
oj Y on X, the "best" predictor of Y conditional on X.)  

(b)  Show that equation (2.2.4) can be derived as a special case of part (a). 
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4.14 Suppose X and Y are independent nCO, 1 )  random variables. 

(a) Find P(X2 + y2 < 1 ) .  
(b)  Find P(X2 < 1 ) ,  after verifying that X2 is distributed X�. 

4.15 Let X '" Poisson(O), Y .-v Poisson(>'), independent. It was shown in Theorem 4.3.2 tha.t 
the distribution of X + Y is Poisson(O + >.). Show that the distribution of XIX + Y is 
binomial with success probability 0/(0 + >.) . What is the distribution of Y IX + Y? 

4.16 Let X and Y be independent random variables with the same geometric distribution. 

(a) Show that U and V are independent, where U and V are defined by 

U = min(X, Y) and V = X - Y. 

(b) Find the distribution of Z = X/eX + Y), where we define Z = 0 if X + Y = O. 
(c) Find the joint pdf of X and X + Y. 

4.17 Let X be an exponential(l )  random variable, and define Y to be the integer part of 
X + 1, that is 

Y = i + l  if and only if i S X < i + l , i = O, 1 , 2, . . . .  

(a) Find the distribution of Y.  What well-known distribution does Y have? 
(b) Find the conditional distribution of X - 4 given Y � 5. 

4.1S Given that g(x) � 0 has the property that 

100 g(x) dx = 1 ,  

show that 

2g (�) f(x, y) =  � '  
7rVX2 + y2 x, y >  0, 

is a pdf. 
4.19 (a) Let Xl and X2 be independent nCO, 1 )  random variables. Find the pdf of (Xl -

X2)2/2. 
(b) If Xi , i = 1 , 2 , are independent gamma(a:i , 1) random variables, find the marginal 

distributions of XI/(X1 + X2) and X2!(Xl + X2) .  
4.20 Xl and X2 are independent nCO, 0'2) random variables. 

(a) Find the joint distribution of Y1 and Y2 , where 

Y1 = X; + xi and 

(b) Show that Y1 and Y2 are independent, a.nd interpret this result geometrically. 

4.21 A point is generated at random in the plane according to the following polar scheme. A 
radius R is chosen, where the distribution of R2 is X2 with 2 degrees of freedom. Inde
pendently, an angle 8 is chosen, where 8 ",  uniformeD, 211') .  Find the joint distribution 
of X = Rcos 8 and Y = Rsin 8. 
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4.22 Let (X, Y) be a bivariate random vector with joint pdf !(x, 11) ' Let U aX + b and 
V = cY + d, where a, b, c, and d are fixed constants with a > 0 and c > O. Show that 
the joint pdf of ( U, V)  is 

1 
!u,v{u, v) = -! 

ac 

4.23 For X and Y as in Example 4.3.3, find the distribution of XY by making the trans
formations given in (a) and (b) and integrating out V. 

(a) U = XY, V Y 
(b) U = XY, V = X/Y 

4.24 Let X and Y be independent random variables with X rv gamma(r, l )  and Y rv 

gamma(s, 1) .  Show that Zl X + Y and Z2 X/eX + Y) are independent, and find 
the distribution of each. (Zl is gamma and Z2 is beta.) 

4.25 Use the techniques of Section 4.3 to derive the joint distribution of (X, Y) from the 
joint distribution of (X, Z) in Examples 4.5.8 and 4.5.9. 

4.26 X and Y are independent random variables with X rv exponential(>') and Y rv expo
nential(J.L). It is impossible to obtain direct observations of X and Y. Instead, we 
observe the random variables Z and W, where 

Z min{X, Y} and w = { � 
if Z X 
if Z = Y. 

(This is a situation that arises, in particular, in medical experiments. The X and Y 
variables are censored.) 

(a) Find the joint distribution of Z and W. 
(b) Prove that Z and W are independent. (Hint: Show that P(Z � z lW = i) = 

P( Z � z) for i 0 or 1 . )  

4.27 Let X rv n(J.L, 0'2) and let Y I'V n(I', 0'2 ) .  Suppose X and Y are independent. Define 
U = X + Y and V == X Y.  Show that U and V are independent normal random 
variables. Find the distribution of each of them. 

4.28 Let X and Y be independent standard normal random variables. 
(a) Show that X/(X + Y) has a Cauchy distribution. 
(b) Find the distribution of X/WI . 
(c) Is the answer to part (b) surprising? Can you formulate a general theorem? 

4.29 Jones (1999) looked at the distribution of functions of X and Y when X = R cos (} and 
Y = R sin (), where (J rv U (0, 21[") and R is a positive random variable. Here are two of 
the many situations that he considered. 
(a) Show that X/Y has a Cauchy distribution. 
(b) Show that the distribution of (2XY)/,;r:X""'2C-+"""""'Y""2 is the same as the distribution 

of X. Specialize this result to one about nCO, 0'2) random variables. 
4.30 Suppose the distribution of Y, conditional on X = x, is n(x, x2) and that the marginal 

distribution of X is uniform(O, 1) .  

(a) Find EY, Var Y, and Cov(X, Y) .  
(b )  Prove that Y / X and X are independent. 
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4.31 Suppose that the random variable Y has a binomial distribution with n trials and 
success probability X, where n is a given constant and X is a uniform(O, l) random 
variable. 

(a) Find EY and Var Y. 
(b) Find the joint distribution of X and Y. 
(c) Find the marginal distribution of Y. 

4.32 (a) For the hierarchical model 

Y I A ,,-, Poisson(A) and A. '" gamma(a , ,8) 

find the marginal distribution, mean, and variance of Y. Show that the marginal 
distribution of Y is a negative binomial if 0: is an integer. 

(b) Show that the three-stage model 

Y I N ", binomial(N, p) , NIA rv Poisson(A), and A rv gamma(a, (j) 

leads to the same marginal (unconditional) distribution of Y. 
4.33 (Alternative derivation of the negative binomial distribution) Solomon (1983) details 

the foHowing biological model. Suppose that each of a random number, N, of insects 
lays Xi eggs, where the XiS are independent, identically distributed random variables. 
The total number of eggs laid is H "" Xl + . . .  + XN. What is the distribution of H? 
It is common to assume that N is Poisson ( A) . Furthermore, if we assume that each Xi 
has the logarithmic series distribution (see Exercise 3.14) with success probability p, 
we have the hierarchical model 

-1  (l _ p)t 
t) 

"" log(p) t ' 

N rv Poisson(>.). 

Show that the marginal distribution of H is negative binomial(r, p) , where r = 
-A/ log(p) . (It is easiest to calculate and identify the mgf of H using Theorems 4.4.3 
and 4.6.7. Stuart and Ord 1987, Section 5.21, also mention this derivation of the log
arithmic series distribution. They refer to H as  a randomly stopped sum.) 

4.34 (a) For the hierarchy in Example 4.4.6, show that the marginal distribution of X is 
given by the beta-binomial distribution, 

P (X x) = (n ) rCa + ,8) rcx + a)r(n - x + ,8) 
. x r(o:)r(,B) rCa + ,8 + n) 

(b) A variation on the hierarchical model in part ( a) is 

XIP rv negative binomial(r, P) and P "-' beta(a, ,8) .  

Find the marginal pmf o f  X and its mean and variance. (This distribution is the 
beta-Pascal. )  

4.35 (a) For the hierarchy in Example 4.4.6, show that the variance of X can be written 

Var X = nEP(1 - EP) + n(n 1) Var P. 

(The first term reflects binomial variation with success probability EP, and the 
second term is often called "extra-binomial" variation, showing how the hierarchi
cal model has a variance that is larger than the binomial alone.) 
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(b) For the hierarchy in Exercise 4.32, show that the variance of Y can be written 

1 2 EA + Var A = J1. + -I' , a Var Y 

where J1. = EA. Identify the "extra-Poisson" variation induced by the hierarchy. 
4.36 One generaliza.tion of the Bernoulli trials hierarchy in Example 4.4.6 is to allow the suc

cess probability to vary from trial to trial, keeping the trials independent. A standard 
model for this situation is 

Xi lPi '" Bernoulli(P.),  i =: 1 ,  . . .  , n ,  
Pi '" beta(a, (3) .  

This model might be appropriate, for example, if we are measuring the success of a 
drug on n patients and, because the patients are different, we are reluctant to assume 
tha.t the success probabilities are constant. (This can be thought of as an empirical 
Bayes model; see Miscellanea 7.5.6.) 
A random variable of interest is Y 2:::=1 Xi, the total number of successes. 
(a) Show that EY na/(a + (3) . 
(b) Show that Var Y na{3/(a + (3)2 ) and hence Y has the same mean and variance 

as a binomial(n, ",�{3 ) random variable. What is the distribution of Y? 
(c) Suppose now that the model is 

Show that for Y 
where 

Xi l Pi rv binomial(ni , Pi) ,  i = 1 ,  . . . , k,  

Pi rv beta(a, ,8) .  

Var Xi a,8(o: + ,8 + nil ni 
(0: + (3)2 (0: + ,8 + 1) " 

4.37 A generalization of the hierarchy in Exercise 4.34 is described by D. G. Morrison 
( 1978) , who gives a model for forced binary choices. A forced binary choice occurs 
when a person is forced to choose between two alternatives, as in a taste test. It 
may be that a person cannot actually discriminate between the two choices (can you 
tell Coke from Pepsi?) ,  but the setup of the experiment is such that a choice must be 
made. Therefore, there is a confounding between discriminating correctly and guessing 
correctly. Morrison modeled this by defining the following parameters: 

Then 

p = probability that a person can actually discriminate, 

c = probability that a person discriminates correctly. 

1 1 
c = p + 2( 1  - p) = 2 (1 + p), 

1 2 < c < 1, 

where �(1 - p) is the probability that a person guesses correctly. We now run the 
experiment and observe Xl , . . . , Xn '" Bernoulli(c), so 
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However, it is probably the case that p is not constant from person to person, 80 p is 
allowed to vary according to a beta distribution, 

P tv beta(a, b). 

(a) Show that the distribution of EX. is beta-binomial. 
(b) Find the mean and variance of EX • .  

4.38 ( The gamma as a mixture of exponentials) GIeser ( 1989) shows that, in  certain cases, 
the gamma distribution can be written as a scale mixture of exponentials, an identity 
suggested by different analyses of the same data. Let f(x) be a gamma(r, A) pdf. 

(a) Show that if r � 1, then f (x) can be written 

f(x) = -e-x/vp .. (v) d1.l, 1 .. 1 o 1.1 
where 

1 vr-l 
P .. (v) = r(r)r(l - r) (A vy ' 0 < 1.1 < A. 

(Hint: Make a change of variable from v to u, where u = x/v - x/A.) 
(b) Show that P .. (v) is a pdf, for r � 1, by showing that 

1" P .. (v) d1.l = 1 .  

(c) Show that the restriction r � 1 is necessary for the representation i n  part (a) 
to be valid; that is, there is no such representation if r > 1. (Hint: Suppose 
f(x) can be written f (x) = r:(e-x/v /1.I)q .. (v)dv for some pdf q .. (v). Show tha.t 
:" log (J(x» > 0 but :" log (JoOO (e-x/v /v)q .. (v)dv) < 0, a contradiction.) 

4.39 Let (Xl , . . . , Xn) have a multinomial distribution with m trials and cell probabilities 
PI ,  . . . , Pn (see Definition 4.6.2) . Show that, for every i and j ,  

Xj "" binomial (m Xj , -
1 

Pi ) 
- Pj 

Xj '" binomial (m, pj) 

and that Cov(X" Xj) = -mpiPj .  
4.40 A generalization of the beta distribution i s  the Dirichlet distribution. I n  its bivariate 

version, (X, Y) have pdf 

f(x, y) = CX,,-lyb- l ( l _ x _ y)'-l , O < x < l , O < y < l, O < y < 1  x < I, 

where a > 0, b > 0, and c > 0 are constants. 

(a) Show that C rf}i�:�;lc) . 
(b) Show that, marginally, both X and Y are beta. 
(c) Find the conditional distribution of YIX x, and show that.Y/(l -x) is beta(b, c). 
(d) Show that E(XY) = (a+b+c+;�(a+Hc) ' and find their covariance. 
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4.41 Show that any random variable is uncorrelated with a constant. 
4.42 Let X and Y be independent random variables with means �x , �y and variances qi , 

q} . Find an expression for the correlation of XY and Y in terms of these means and 
variances . 

4.43 Let Xl , X2, and Xa be uncorrelated random variables, each with mean � and variance 
172. Find, in terms of � and 172, COV(XI + X2 , X2 + Xa) and COV(XI + X2, Xl - X2). 

4.44 Prove the following generalization of Theorem 4.5.6: For any random vector 
(Xl,  . . .  I X",) ,  

4.45 Show that if (X, Y) "" bivariate normal(/1-x , /1-y, qi, q�, p), then the following are true. 
(a) The marginal distribution of X is n(/1-x I qi) and the marginal distribution of Y 

is n{/1-y I q� ) .  
(b)  The conditional distribution of Y given X = x is  

(c) For any constants a and b, the distribution of aX + bY is 

n(a/1-x + b/1-y, a2q1- + b2q� + 2abpuxqy).  

4.46 (A derivation of the bivariate normal distribu.tion) Let Zl and Z2 be independent 
nCO, 1 )  random variables, and define new random variables X and Y by 

X axZl + bXZ2 + ex and Y = ayZl + byZ2 + ey , 

where ax, bx , ex , ay , by , and ey are constants. 
(a) Show that 

EX = ex, Var X = a1- + b1- , 

EY = ey, Var Y a� + b� , 

Cov(X, Y) aXay + bxby. 

(b) If we define the constants ax , bx I ex , ay, by, and ey by 

fl+P ax = Y -Y--2-qX, f1::p bx = Y -Y--2-
qx, 

fl+P ay = Y "'2-2-·
qy , by _J1 ; Pqy , 

ex = /1-x, 

ey = /1-y, 

where /1-X, /1-y , o-i , q� , and p are constants, -1 $ p $ 1, then show that 

EX /1-x ,  Var X = 171-, 
EY /1-y, Var Y q�, 

PXy = p. 

(c) Show tha.t (X, Y) has the bivariate normal pdf with pa.rameters /1-x , /1-y , 01, q�, 
and p. 
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(d) If we start with bivariate normal parameters Jlx , JlY, uk , uf, and p, we can define 
constants ax, bx , ex , ay, by , and Cy as the solutions to the equations 

Jlx = ex , uk = a� + bi , 

JlY = cy, uf = af + bf,  
puxuy = aX ay + bxby. 

Show that the solution given in part (b) is not unique by exhibiting another 
solution to these equations. How many solutions are there? 

4.47 (Marginal normality does not imply bivariate normality.) Let X and Y be indepen
dent nCO, 1 )  random variables, and define a new random variable Z by 

z = { X if XY > 0 
-X if XY < 0. 

(a) Show that Z has a normal distribution. 

(b) Show that the joint distribution of Z and Y is not bivariate normal. (Hint: Show 
that Z and Y alwa.ys have the same sign.) 

4.48 Gelman and Meng (1991) give an example of a bivariate family of distributions that 
are not bivariate normal but have normal conditionais. Define the joint pdf of (X, Y) 
as 

where A, B ,  C, D are constants. 

(a) Show that the distribution of X IY = y is normal with mean !:t+� and variance 

Alli+l ' Derive a corresponding result for the distribution of YIX = x. 
(b) A most interesting configuration is A I, B 0, C D = 8. Show that this joint 

distribution is bimodal. 

4.49 Behboodian (1990) illustrates how to construct bivariate random variables that are 
uncorrelated but dependent. Suppose that h ,  12, gl ,  g2 are univariate densities with 
means Jll, Jl2 , 6 , {2, respectively, and the bivariate random variable (X, Y) has density 

(X, Y) "" ah (x)gl (Y) + ( 1 - a)h(x)g2 (Y) ,  

where 0 < a < 1 i s  known. 

(a) Show that the marginal distributions are given by fx(x) = ah (x) + (1 - a)h(x) 
and Jy(x) agl ey) + ( 1 - a)g2 (Y) ' 

(b) Show that X and Y are independent if and only if lJI (x)-h(X)] [gl (y) -g2 (Y)] = O. 

(c) Show that Cov(X, Y) a(l-a) [Jll -Jl2J [el -e2] ,  and thus explain how to construct 
dependent uncorrelated random variables. 

(d) Letting b , h, gl , g2 be binomial pmfs, give examples of combinations of parame
ters that lead to independent (X, Y) pairs, correlated (X, Y) pairs, and uncorre
lated but dependent (X, Y) pairs. 
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4.50 If (X, Y) has the bivariate norma.1 pdf 

1 ( -1 2 f(x, y) = 271"( 1  _ p2 ) 1/2 
exp 2(1  _ p2) (x 

show that Corr(X, Y) = p and Corr(X2, y2) = p2 . (Conditional expectations will 
simplify calculations.) 

4.51 Let X, Y, and Z be independent uniform(O, 1) random variables. 
(a) Find P(X/Y ::; t) and P(XY ::; t) .  (Pictures will help.) 
(b) Find P(XY/Z ::; t ) .  

4.52 Bullets are fired at  the origin of  an (x, y) coordinate system, and the point hit, say 
(X, Y),  is a random variable. The variables X and Y are taken to be independent nCO, 1) 
random variables. If two bullets are fired independently, what is the distribution of the 
distance between them? 

4.53 Let A, B, and C be independent random variables, uniformly distributed on (0, 1 ) .  
What is the probability that Ax2+Bx+C has rea.1 roots? (Hint: I f  X '"  uniform(O, 1 ) ,  
then log X "-' exponentia.1. The sum of  two independent exponentials i s  gamma.) 

4.54 Find the pdf of IIf=IXi ,  where the XiS are independent uniform(O, 1) random variables. 
(Hint: Try to calculate the cdf, and remember the relationship between uniforms and 
exponentials. ) 

4.55 A parallel system is one that functions as long as at least one component of it functions. 
A particular parallel system is composed of three independent components, each of 
which has a lifelength with an exponential(>') distribution. The lifetime of the system 
is the maximum of the individua.1 lifelengths. What is the distribution of the lifetime 
of the system? 

4.56 A large number, N mk, of people are subject to a blood test. This can be adminis
tered in two ways. 
(i) Each person can be tested separately. In this case N tests are required. 

(ii) The blood samples of k people can be pooled and analyzed together. If the test 
is negative, this one test suffices for k people. If the test is positive, each of the k 
persons must be tested separately, and, in all, k + 1 tests are required for the k 
people. 

Assume that the probability, p, that the test is positive is the same for all people and 
that the test results for different people are statistically independent. 
(a) What is the probability that the test for a pooled sample of k people will be 

positive? 
(b) Let X = number of blood tests necessary under plan (ii). Find EX. 
(c) In terms of minimizing the expected number of blood tests to be performed on 

the N people, which plan [(i) or (U)] would be preferred if it is known that p is 
close to O? Justify your answer using the expression derived in part (b) . 

4.57 Refer to Miscellanea 4.9.2. 

(a) Show that Al is the arithmetic mean, A-I is the harmonic mean, and Ao 
Iimr�o AT' is the geometric mean. 

(b) The arithmetic-geometric-harmonic mean inequality will follow if it can be estab
lished that AT is a nondecreasing function of r over the range -00 < r < 00. 
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(i) Verify that if log Ar is nondecreasing in r, then it will follow that Ar is non
decreasing in r. 

(ii) Show that 

(iii) Define ai = xi / L. xi and write the quantity in braces as 

where L a, 1 .  Now prove that this quantity is nonnegative, establishing the 
monotonicity of Ar and the arithmetic-geometric-harmonic mean inequality 
as a special case. 

The quantity Li ai log(1/ai ) is called entropy, sometimes considered an absolute mea
sure of uncertainty (see Bernardo and Smith 1994, Section 2.7). The result of part (iii) 
states that the maximum entropy is attained when all probabilities are the same (ran
domness). 
(Hint: To prove the inequality note that the ai are a probability distribution, and we 
can write 

and Jensen's Inequality shows that E log (*) s:; log (E�) . )  
4.58 For any two random variables X and Y with finite variances, prove that 

(a) Cov(X, Y) = Cov (X, E(YIX)) .  
(b)  X and Y - E(YIX) are uncorrelated. 
(c) Var(Y - E(YIX») = E(Var(YIX)).  

4.59 For any three random variables X, Y, and Z with finite variances, prove (in the sprit 
of Theorem 4.4.7) the coyariance identity 

Cov(X, Y) = E(Cov(X, YIZ) + Cov(E(XIZ) ,  E(Y IZ) , 

where Cov(X, YIZ) is the covariance of X and Y under the pdf I(x, ylz). 
4.60 Referring to Miscellanea 4.9.3, find the conditional distribution of Y given that Y = X 

for each of the three interpretations given for the condition Y = X. 
4.61 DeGroot (1986) gives the following example of the Borel Paradox (Miscellanea 4.9.3): 

Suppose that Xl and X2 are iid exponential(l) random variables, and define Z = 
(X2 - 1 )/X1 • The probability-zero sets {Z = O} and {X2 I}  seem to be giving us 
the same information but lead to different conditional distributions. 
(a) Find the distribution of X1 1Z = 0, and compare it to the distribution of X1 1X2 = 

1. 
(b) For small e > ° and Xl > 0, X2 > 0, consider the sets 

X2 - 1  Bl = { (Xl , X2) : -e < -- < e} and B2 = { (Xl , X2) : 1 - t: < X2 < 1 + e}. Xl 
Draw these sets and support the argument that Bl is informative about Xl but 
B2 is not. 



Section 4.9 MISCELLANEA 203 

(c) Calculate P{Xl � x lBt} and P(Xl � xIB2) ,  and show that their limits (as E -+ 0) 
agree with part (a). 

( Commu.nicated by L. Mark Berliner, Ohio State University.) 
4.62 Finish the proof of the equality in  Jensen's Inequality (Theorem 4.7.7) . Let g(x) be a 

convex function. Suppose a + bx is a line tangent to g(x) at x E X,  and g(x) > a + bx 
except at x = E X. Then E g(X) > g(E X) unless P(X = E X) = 1. 

4.63 A random variable X is defined by Z log X, where EZ = O. Is EX greater than, less 
than, or equal to 1? 

4.64 This exercise involves a well-known inequality known as the triangle inequ.ality (a 
special case of Minkowski's Inequality) . 
(a) Prove (without using Minkowski's Inequality) that for any numbers a and b 

la + bl � l al + I bl ·  

(b) Use part (a) to  establish that for any random variables X and Y with finite 
expectations, 

EIX + Y I  � EIX I + EI YI · 

4.65 Prove the Covariance Inequality by generalizing the argument given in the text imme
diately preceding the inequality. 

4.9 Miscellanea _______ � __ � __ � _______ � __ 

4.9. 1  The Exchange Paradox 
The "Exchange Paradox" (Christensen and Utts 1992) has generated a lengthy 
dialog among statisticians. The problem (or the paradox) goes as follows: 

A swami puts m dollars in one envelope and 2m dollars in another. You and 
your opponent each get one of the envelopes (at random) . You open your 
envelope and find x dollars, and then the swami asks you if you want to 
trade envelopes. You reason that if you switch, you will get either x/2 or 2x 
dollars, each with probability 1/2. This makes the expected value of a switch 
equal to ( 1/2) (x/2) + ( 1/2) (2x) = 5x/4, which is greater than the x dollars 
that you hold in your hand. So you offer to trade. 

The paradox is that your opponent has done the same calculation. How can 
the trade be advantageous for both of you? 

(i) Christensen and Utts say, "The conclusion that trading envelopes is always 
optimal is based on the assumption that there is no information obtained by 
observing the contents of the envelope," and they offer the following resolution. 

Let M rv 7r (m) be the pdf for the amount of money placed in the first envelope, 
and let X be the amount of money in your envelope. Then P(X mlM = 
m) = P(X 2mlM = m) = 1/2, and hence 

7r{x) 
P{M = xiX = x) = 

7r{x) + 7r{x/2) 
and P{M = x/2 1 X  x) 

7r{x/2) 
7r {x) + 7r{x/2) ' 
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It then follows that the expected winning from a trade is 

11" (x) 
2 11"(x/2) x 
x + --,-...,.-,---,--;'-..,--.-

11"(x) + 11" (x/2) 11"(x) + 11"(x/2) 2 '  

Section 4.9 

and thus you should trade only if 11"(x/2) < 211"(x) . If 11" is the exponential(>.) 
density, it is optimal to trade if x < 2 log 2/ >..  

(ii) A more classical approach does not assume that there is a pdf on the amount 
of money placed in the first envelope. Christensen and Utts also offer an ex
planation here, noting that the paradox occurs if one incorrectly assumes that 
P(Y ylX = x) = 1/2 for all values of X and Y, where X is the amount 
in your envelope and Y is the amount in your opponent's envelope. They ar
gue that the correct conditional distributions are P(Y = 2x lX = m) = 1 and 
P(Y = x/21X = 2m) = 1 and that your expected winning if you trade is 
E(Y) 3m/2,  which is the same as your expected winning if you keep your 
envelope. 

This paradox is often accompanied with arguments for or against the Bayesian 
methodology of inference (see Chapter 7) , but these arguments are somewhat tan
gential to the underlying probability calculations. For comments, criticisms, and 
other analyses see the letters to the editor from Binder ( 1993) , Ridgeway ( 1993) 
(which contains a solution by Marilyn vos Savant) ,  Ross (1994) , and Blachman 
(1996) and the accompanying responses from Christensen and Utts. 

4.9.2 More on the Arithmetic-Geometric-Harmonic Mean Inequality 
The arithmetic-geometric-harmonic mean inequality is a special case of a general 
result about power means, which are defined by 

[ I n rl
l
/r 

- '" x ·  n L-t ' 
i=1 

for Xi � O. Shier ( 1988) shows that Ar is a nondecreasing function of r j  that is, 
Ar $ Ar, if r $ r' or 

[ n l l/r [ n l l/r' 1 
L r 1 

L r' - x ·  < - x ·  n 1 - n • i=1 i=1 
for r $ r'o 

It should be clear that Al is the arithmetic mean and A-I is the harmonic mean. 
What is less clear, but true, is that Ao limr-.o Ar is the geometric mean. Thus, 
the arithmetic-geometric-harmonic mean inequality follows as a special case of the 
power mean inequality (see Exercise 4.57) . 

4.9.3 The Borel Paradox 
Throughout this chapter, for continuous random variables X and Y ,  we have been 
writing expressions such as E(YIX = x) and P(Y $ ylX = x) . Thus far, we have 
not gotten into trouble. However, we might have. 
Formally, the conditioning in a conditional expectation is done with respect to a 
sub sigma-algebra (Definition 1.2. 1 ) ,  and the conditional expectation E(YI9) is 
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defined as a random variable whose integral, over any set in the sub sigma-algebra 
g, agrees with that of X. This is quite an advanced concept in probability theory 
(see Billingsley 1995, Section 34) . 

Since the conditional expectation is only defined in terms of its integral, it may 
not be unique even if the conditioning is well-defined. However, when we condition 
on sets of probability 0 (such as {X = x}), conditioning may not be well defined, 
so different conditional expectations are more likely to appear. To see how this 
could affect us, it is easiest to look at conditional distributions, which amounts to 
calculating E[I(Y � y) IX = xJ . 
Proschan and Presnell (1998) tell the story of a statistics exam that had the ques
tion "If X and Y are independent standard normals, what is the conditional dis
tribution of Y given that Y X?" Different students interpreted the condition 
Y = X in the following ways: 

( 1 )  Zl 0, where Zl Y X; 
(2)  Z2 1 ,  where Z2 YjX;  
(3) Z3 = 1 ,  where Z3 = I(Y X) .  

Each condition is  a correct interpretation of  the condition Y = X, and each leads 
to a different conditional distribution (see Exercise 4.60) .  

This is  the Borel Pamdox and arises because different (correct) interpretations of 
the probability 0 conditioning sets result in different conditional expectations. How 
can we avoid the paradox? One way is to avoid conditioning on sets of probability 
O. That is, compute only E(YIX E B) , where B is a set with P(X E B) > O. 
So to compute something like E(YIX x), take a sequence Bn ! x, and define 
E(YIX x) = limn_oo E(YIX E Bn) .  We now avoid the paradox, as the different 
answers for E(YIX = x) will arise from different sequences, so there should be no 
surprises (Exercise 4.61) .  





Chapter 5 

Properties of a Random Sample 

"['m afraid that [ rather give myself away when [ explain, " said he. "Results 
without causes are much more impressive. " 

5.1 Basic Concepts of Random Samples 

Sherlock Holmes 
The Stock-Broker's Clerk 

Often, the data collected in an experiment consist of several observations on a variable 
of interest. We discussed examples of this at the beginning of Chapter 4. In this 
chapter, we present a model for data collection that is often used to describe this 
situation, a model referred to as random sampling. The following definition explains 
mathematically what is meant by the random sampling method of data collection. 

Definition 5.1 .1 The random variables Xl l  . . . , Xn are called a random sample of 
size n from the population f (x) if X I , . . . , Xn are mutually independent random vari
ables and the marginal pdf or pmf of each Xi is the same function f(x) . Alternatively, 
Xl ,  . . .  , Xn are called independent and identically distributed random variables with 
pdf or pmf f(x). This is commonly abbreviated to iid random variables. 
The random sampling model describes a type of experimental situation in which 

the variable of interest has a probability distribution described by f(x) . If only one 
observation X is made on this variable, then probabilities regarding X can be cal
culated using f(x) . In most experiments there are n > 1 (a fixed, positive integer) 
repeated observations made on the variable, the first observation is X I , the second is 
X2 , and so on. Under the random sampling model each Xi is an observation on the 
same variable and each Xi has a marginal distribution given by f(x). Furthermore, 
the observations are taken in such a way that the value of one observation has no 
effect on or relationship with any of the other observations; that is, Xl ,  . . .  , Xn are 
mutually independent. (See Exercise 5.4 for a generalization of independence. ) 
From Definition 4.6.5, the joint pdf or pmf of Xl ,  . . .  , Xn is given by 

n 

(5. 1 . 1 ) f(XI , ' " , xn ) = f(XI )f(X2) · · · · ·f (xn} = II f(xi ) .  
i=l 

This joint pdf or pmf can be used to calculate probabilities involving the sample. 
Since Xl , ' "  , Xn are identically distributed, all the marginal densities f(x) are the 
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same function. In particular, if the population pdf or pmf is a member of a parametric 
family, say one of those introduced in Chapter 3, with pdf or pmf given by f(xI8), 
then the joint pdf or pmf is 

n 
(5.1 .2) f(x! , . . . , xn I8) = II f(Xi I8) ,  

i=l 

where the same parameter value 8 is used in each of the terms in the product. If, in a 
statistical setting, we assume that the population we are observing is a member of a 
specified parametric family but the true parameter value is unknown, then a random 
sample from this population has a joint pdf or pmf of the above form with the value of 
() unknown. By considering different possible values of 0 ,  we can study how a random 
sample would behave for different populations. 

Example 5.1.2 ( Sample pdf-exponential) Let Xl , . . .  , Xn be a random sample 
from an exponential(,8) population. Specifically, Xl , . . .  , Xn might correspond to the 
t imes until failure (measured in years) for n identical circuit boards that are put on 
test and used until they fail. The joint pdf of the sample is 

n 
f(xb '  . . , xn l(3) II f(Xi lf3) 

i=l 

This pdf can be used to answer questions about the sample. For example, what is 
the probability that all the boards last more than 2 years? We can compute 

100 100 n 1 = e-2/{3 . . . II _e-xd{3 dx2 . . . dXn 
2 2 i=2 f3 

(integrate out Xl ) 

(integrate out the remaining XiS successively) 

= (e-2/{3)n 

e-2n/{3 . 

If f3, the average lifelength of a circuit board, is large relative to n, we see that this 
probability is near 1 .  

The previous calculation illustrates how the pdf of a random sample defined by 
(5.1 . 1 )  or, more specifically, by (5.1 .2) can be used to calculate probabilities about 
the sample. Realize that the independent and identically distributed property of a 
random sample can also be used directly in such calculations. For example, the above 
calculation can be done like this: 
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P(XI > 2, . . .  , Xn > 2) 

= P(XI > 2) · · · P(Xn > 2) ( independence) 

= [P(XI > 2)t (identical distributions) 

(e-2/Il)n (exponential calculation) 

e-2n/Il . 

The random sampling model in Definition 5 . 1 . 1  is sometimes called sampling from 
an infinite population. Think of obtaining the values of Xl , . . .  , Xn sequentially. First, 
the experiment is performed and Xl Xl is observed. Then, the experiment is re
peated and X2 = X2 is observed. The assumption of independence in random sampling 
implies that the probability distribution for X2 is unaffected by the fact that Xl Xl 
was observed first. "Removing" Xl from the infinite popUlation does not change the 
population, so X2 X2 is still a random observation from the same population. 

When sampling is from a finite population, Definition 5 . 1 . 1  may or may not be 
relevant depending on how the data collection is done. A finite population is a finite set 
of numbers, {Xl, " " XN}'  A sample XI ! " " Xn is to be drawn from this population. 
Four ways of drawing this sample are described in Section 1 .2.3. We will discuss the 
first two. 

Suppose a value is chosen from the population in such a way that each of the N 
values is equally likely (probability = liN) to be chosen. (Think of drawing num
bers from a hat.) This value is recorded as Xl = Xl .  Then the process is repeated. 
Again, each of the N values is equally likely to be chosen. The second value chosen is 
recorded as X2 = X2. (If the same number is chosen, then X l  X2 .)  This process of 
drawing from the N values is repeated n times, yielding the sample Xl > " " Xn. This 
kind of sampling is called with replacement because the value chosen at any stage is 
"replaced" in the population and is available for choice again at the next stage. For 
this kind of sampling, the conditions of Definition 5 . 1 . 1  are met. Each Xi is a discrete 
random variable that takes on each of the values Xl , • • •  , XN with equal probability. 
The random variables X I ,  • . .  , Xn are independent because the process of choosing 
any Xi is the same, regardless of the values that are chosen for any of the other 
variables. (This type of sampling is used in the bootstrap-see Section 10.1 .4 .) 

A second method for drawing a random sample from a finite population is called 
sampling without replacement. Sampling without replacement is done as follows. A 
value is chosen from {Xl > " " XN} in such a way that each of the N values has prob
ability liN of being chosen. This value is recorded as Xl = Xl . Now a second value 
is chosen from the remaining N - 1 values. Each of the N - 1 values has probability 
I/(N 1 ) of being chosen. The second chosen value is recorded as X2 = X2 . Choice 
of the remaining values continues in this way, yielding the sample X I ,  . . .  , Xn. But 
once a value is chosen, it is unavailable for choice at any later stage. 

A sample drawn from a finite population without replacement does not satisfy all 
the conditions of Definition 5 . 1 . 1 .  The random variables X 1 ,  . • •  , Xn are not mutually 
independent. To see this, let X and y be distinct elements of {XI . . . .  , XN} .  Then 
P(X2 ylXI y) = 0, since the value y cannot be chosen at the second stage 
if it was already chosen at the first. However, P(X2 ylXI x) I/(N - 1 ) .  The 
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probability distribution for X2 depends on the value of Xl that is observed and, hence, 
Xl and X2 are not independent. However, it is interesting to note that Xl > . . .  , Xn 
are identically distributed. That is, the marginal distribution of Xi is the same for 
each i = 1 ,  . . .  , n. For Xl it is clear that the marginal distribution is P(Xl x) = 
liN for each x E {Xl > " " XN}. To compute the marginal distribution for X2, use 
Theorem 1.2 .11(a) and the definition of conditional probability to write 

N 
P(X2 x) = L P(X2 = xIXI = Xi)P(Xl Xi) . 

i=:ol 

For one value of the index, say k ,  x = Xk and P(X2 = xIXI = Xk) = O. For all other 
j ¥- k, P(X2 = xIXI = Xj) = I/(N - 1 ) .  Thus, 

(5 .1.3) P(X2 = x) (N - 1) (_
1

_ �) N - I N 
1 
N '  

Similar arguments can be used to sbow that each of the XiS has the same marginal 
distribution. 

Sampling without replacement from a finite population is sometimes called simple 
random sampling. It is important to realize that this is not the same sampling situa
tion as that described in Definition 5 .1 .1 .  However, if the population size N is large 
compared to the sample size n, X I ,  . . .  , Xn are nearly independent and some approxi
mate probability calculations can be made assuming they are independent. By saying 
they are "nearly independent" we simply mean that the conditional distribution of 
Xi given Xl " ' "  Xi-l is not too different from the marginal distribution of Xi' For 
example, the conditional distribution of X2 given Xl is 

o and P(X2 = xlXl 1 
N 1 

for x ¥- Xl .  

This is not too different from the marginal distribution of  X2 given in  (5. 1 .3) if 
N is large. The nonzero probabilities in the conditional distribution of Xi given 
Xl > ' ' ' '  Xi-l are 1/(N - i + 1 ) ,  which are close to liN if i � n is small compared 
with N. 

Example 5.1.3 (Finite population model) As an example of an approximate 
calculation using independence, suppose {I, . . .  , 1000} is the finite population, so 
N 1000. A sample of size n = 10 is drawn without replacement. What is the prob
ability that all ten sample values are greater than 200? If Xl , . . .  , XlO were mutually 
independent we would have 

P(XI > 200, . . . , XlO > 200) P(XI > 200)· · · ·  .P(XlO > 200) 

( 800 ) 10 
(5. 1.4) 

1000 
= . 107374. 
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To calculate this probability exactly, let Y be a random variable that counts the 
number of items in the sample that are greater than 200. Then Y has a hypergeometric 
(N = 1000, M = 800, K = 10) distribution. So 

P(Xl > 200, . . . , XlO > 200) = P(Y 10) 

( 8
1
0� ) ( 2�0 ) 

( l��O ) 

.106164. 
Thus, (5 .1 .4) is a reasonable approximation to the true value. 

Throughout the remainder of the book, we will use Definition 5. 1 . 1 as our definition 
of a random sample from a population. 

5.2 Sums of Random Variables from a Random Sample 

When a sample Xl " ' "  Xn is drawn, some summary of the values is usually com
puted. Any well-defined summary may be expressed mathematically as a function 
T(Xl , . . .  , xn) whose domain includes the sample space of the random vector (Xl , . . .  , 
Xn) .  The function T may be real-valued or vector-valued; thus the summary is a ran
dom variable (or vector) ,  Y T(Xh . . .  , Xn) .  This definition of a random variable as 
a function of others was treated in detail in Chapter 4, and the techniques in Chapter 
4 can be used to describe the distribution of Y in terms of the distribution of the 
population from which the sample was obtained. Since the random sample Xl " ' "  Xn 
has a simple probabilistic structure (because the XiS are independent and identically 
distributed), the distribution of Y is particularly tractable. Because this distribution 
is usually derived from the distribution of the variables in the random sample, it is 
called the sampling distribution of Y. This distinguishes the probability distribution 
of Y from the distribution of the population, that is, the marginal distribution of 
each Xi' In this section, we will discuss some properties of sampling distributions, 
especially for functions T(XI, . . .  , xn) defined by sums of random variables. 

Definition 5.2.1 Let Xl , . . .  , Xn be a random sample of size n from a population 
and let T(xl , . . .  , xn) be a real-valued or vector-valued function whose domain in
cludes the sample space of (Xl , . . . , X n) .  Then the random variable or random vector 
Y T(XI , . . .  , Xn) is called a statistic. The probability distribution of a statistic Y 
is called the sampling distribution of Y. 

The definition of a statistic is very broad, with the only restriction being that a 
statistic cannot be a function of a parameter. The sample summary given by a statistic 
can include many types of information. For example, it may give the smallest or largest 
value in the sample, the average sample value, or a measure of the variability in the 
sample observations. Three statistics that are often used and provide good summaries 
of the sample are now defined. 
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Definition 5.2.2 The sample mean is the arithmetic average of the values in a 
random sample. It is usually denoted by 

X = Xl + " , + Xn = 1 txi• n n i=1 

Definition 5.2.3 The sample variance is the statistic defined by 

1 n 
82 = - "'(Xi X)2 . n - 1 L..t i=l 

The sample standard deviation is the statistic defined by 8 VS2. 
As is commonly done, we have suppressed the functional notation in the above 

definitions of these statistics. That is, we have written 8 rather than 8 (X 1 ,  . . .  , Xn) . 
The dependence of the statistic on the sample is understood. As before, we will denote 
observed values of statistics with lowercase letters. So X, 82 , and s denote observed 
values of X, 82 , and 8. 

The sample mean is certainly familiar to alL The sample variance and standard 
deviation are measures of variability in the sample that are related to the population 
variance and standard deviation in ways that we shall see below. We begin by deriving 
some properties of the sample mean and variance. In particular, the relationship for 
the sample variance given in Theorem 5.2.4 is related to (2.3.1 ) ,  a similar relationship 
for the population variance. 

Theorem 5.2.4 Let Xl ,  • • .  , xn be any numbers and x = (Xl + . . .  + xn)!n. Then 
a. mina 2::�=1 (Xi - a)2 = 2::�=1 (Xi - X)2 , 
h. (n - 1)s2 2::7=1 (Xi - x)2 2::7=1 x� - nx2 . 

Proof: To prove part (a), add and subtract x to get 
n 

L (Xi - a)2 
i=1 

n 
L (Xi - X + X a)2 
i= l  
n n 

= L(Xi x)2 + 2 L(Xi 
i=l i=l 
n n 

x)(x 

= L (Xi - X)2 + L(x - a)2 . 
i=l i=l 

n 
a) + L(x a)2 

i=l 

(cross term is D) 

It is now clear that the right-hand side is minimized at a = X. (Notice the similarity 
to Example 2.2.6 and Exercise 4.13.) 

To prove part (b) , take a = 0 in the above. 0 

The expression in Theorem 5.2.4(b) is useful both computationally and theoretically 
because it allows us to express s2 in terms of sums that are easy to handle. 

We will begin our study of sampling distributions by considering the expected 
values of some statistics. The following result is quite useful. 
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Lemma 5.2.5 Let Xl . ' " , X". be a random sample from a population and let g(x) 
be a function such that Eg(X1 ) and Var g(Xd exist. Then 

(5.2 . 1 )  

and 

(5.2.2) 

Proof: To prove (5.2 . 1 ) ,  note that 
n 

2: Eg(Xi) = n (Eg(X1 ) ) . 
i=l 

Since the XiS are identically distributed, the second equality is true because Eg(Xi) is 
the same for all i. Note that the independence of Xl • . . .  , X". is not needed for (5.2 . 1 )  
to hold. Indeed, (5.2.1 )  is true for any collection of n identically distributed random 
variables. 
, To prove (5.2.2) , note that 

� E [t, (g(X,) - E9(X'»]
' 

(definition of variance) 

(expectation property and) rearrangement of terms 

In this last expression there are n2 terms. First, there are n terms (g(Xi) Eg(xi) )2 ,  
i = 1 ,  . . . , n, and for each, we have 

E (g(X,) - Eg(Xi))2 Var g(Xi) 
Var g(Xl ) '  

(definition of variance) 
(identically distributed) 

The remaining n(n - 1 )  terms are all of the form (g(Xi) E9(Xi)) (g(Xj) Eg(Xj )) ,  
with i #- j .  For each term, 

o. 

Thus, we obtain equation (5.2.2) . 

(definit.ion Of) covanance 

( independence ) Theorem 4.5.5 
o 

Theorem 5.2.6 Let Xl, . . .  , Xn be a random sample from a population with mean 
J1. and variance (12 < 00 .  Then 
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a. EX = J.l, 

h. Var X 

Proof: To prove (a) , let g(Xi) = Xdn, so Eg(Xi) = J.lJn. Then, by Lemma 5.2.5, 

Similarly for (h) , we have 

Var X = Var (�tXi) = �2 Var (tXi) = �2nvar Xl = :; . 
t=l �=1 

For the sample variance, using Theorem 5.2.4, we have 

= _1_ (nEX; _ nEX2) n 1 

= n� l 
(n(12 + JL2) n (:; + J.l2) )  = (12 , 

estahlishing part (c) and proving the theorem. o 

The relationships (a) and (c) in Theorem 5.2.6, relationships between a statistic 
and a population parameter, are examples of unbiased statistics. These are discussed 
in Chapter 7. The statistic X is an unbiased estimator of J.l, and S2 is an unbiased 
estimator of (12. The use of n 1 in the definition of S2 may have seemed unintuitive. 
Now we see that, with this definition, ES2 (12. If S2 were defined as the usual 
average of the squared deviations with n rather than n - 1 in the denominator, then 
ES2 would be and S2 would not be an unbiased estimator of (12. n _ 

We now discuss in more detail the sampling distribution of X. The methods from 
Sections 4.3 and 4.6 can be used to derive this sampling distribution from the pop
ulation distribution. But because of the special probabilistic structure of a random 
sample (iid random variables) ,  the resulting sampling distribution of X is simply 
expressed. 

First we note some simple relationships. Since X = � ( Xl + . . . j- Xn) ,  if I (y) is the 
pdf of Y = (Xl + . . .  + Xn) ,  then Ix (x) nl(nx) is the pdf of X (see Exercise 5.5) .  
Thus, a result about the pdf of Y is easily transformed into a result about the pdf of 
X. A similar relationship holds for mgfs: 

Mx (t) = EetX = Eet(X1+· ·+X,,)!n 
= Ee(t/n)Y My (tJn) . 

Since XI, . . . , Xn are identically distributed, Mx, (t) is the same function for each i .  
Thus, by Theorem 4.6.7, we have the following. 
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Theorem 5.2.7 Let Xl" ' "  Xn be a random sample from a population with myf 
Mx(t ) .  Then the mgf of the sample mean is 

Mg (t) = [Mx (tln)t. 

Of course, Theorem 5.2.7 is useful only if the expression for Mg (t) is a familiar mgf. 
Cases when this is true are somewhat limited, but the following example illustrates 
that, when this method works, it provides a very slick derivation of the sampling 
distribution of X. 
Example 5.2.8 (Distribution of the mean) Let Xl , . . .  , Xn be a random sample 
from a n(J-L, 0"2) population. Then the mgf of the sample mean is 

Thus, X has a n(J-L, 0"2 In) distribution. 
Another simple example is given by a gamma( 0, ;3) random sample (see Exam

ple 4.6.8) . Here, we can also easily derive the distribution of the sample mean. The 
mgf of the sample mean is 

which we recognize as the mgf of a gamma(no, (:JJn) , the distribution of X. I I  

I f Theorem 5.2.7 is not applicable, because either the resulting mgf of X is unrec
ognizable or the population mgf does not exist, then the transformation method of 
Sections 4.3 and 4.6 might be used to find the pdf of Y = (Xl + . . .  + Xn) and X. In 
such cases, the following convolution formula is nseful. 

Theorem 5.2.9 If X and Y are independent continuous random variables with pdfs 
fx(x) and fy (y) ,  then the pdf of Z = X + Y is 

(5 .2 .3) fz (z) = i: fx (w)fy (z - w) dw. 

Proof: Let W = X. The Jacobian of the transformation from (X, Y) to (Z, W) is 1 .  
So using (4.3.2) , we obtain the joint pdf of (Z, W )  as 

fz,w (z, w) ix,y (w, z w) = fx (w)fy(z - w) . 

Integrating out w ,  we obtain the marginal pdf of Z as given in (5.2.3) . o 

The limits of integration in (5.2.3) might be modified if fx or fy or both are 
positive for only some values. For example, if fx and fy are positive for only positive 
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values, then the limits of integration are 0 and z because the integrand is 0 for values 
of w outside this range. Equations similar to the convolution formula of (5.2.3) can 
be derived for operations other than summing; for example, formulas for differences, 
products, and quotients are also obtainable (see Exercise 5.6) . 

Example 5.2.10 (Sum of Cauchy random variables) As an example of a situa
tion where the mgf technique fails, consider sampling from a Cauchy distribution. We 
will eventually derive the distribution of Z, the mean of Zl , " " Zm iid Cauchy (0, 1 )  
observations. We start, however, with the distribution of the sum of two independent 
Cauchy random variables and apply formula (5.2.3) . 

Let U and V be independent Cauchy random variables, U "'" Cauchy(O, a) and 
V "",  Cauchy(O, r)j that is, 

1 1 
fu(u) = 'fra 1 + (u/cr)2 ' 

1 1 
fv(v) = 'frT 1 + (v/r)2 ' 

-00 < u < 00, 

- 00  < v < 00. 

Based on formula (5.2.3), the pdf of Z = U + V is given by 

(5.2.4) fz(z) 100 -.!... 1 -.!... 1 dw -00 < z < 00 . 
-00 'fra 1 + (w/a)2 'frT 1 + ( (z w)/r)2 ' 

This integral is somewhat involved but can be solved by a partial fraction decompo
sition and some careful anti differentiation (see Exercise 5.7) . The result is 

(5.2.5) 
1 1 

fz (z) = 'fr(a + r) 1 + (z/(a + T) )2 ' - 00  < z < 00. 

Thus, the sum of two independent Cauchy random variables is again a Cauchy, with 
the scale parameters adding. It therefore follows that if Zl , . . .  , Zn are iid Cauchy(O, 1 )  
random variables, then L: Zi is Cauchy(O, n) and also Z is Cauchy(O, l ) !  The sample 
mean has the same distribution as the individual observations. (See Example A.O.5 
in Appendix A for a computer algebra version of this calculation.) I I  

If  we are sampling from a location-"scale family or if  we are sampling from certain 
types of exponential families, the sampling distribution of sums of random variables, 
and in particular of X, is easy to derive. We will close this section by discussing these 
two situations. 

We first treat the location-t>cale case discussed in Section 3.5. Suppose Xl , " " Xn 
is a random sample from (l/a)f( (x-I1-)/a), a member of a location-scale family. Then 
the distribution of X has a simple relationship to the distribution of Z, the sample 
mean from a random sample from the standard pdf f(z). To see the nature of this 
relationship, note that from Theorem 3.5.6 there exist random variables ZI , '  . .  , Zn 
such that Xi = aZi + 11- and the pdf of each Zi is f(z) . Furthermore, we see that 
ZI , " " Zn are mutually independent. Thus Zl , " " Zn is a random sample from f(z). 
The sample means X and Z are related by 
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Thus, again applying Theorem 3 .5.6, we find that if g(z) is the pdf of Z, then 
(I/O")g« x - p,)/O") is the pdf of X. It may be easier to work first with Zl , " "  Zn 
and f (z) to find the pdf g(  z) of Z. If this is done, the parameters p, and 0" do not have 
to be dealt with, which may make the computations less messy. Then we immediately 
know that the pdf of X is (ljO")g{ (x p,)jO"). 

In Example 5.2. 10, we found that if Zl l . . " Zn is a random sample from a 
Cauchy (0, 1 )  distribution, then Z also has a Cauchy(O, 1) distribution. Now we can 
conclude that if Xl , . . .  , Xn is a random sample from a Cauchy(p" 0") distribution, 
then X also has a Cauchy(p" 0") distribution. It is important to note that the disper
sion in the distribution of X, as measured by 0", is the same, regardless of the sample 
size n. This is in sharp contrast to the more common situation in Theorem 5 .2.6 (the 
population has finite variance) ,  where Var X 0"2jn decreases as the sample size 
increases. 

When sampling is from an exponential family, some sums from a random sample 
have sampling distributions that are easy to derive. The statistics T1 , • • . , Tk in the 
next theorem are important summary statistics, as will be seen in Section 6.2 . 

. Theorem 5.2.11 Suppose Xl , ' "  , Xn is a random sample from a pdf or pmf f(x IO) , 
where 

f(xIO) h(x)c(O) exp (t. Wi (O)ti(X») 
is a member of an exponential family. Define statistics T1 , • . •  , 1k by 

n 
Ti (X1 , • • • , Xn) = L ti{Xj) , i 1 ,  . . . , k. 

j=1 

lf the set {(Wl (O) , W2(O) " " , Wk (O) ) , O E 8} contains an open subset of '1Rk, then the 
distribution of (Tl l . . .  , Tk) is an exponential family of the form 

(5.2.6) IT(Ul , " . , uk lO) = H(Ul . . . . , Uk) [C(o)]n exp (t. Wi(O)Ui) . 

The open set condition eliminates a density such as the n(O, (2) and, in general, 
eliminates curved exponential families from Theorem 5.2.1 1 .  Note that in the pdf 
or pmf of (TI , . . .  , Tk ) ,  the functions c(O) and Wi«() are the same as in the original 
family although the function H(Ul , " " Uk) is, of course, different from h(x) .  We will 
not prove this theorem but will only illustrate the result in a simple case. 

Example 5.2.12 (Sum of Bernoulli random variables) Suppose Xl i ' . .  , Xn 
is a random sample from a Bernoulli(p) distribution. From Example 3.4 . 1  (with n 1 )  
we see that a Bernoulli(p) distribution i s  an exponential family with k = 1 ,  c(p) = 
( 1  - p), WI (P) = log(pj( l  - p) , and t I (X) = x. Thus, in the previous theorem, Tl = 

T1 (X1 , . . .  , Xn ) = Xl + . . . + Xn. From the definition of the binomial distribution in 
Section 3.2, we know that TI has a binomial(n, p) distribution. From Example 3.4. 1 
we also see that a binomial(n,p) distribution is an exponential family with the same 
Wl (P) and c(p) = ( 1 - p)n . Thus expression (5.2.6) is verified for this example. I I  
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5 . 3  Sampling from the Normal Distribution 

Thi:; section deals with the propC'rtirs of ::;ample quantities drawn frum a normal 
population-st il l  one of thC' most widely uSl'd statistical moJrls. Sampling from a 
normal popula.tion lead:; to many uspful propE'rties of ::;ample statistics ;'Ind also to 
m',my well-known sampling dist.ributions. 

5.3. 1 Prope'rties of the Sample Mean and Va'riance 
We have already seen how to calculate the means and variances of J\" and S2 in 
general. Now, under the additional assumption of normal ity, we can deriyp their full 
distributions , rind more . The properties of X and S2 are su mmarized in til(' following 
theon'lll. 

Theorem 5 . 3 . 1  Ld Xl , ' "  , Xn be a random sample from a n (/I , 0-2) distribution, 
and let )( = ( 1 In)2:7=lX; and 52 = [l/ (n - 1 ) 12:;�1 (Xi - X)2 Then 

a .  X a-nd .')2 are independent random variables. 

b.  J"\" has a n (f.L , 0- 2  In) distnbution, 

c .  (n - 1)S2/0-2 has a chi squared distribution with n - 1 degrees of freedom. 

Proof: First note that, from Section 3 . 5  on location-·scale families, we can assu m e ,  
wit hout loss of gC'nerality, that It = 0 and (J = l . (Also see the discussion preceding 
Theorem 5.2. 1 1 . )  Furthermore , part (b) has already been established in Example .5 .2 .8 ,  
leaving us  to  prove parts (a) and (c) . 

To prove part (a) WP. will appJy Theorem 4.6 . 1 2 ,  and show that X and S2 are 
function� of i ndependent random vectors. Note that we can write S2 as a function of 
11 - 1 deviation as follows: 

,2 1 2:" " 2 (:) = - (Xi - .X) n - 1  ";' = 1  

= n� l ((XI - X)2 + �(Xi - X)2) 

1 
= 

n -· 1 
( [t(x; - X )]

2 
+ t(Xi - X)2) ,=2 ,=2 

Thus , S2 CcUl be writt'n as a function only of (X2 - X, . . .  , . .\n - X) .  vVe will nuw 
show tha.t tlwse random variables a.re independ('nt of .Y . The joint pdf of the sample 
Xl " ' "  X" is giYPIl by 

1 - ( 1f?)L:"  x2 f( :1' l , ' "  , xn)  = 
( 2n)

,,;2 e - = 1 " -00 <-: Ii < 'Xl .  
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Make the transformation 

Yl =: i, 

Y2 = X2 -- X ,  

Yn = :1:" .. - :T.  . ' 1/ -
This is a l inear transformation with a Jacobian equal to lin. '(lie have 

f (Yl , . . . , ljn )  , 
n ( 1 /2 ) ( . ,.n . )2 _ ( 1 /'2) " " ( . .  +. ) " 

(2Jr )n/2 e - UI - �i � 2 Y' e L ; = 2 V, VI , - 00 < Y'i < 00 

[ (.2!:.) 1 /2 e( -nuil/2] [ n1/2 e - ( l /2) [L:'=� U; + ( E:"=2y; ) 2 J ] -00 < y '  < 00 .  
27f  (27f) (n- I ) /2 " 

Since the joint pdf of Y1 , . . . , Y" factors, it follows from Theorem 4 .6. 1 1  that Y1 is 
independent of Y2 , . . . , Y" and ,  hence, frol11 ThC'orem 4 .6 . 1 2  that X is indepC'ndC'nt 
� � . 0 

To finish the proof of thf' theorem we must now cleriv!" the distrihution of 8"2 . Bpfore 
doing so, however, we digress a l ittlp and discuss the chi squared d istribution, whose 
properties play an important part in the derivation of thp pdf of S2 . Recall from 
Section 3.3  that t.he chi squared pdf is a specia.l case of the gamma pelf Hnd is given 
by 

f ( x) - 1 x(p/"2)-le-x/2 0 < x < 00 ,  
. - f(pI2) 2P/2 ) 

where p is called the degrecs of freedom. We now summarize some pertinent facts 
about tht' chi squarC'd distribution. 

Lemma 5 , 3 . 2  (Facts about chi squared random variables) We use the nota
tion X� to denote a chi squared random variable with p degrees of freedom .. 

a. If Z is a 11 (0 , 1 )  random variable, then Z2 '" xi; that 'is, the squart of a standard 
normal random variable is a chi squared random variable. 

b. fl Xl , · · ·  , XII are independent and Xi '" \�" then Xl + . . . + X" '" \�J .: .. _i p,, ; 
that is, independent ch·i squared va7'iables add to a chi squand var'iable, and tht. 
degrees of freedom also add. 

Proof: We have encountered these facts already. Part (a) was established in Exam
ple 2 . 1 .7 .  Part (11) is a special case of Example 4 .6 .8 ,  which has to do with sums of 
independent gamma random variables. Since a X� random variable is a gaml1la(pl2, 2 ) ,  
application of the  example gives part (b) .  0 

Proof of Theorem 5 .3 .1 (c) : We will employ an induction argument to establish 
the distribution of S2 , using the notation XI,: and Sf to denote the sample mean 
a.nd variance based on the first k ubservatiuns. (Note that the actual ordering of the 
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observat ions is immaterial-w ' are j ust considering them to be ordered to facilita E' 
the proof. ) It it; straightforward to est ablish (see Exercise :1 . 1 5 )  that 

(5 .3 . 1 )  
'0 .) ( n - l ) . 0 (n - 1) 8;, = ( n - 2 ) ,  '� - l  + -- (X" - Xn -d � .  '/1 

Now consider n = 2. Defining ° x Sf = 0. we have froll! (5 . 3 . 1 )  thaL 

2 1 ,- - 2 S.) = - ( X ') - '\ 1 )  . • 2 -

Since the di. tribution of (.\2 - .YI lI J2 is n ( O ,  1 ) ,  part (a) of Lemm;J, 5 . 3 . 2  show:,; that S1 "-' xi ·  Proceeding with the i nduct ion , we aSSllme that for l2 = k. (J,; - 1) st "-' \L 1 . 
For n = k + 1 we have from ( ,5 . 3 . 1 )  

( 5 . 3 . 2) 

According to the i nduction hypothesis, (J...: - l )Sf � -xi- i ' If we can establi. h that 
(kl(k + 1 ) ) (Xk+ 1 - .\"d2 rv y r .  independent of Sf, . it will fullow from pitrt (b) of 
Lemma 5 . 3 . 2  that kS'l+l rv \f. ,  and t.he theorem will be proved. 

The independence of (X"'+l - -Yd2 and s1 again follows from Theorem 4 . 6 . 1 2 .  
The vector (Xk+ l . .  \";, )  i s  independent o f  S� and so i s  any funrtion o f  the vertm . 
Furthermore, X k+l  _ . .  'V:" is a normal random variable with lw 'an 0 and varianc<, 

. -. k + 1 Var ( Xk';"l - .\ A:) = --y:- ,  
and therefore (kj(k + 1 ) ) (Xk+1 - _Yd 2 � 'tI ,  and the tlworem is estahlishcd. 0 

The independence of X a.nd 82 can bf' established in a manner different from that 
used in the proof uf Theorem 0 . 3 . 1 .  ltatber than show that the joint pdf factors, we 
can use the fol lowing lemma, which ties together independ nce ancl correlation for 

normal samples. 

Lemma 5 . 3 . 3  Let Xj � n ( /lj , a; l . j  = 1, . . .  , n ,  independent. For constants 0ij and br) (j c= 1. . . . , n; i = 1, . . . . k; l' = 1. . . . . m. ) ,  'whr..n: k + m s:: n. define 

" 
U; = L O ij Xj ,  i = 1 ,  . . . , 1.: . 

j =l 
n 

V· = LbrjXj ,  l' = 1 ,  . . . , m. 
j = l 

a. Th, randum. variable 'j and 1/, a1'e independent if and only U Cov(U; ,  1-',.) = O .  
FurthxmoTe . Cov(U; , 'Ve ) = =;= l a ; j brjaj . 

b. The random vectors ('[ 1 .. . . .  , [h ) and (VI ,  . . . .  V�, ) are independent if and only if 

Ui is independent of v� for all pairs i ,r  (i = 1 ,  . . . , k ;  r = 1 ,  . . .  , m) . 
Proof: It is sufficient to prove the lemma for fJ-i = 0 and a; = 1 ,  since the general 
statement of the lemma then follows quick! . Furthermure, the implication from in· 
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dependence to 0 covariance is immediate (Theurem 4 . 5 . 5 )  and the expression for the 
covariance is e<'lsily verified (Exercise 5 . 14 ) .  NotC' also that Corollary 4 . 6 . 1 0  shows that 
[Ii. and Vr are normally distributee! 

Thus , we are left with prov i ng that i f  the constants satisfy the abovC' restriction 
(equivalently, t he covari ance is 0 ) ,  then we haVf� independence under normality. V./e 
prove the lemma only for n = 2,  since the proof for general n is similar but necessitates 

a detai led n-variatf' transform atio n .  
To prove pnrt ( a) start w i th thf' joint p d f  of Xl and X2 , 

b: " X2 (1.:1 . X2) == � e- (1/2 ) (xi +xn ,  
·- 00 < :.r l , x2 < ;0. 

_ 71"  

Make the transformation ( we can su ppress the double subscript i n  the n = 2 case) 

so 

with Jacobian 

OXI 

J =  OU 
OX2 
au 

Thus, the pdf of U and V is 

OX l 
ov 

JX2 
all 

. _ ulv - bj u  
.T ? - . - al b2 - bj a2 ' 

1 

al b 2  - b1a2 

-00 < U, v < 00. Expanding the squares in the exponent, we can write 

The assumption 011 the constants shows that the cross-term is identi cally O. Hence, the 
pdf factors so, by Lemma 1 . 2 . 7, U and V are i ndependent ami part (a) is estahlished. 

A similar type of argument will work for part ( b) ,  thl' details of which we will 
not go into,  If the appropriate transformation is m ade, the j oint pdf of tl1P vectors 
( Uj , • . .  , Ud and (Vj ,  . . .  , Vm) can be obtained. By an application of Theorem 4.6. 1 1 ,  
the vectors are i ndependent i f  tl1C' joint pdf factors .  From the form o f  t he normal pdf, 
this wi l l  happen if and only if Ui is independent of Vr for all pairs i ,  r (i = 1 ,  . . .  , k ;  T = 
1 ,  . . .  , rn) . 0 

This lemma shows that, if we start with indppendent normal mndom variables, 
covari ancE' and independence arC' equivalent for l inear functions of these random vari-
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abIes . Thus, we can check independencp for normal varia.bles by merely checking the 
covariance term, a much simpler calculat ion. Therp is nothi ng magic about this; it 
just follows from the form of the normal pdf. Furthermore, part (b) allows us to in
fer overall independpl1ce of normal vectors by j ust  checking pa irwise independence, a 

- property that does not hold for general random varin bles . 
We can usp Lemma 5 .3 .3  to provide an alt.ernat ive proof of the independence of X 

and S2 in normal sampling. Since we can writ e ::;2 as a funct ion of n .. - 1 deviat ions 

(X2 - X, . . .  , Xn - .Y) , we must show that these random variables are uncorrelated 
with X.  The normal ity assumption, togetl1f'r with Lemma 5 .3 .3 ,  will then allow us to 
conclude independence . 

As an i l lustration of thp application of Lemma 5 .3 .3 ,  write 

_ It ( 1 )  
X = L � Xi,  

1 = 1  

when' bij = 1 i f i = j and bij = ° otherwise. It is then easy to shuw that 

_ _ 11- ( 1 )  ( 1 ) 
Cov (X, Xj - X ) = L � bij - � = 0, 

, = 1  

showing that X and Xj - X are indepe-ndent (as long as the X, s have the same 
variance) . 

5. 3. 2  The Derived Distrib'utions: Student 's t and Snedecor- 's F 
The d istributions derived in Sertion 5 .3 . 1 are, in a sense, the first step in a statist ical 

analysis that assumes normali tv. In part icul ar , i n  most practical cases the variance, 
(T2, is unknown . Thus, to get any idea of the variabi li ty of .-X- (as an estimate of f..t ) ,  it 
is necessary to estimate this variance. This topic was first addressed by W. S .  Gosse-t 
(who publisl1Pd und('[- the psC'udonym of Student) in the early 1 900s. The Ia.ndmark 
work of Student Ie-suIted i n  Student ' s t d istribution Of, more simply, the t distribution . 

If XI , . . . , Xn are a random sample from a n(tL) (T2 ) , we know that t l1P quantity 

(5 . 3 .3) 
is d istributed as a. n (O, 1 )  random variablp. If we knew the value of (T and we measured 
.Y , t.hen we could use (5 .3 .3 )  as a basis for inference about f..t , since f..t would then be 
tlw only unknown quantity. Most of the time, howe-ver, (T is unknown. St.udent did 
tlw obvious thing·-he looked at the- distribution of 

(5 .3 .4) 
a quantity that could be usC'd as a basis for inference abuut f..t Whf'll (T was unknown.  
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The distribution of ( 5 . 3 . 4 )  is easy to derive, provided that we firsL notice a few 

simplifying maneuvers. lViu ltiply ( 5 . 3 .4) by a/a and rearrange ,,;lightly to obtain 

( 5 . 3 . 3 )  
(X - Ik) I ( a I fo) 

JS21a2 

Tb- numerator of ( 5 . 3 . 5 )  is a n(O , I )  random variable, and the denominator is ;;;'� ul /(n - I) ,  independent of t h e  numerator. Thus) the distribution o f  ( 5 . 3 . 4 )  can 

be found by solvin,g the simplihed problem of finding the d istribution of U / JV Ip, 
where U is  n ( O, 1 ) ,  V is X� , and U and V are independent . This gives us Student 's t 
distribution. 

Definition 5 .3 .4  Let Xl ) ' "  , Xn be a random sample from a n(�l ,  a2) distri butio n .  
The quantity ( X  - Ik) / (SI fo) has Student 's t distribution with n - 1 degree.s of free
dom. Equivalently, a random variable T has Student 's t dist r ibution with p degrees 
of freedom, a.nd WP. write T rv tp i f  it has pdf 

( 5 . 3 .6) 
. r(�) 1 1 f:r (t) = r ( i )  -(p-71" )-1/�2 ( 1  + t2 /p) (p+ l )/2 ' 

-oc < t < DO .  

:'-1otice that i f  p = I ,  t hen ( 5 . 3 . 6 )  becomes the pdf of the Cauchy distribut ion , which 
occurs for samples of size 2. Once again the Cauchy distribut ion bas appeared in  an 
ordinary situation. 

Th derivation of t.ltp t pdf is straightforward.  If we start with [ and V defined 
above, it follows from ( 5 . 3 . 5) that the j oint pdf of U and V is 

f - ( ) - 1 - u"/2 1 (p/2) - 1  -v/2 ° ' V U v e v e -00 < 'U < 00, < II < 00 .  
v ,  , - (271") 1/2 r ( } )  2P/2 ' 

(Recall that U and V a.rp independent. )  Now make the transformation 

u 
t = --

.JVlP '  w = v . 

The Jacouian of the tramJormation is (Wlp) 1/2 ,  a.nd tl1P marginal pdf of T is given 
by 

OC- ( ( ) 1 /2 ) ( ) 1/2 
h (t )  = 1 fl l, v t � , 'W � dw 
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Recognize the integrand as the kernel of a gamma( (p + 1) /2, 2/ (1 + t2/ p)) pdf. We 
therefore have 

1 1 (p + 1 ) [ 2 ] (p+1)/2 
fret) = (211") 1/2 r (�) 2P/2pl/2 r -2- 1 + t2/p , 

which is equal to (5.3.6) . 
Student's t has no mgf because it does not have moments of all orders. In fact, if 

there are p degrees of freedom, then there are only p - 1 moments. Hence, a tl has 
no mean, a t2 has no variance, etc. It is easy to check (see Exercise 5.18) that if Tp is 
a random variable with a tp distribution, then 

ETp = 0, if p > 1 ,  
(5.3.7) 

Var Tp 
p 

P2' if p > 2. 

Another important derived distribution is  Snedecor's F, whose derivation is  quite 
similar to that of Student's t. Its motivation, however, is somewhat different. The F 
distribution, named in honor of Sir Ronald Fisher , arises naturally as the distribution 
of a ratio of variances. 

Example 5.3.5 (Variance ratio distribution) Let Xl , " " Xn be a random sam

ple from a n(ILX , 0'1) population, and let Y1 , . . •  , Y m be a random sample from an 
independent n(ILY , a� ) population. If we were interested in comparing the variability 
of the populations, one quantity of interest would be the ratio a�)af. Information 
about this ratio is contained in SJc / S}, the ratio of sample variances. The F distri-
bution allows us to compare these quantities by giving us a distribution of 

. 

(5.3.8) SJc/Sf _ SJc/aJc 
aJc/a} - S}/a} ' 

Examination of (5.3.8) shows us how the F distribution is derived. The ratios SJc /aJc 
and S} / a} are each scaled chi squared variates, and they are independent. I I 

Definition 5.3.6 Let Xl , " " Xn be a random sample from a n(ILX , aJc ) population, 
and let Y1 , . . .  , Y m be a random sample from an independent n(ILY , a}) population. 
The random variable F (SJc/aJc)/(S�/a�) has Snedecor's F distribution with 
n - 1 and m - 1 degrees of freedom. Equivalently, the random variable F has the F 
distribution with p and q degrees of freedom if it has pdf 

(5.3.9) _ r(�) (p)P/2 X(p/2)-1 
fp(x) - r (� )  r (�) q [1 + {p/q)x] <p+q)/2 ' 0 < x < 00. 

The F distribution can be derived in a more general setting than is done here. 
A variance ratio may have an F distribution even if the parent populations are not 
normal. Kelker ( 1970) has shown that as long as the parent populations have a cer
tain type of symmetry (spherical symmetry) , then the variance ratio will have an F 
distribution. 
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The derivation of the F pdf, starting from normal distributions, is similar to the 
derivation of Student's t. In fact, in one special case the F is a transform of the t. (See 
Theorem 5.3.8. )  Similar to what we did for the t, we can reduce the task of deriving 
the F pdf to that of finding the pdf of (U/p)/ (V/q) ,  where U and V are independent, 
U rv X� and V rv X�. (See Exercise 5.17. )  

. Example 5.3.7 (Continuation of Example 5.3.5) To see how the F distribution 
may be used for inference about the true ratio of population variances, consider the 
following. The quantity (81/01)/ (Sf /af) has an Fn-1,m-l distribution. (In general, 
we use the notation Fp,q to denote an F random variable with p and q degrees of 
freedom.) We can calculate 

= E ( X;-l ) E (m - 1 ) 
n - 1  X�-l 

(by definition) 

(independence) 

= 
(�) (m - 1 ) (chi squared calculations) n - 1 m - 3  
m 1 = 
m - 3 ' 

Note that this last expression is finite and positive only if m > 3. We have that 

and, removing expectations, we have for reasonably large m, 

as we might expect. I I  

The F distribution has many interesting properties and is  related to a number of 
other distributions. We summarize some of these facts in the next theorem, whose 
proof is left as an exercise. (See Exercises 5. 17  and 5. 18.) 

Theorem 5.3.8 
a. If X '" Fp,q J then 1/ X rv Fq ,p " that is, the reciprocal of an F random variable is 

again an F random variable. 
h. If X "" tq , then X2 rv F1,q ' 
c. If X rv Fp,q, then (p/q)X/(l  + (p/q)X) rv beta(p/2, q/2) .  
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5.4 Order Statistics 

Sample values such as the smallest, largest,  or middle observation from a random 
sample can provide additional summary information. For example, the highest flood 
waters or the lowest winter temperature recorded during the last 50 years might be 
useful data when planning for future emergencies. The median price of houses sold 
during the previous month might be useful for estimating the cost of living. These 
are all examples of order statistics. 

Definition 5.4.1 The order statistics of a random sample X I ,  . . .  , X n are the sample 
values placed in ascending order. They are denoted by X(I ) '  . . .  , X(n) ' 

The order statistics are random variables that satisfy X(I) :::; . . - :::; X(n) - In partic
ular, 

X(2) = second smallest Xi, 

Since they are random variables, we can discuss the probabilities that they take on 
various values. To calculate these probabilities we need the pdfs or pmfs of the order 
statistics. The formulas for the pdfs of the order statistics of a random sample from 
a continuous population will be the main topic later in this section, but first, we will 
mention some statistics that are easily defined in terms of the order statistics. 

The sample range, R = X(n) -X(I) , is the distance between the smallest and largest 
observations. It is a measure of the dispersion in the sample and should reflect the 
dispersion in the population. 

The sample median, which we will denote by M, is a number such that approxi
mately one-half of the observations are less than M and one-half are greater. In terms 
of the order statistics, M is defined by 

(5.4.1) M _ { X« n+l )/2) - (X(n/2) + X(n/2+ 1) ) /2 
if n is odd 
if n is even. 

The median is a measure of location that might be considered an alternative to the 
sample mean. One advantage of the sample median over the sample mean is that it 
is less affected by extreme observations. (See Section 10.2 for details.) 

Although related, the mean and median usually measure different things. For exam
ple, in recent baseball salary negotiations a major point of contention was the owners' 
contributions to the players' pension fund. The owners' view could be paraphrased as, 
"The average baseball player's annual salary is $433,659 so ,  with that kind of money, 
the current pension is adequate." But the players' view was, "Over half of the players 
make less than $250,000 annually and, because of the short professional life of most 
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players, need the security of a larger pension." (These figures are for the 1988 season, 
not the year of the dispute.) Both figures were correct, but the owners were discussing 
the mean while the players were discussing the median. About a dozen players with 
salaries over $2 million can raise the average salary to $433,659 while the majority of 
the players make less than $250,000, including all rookies who make $62,500. When 
discussing salaries, prices, or any variable with a few extreme values, the median gives 
a better indication of "typical" values than the mean. Other statistics that can be 
defined in terms of order statistics and are less sensitive to extreme values (such as 
the a-trimmed mean discussed in Exercise 10.20) are discussed in texts such as Tukey 
(1977) . 

For any number p between 0 and 1 ,  the (100p)th sample percentile is the observation 
such that approximately np of the observations are less than this observation and 
n(1 - p) of the observations are greater. The 50th sample percentile (p = . 5) is 
the sample median. For other values of p, we can more precisely define the sample 
percentiles in terms of the order statistics in the following way. 

Definition 5.4.2 The notation {b} , when appearing in a subscript, is defined to be 
the number b rounded to the nearest integer in the usual way. More precisely, if i is 
an integer and i - .5 � b < i + .5, then {b} = i. 

The ( lOOp)th sample percentile is X({np}) if 2� < p < .5 and X(nH-{n( l-p)}) if 
. 5  < p < 1 - 2� '  For example, i f  n 12  and the 65th percentile is wanted, we note 
that 12 x ( 1 - .65) = 4.2 and 12 + 1 - 4 9. Thus the 65th percentile is X(9) '  There 
is a restriction on the range of p because the size of the sample limits the range of 
sample percentiles. 

The cases p < .5 and p > .5 are defined separately so that the sample percentiles 
exhibit the following symmetry. If the ( lOOp)th sample percentile is the ith smallest 
observation, then the ( lOO(I -p» th sample percentile should be the ith largest obser
vation and the above definition achieves this. For example, if n 1 1, the 30th sample 
percentile is X(3) and the 70th sample percentile is X(9) '  

I n  addition to the median, two other sample percentiles are commonly identified. 
These are the lower quartile (25th percentile) and upper quartile (75th percentile) .  A 
measure of dispersion that is sometimes used is the interquartile range, the distance 
between the lower and upper Quartiles. 

Since the order statistics are functions of the sample, probabilities concerning order 
statistics can be computed in terms of probabilities for the sample. If X 1 >  • • •  , Xn 
are iid discrete random variables, then the calculation of probabilities for the order 
statistics is mainly a counting ta.<Jk. These formulas are derived in Theorem 5.4.3. 
1£ Xl , . . .  , Xn are a random sample from a continuous population, then convenient 
expressions for the pdf of one or more order statistics are derived in Theorems 5.4.4 
and 5.4.6. These can then be used to derive the distribution of functions of the order 
statistics. 

Theorem 5.4.3 
with pmf fx (xi) 

Let Xh . . .  , Xn be a random sample from 'a discrete distribution 
Pi ,  where Xl < X2 < . . . are the possible values of X in ascending 
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Po = 0 

H = PI 

P2 = PI + P2 

Pi = PI + P2 + . . . + Pi 

Let X(I) , '  . . , X(n) denote the order statistics from the sample. Then 
n 

(5.4.2) P(XU) $ Xi )  = L (�) pt'(1 - Pi )n�k 
k=j 

and 
n 

P (XU) = Xi )  = L (�) [pNl - Pdn-k - Pi� l (l - Pi�l)n�k] .  
k=j 

(5.4.3) 

Section 5.4 , 

Proof: Fix i, and let Y be a random variable that counts the number of Xl " ' " Xn 
that are less than or equal to Xi . For each of Xl " ' "  Xn, call the event {Xj :$ Xi } a 
"success" and {Xj > xt} a "failure." Then Y is the number of successes in n trials. 
The probability of a success is the same value, namely Pi = P(Xj $ Xi) ,  for each 
trial, since Xl > '  . . , Xn are identically distributed. The success or failure of the jth 
trial is independent of the outcome of any other trial, since Xj is independent of the 
other XiS. Thus, Y ",  binomial(n, Pi) '  

The event {XU) :$ xt} is  equivalent to the event {Y � j}; that is, at least j of the 
sample values are less than or equal to Xi. Equation (5.4.2) expresses this binomial 
probability, 

Equation (5.4.3) simply expresses the difference, 

P(X(j) = Xi )  P (XU) :$  Xi )  - P (X(j) $ Xi�t }  . 

The case i 1 is exceptional in that P(X(j) = Xl) = P(X(j) :$ xd. The definition 
of Po = 0 takes care of this exception in (5.4.3 ) .  0 

If X I , . . . , Xn are a random sample from a continuous population, then the situation 
is simplified slightly by the fact that the probability is 0 that any two XjS are equal, 
freeing us from worrying about ties. Thus P (X(l )  < X(2) < . . . < X(n) ) = 1 and the 
sample space for (X(1) , . . . , X(n) ) is {(Xl , ' "  , Xn ) : Xl < X2 < . . . < xn} .  In Theorems 
5.4.4 and 5.4.6 we derive the pdf for one and the joint pdf for two order statistics, 
again using binomial arguments. 
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Theorem 5.4.4 Let X(I) ,  • . •  , X(n) denote the order statistics of a random sample, 
Xl . . . . , Xn• from a continuous population with cdf Fx (x) and pdf fx(x) . Then the 
pdf of XU) is 

(5.4.4) 

Proof: We first find the cdf of XU) and then differentiate it to obtain the pdf. As 
in Theorem 5.4.3, let Y be a random variable that counts the number of X I ,  . . .  , Xn 
less than or equal to x. Then, defining a "success" as the event {Xj � x},  we see that 
Y '" binomial(n, Fx(x) ) . (Note that we can write Pi FX (Xi) in Theorem 5.4.3. 
Also, although X

l
, . . . , Xn are continuous random variables, the counting variable Y 

is discrete.) Thus, 
n 

FX(j) (x) = P(Y � j) = L ( � ) [Fx(x)]k [l Fx (x)r-k , 
k=j 

and the pdf of X(j) is 

d 
fX(j) (x) dx

FxU) (x) 

n 
L (�) (k [Fx (x)]k- l [1 - Fx (x)t-k fx(x) 
k==j 

- (n k) [Fx (x)]k [l Fx(x)r-k- 1 fx (x)) 
= (;) jfx(x) [Fx (x)]j-l [l - Fx(x)r-j 

n 
+ L (�) k[Fx (x)]k- l [l Fx (x)r-kfx (x) 

k=j+1 

(chain rule) 

n-I 
- L (� ) (n k) [Fx(x)]k [l Fx(x)]n-k-l fx (x) 

k=j 
(k = .n term) IS 0 

= (j 1)7�n 
j) l fx(x) [Fx (x)]j- l [l Fx(x)t-j 

(5.4.5) + � (k : 1 ) (k + 1 ) [Fx(x )1' [1 - Fx (x)]"-'-' ix (x) 

Noting that 

(5.4.6) 

n-l 
L (� ) (n - k) [Fx (x))k [1 Fx (x)r-k- 1 fx{x). 
k=j 

nl (�) (n - k), k! (n - k - 1) 1  

( Change ) 
dummy 
variable 
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we see that the last two sums in (5.4.5) cancel. Thus, the pdf !x(j) (x) is given by the 
expression in (5.4.4) . 0 

Example 5.4.5 (Uniform order statistic pdf) Let X I ,  • . .  , Xn be iid 
uniform(O, I ) ,  so fx (x) = 1 for x E (0, 1 )  and Fx(x ) = x for x E (0, 1 ) .  Using 
(5.4.4) , we see that the pdf of the jth order statistic is 

nl j-l n-j 
fX(j) (x) = (j _ I) ! (n _ j) !

x (1 - x) for x E (0, 1 )  

r (n  + 1 )  xi-I ( I _ x)(
n-j+ll-l 

renr(n - j + 1 )  . 

Thus, the jth order statistic from a uniform(O, I) sample has a beta(j, n - j + 1 )  
distribution. From this we can deduce that 

j j(n - j + 1) 
EXUJ = n + 1 and Var XU) = (n + 1 )2 (n + 2) ' 

The joint distribution of two or more order statistics can be used to derive the 
distribution of some of the statistics mentioned at the beginning of this section. The 
joint pdf of any two order statistics is given in the following theorem, whose proof is 
left to Exercise 5.26. 

Theorem 5.4.6 Let XCI) " " , XCn) denote the order statistics of a random sample, 
XI , . . . , Xn •  /rom a continuous population with cdf Fx (x) and pdf fx (x) .  Then the 
joint pdf of XCi) and XCi) ,  1 5 i < j 5 TI, is 

(5.4.7) fX(I) .x(j) (u, v )  = (i - 1) ! (j �l_ i ) l (n _ j)! fx (u)fx (v) [Fx (u))i-l 

x [Fx (v) Fx (U)]j- I-i [l - Fx(v)r-j 

for -00 < u < v < 00. 

The joint pdf of three or more order statistics could be derived using similar but 
even more involved arguments. Perhaps the other most useful pdf is fX(

l) 
. . . . .  X(

n
) 

(Xl ! . • •  , xn), the joint pdf of all the order statistics, which is given by 

-00 < Xl < . . . < Xn < 00 
otherwise. 

The n l  naturally comes into this formula because, for any set of values Xl ,  . . .  , Xn, 

there are nl equally likely assignments for these values to Xr, . . .  , Xn that all yield the 
same values for the order statistics. This joint pdf and the techniques from Chapter 
4 can be used to derive marginal and conditional distributions and distributions of 
other functions of the order statistics. (See Exercises 5.27 and 5.28.) 

We now use the joint pdf (5.4.7) to derive the distribution of some of the functions 
mentioned at the beginning of this section. 
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Example 5.4.7 (Distribution of the midrange and range) Let XI. . . .  , Xn be 
iid uniform(O, a) and let X(l) , " " X(n) denote the order statistics. The range was 
earlier defined as R = X(n) X(l ) . The midrange, a measure of location like the 
sample median or the sample mean, is defined by V (X(l )  +X(n» ) /2. We will derive 
the joint pdf of R and V from the joint pdf of X(l) and X(n) '  From (5.4.7) we have 
that 

n (n - l)(xn xt}n-2 
an 0 < Xl < Xn < a. 

Solving for X(1) and X(n) ,  we obtain X(l)  V - R/2 and X(n) = V + R/2. The Ja
cobian for this transformation is -1. The transformation from (X(l) , X(n» )  to (R, V) 
maps {(Xl , Xn) : 0 < Xl < Xn < a} onto the set { (r, v) : 0 < r < a, r/2 < v < a - r/2}. 
To see this, note that obviously 0 < r < a and for a fixed value of r, v ranges from r /2 
(corresponding to Xl = O, xn = r) to a - r/2 (corresponding to Xl = a - r, Xn = a) . 
Thus, the joint pdf of (R, V) is 

f ( ) 
n(n 1)rn-2 

R V r, v = , an o < r < a, r /2 < v < a - r /2. 

The marginal pdf of R is thus 

(5.4.8) 

la-r/2 n(n - 1)rn-2 --'-_-!.._- dv 
r/2 an 

n(n - l )rn-2(a r) 0 <  r < a. 

If a = 1 ,  we see that r has a beta(n 1, 2) distribution. Or, for arbitrary a, it is easy 
to deduce from (5.4.8) that R/a has a beta distribution. Note that the constant a is 
a scale parameter. 

The set where fRyer, v) > 0 is shown in Figure 5.4.1 ,  where we see that the range 
of integration of r depends on whether v > a/2 or v $ a/2. Thus, the marginal pdf 
of V is given by 

and 

12V n(n - 1)rn-2 n(2v)n-1 
fv (v) = dr = , o an an 0 <  v $ a/2, 

12(a-v) n(n - l)rn-2 n[2(a v)]n-l 
fv (v) = dr 

o an an a/2 < V $ a. 

This pdf is symmetric about a/2 and has a peak at a/2. I I 
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a 

a/2 

o -==-----------"-- r 

Figure 5.4.1 .  Region on which fR,v (r, v) > 0 for Example 5.4. 7 

5.5 Convergence Concepts 

I 
Section 5.5 

This section treats the somewhat fanciful idea of allowing the sample size to approach 
infinity and investigates the behavior of certain sample quantities as this happens. 
Although the notion of an infinite sample size is a theoretical artifact, it can often 
provide us with some useful approximations for the finite-sample case, since it usually 
happens that expressions become simplified in the limit. 

We are mainly concerned with three types of convergence, and we treat them in 
varying amounts of detail. (A full treatment of convergence is given in Billingsley 
1995 or Resnick 1999, for example. ) In particular, we want to look at the behavior of 
Xn, the mean of n observations, as n -+ 00 . 

5.5. 1 Convergence in Probability 

This type of convergence is one of the weaker types and, hence, is usually quite easy 
to verify. 

Definition 5.5.1 A sequence of random variables, Xl , X2, . • •  , converges in proba
bility to a random variable X if, for every f > 0, 

lim P( IXn - X I ;::: f) = 0 or, equivalently, lim P(IXn - XI < f) = L 
n-CIO n-+oo 

The Xl , X2 , . • •  in Definition 5.5.1 (and the other definitions in this section) are 
typically not independent and identically distributed random variables, as in a random 
sample. The distribution of Xn changes as the subscript changes, and the convergence 
concepts discussed in this section describe different ways in which the distribution of 
Xn converges to some limiting distribution as the subscript becomes large. 

Frequently, statisticians are concerned with situations in which the limiting random 
variable is a constant and the random variables in the sequence are sample means (of 
some sort) . The most famous result of this type is the following. 

Theorem 5.5.2 (Weak Law of Large Numbers) Let Xl , X2 , • . •  be iid random 
variables with EXi = f.J. and Var Xi = (12 < 00. Define Xn = ( lin) L�=l Xi ' Then, 
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Jor every E > 0, 

lim F( IXn - J.tl < c) = 1; n-oo 
that is, Xn converges in probability to J.t. 
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Proof: The proof is quite simple, being a straightforward application of Chebychev's 
Inequality. We have, for every E > 0, 

P( IXn _ J.tl � € ) = P« Xn J.t)2 > c2 ) < E(Xn - J.t)2 = Var X",= �. - - 102 102 n€2 
Hence, F( IXn J.tl < c) = 1 - p( IXn - J.t l  � €) � 1 - (J2j(nc2 ) � 1 ,  as n � 00. 0 

The Weak Law of Large Numbers (WLLN) quite elegantly states that, under gen
eral conditions, the sample mean approaches the popUlation mean as n � 00. In fact, 
there are more general versions of the WLLN, where we need assume only that the 
mean is finite. However, the version stated in Theorem 5.5.2 is applicable in most 
practical situations. 

The property summarized by the WLLN, that a sequence of the "same" sample 
quantity approaches a constant as n � 00, is known as consistency. We will examine 
this property more closely in Chapter 7. 

Example 5.5.3 (Consistency of S2) Suppose we have a sequence X1 , X2 , . . . of 
iid random variables with EXi = J.t and Var Xi = (J2 < 00. If we define 

S2 = _1 _ �(X' Xn)2 , n n - 1 L.., • i=l 
can we prove a WLLN for S;? Using Chebychev's Inequality, we have 

P( IS� (J2 1  � f) � E(S; � (J2)2 = var
2
S; 

10 10 
and thus, a sufficient condition that S; converges in probability to (J2 is that Var S� � 
o as n � 00. I I 

A natural extension of Definition 5.5.1 relates to functions of random variables. 
That is, if the sequence Xl , X 2 , . . . converges in probability to a random variable X or 
to a constant a, can we make any conclusions about the sequence of random variables 
h(XI ) , h (X2 ) " " for some reasonably behaved function h? This next theorem shows 
that we can. (See Exercise 5.39 for a proof.) 

Theorem 5.5.4 Suppose that XI , X2 , . . .  converges in probability to a random vari
able X and that h is a continuous function. Then h(Xl ) ' h(X2 ) ,  . . .  converges in prob
ability to heX) . 

Example 5.5.5 (Consistency of S) If S; is a consistent estimator of 0'2, then 
by Theorem 5.5.4, the sample standard deviation Sn = JS'f, h(S;) is a consistent 
estimator of (J. Note that Sn is, in fact, a biased estimator of (J (see Exercise 5.1 1 ) ,  
but the bias disappears asymptotically. " 
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5.5. it Almost Sure Convergence 
A type of convergence that is stronger than convergence in probability is almost sure 
convergence (sometimes confusingly known as convergence with probability 1). This 
type of convergence is similar to pointwise convergence of a sequence of functions, 
except that the convergence need not occur on a set with probability 0 (hence the 
"almost" sure) . 

Definition 5.5.6 A sequence of random variables, Xl > X2, • • •  , converges almost 
surely to a random variable X if, for every E > 0, 

P( lim IXn X I < E) = 1 . n-+oo 

Notice the similarity in the statements of Definitions 5.5.1 and 5.5.6. Although they 
look similar, they are very different statements, with Definition 5.5.6 much stronger. 
To understand almost sure convergence, we must recall the basic definition of a ran
dom variable as given in Definition 1 .4. 1 .  A random variable is a real-valued function 
defined on a sample space S. If a sample space S has elements denoted by 5, then 
Xn(s) and Xes) are all functions defined on S. Definition 5.5.6 states that Xn con
verges to X almost surely if the functions Xn(s) converge to Xes) for all s E S 
except perhaps for s E N, where N c S and peN) = O. Example 5.5.7 illustrates al
most sure convergence. Example 5.5.8 illustrates the difference between convergence 
in probability and almost sure convergence. 

Example 5.5.7 (Almost sure convergence) Let the sample space S be the 
closed interval [0, 1] with the uniform probability distribution. Define random vari
ables Xn(s) = S + sn and Xes) s . For every s E [0, 1 ) ,  sn -; 0 as n -; 00 and 
Xn(S) -; s = Xes) . However, Xn( 1 )  = 2 for every n so Xn(J ) does not converge to 
1 = XCI) .  But since the convergence occurs on the set [0, 1 )  and P([O, 1 ) )  = 1, Xn 
converges to X almost surely. I I 
Example 5.5.8 (Convergence in probability, not almost surely) In this ex
ample we describe a sequence that converges in probability, but not almost surely. 
Again, let the sample space S be the closed interval [0,1] with the uniform probability 
distribution. Define the sequence Xl , X2 , '  . .  as follows: 

X1 (S) = 8 + 1[0, 1] (S), 

X4(s) = s + I[o,�l (s) , 
X2 (S) = S + 1[o,� l (s), 

X5(S) = S + 1a , il (s), 

X3(S) = S + 1a ,l] (S), 

X6 (S) 8 + 1lj ,IJ (S) ,  

etc. Let Xes) = s. It is straightforward to see that Xn converges to X in probability. 
As n -> 00, P( IXn - XI � E) is equal to the probability of an interval of 8 values 
whose length is going to O. However, Xn does not converge to X almost surely. 
Indeed, there is no value of s E S for which Xn(s) -; s = Xes). For every s, the 
value Xn (s) alternates between the values s and s + 1 infinitely often. For example, 
if s = � , Xl (S) = 1 � , X2 (s) = 1 � , X3 (s) � , X4(S) � , X5(S) = 1 � , X6(s) = � , etc. 
No pointwise convergence occurs for this sequence. I I  
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As might be guessed, convergence almost surely, being the stronger criterion, implies 
convergence in probability. The converse is, of course, false, as Example 5.5.8 shows. 
Hpwever, if a sequence converges in probability, it is possible to find a subsequence 
that converges almost surely. (Resnick 1999, Section 6.3, has a thorough treatment of 
the connections between the two types of convergence. )  

Again, statisticians are often concerned with convergence to a constant. We now 
state, without proof, the stronger analog of the WLLN, the Strong Law of Large 
Numbers (SLLN). See Miscellanea 5 .8.4 for an outline of a proof. 

Theorem 5.5.9 (Strong Law of Large Numbers) Let XI . X2, • •  , be iid random 
variables with EXi = f.1 and Var Xi = 0-2 < 00, and define Xn = (lin) E�=l Xi. 
Then, for every f. > 0, 

that is, Xn converges almost surely to fJ.. 

l ' , 

For both the Weak and Strong Laws of Large Numbers we had the assumption 
of a finite variance. Although such an assumption is true (and desirable) in most 
applications, it is, in fact, a stronger assumption than is needed. Both the weak and 
strong laws hold without this assumption. The only moment condition needed is that 
EIXi! < 00 (see Resnick 1999, Chapter 7, or Billingsley 1995, Section 22) .  

5.5.3 Convergence in Distribution 
We have already encountered the idea of convergence in distribution in Chapter 2. 
Remember the properties of moment generating functions (mgfs) and how their con
vergence implies convergence in distribution (Theorem 2.3. 12) . 
Definition 5.5.10 A sequence of random variables, Xl ,  X2, • • .  , converges in distri
bution to a random variable X if 

lim FXn (x) = Fx(x) n-+oo 
at all points x where Fx(x) is continuous. 

Example 5.5.11 (Maximum of uniforms) If Xl , X2 , • • • are iid uniform(O, 1 )  and 
X(nl = maxl$i$n Xi , let us examine if (and to where) X(nl converges in distribution. 

As n � 00, we expect X(l'll to get close to 1 and, as XCn) must necessarily be less 
than 1 ,  we have for any e > 0, 

P(!X{nl - 11 � e) = P(XCn) � 1 + e) + P(XCn) ::; 1 e) 
= 0 + P(X(n) ::; 1 c:) . 

Next using the fact that we have an iid sample, we can write 

P(XCnl ::; I - e) = P(Xi ::; l - e, i = 1 ,  . . .  n) = ( l - e)n , 
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which goes to O. So we have proved that X(n) converges to 1 in probability. However, 
if we take e = tin, we then have 

P(X(n) � 1 tin) = ( 1  - tln)n 
-+ e-t ,  

which, upon rearranging, yields 

P(n(l - X(n» ) � t) -+ 1 - e-t; 

that is, the random variable n(1 -X(n) ) converges in distribution to an exponential( l)  
random variable. I I 

Note that although we talk of a sequence of random variables converging in dis
tribution, it is really the cdfs that converge, not the random variables. In this very 
fundamental way convergence in distribution is quite different from convergence in 
probability or convergence almost surely. However, it is implied by the other types of 
convergence. 

Theorem 5.5.12 If the sequence of random variables, Xl ! X2, • •  'J converges in prob
ability to a random variable X J the sequence also converges in distribution to X .  

See Exercise 5.40 for a proof. Note also that, from Section 5.5.2, convergence in 
distribution is also implied by almost sure convergence. 

In a special case, Theorem 5.5.12 has a converse that turns out to be useful. See 
Example 10. 1 . 13 for an illustration and Exercise 5.41 for a proof. 

Theorem 5.5.13 The sequence of random variables, Xl , X2, • • •  , converges in prob
ability to a constant 11- if and only if the sequence also converges in distribution to 11- .  
That is, the statement 

is equivalent to 

P ( lXn - 11-1 >  e) -+ 0 for every e > 0 

P eX < x) -+ { 0 i! x < 11-n - 1 if x > 11-. 

The sample mean is one statistic whose large-sample behavior is quite important. 
In particular, we want to investigate its limiting distribution. This is summarized in 
one of the most startling theorems in statistics , the Central Limit Theorem (eLT) . 

Theorem 5.5.14 (Central Limit Theorem) Let XI , X2, • • •  be a sequence of iid 
random variables whose mgfs exist in a neighborhood of 0 (that is, MXi (t) exists for 
It I < h, for some positive h). Let EXi == 11- and Var Xi (j2 > O .  (Both 11- and (j2 are 
finite since the mgf exists.) Define Xn = ( lIn) L�=l Xi ' Let Gn(x) denote the cdf of 
fo(Xn - 11-)1(j. Then, for any x, -00 < x < 00, 

lim Gn(x) --e-Y /2 dYi 
J
x 1 2 

n--oo _ 00 ../'i1f 
that is, fo(Xn - 11-)1(j has a limiting standard normal distribution. 
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Before we prove this theorem (the proof is somewhat anticlimactic) we first look at 
its implications. Starting from virtually no assumptions (other than independence and 
finite variances) ,  we end up with normality! The point here is that normality comes 
from sums of "small" (finite variance) , independent disturbances. The assumption of 
finite variances is essentially necessary for convergence to normality. Although it can 
be relaxed somewhat, it cannot be eliminated. (Recall Example 5.2 .10, dealing with 
the Cauchy distribution, where there is no convergence to normality.) 

While we revel in the wonder of the CLT, it is also useful to reflect on its limi
tations. Although it gives us a useful general approximation, we have no automatic 
way of knowing how good the approximation is in general. In fact, the goodness of 
the approximation is a function of the original distribution, and so must be checked 
case by case. Furthermore, with the current availability of cheap, plentiful computing 
power, the importance of approximations like the Central Limit Theorem is somewhat 
lessened. However, despite its limitations, it is still a marvelous result. 

Proof of Theorem 5.5.14: We will show that, for It I < h, the mgf of fo(Xn -p,)/u 
converges to et2 /2 , the mg{ of a n( 0, 1) random variable. 

Define Yi = (Xi p,)/u, and let My(t) denote the common mgf of the Yis, which 
exists for I t I < uh and is given by Theorem 2.3.15. Since 

(5.5.1 )  

we have, from- the properties of'rngfs (see Theorems 2.3.15 and 4.6.7), 

(5.5.2) 

(Theorem 2 .3.15) 

(Theorem 4.6.7) 

We now expand My(t/ fo) in a Taylor series (power series) around O. (See Defini
tion 5 .5.20.) We have 

(5.5.3) M (_t ) = � M(k) (O) (t/fo)k 
y r:;; L,; Y k! ' y n  

k=O 

where M�k) (O) = (dk/dtk) My(t ) lt=o ' Since the mgfs exist for It I < h, the power 
series expansion is valid if t < fouh. 

Using the facts that M�O) 1, MV) = 0, and M�2) = 1 (by construction, the mean 
and variance of Y are 0 and 1 ) ,  we have 

(5.5.4) 
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where Ry is the remainder term in the Taylor expansion, 

R (_t ) = � M(k) (O) (t/ .Jri)k y Vii L... y k! ' k=3 

An application of Taylor's Theorem (Theorem 5.5.21) shows that, for fixed t =I 0, we 
have 

lim 
Ry(t/ .Jri) = O. n-+oo (t/ .Jri)2 

Since t is fixed, we also have 

(5.5.5) . Ry(t/.Jri) . 
( 

t 
) 11m ( /  1:::) 2  

= 11m nRy I::: = 0, n .... oo 1 y n  n .... oo y n  

and (5.5.5) is also true at t 0 since Ry(O/.jii) = O. Thus, for any fixed t, we can 
write 

(5.5.6) J�� (MY (In)) n = J�� [l +  (t/V;)2 
+ Ry (In)r 

= J�� [1 + � (; + nRy ( In) ) r 

= et2/2 

by an application of Lemma 2.3.14, where we set an = (t2/2) + nRy(t/.Jri). (Note 
that (5.5.5) implies that an � t2/2 as n � 00.) Since et2/2 is the mgf of the n(O, 1 )  
distribution, the theorem is  proved. 0 

The Central Limit Theorem is valid in much more generality than is stated in 
Theorem 5.5.14 (see Miscellanea 5.8 .1) .  In particular, all of the assumptions about 
mgfs are not needed-the use of characteristic functions (see Miscellanea 2.6.2) can 
replace them. We state the next theorem without proof. It is a version of the Central 
Limit Theorem that is general enough for almost all statistical purposes. Notice that 
the only assumption on the parent distribution is that it has finite variance. 

Theorem 5.5.15 (Stronger (orm of the Central Limit Theorem) Let 
XI ! X2, • • .  be a sequence of iid random variables with EX, J1. and 0 < Var Xi = 

0'2 < 00. Define Xn = ( l/n) E�l Xi . Let Gn(x) denote the cdf of .jii(Xn - J1.)/0'. 
Then, for any x, -00 < x < 00, 

that is, .jii(Xn - J1.)/0' has a limiting standard normal distribution. 
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The proof is almost identical to that of Theorem 5.5.14, except that characteristic 
lUnctions are used instead of mgfs. Since the characteristic function of a distribution 
always exists, it is not necessary to mention them in the assumptions of the theorem. 
The proof is more delicate, however, since functions of complex variables must be 
dealt with. Details can be found in Billingsley ( 1995, Section 27). 

The Central Limit Theorem provides us with an all-purpose approximation (but 
remember the warning about the goodness of the approximation) . In practice, it can 
always be used for a first, rough calculation. 

Example 5.5.16 (Normal approximation to the negative binomial) Suppose 
Xl , " "  Xn are a random sample from a negative binomial(r,p) distribution. Recall 
that 

EX 
r(l - p) 

p 
Var X = r(l - p) , 

p2 
and the Central Limit Theorem tells us that 

vn(X - r(l - p)jp) .jT[i _ p)jp2 

is approximately n (O, I ) . The approximate probability calculations are much easier 
than the exact calculations. For example, if r = 10, p = !, and n = 30, an exact 
calculation would be 

P(X � 1 1 )  = P (t,Xi � 330) 

� (300 +
x 
X I ) (�) 300 (�) x 

= .8916, 

(L: X is negative) 
binomial(nr,p) 

which is a very difficult calculation. (Note that this calculation is difficult even with 
the aid of a computer-the magnitudes of the factorials cause great difficulty. Try it 
if you don't believe it! )  The CLT gives us the approximation 

P(X < 1 1) = P (J30(X - 10) < J30( 1l - 10) ) - J20 - J20 
::::: P(Z � 1 .2247) = .8888. 

See Exercise 5.37 for some further refinement. I I 
An approximation tool that can be used in conjunction with the Central Limit 

Theorem is known as Slutsky's Theorem. 

Theorem 5.5.17 (Slutsky's Theorem) If Xn -- X in distribution and Yn -- a, a 
constant, in probability, then 
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a. YnXn --+ aX in distribution. 
h. Xn + Yn --+ X + a in distribution. 

The proof of Slutsky's Theorem is omitted, since it relies on a characterization 
of convergence in distribution that we have not discussed. A typical application is 
illustrated by the following example. 

Example 5.5.18 (Normal approximation with estimated variance) Suppose 
that 

vIn(Rn - p,) -+ nCO, 1 ) ,  
(]' 

but the value of (]' is unknown. We have seen in Example 5.5.3 that, if lim",-+oo Var S; 
= 0, then S� --+ (12 in probability. By Exercise 5.32, (]' / Sn -+ 1 in probability. Hence, 
Slutsky's Theorem tells us 

vIn(Rn - p,) = � vIn(Rn - p,) 
-+ nCO, 1 ) .  

Sn Sn (]' 

5.5.4 The Delta Method 

1 1  

The previous section gives conditions under which a standardized random variable 
has a limit normal distribution. There are many times, however, when we are not 
specifically interested in the distribution of the random variable itself, but rather 
some function of the random variable. 

Example 5.5.19 (Estimating the odds) Suppose we observe Xl , X2, . .  " Xn in
dependent Bernoulli(p) random variables. The typical parameter of interest is p, the 
success probability, but another popular parameter is G' the odds. For example, if 
the data represent the outcomes of a medical treatment with p 2/3, then a person 
has odds 2 : 1 of getting better. Moreover, if there were another treatment with suc
cess probability r, biostatisticians often estimate the odds ratio G / l.":.r ' giving the 
relative odds of one treatment over another. 

As we would typically estimate the success probability p with the observed success 
probability p = Ei Xdn, we might consider using � as an estimate of G' But 
what are the properties of this estimator? How might we estimate the variance of �? Moreover, how can we approximate its sampling distribution? fntuition abandons us, and exact calculation is relatively hopeless, so we have to 
rely on an approximation. The Delta Method will allow us to obtain reasonable, 
approximate answers to our questions. 1 1  

One method of proceeding is based on using a Taylor series approximation, which 
allows us to approximate the mean and variance of a function of a random variable. 
We will also see that these rather straightforward approximations are good enough 
to obtain a CLT. We begin with a short review of Taylor series. 
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Definition 5 .5.20 If a function g(x) has derivatives of order r, that is, g(r) (x) = 
!irg(x) exists, then for any constant a, the Taylor polynomial of order r about a is 

r (iJ Tr(x) = L 9 'l
(a) (x - a)i . t .  i=O 

Taylor's major theorem, which we will not prove here, is that the remainder from 
the approximation, g(x) - Tr (x) ,  always tends to 0 faster than the highest-order 
explicit term. 

Theorem 5.5.21 (Taylor) If g(r) (a) = £rg(x) lx=a exists, then 
1. g(x) - Tr (x) lmx .... a ( ) x a r o. 

In general, we will not be concerned with the explicit form of the remainder. Since 
we are interested in approximations, we are j ust going to ignore the remainder. There 
are, however, many explicit forms, one useful one being 

(X gCr+l )  (t) g(x) - Tr (x) = Ja r! (x 

For the statistical application of Taylor's Theorem, we are most concerned with 
the first-order Taylor series, that is, an approximation using just the first derivative 
(taking r = 1 in the above formulas). Furthermore, we will also find use for a multi
variate Taylor series. Since the above detail is univariate, some of the foHowing will 
have to be accepted on faith. 

Let Tl , • • •  , Tk be random variables with means (h , . . .  , Ok, and define T = (T1 ,  • . .  , 
Tk ) and (J = (Ol , ' . .  , Ok ) '  Suppose there is a differentiable function geT) (an estimator 
of some parameter) for which we want an approximate estimate of variance. Define 

g' «(J) = �g(t) 1 • ati tl=lil , . . ·.tk=lik · 
The first-order Taylor series expansion of 9 about (J is 

k 
get) g«(J) + Lg�((J) (ti Oi ) + Remainder. 

i=l 
For our statistical approximation we forget about the remainder and write 

• 
k 

(5 .5.7) get) ::::: g«(J) + L g�«(J) (ti - Oi) . 
i=l 

Now, take expectations on both sides of (5.5.7) to get 
k 

(5.5.8) Eeg(T) ::::: g«(J) + Lgi«(J)E9(1i Oi ) 
i=l 

g( (J). 
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We can now approximate the variance of geT) by 

Yare geT) RI Ell ([g(T) - g(9)]2) 

RI Ell ( (2::=1 gH9) (Ti - Bi) Y) 
k 

Section 5.5 

(using (5.5.8) )  

(using (5.5.7) )  

(5.5.9) = 2:[gH9)J2Varo 'n + 2 2: g�(9)gj (9)COV8 (Ti' Tj) ,  
;=1 i>j 

where the last equality comes from expanding the square and using the definition 
of variance and covariance (similar to Exercise 4.44) .  Approximation (5.5.9) is very 
useful because it gives us a variance formula for a general function, using only simple 
variances and covariances. Here are two examples. 

Example 5.5.22 (Continuation of Example 5.5. 19) Recall that we are inter
ested in the properties of � as an estimate of 0' where p is a binomial success 

probability. In our above notation, take g(p) = � so gl(p) = (l!p)2 and 

Var ( 1 
p 

p) RI [gl(p)j2 Var(p) 

[ 1 ] 2 p(l _ p) p = (l - p)2 n = n(1 - p)3 ' 

giving us an approximation for the variance of our estimator. 

I I  

Example 5.5.23 (Approximate mean and variance) Suppose X i s  a random 
variable with EJ.lX = /-L f:. O. If we want to estimate a function g(/-L) , a first-order 
approximation would give us 

g(X) = g(/-L) + g'(/-L)(X - /-L) . 

If we use g(X) as an estimator of g(/-L), we can say that approximately 

EJ.lg(X) RI g(/-L) , 
VarJ.l g(X) RI [g'(/-L)]2VarJ.l X. 

For a specific example, take g(/-L) = l//-L. We estimate l//-L with l/X, and we can say 

I I 

Using these Taylor series approximations for the mean and variance, we get the 
following useful generalization of the Central Limit Theorem, known as the Delta 
Method. 
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Theorem 5.5.24 (Delta Method) Let Yn be a sequence of random variables that 
satisfies Vn(Yn - 8) -+ nCO, (72) in distribution. For a given junction 9 and a specific 
value of 8, suppose that g' (8) exists and is not O. Then 
(5.5.10) 

Proof: The Taylor expansion of g(Yn )  around Yn = 0 is 

(5.5. 1 1 )  g(Yn) g(O) + g'(8) (Yn - 8) + Remainder, 

where the remainder -+ 0 as Yn ....... O. Since Yn ....... 8 in probability it follows that the 
remainder ....... 0 in probability. By applying Slutsky's Theorem (Theorem 5.5.17) to 

v'n[g(Yn) - g(O)] = g'(O)v'n(Yn 8), 

the result now follows. See Exercise 5.43 for details. 0 

Example 5.5.25 (Continuation of Example 5.5.23) Suppose now that we have 
the mean of a random sample X. For J.L #- 0, we have 

in distribution. 
If we do not know the variance of Xl , to use the above approximation requires an 

estimate, say S2. Moreover, there is the question of what to do with the 1/  J.L term, as 
we also do not know J.L. We can estimate everything, which gives us the approximate 
variance 

Furthermore, as both X and 82 are consistent estimators, we can again apply Slutsky's 
Theorem to conclude that for J.L #- 0, 

in distribution. 

Vn (t - i) 
tt)2 8 

-+ nCO, 1 )  

Note how we wrote this latter quantity, dividing through by the estimated standard 
deviation and making the limiting distribution a standard normal. This is the only way 
that makes sense if we need to estimate any parameters in the limiting distribution. 
We also note that there is an alternative approach when there are parameters to 
estimate, and here we can actually avoid using an estimate for J.L in the variance (see 
the score test in Section 10.3.2) .  I I 

There are two extensions of the basic Delta Method that we need to deal with to 
complete our treatment. The first concerns the possibility that g/(J.L) = O. This could 
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ha.ppen, for example, if we were interested in estimating the variance of a binomial 
variance (see Exercise 5.44) . 

If g' (0) = 0, we take one more term in the Taylor expansion to get 

g(Yn) = g(O) + g'(O)(Yn - 0) + g
l!�O) (Yn - 0)2 + Remainder. 

If we do some rearranging (setting g' = 0) ,  we have 

(5.5. 12) g(Yn) - g(O) = g"(O) (Yn 8) 2 + Remainder. 2 

Now recall that the square of a nCO, 1) is a xI (Example 2.1.9) , which implies that 

in distribution. Therefore, an argument similar to that used in Theorem 5.5.24 will 
establish the following theorem. 

Theorem 5.5.26 (Second-order Delta Method) Let Yn be a sequence of random 
variables that satisfies v'n(Yn - 8) � nCO, a2) in distribution. For a given function 9 
and a specific value of 8, suppose that g' (8) ;:: a and g"(O) exists and is not O. Then 

(5.5.13) n [g(Yn) - g (O)J � a2 gl!�0) xi in distribution. 

Approximation techniques are very useful when more than one parameter makes 
up the function to be estimated and more than one random variable is used in the 
estimator. One common example is in growth studies, where a ratio of weight/height 
is a variable of interest. (Recall that in Chapter 3 we saw that a ratio of two normal 
random variables has a Cauchy distribution. The ratio problem, while being important 
to experimenters, is nasty in theory.) 

This brings us to the second extension of the Delta Method, to the multivariate 
case. As we already have Taylor's Theorem for the multivariate case, this extension 
contains no surprises. 

Example 5.5.27 (Moments of a ratio estimator) Suppose X and Y are random 
variables with nonzero means J-tx and J-ty , respectively. The parametric function to 
be estimated is g(J-tx , Il,y) = J-tx / J-ty . It is straightforward to calculate 

and 

8 1 
-8 g(J-tx , J-ty ) J-tx J-ty 
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The first-order Taylor approxima.tions (5.5.8) and (5.5.9) give 

and 

E (�) � 
/LX 

Y /LY 

Va.r(�) � � Var X + /L: Var Y 2 /L: Cov(X, Y) 
Y /Ly /Ly /Ly 

= (/LX ) 2 (var x + Var Y _ 2 COV(X, y) ) . 
/Ly /L� /L} /Lx /Ly 
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Thus, we ha.ve an approximation for the mean and variance of the ratio estimator, and 
the approximations use only the means, variances, and covariance of X and Y. Exact 
calculations would be quite hopeless, with closed-form expressions being unattainable. 

I I  
We next present a CLT to cover an estimator such as the ratio estimator. �ote that 

we must deal with multiple random variables although the ultimate CLT is a univari
ate one. Suppose the vector-valued random variable X (Xl , " "  Xp) has mean 
p. = (/Ll >  . . .  , /Lp) and covariances Cov(Xi, Xj) = aij , and we observe an independent 
random sample Xl , " " Xn and calculate the means Xi L�=I Xik , i = 1, . . . , po 
For a function g(x) = g(Xl l . . .  , xp) we can use the development after (5.5.7) to write 

p 
g(xt,  . . .  , xp) = g(/LI , . . . , /Lp )  + L g� (X) (Xk - /Lk) , 

k=l 
and we then have the following theorem. 

Theorem 5.5.28 (Multivariate Delta Method) Let Xl , . . .  , Xn be a random 
sample with E(Xij ) /Li and COV(Xib Xjk) = aij . For a given function 9 with 
continuous first partial derivatives and a specific value of J.L = (/Ll , . . . , /Lp) for which 
,2 = EEa . 

8g(p) • � > 0 t) 8iJ.i 8iJ.j , 

The proof necessitates dealing with the convergence of multivariate random vari
ables, and we will not deal with such multivariate intricacies here, but will take 
Theorem 5.5.28 on faith. The interested reader can find more details in Lehmann and 
Casella ( 1998, Section 1.8) . 

5.6 Generating a Random Sample 
Thus far we have been concerned with the many methods of describing the behav
ior of random variables-transformations, distributions, moment calculations, limit 
theorems. In practice, these random variables are used to describe and model real 
phenomena, and observations on these random variables are the data that we collect. 
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Thus, typically, we observe random variables Xl, . .  ' ,  Xn from a distribution f(xIO) 
and are most concerned with using properties of f(xle) to describe the behavior of 
the random variables. In this section we are, in effect, going to turn that strategy 
around. Here we are concerned with generating a random sample Xl , . . .  , Xn from a 
given distribution f(xIO). 

Example 5.6.1 (Exponential lifetime) Suppose that a particular electrical com
ponent is to be modeled with an exponential(>') lifetime. The manufacturer is inter
ested in determining the probability that, out of c components, at least t of them will 
last h hours. Taking this one step at a time, we have 

(5.6.1 ) 
PI = P(component lasts at least h hours) = P(X ? hi>') , 

and assuming that the components are independent, we can model the outcomes of 
the c components as Bernoulli trials, so 

P2 = peat least t components last h hours) 

(5.6.2) = t ( % ) p� (l - Pl )c-k . 
k=t 

Although calculation of (5.6.2) is straightforward, it can be computationally bur
densome, especially if both t and c are large numbers. Moreover, the exponential 
model has the advantage that Pi can be expressed in closed form, that is, 

(5.6.3) 

However, if each component were modeled with, say, a gamma distribution, then PI 
may not be expressible in closed form. This would make calculation of P2 even more 
involved. I I  

A simulation approach to the calculation of expressions such as (5.6.2) is to generate 
random variables with the desired distribution and then use the Weak Law of Large 
Numbers (Theorem 5.5.2) to validate the simulation. That is, if y;, i = 1 ,  . . . , n, are 
iid, then a consequence of that theorem (provided the assumptions hold) is 

(5.6.4) 
1 n 
- L hey;) -----> Eh(Y) n i=i 

in probability, as n -; 00. (Expression (5.6.4) also holds almost everywhere, a conse
quence of Theorem 5.5.9, the Strong Law of Large Numbers. ) 

Example 5.6.2 (Continuation of Example 5.6.1)  The probability P2 can be 
calculated using the following steps. For j = 1 ,  . . . , n: 
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a. Generate Xl . . . .  , Xc iid "" exponential()") .  

b. Set Y; = 1 if  at least t XiS are � hi otherwise, set Y; O. 
Then, because Yj "" Bernoulli(P2) and EY; = P2, 

1 n 
L Yj -+ P2 as n --+ 00. I I n j=l 

Examples 5.6. 1 and 5.6.2 highlight the major concerns of this section. First, we must 
examine how to generate the random variables that we need, and second, we then use 
a. version of the Law of Large Numbers to validate the simulation approximation. 

Since we have to start somewhere, we start with the assumption that we can gen
erate iid uniform random variables U1 , • • •  , Urn' (This problem of generating uniform 
random numbers has been worked on, with great success, by computer scientists. ) 
There exist many algorithms for generating pseudo-random numbers that will pass 
almost all tests for uniformity. Moreover, most good statistical packages have a rea
sonable uniform random number generator. (See Devroye 1985 or Ripley 1987 for 
more on generating pseudo-random numbers. )  

Since we are starting from the uniform random variables, our problem here is really 
not the problem of generating the desired random variables, but rather of transforming 
the uniform random variables to the desired distribution. In essence, there are two 
general methodologies for doing this, which we shall (noninformatively) call direct 
and indirect methods. 

5.6. 1 Direct Methods 

A direct method of generating a random variable is one for which there exists a closed
form function g(u) such that the transformed variable Y = g(U) has the desired 
distribution when U "" uniform(O, 1 ) .  As might be recalled, this was already accom
plished for continuous random variables in Theorem 2 . 1 . 10, the Probability Integral 
Transform, where any distribution was transformed to the uniform. Hence the inverse 
transformation solves our problem. 

Example 5.6.3 (Probability Integral Transform) If Y is a continuous random 
variable with cdf Fy, then Theorem 2.1 . 10 implies that the random variable Fy l (U) , 
where U ""  uniform(O, 1 ) ,  has distribution Fy . If Y '" exponential().,) , then 

Fyl (U) = -)., 10g( 1  - U) 
is an exponential()") random variable (see Exercise 5.49) .  

Thus, if  we generate U1 , . • • , Un as iid uniform random variables, Yi -)., log(l 
Ui) ,  i 1 ,  . . .  , n ,  are i id exponential()") random variables. As an example, for n 
10,000, we generate UI , U2 , '  . .  , UIO,OOO and calculate 

1 
; L Ui . 5019 and 

1 L -)2 -- (Ui - U = .0842 . 
n - l  

From (5.6.4) , which follows from the WLLN (Theorem 5.5.2) , we know that (J -+ 
EU 1 /2 and, from Example 5.5.3, 82 -+ Var U = 1/12 = .0833, so our estimates 
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Figure 5.6.1 .  Histogram of 10, 000 observations from an exponential pdf with A = 2, together 
with the pdf 

are quite close to the true parameters. The transformed variables Yi = -2 Iog(1 - Ui) 
have an exponential(2) distribution, and we find that 

1 1 - '" Yi = 2.0004 and - "'(Yi y)2 = 4.0908, 
n L..... n - 1  L..... 

in close agreement with EY = 2 and Var Y = 4. Figure 5.6. 1 illustrates the agreement 
between the sample histogram and the population pdf. I I  

The relationship between the exponential and other distributions allows the quick 
generation of many random variables. For example, if Uj are iid uniform(O, 1) random 
variables, then }j = -), log( Uj ) are iid exponential (),) random variables and 

(5.6.5) 

v 
Y = -2 L log(Uj )  '" x�v, 

j=1 

a 

Y -,8 L log(Uj )  I"V gamma( a, ,8), 
j=l 

Y 
,,� log(U ) �J =l J "" b t ( b) a+b e a a, . 
Lj=l log(Uj)  

Many other variations are possible (see Exercises 5 .47-5.49) , but all are being driven 
by the exponential-uniform transformation. 

Unfortunately, there are limits to this transformation. For example, we cannot use 
it to generate X2 random variables with odd degrees of freedom. Hence, we cannot 
get a xi , which would in turn get us a normal(O, 1 )  _. an extremely useful variable 
to be able to generate. We will return to this problem in the next subsection. 

Recall that the basis of Example 5.6.3 and hence the transformations in (5.6.5) was 
the Probability Integral Transform, which, in general, can be written as 

(5.6.6) 
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Application of this formula to the exponential distribution was particularly handy, 
as the integral equation had a simple solution (see also Exercise 5.56) . However, in 
many cases no closed-form solution for (5.6.6) will exist. Thus, each random variable 
generation will necessitate a solution of an integral equation, which, in practice, could 
be prohibitively long and complicated. This would be the case, for example, if (5.6.6) 
were used to generate a X� . 

When no closed-form solution for (5.6.6) exists, other options should be explored. 
These include other types of generation methods and indirect methods. As an example 
of the former, consider the following. 

Example 5.6.4 (Box-Muller algorithm) Generate U1 and U2 , two independent 
uniform(O, 1 )  random variables, and set 

Then 

R = vi -2 log U1 and 0 21rU2. 

x = R cos O and Y = R sin O 

are independent normal(O, 1) random variables. Thus, although we had no quick trans
formation for generating a single n(O, 1) random variable, there is such a method for 
generating two variables. (See Exercise 5 .50 . )  I I  

Unfortunately, solutions such as those in  Example 5.6.4 are not plentifuL Moreover, 
they take advantage of the specific structure of certain distributions and are, thus, 
less applicable as general strategies. It turns out that, for the most part, generation of 
other continuous distributions (than those already considered) is best accomplished 
through indirect methods. Before exploring these, we end this subsection with a look 
at where (5.6.6) is quite useful: the case of discrete random variables. 

If Y is a discrete random variable taking on values Yl < Y2 < . . . < Yk ,  then 
analogous to (5.6.6) we can write 

(5.6.7) P[FY(Yi )  < U ::::: FY (YHdl FY (YHd - FY(Yi ) 
= P(Y = YHd. 

Implementation of (5.6.7) to  generate discrete random variables is actually quite 
straightforward and can be summarized as follows. To generate Yi rv Fy (y), 

a. Generate U '" uniform(O, 1) .  

b. If FY(Yi) < U ::::: FY(YHd,  set Y YH1 . 
We define Yo - 00  and Fy (yo) O. 

Example 5.6.5 (Binomial random variable generation) To generate a Y ,..., 
binomial(4, i) , for example, generate U rv uniform(O, 1 )  and set { 0 if 0 < U ::::: .020, 

1 if .020 < U ::::: .152 
(5.6.8) Y = !2 if . 152 < U ::::: .481 

if .481 < U ::::: .847 
if .847 < U ::::: 1 .  
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The algorithm (5.6.8) also works if the range of the discrete random variable is 
infinite, say Poisson or negative binomial. Although, theoretically, this could require Q 
large number of evaluations, in practice this does not happen because there are simple 
and clever ways of speeding up the algorithm. For example, instead of checking each 
Yi in the order 1 , 2, . . .  , it can be much faster to start checking YiS near the mean. 
(See Ripley 1987, Section 3.3, and Exercise 5.55.) 

We will see many uses of simulation methodology. To start off, consider the following 
exploration of the Poisson distribution, which is a version of the parametric bootstrap 
that we will see in Section 10.1 .4. 

Example 5.6.6 (Distribution of the Poisson variance) If Xl, . . .  , Xn are iid 
Poisson(>.) ,  then by either Theorem 5.2.7 or 5.2. 1 1  the distribution of L:Xi is 
Poisson(n>.) .  Thus, it is quite easy to describe the distribution of the sample mean X. 
However, describing the distribution of the sample variance, S2 = n:l L:(Xi - X )2 , 
is not a simple task. 

The distribution of S2 is quite simple to simulate, however. Figure 5.6.2 shows 
such a histogram. Moreover, the simulated samples can also be used to calculate 
probabilities about S2 . If Sf is the value calculated from the ith simulated sample, 
then 

1 M 

M L I(S; � a) -t p>.(S2 � a) 
i=l 

as M -t 00. 
To illustrate the use of such methodology consider the following sample of bay 

anchovy larvae counts taken from the Hudson River in late August 1984: 

(5.6.9) 19, 32, 29, 13, 8, 12, 16, 20, 14, 17, 22, 18, 23. 

If it is assumed that the larvae are distributed randomly and uniformly in the river, 
then the number that are collected in a fixed size net should follow a Poisson dis
tribution. Such an argument follows from a spatial version of the Poisson postulates 
(see the Miscellanea of Chapter 2) . To see if such an assumption is tenable, we can 
check whether the mean and variance of the observed data are consistent with the 
Poisson assumptions. 

For the data in (5.6.9) we calculate x 18.69 and 82 44.90. Under the Poisson 
assumptions we expect these values to be the same. Of course, due to sampling vari
ability, they will not be exactly the same, and we can use a simulation to get some 
idea of what to expect. In Figure 5.6.2 we simulated 5 ,000 samples of size n 13  
from a Poisson distribution with >' 18.69, and constructed the relative frequency 
histogram of S2 . Note that the observed value of S2 44.90 falls into the tail of 
the distribution. In fact, since 27 of the values of S2 were greater than 44.90, we can 
estimate 

5000 
p(S2 > 44.901>' = 18.69) � 

50
�

0 
� I(Sl > 44.90) = 

5
��0 .0054, 
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Figure 5.6.2. Histogmm of the sample variances, 82, of 5,000 samples of size 13 from a 
Poisson distribution with >' 18.69. The mean and standard deviation of the 5,000 values 
are 18.86 and 7.68. 

which leads us to question the Poisson assumption; see Exercise 5.54. (Such findings 
spawned the extremely bad bilingual pun "Something is fishy in the Hudson-the 
Poisson has failed." ) \ I 

5. 6.2 Indirect Methods 

When no easily found direct transformation is available to generate the desired ran
dom variable, an extremely powerful indirect method, the Accept/Reject Algorithm, 
can often provide a solution. The idea behind the Accept/Reject Algorithm is, per
haps, best explained through a simple example. 

Example 5.6.7 (Beta random variable generation-I) Suppose the goal is to 
generate Y IV beta(a, b). If both a and b are integers, then the direct transformation 
method (5.6.5) can be used. However, if a and b are not integers, then that method 
will not work. For definiteness, set a = 2.7 and b = 6.3. In Figure 5.6.3 we have put 
the beta density fy(y) inside a box with sides 1 and c � maxll fy(y). Now consider 
the following method of calculating P(Y :::; y). If (U, V) are independent uniform(O, 1 )  
random variables, then the probability of  the shaded area is 

P (V :::; y, U :::; �fY(V)) 
(5.6.10) 

1111!Y(V)!C 
du dv 

o 0 1 111 - fy (v)dv c 0 

1 
= -P(Y :::; y). c 

So we can calculate the beta probabilities from the uniform probabilities, which sug
gests that we can generate the beta random variable from the uniform random vari
ables. 
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Figure 5.6. 3 .  The beta distrib ution with a = 2.7 and b = 6.3 with c = maxy h (Y) = 2 . 669 . 

The unijo1'm random variable V gives the x-coordinate, and we 'use U to test 2f we aTe under 

th e density. 

From (5 .6 . 10) , if we set y = 1 ,  then we have � = P(U < � Jy (V) ) ,  so 

(5 .6 . 1 1 )  

P(V < Y U < I f' ' ( V) )  P(Y < ) = 
- . ,  - C 1 - Y P(U :::; � .h (V) )  

= P (V :::; y lU :::; �Jy (V)) ,  

which suggests the following algorithm. 
To generate Y '" beta( a ,  b) : 

a. Generate (U, V) independent uniform(O, l ) .  

b .  If U < %.!y (V) ,  set Y' = V ;  otherwise, rrturn to step (a) .  

This algorithm generates a beta(a., b) random variable as long as c � maxy Jy (y) and,  
in fact, can be generalized to any bounded density with bounded support (Exercises 
5 . 59 and 5 .60) . I I  

It should be clear that the optimal choice of c is c = maxy Jy (y) . To see why this 
is so, note that the algorithm is open-ended in the sense that we do not know how 
lllany (U, V) pairs wil l  be needed i n  order to get one Y variable .  However, i f  we define 
t he random variable 

(5 .6 . 12 )  .V = number of (U, V) pairs required for one Y, 
then , recalling that � = P(U :::; Uy (V ) ) ,  we see that N is a geometric ( l/r) random 
variable. Thus to generate one Y we expect to need E(N) = c pairs (U, V) ,  and in 
t his sense minimizing c will optimize the algorithm. 

Examining Figure 5.6 .3  we see that the algori thm is wasteful in  the area where 
U > �fy (V) .  This is because we are using a uniform random variable V to get a beta 
random variable Y. To improvr, we might start with something closer to the beta. 
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The testing step, step (b) of the algorithm , can be thought of as testing whet.her 
the random variable V "looks l ike" it could come from the density fy · Suppose that 
V '" Iv , a.nd we compute 

Jy (y) I'vI = sup -I (. ) < X>. 
Y V Y 

A generalization of step (b) is to compare U ,....., uniform(O , 1 ) to if Jy (V) / fv (V) . The 
larger this ratio is, t he more V "lookt; like" a random variable from thE' density fy , 
and the more likely it is that U < A1d'r' (V)/  fv (V) . This i s  the basis o f  the general 
Accept/Reject Algorithm. 

5. 6. 3 The Accept/Reject Algorithm 
Theorem 5 . 6 . 8  Let Y '" Jy (y) and V rv fv (V) , where Jy and Iv have common 
support with 

}vI = sup Jy (y) /fv (y) < 00 .  
Y 

To generate a random variable Y rv fy : 
a. Generate U rv uniform(O, l ) , V rv fv , independent. 
b. If U < if fy(V)/  fv ( V) , set Y = V ;  otherwise, return to step (aJ . 

Proof: The generated random variable Y has cdf 

P(Y � y) = P(V � y l stop) 
= P (v � y l U  < :Ify (V)/fvW)) 

P(V � y,  U < -b fy W)/lv (V) )  - per.;" < i,dy ( V) / fv (V) ) 

J�oo Jo-tr fy (v)j fv (v) dulv (v )dv 

J�oo Jo-trfy (V) /fv (tI ) dufv (v) dv 

= [Yoo fy (v)dv , 

which is the desired cdf. 

Note also that 

lvI = sup fy (y ) / fv (y) y 

= [p (U < Ji�I fY (V)/ fv (V)) r1 
1 

P(Stop) , 

o 
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so the number of trials needed to generate one Y is a geometric( 1 / M) random variable, 
and M is the expected number of trials. 

Example 5.6.9 (Beta random variable generation-II) To generate Y '" 
beta(2.7, 6.3) consider the algorithm: 

a. Generate U "" uniform(O, 1 ) ,  V ""  beta(2, 6) .  

b. If U < iI ��f�� , set Y = V; otherwise, return to step (a). 

This Accept/Rej()ct Algorithm will generate the required Y as long as 
SUPy fy (Y)/fv (Y) � M < 00. For the given densities we have M = 1 .67, so the 
requirement is satisfied. (See Exercise 5.63. ) 

For this algorithm EN = 1 .67, while for the algorithm of Example 5.6.7, which 
uses the uniform V, we have EN = 2.67. Although this seems to indicate that the 
latter algorithm is faster, rememher that generating a heta(2, 6) random variahle 
will need eight uniform random variables. Thus, comparison of algorithms is not 
always straightforward and will include consideration of hoth computer speed and 
programming ease. II 

The importance of the requirement that M < 00 should be stressed. This can be 
interpreted as requiring the density of V (often called the candidate density) to have 
heavier tails than the density of Y (often called the target density) . This requirement 
tends to ensure that we will obtain a good representation of the values of Y, even 
those values that are in the tails. For example, if V I'V Cauchy and Y I'V n(O, 1 ) ,  then 
we expect the range of V samples to be wider than that of Y samples, and we should 
get good performance from an Accept/Reject Algorithm based on these densities. 
However, it is much more difficult to change n(O, l )  random variables into Cauchy 
random variables because the extremes will be underrepresented. 

There are cases, however, where the target density has heavy tails, and it is difficult 
to get candidate densities that will result in finite values of M. In such cases the 
Accept/Reject Algorithm will no longer apply, and one is led to another class of 
methods known as Markov Chain Monte Carlo (MCMC) methods. Special cases of 
such methods are known as the Gibbs Sampler and the Metropolis Algorithm. We 
state the latter. 

Metropolis Algorithm Let Y I'V fy (y) and V "" fv(v) , where fy and fv have 
common support. To generate Y I'V fy : 

O. Generate V I'V fv. Set Zo = V. 
For i = 1 , 2 ,  . . .  : 

1 .  Generate Ui I'V uniform(O, 1 )  , Vi I'V fv , and calculate 

2. Set 

. { fY(Vi )  fV(Zi- l ) } 
Pi = mm 

fv(Vi) '  fy(Zi- l ) ' 
1 . 

if Ui � Pi 
if Ui > Pi . 
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Then, as i -> 00 , Zi converges to Y in distribution. 

Although the algorithm does not require a finite M, it does not produce a random 
variable with exactly the density fy, but rather a convergent sequence. In practice, 
after the algorithm is run for a while (i gets big), the Zs that are produced behave 
very much like variables from fy. (See Chib and Greenberg 1995 for an elementary 
introduction to the Metropolis Algorithm.) 

Although MCMC methods can be traced back to at least Metropolis et al. (1953), 
they entered real prominence with the work of  Gelfand and Smith ( 1990), building 
on that of Geman and Geman ( 1984) .  See Miscellanea 5.8.5 for more details. 

5.7 Exercises _______________________ _ 

5.1 Color blindness appears in 1% of the people in a certain population. How large must 
a sample be if the probability of its containing a color-blind person is to be .95 or 
more? (Assume that the popUlation is large enough to be considered infinite, so that 
sampling can be considered to be with replacement.) 

5.2 Suppose Xl , X2, . . .  are jointly continuous and independent, each distributed with 
marginal pdf I(x) , where each X. represents annual rainfall at a given location. 
(a) Find the distribution of the number of years until the first year's rainfall, Xl , is 

exceeded for the first time. 
(b) Show that the mean number of years until Xl is exceeded for the first time is 

infinite. 
5.3 Let Xl , . . .  , Xn be iid random variables with continuous cdf Fx , and suppose EX. = ,.. . 

Define the random variables YI ,  . . .  , Yn by 

Find the distribution of E�=l Y;. 

if Xi >  J.L 
if X. 0:::; J.L. 

5.4 A generalization of iid random variables is exchangeable random variables, an idea 
due to deFinetti (1972) .  A discussion of exchangeability can also be found in Feller 
( 1971) .  The random variables Xl , . . .  , Xn are exchangeable if any permutation of any 
subset of them of size k (k 0:::; n) has the same distribution. In this exercise we will 
see an example of random variables that are exchangeable but not lid. Let Xi l P  "'" iid 
Bernoulli(P), i = 1, . . . , n, and let P ""  uniform(O, 1 ) .  

(a) Show that the marginal distribution of  any Ie of  the Xs is  the same as 

(X X )  t t( )k-td _ t !(k - t)! P 1 = Xl, . . . , k = X k = 10 p I p P - (k + I)! ' 

where t = E7=1 Xi.  Hence. the Xs are exchangeable. 
(b) Show that, marginally. 

so the distribution of the Xs is exchangeable but not iid. 
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(deFinetti proved an elegant characterization theorem for an infinite sequence of ex. 
changeable random variables. He proved that any such sequence of exchangeable ran. 
dom variables is a mixture of iid random variables.) 

5.5 Let Xl , . . .  , X" be iid with pdf fx(x), and let X denote the sample mean. Show that 

even if the mgf of X does not exist. 

5.6 If X has pdf fx (x) and Y, independent of X, has pdf jy(y), establish formulas, simi lar 
to (5.2.3), for the random variable Z in each of the following situations. 

(a) Z = X - Y 

(b) Z XY 

(c) Z X/Y 

5.1 In Example 5.2. 10, a partial fraction decomposition is needed to derive the distribution 
of the sum of two independent Cauchy random variables. This exercise provides the 
details that are skipped in that example. 

(a) Find the constants A, B, C, and D that satisfy 

1 1 
1 + (W/U)2 1 + « z  - w)/r)2 

Aw B Cw 
1 + (w/a)2 

+ 
1 + (w/aF 

- 1 + « z  � w)/r)2 

where A, B, C, and D may depend on z but not on w. 

(b) Using the facts that 

D 
1 + « z - w)/r)2 ' 

J 1 : t2 dt = � log(1  + t2)  + constant and 
J 

�
2 dt = arctan(t) + constant, 

l + t  

evaluate (5.2.4) and hence verify (5.2.5) .  

(Note that the integration in part (b) is quite delicate. Since the mean of a Cauchy 
does not exist, the integrals J::::' 1+(:/'0")2 dw and J�oo 1+« .°:)/1')2 dw do not exist. 

However, the integral of the difference does exist, which is all that is needed.) 
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&.8 Let Xl , . .  " X" be a ra.ndom sa.mple, where X a.nd 82 are calculated in the usual way. 
(a) Show that 

82 = 1 
2n(n 

n n 

1 ) L 2 )Xi i=l j=l 
Assume now that the XiS have a finite fourth moment, and denote (it = EX" OJ = 

E(X, - (1 )1 , j  = 2 , 3 , 4. 

(b) Show that Var 82 = � (04 �=�O�) .  
(c) Find Cov(X, 82) i n  terms oUI , • • .  , 04 • Under what conditions is Cov(X, 82) = a? 

5.9 Establish the Lagrange Identity, that for any numbers aI , a2 , . .  · , an and bl , b2 , . . .  , bn ,  

Use the identity t o  show that the correlation coefficient is equal t o  1 i f  a.nd only i f  all 
of the sample points lie on a straight line (Wright 1992) . (Hint: Establish the identity 
for n = 2; then induct.) 

5.10 Let Xl ,  . . . , Xn be a ra.ndom sample from a n(J1., (72) population. 
(a) Find expressions for 01 , • . •  , 04 ,  as defined in Exercise 5.8, in terms of J1. and (72 . 
(b) Use the results of Exercise 5.8, together with the results of part (a) , to calculate 

Var 82• 
(c) Calculate Var 82 a completely different (and easier) way: Use the fact that 

(n 1)82/(72 '" X�-l '  
5 . 1 1  Suppose X a.nd 82  are calculated from a random sample Xl , . . .  , X ... drawn from a 

population with finite variance (J"2 . We know that E82 (J"2. Prove that E8 $ (J", and 
if (72 > 0, then E8 < (7. 

5.12 Let Xl , " " Xn be a random sample from a nCO, 1 )  population. Define 

Calculate EY1 and EY2 ,  a.nd establish an inequality between them. 
5.13 Let Xl ,  . . . , X". be iid n(J1., (72). Find a function of 82, the sample variance, say g(82) ,  

that satisfies Eg(82) (J". (Hint: Try g(82) c..(S2, where c is a constant.)  
5.14 (a) Prove that the statement of Lemma 5.3.3 follows from the special case of J1.i = a 

and (7[ = 1 .  That is, show that if Xj (7) Zj + J1.j and Zj "'"' n(O, l ) , j  = 1, . . .  , n, 
all independent; aij , brj are constants, and 

then 
n n 

a =}  Laij Xj and LbrjXj are independent. 
j=l j=l 

( b) Verify the expression for Cov (2:::;=1 aijXj , 2:::;=1 brj Xj ) in Lemma 5.3.3. 
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5.15 Establish the following recursion relations for means and variances. Let X.,. and 8! be 
the mean and variance, respectively, of Xl , . . .  , Xn• Then suppose another observation, 
Xn+l ,  becomes available. Show that 

(a) X _ xn+l + nX',,-n+1 - n + 1 
2 _ 2 ( " ) - 2 (b) n8n+l - (n - 1 )8 .. + n + 1 (Xn+1 - Xn) . 

5.16 Let Xi, i = 1 , 2, 3, be independent with n(i , i2) distributions. For each of the following 
situations, use the XiS to construct a statistic with the indicated distribution. 

(a) chi squared with 3 degrees of freedom 
(b) t distribution with 2 degrees of freedom 
(c) F distribution with 1 and 2 degrees of freedom 

5.17 Let X be a random variable with an Fp.q distribution. 

(a) Derive the pdf of X. 
(b) Derive the mean and variance of  X .  
(c) Show that I/X has an Fq.p distribution. 
(d) Show that (p/q)X/[1 + (p/q)X] has a beta distribution with parameters p/2 and 

q/2. 

5.18 Let X be a random variable with a Student's t distribution with p degrees of freedom. 

( a) Derive the mean and variance of X .  
(b) Show that X 2  has an F distribution with 1 and p degrees of freedom. 
(c) Let f(xlp) denote the pdf of X. Show that 

at each value of x, -00 < x < 00. This correctly suggests that as p -> 00, X con
verges in distribution to a nCO, 1 )  random variable. (Hint: Use Stirling's Formula.) 

(d) Use the results of parts (a) and (b) to argue that, as p -> 00, X2 converges in 
distribution to a xi random variable. 

(e) What might you conjecture about the distributional limit, as p -> 00, of qF",p? 

5.19 (a) Prove that the X2 distribution is stochastically increasing in its degrees of freedom; 
that is, if p > q, then for any a, P(X� > a) ;::: P(X; > a) , with strict inequality for 
some a. 

(b) Use the results of part (a) to prove that for any II, kFk,u is stochastically increasing 
in k. 

(c) Show that for any k, II, and a:, kFa,k,,, > (k - I)Fa,k- 1 ,,, ,  (The notation Fa,k-l ,,, 
denotes a level-a: cutoff point; see Section 8.3 .1 .  Also see Miscellanea 8.5.1 and 
Exercise 1 1 . 15 , )  

5.20 (a) We can see that the t distribution is a mixture of normals using the following 
argument: 

�P (Tu S t) = P ( � s t) = roo P (z s ty'i/JiI) P (x� = x) dx, 
v xUv 10 
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where T" is a t ra.ndom variable with v degrees of freedom. Using the Fundamental 
TheOrem of Calculus a.nd interpreting p(x� = vx) as a. pdf, we obtain 

f ( ) - 1"" _1_ -t2x/2y ..Ji 1 
( ) (1.1/2 )-1 -x/2 d Ty t - 0 �e v'V r(vj2)2v/2 x e x, 

a. scale mixture of normals. Verify this formula by direct integration. 
(b) A similar formula holds for the F distribution; that is, it can be written as a 

mixture of chi squareds. If H, ... is an F random variable with 1 and v degrees of 
freedom, then we can write 

P(H.y ::.; vt) = 1"" p(xi ::.; ty) f ... (y) dy, 
where f ... (y) is a X� pdf. Use the Fundamental Theorem of Calculus to obtain an 
integral expression for the pdf of Fl,,, ,  and show that the integral equals the pdf. 

(c) Verify that the generalization of part (b) , 

is valid for all integers m > L 
6.21 What is the probability that the larger of two continuous iid random variables will 

exceed the population median? Generalize this result to samples of size n. 
6.22 Let X and Y be lid nCO, 1) random variables, and define Z = min(X, Y) .  Prove that 

Z2 '" XI . 
5.23 Let U;, i 1 , 2 , . . .  , be independent uniform(O, 1 )  random variables, and let X have 

distribution 

c P(X = x) = x! ' x 1 , 2, 3, . . .  , 

where c = 1jCe I ) .  Find the distribution of 

Z = min{Ul , . . .  , UX} .  

(Hint: Note that the distribution o f  ZIX = x is that o f  the first-order statistic from 
a sample of size x.) 

5.24 Let Xl , . . .  , Xn be a random sample from a population with pdf 

fx(x) = { �jO if 0 < x < () 
otherwise. 

Let X(1) < . . . < X(n) be the order statistics. Show that X(l )j  X(n) a.nd X(n) are 
independent random variables. 

5.25 As a generalization of the previous exercise, let Xl , . . .  , Xn be iid with pdf 

{ a a-I f
x (x) = :x if 0 < X < () 

otherwise. 

Let X{l) < . . . < X(n) be the order statistics. Show that X(lJ lX(2J > X(2J1X(3) , " "  
X(n-lJl X(n), and X(n) are mutually independent random variables. Find the distri
bution of each of them. 
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5.26 Complete the proof of Theorem 5.4.6. 

(a) Let U be a random variable that counts the number of X I ,  . . .  , X" less than or 
equal to u, and let V be a random variable that counts the number of Xl • . . .  , X" 
greater than u and less than or equal to v. Show that (U, V, n - U - V) is a 
multinomial random vector with n trials and cell probabilities (Fx (u), Fx (v) _ 

Fx (u), 1 - Fx (v) ) . 
(b) Show that the joint cdf of XCi) and X(j) can be expressed as 

j - l n-Ie 
L L P(U = k, V = m) + P(U � j )  
k=i m=j-k 

j- l n-k 

'" '" n! k = � � k!m!(n _ k _ m)! [Fx (u)] [Fx (v) 
k=i m=j-k 

x [1 Fx (v)t-k-m + P(U � j) .  

Fx (u)]m 

(c) Find the joint pdf by computing the mixed partial as indicated in (4.1 .4). 
(The mixed partial of P(U � j) is 0 since this term depends only on u, not v. For 
the other terms, there is much cancellation using relationships like (5.4.6) . )  

5.27 Let Xl , . . . , Xn be iid with pdf Ix (x) and cdf Fx (x), and let X(1) < . . .  < X(n) be 
the order statistics. 

(a) Find an expression for the conditional pdf of XCi) given XU) in terms of Ix and 
Fx . 

(b) Find the pdf of V IR = r, where V and R are defined in Example 5.4.7. 

5.28 Let Xl , . . .  , Xn be iid with pdf Ix (x) and cdf Fx (x) ,  and let X(il )  < . . . < XCid and 
XUd < . . .  < XUm) be any two disjoint groups of order statistics. In terms of the pdf 
Ix (x) and the cdf F x (x) , find expressions for 

(a) The marginal cdf and pdf of XCil l , ' "  , X(il ) '  

(b) The conditional cdf and pdf of X(il l . " " X(il l given X(h ) " ' "  XUm) '  

5.29 A manufacturer of booklets packages them i n  boxes of 100. It i s  known that, on the 
average, the booklets weigh 1 ounce, with a standard deviation of .05 ounce. The 
manufacturer is interested in calculating 

P(lOO booklets weigh more than 10004 ounces) ,  

a number that would help detect whether too many booklets are being put in  a box. 
Explain how you would calculate the (approximate?) value of this probability. Mention 
any relevant theorems or assumptions needed. 

5.30 If Xl and X2 are the means of two independent samples of size n from a population 
with variance 0-2 , find a value for n so that POX! - X2 1 < 0-/5) � .99. Justify your 
calculations. 

5.31 Suppose X is the mean of 100 observations from a population with mean J1- and variance 
(J'2 9. Find limits between which X J1- will lie with probability at least .90. Use 
both Chebychev's Inequality and the Central Limit Theorem, and comment on each. 
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6.32 Let Xl , X2, . . .  be a sequence of random variables that converges in probability to a 
constant a. Assume that P(Xi > 0) 1 for all i. 
(a) Verify that the sequences defined by Y; Pi and Y/ = a/Xi converge in prob

ability. 
(b) Use the results in part (a) to prove the fact used in Example 5.5.18, that (T / Sn 

converges in probability to L 
6.33 Let X" be a sequence of random variables that converges in distribution to a random 

variable X. Let Y" be a sequence of random variables with the property that for any 
finite number c, 

lim P(Y,., > c) 1 .  
11.-00 

Show that for any finite number c, 

lim P(Xn + Yn > c) = 1 .  
,.,-00 

(This is the type of result used in the discussion of the power properties of the tests 
described in Section 10.3.2.) 

5.34 Let Xl , . . .  , Xn be a random sample from a population with mean !1. and variance (12. 
Show that 

JL) = 0 and Var ...:....Vn_n(.:......X_n----'.!1.....:..) = 1 .  
(T 

Thus, the normalization of Xn in the Central Limit Theorem gives random variables 
that have the same mean and variance as the limiting nCO, 1 )  distribution. 

5.35 Stirling's Formula (derived in Exercise 1 .28), which gives an approximation for facto
rials, can be easily derived using the CLT. 
(a) Argue that, if Xi '" exponential ( I ) ,  i = 1 , 2 ,  . . .  , all independent, then for every x, (Xn - 1 ) 

P I/Vn :::; x ...... P (Z :::; x) , 

where Z is a standard normal random variable. 
(b) Show that differentiating both sides of the approximation in part (a) suggests 

Vn 
(xvn + n)",- le-C:z:vn+n) � _1_e-:Z:2/2 

r(n) y'2; 
and that x = 0 gives Stirling's Formula. 

5.36 Given that N = n, the conditional distribution of Y is X�n ' The unconditional distri
bution of N is Poisson«(;I). 
(a) Calculate EY and Var Y (unconditional moments) .  
(b)  Show that, as (;I ...... 00, (Y - EY)/VVar Y ...... nCO, 1) in distribution. 

5.37 In Example 5.5.16, a normal approximation to the negative binomial distribution was 
given. Just as with the normal approximation to the binomial distribution given in 
Example 3.3.2, the approximation might be improved with a "continuity correction." 
For XiS defined as in Example 5.5.16, let Vn = 2:::1 Xi. For n 10,p = .7, and r = 2, 
calculate P{Vn v) for v = 0, 1 ,  . . .  , 10 using each of the following three methods. 
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(a) exact calculations 
(b) normal approximation as given in Example 5.5.16 
(c) normal approximation with continuity correction 

Section 5.' 

5.38 The following extensions of the inequalities established in Exercise 3.45 are useful 
in establishing a SLLN (see Miscellanea 5.8.4). Let Xl, X2, . . .  , Xn be iid with mg! 
Mx (t) , -h < t < h, and let Sn = l:�l Xi and X" = S,,/n. 
(a) Show that P(Sn > a) :0:; e-at [Mx (t) I" ,  for 0 < t < h, and P(Sn :0:; a) $ 

e-at [Mx(t)t, for -h < t < O. 
(b) Use the facts that Mx(O) = 1 and Mx (O) = E(X) to show that, if E(X) < 0, 

then there is a 0 < e < 1 with P(S" > a) :0:; en. Establish a similar bound for 
P(S" :0:; a) . 

(c) Define Yi Xi J.L - e: and use the above argument, with a = 0, to establish that 
P(Xn J.L >  e:) :0:; en. 

(d) Now define Yi = -Xi +J.L-e, establish an equality similar to part (c), and combine 
the two to get 

P(IXn J.LI > e) :0:; 2e
n for some 0 < e < 1 .  

5.39 This exercise, and the two following, will look at some o f  the mathematical details of 
convergence. 
(8.) Prove Theorem 5.5.4. (Hint: Since h is continuous, given e: > 0 we can find a 6 

such that Ih(xn) - h(x)1 < e: whenever Ix" - xl < 6. Translate this into probability 
statements. ) 

(b) In Example 5.5.B, find a subsequence of the XiS that converges almost surely, that 
is, that converges pointwise. 

5.40 Prove Theorem 5.5.12 for the case where X" and X are continuous random variables. 
(a) Given t and e, show that P(X :0:; t - e) :0:; P(X" :0:; t) + P( IX" - X I � e). This 

gives a lower bound on P(X" :0:; t) . 
(b) Use a similar strategy to get an upper bound on P(X" :0:; t) .  
(c) By pinching, deduce that P(Xn :0:; t) -t P(X :0:; t). 

5.41 Prove Theorem 5.5.13; that is, show that 

P ( IX" - J.LI > e) -t 0 for every e <=> P (X < x) -t { O  �f x < J.L 
n - 1 1f x � J.L. 

(a) Set e: = Ix - J.LI and show that if x > J.L, then P(Xn :0:; x) � P(IXn - J.LI :0:; e), while 
if x < J.L, then P(X" :0:; x) :0:; P(IX" - J.L I  � e) . Deduce the => implication. 

(b) Use the fact that {x : Ix J.LI > e:} ::: {x : x J.L < -e:} U {x : x - J.L > e} to deduce 
the *" implication. 

(See Billingsley 1995, Section 25, for a detailed treatment of the above results.) 
5.42 Similar to Example 5.5. 1 1 ,  let X 1 > X2, . . .  be iid a.nd X(,,) = max1<::;i$" Xi. 

(a) If Xi beta(l , .B) ,  find a value of /I so that nV ( 1 - X{n) converges in distribution. 
(b) If Xi exponential(l ) ,  find a sequence an so that X(n) -an converges in distribution. 
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1.43 Fill in the details in the proof of Theorem 5.5.24. 
(a) Show that if vn(Yn - p.) --+ n(O ,0"2) in distribution, then Yn --+ p. in probability. 
(b) Give the details for the application of Slutsky's Theorem (Theorem 5.5.17). 

6.44 Let Xi, i 1 , 2 " . .  , be independent Bernoulli(p) random variables and let Yn = � L:�=l Xi. 
(a) Show that vn (Yn p) --+ n [O, p(l - p)] in distribution, 
(b) Show that for p =f 1/2, the estimate of variance Yn{l - Yn) satisfies vn[Yn{l - Yn) 

- p(l p)J --+ n [0, (1 2p)2p(1 - p)] in distribution, 

(c) Show that for p = 1/2, n [Yn (1 Yn) - i] --+ h? in distribution, (If this ap
pears strange, note that Yn(l Yn) :$ 1/4, so the left-hand side is always negative, 
An equivalent form is 2n a - Yn( 1 - Yn)] -> xi.) 

6.46 For the situation of Example 5,6 . 1, calculate the probability that at least 75% of the 
components last 150 hours when 

(a) c = 300, X rv gamma(a, b) , a = 4, b 5. 
(b) c = 100, X "' gamma(a, b) , a 20, b = 5, 
(c) c = 100, X ",  gamma(a, b) ,  a = 20.7, b = p. 
(Hint: In parts (a) and (b) it is possible to evaluate the gamma integral in closed form, 
although it probably isn't worth the effort in (b), There is no closed-form expression for 
the integral in part (c), which has to be evaluated through either numerical integration 
or simulation.) 

6.46 Referring to Exercise 5.45, compare your answers to what is obtained from a normal 
approximation to the binomial (see Example 3,3.2) . 

6.47 Verify the distributions of the random variables in (5,6,5). 
6.48 Using strategies similar to (5.6.5), show how to generate an Fm,n random variable, 

where both m and n are even integers. 
15.49 Let U rv uniform(O, 1 ) ,  

(a) Show that both - log U and - loge! - U) are exponential random variables. 
(b) Show that X = log I�U is a logistic(O, 1 )  random variable. 
(c) Show how to generate a 10gistic(p., ,8) random variable. 

6.50 The Box-Muller method for generating normal pseudo-random variables (Example 
5.6.4) is based on the transformation 

where UI and U2 are iid uniform(O,l) .  Prove that Xl and X2 are independent nCO, 1)  
random variables. 

5.51 One of the earlier methods (not one of the better ones) of generating pseudo-random 
standard normal random variables from uniform random variables is to take X = 

E::l Ui - 6, where the UiS are iid uniform{O, 1 ) .  

(a) Justify the fact that X is approximately nCO, 1 ) .  
(b) Can you think of any obvious way in which the approximation fails? 
(c) Show how good (or bad) the approximation is by comparing the first four moments, 

(The fourth moment is 29/10 and is a lengthy calculation--mgfs and computer 
algebra would help; see Example A,0,6 in Appendix A.) 
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5.52 For each of the following distributions write down an algorithm for generating the 
indicated random variables. 

(a) Y ""' binomial(8, � )  
(b) Y ",  hypergeometric N 1 0 ,  M 8, K = 4 
(c) Y ",  negative binomial(5, � )  

5.53 For each of the distributions in the previous exercise: 

(a) Generate 1 ,000 variables from the indicated distribution. 
(b) Compare the mean, variance, and histogram of the generated random variables 

with the theoretical values. 

0.54 Refer to Example 5.6.6. Another sample of bay anchovy larvae counts yielded the data 

158, 143, 106, 57, 97, 80, 109, 109, 350, 224, 109, 214, 84. 

(a) Use the technique of Example 5.6.6 to construct a simulated distribution of 82 to 
see if the assumption of Poisson counts is tenable. 

(b) A possible explanation of the failure of the Poisson assumptions (and increased 
variance) is the failure of the assumption that the larvae are uniformly distributed 
in the river. If the larvae tend to clump, the negative binomial(r, p) distribution 

� 
(with mean J1. = r¥ and variance J1. + 7) is a reasonable alternative model. For 
J1. X, what values of r lead to simulated distributions that are consistent with 
the data? 

0.50 Suppose the method of (5.6.7) is used to generate the random variable Y, where Yi = i, 
i = 0, 1 , 2, . . . . Show that the expected number of comparisons is E(Y + 1 ) .  (Hint: See 
Exercise 2. 14.) 

0.56 Let Y have the Cauchy distribution, fy(y) = 1';112 ' -00 < y < 00 . 
(a) Show that Fy(y) = tan-l ey) . 
(b) Show how to simulate a Cauchy(a, b) random variable starting from a uniform(O, 1 )  

random variable. 

(See Exercise 2.12 for a related result,) 
5.51 Park et al. (1996) describe a method for generating correlated binary variables based 

on the follow scheme. Let X 1 ,  X 2 ,  X 3 be independent Poisson random variables with 
mean AI , >'2, A3 , respectively, and create the random variables 

(a) Show that Cov(Yl ,  Y2) = >'3. 
(b) Define Zi = I(Y; = 0) and Pi = e-(Ai+Aa ) .  Show that Zi are Bernou!li(Pi)  with 

PlP2 (eAa 1 )  

(c) Show that the correlation o f  Zl and Z2 is not unrestricted i n  the range [- 1, 1 ] ,  
but 
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5.58 Suppose that Ul , U2, '  . .  , Un are iid uniform (0, 1 )  random variables, and let Sn = 

E�=l U •. Define the random variable N by 

N = min{k : Sk > 1} .  

(a) Show that P(Sk � t) = tk/kL 
(b) Show that peN = n) P(Sn-l < 1 ) P(Sn < 1) and, surprisingly, that E(N) =: 

e, the base of the natural logarithms. 
(c) Use the result of part (b) to calculate the value of e by simulation. 
(d) How large should n be so that you are 95% confident that you have the first four 

digits of e correct? 

(Russell 1991 ,  who attributes the problem to Gnedenko 1978, describes such a simu
lation experiment.)  

15.59 Prove that the algorithm of Example 5.6.7 generates a beta( a, b) random variable. 
5.60 Generalize the algorithm of Example 5.6.7 to apply to any bounded pdf; that is, for 

an arbitrary bounded pdf f(x) on [a, b) , define c = maxa:<;z:9 f (x) . Let X and Y be 
independent, with X '" uniform(a, b) and Y '" uniform(O, c) . Let d be a number greater 
than b, and define a new random variable 

W = 
{ X if Y < f(X) 

d if Y � f(X). 

(a) Show that pew � w) = J: f(t)dt/ [c(b - a)l for a � w � b. 
(b) Using part (a), explain how a random variable with pdf f(x) can be generated. 

(Hint: Use a geometric argument; a picture will help.)  

5.61 (a) Suppose it is desired to generate Y '" beta(a, b), where a and b are not inte
gers. Show that using V I"v beta([a] , [b)) will result in a finite value of M = 
sUPll Jy (y)/ fv (y) . 

(b) Suppose it is desired to generate Y rv gamma(a, b) , where a and b are not in
tegers. Show that using V "" gamma( [aJ, b) will result in a finite value of M 
SUPy Jy(y)/ fv (y) . 

(c) Show that, in each of parts (a) and (b) , if V had parameter [a) + 1 ,  then M would 
be infinite. 

(d) In each of parts (a) and (b) find optimal values for the parameters of V in the 
sense of minimizing E(N) (see (5.6. 12» . 

(Recall that [a] = greatest integer � a .) 
5.62 Find the values of M so that an Accept/Reject Algorithm can generate Y "" n(O, 1)  

using U ",  uniformeD, 1 )  and 

(a) V ",  Cauchy. 
(b) V "" double exponential. 
(c) Compare the algorithms. Which one do you recommend? 

5.63 For generating Y "" nCO, 1) using an Accept/Reject Algorithm, we could generate U '" 

uniform, V '" exponential(>') , and attach a random sign to V (± each with equal 
probability) .  What value of >. will optimize this algorithm? 

5.64 A technique similar to Accept/Reject is importance sampling, which is quite useful for 
calculating features of a distribution. Suppose that X I"v f,  but the pdf f is difficult 
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to simulate from. Generate Yi ,  Y2, . . . •  Ym , iid from g, and, for any function h, calcu
late � 2:::1 !m�h(Yi). We assume that the supports of 1 and 9 are the same and 
Var heX) < 00. 
(a) Show that E ( � 2:::1 �f�!� h(Yi )) = Eh(X) . 

(b) Show that � 2::::1 !ml h(Yi) -+ Eh(X) in probability. 
(c) Although the estimator of part (a) has the correct expectation, in practice the 

estimator 

t ( !.(Yi)/g(Yi) ) heY;)  
i=1 2::j=l /(Yj)/g(Yj ) 

is preferred. Show that this estimator converges in probability to Eh(X). Moreover, 
show that if h is constant, this estimator is superior to the one in part (a). (Casella 
and Robert 1996 further explore the properties of this estimator.) 

5.65 A variation of the importance sampling algorithm of Exercise 5.64 can actually produce 
an approximate sample from f. Again let X "-' 1 and generate Y1 , Y2 , . . . , Y m , iid from 
g. Calculate q; = [/(Yi )/g(Yi)]/ [2::;:l I(Yj )/g(Yj) ] .  Then generate random variables 
X· from the discrete distribution on Y1 , Y2, • • •  , Ym, where P(X· = Yt.) = qlc. Show 
that Xi , Xi, . . .  , X; is approximately a random sample from f. 
(Hint: Show that P(X' � x) = 2::::1 qiI(Yi � x) , let m -+ 00, and use the WLLN in 
the numerator and denominator. )  
This algorithm i s  called the Sampling/Importance Resampling (SIR) algorithm by 
Rubin ( 1988) and is referred to as the weighted bootstrap by Smith and Gelfand ( 1992) . 

5.66 If Xl , . . . , Xn are iid n(p., 0-2) ,  we have seen that the distribution of the sample mean 
X is n(p., 0-2/n). If we are interested in using a more robust estimator of location, such 
as the median (5.4.1 ) ,  it becomes a more difficult task to derive its distribution. 
(a) Show that M is the median of the XiS if and only if (M - p.)/u is the median of 

(Xi - p.)/u. Thus, we only need consider the distribution of the median from a 
nCO, 1 )  sample. 

(b) For a sample of size n =: 15 from a nCO, I ) ,  simulate the distribution of the median 
M. 

(c)  Compare the distribution in part (b)  to the asymptotic distribution of the median 
..;n(M - p.) "" n[a, 1/4/2 (0)] , where 1 is the pdf. Is n ::: 15 large enough for the 
asymptotics to be valid? 

5.67 In many instances the Metropolis Algorithm is the algorithm of choice because either 
(i) there are no obvious candidate densities that satisfy the Accept/Reject supremum 
condition, or (ii) the supremum condition is difficult to verify, or (iii) laziness leads us 
to substitute computing power for brain power. 
For each of the following situations show how to implement the Metropolis Algorithm 
to generate a sample of size 100 from the specified distribution. 
(a) X '" �J[(x - p.)/ u] , 1 = Student's t with v degrees of freedom, v, p., and (1 known 
(b) X ""  lognormal(p., (2) ,  p., u2 known 
(c) X '"  Weibull(a, ,B), Ct, ,B known 

5.68 If we use the Metropolis Algorithm rather than the Accept/Reject Algorithm we are 
freed from verifying the supremum condition of the Accept/Reject Algorithm. Of 
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course, we give up the property of getting random variables with exactly the dis
tribution we want and must settle for an approximation. 

(a) Show how to use the Metropolis Algorithm to generate a random variable with 
an approximate Student's t distribution with II degrees of freedom, starting from 
n(O, 1) random variables. 

(b) Show how to use the Accept/Reject Algorithm to generate a random variable with 
a Student's t distribution with II degrees of freedom, starting from Cauchy random 
variables. 

(c) Show how to use transformations to generate directly a random variable with a 
Student's t distribution with II degrees of freedom. 

(d) For II = 2, 10, 25 compare the methods by generating a sample of size 100. Which 
method do you prefer? Why? 

(Mengersen and Tweedie 1996 show that the convergence of the Metropolis Algorithm 
is much faster if the supremum condition is satisfied, that is, if sup f / 9 :5 M < 00, 
where f is the target density and 9 is the candidate density.) 

&.69 Show that the pdf fy (y) is a stable point of the Metropolis Algorithm. That is, if 
Z. rv fy (y), then ZHI rv fy(y). 

5.8 Miscellanea ____________________ _ 

5.8. 1 More on the Central Limit Theorem 
For the case of a sequence of iid random variables, necessary and sufficient con
ditions for convergence to normality are known, with probably the most famous 
result due to Lindeberg and Feller. The following special case is due to Levy. Let 
X1 , X2 , · . ·  be an iid sequence with EXi = JL < 00, and let Vn = L�=l Xi' The 
sequence Vn will converge to a nCO, 1 )  random variable (when suitably normalized) 
if and only if 

Note that the condition is a variance condition. While it does not quite require 
that the variances be finite, it does require that they be "almost" finite. This is an 
important point in the convergence to normality-normality comes from summing 
up small disturbances. 

Other types of central limit theorems abound-in particular, ones aimed at relaxing 
the independence assumption. While this assumption cannot be done away with, 
it can be made less restrictive (see Billingsley 1995, Section 27, or Resnick 1999, 
Chapter 8) .  

5.8.2 The Bias of 82 
Most of the calculations that we have done in this chapter have assumed that the 
observations are independent, and calculations of some expectations have relied on 
this fact . David (1985) pointed out that, if the observations are dependent, then 
82 may be a biased estimate of (12. That is, it may not happen that E82 = (12 . 
However, the range of the possible bias is easily calculated. If Xl > " " Xn are 
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random variables (not necessarily independent) with mean J.I. and variance 0-2 t 
then 

( n  - 1)ES2 = E (t (Xi - J.I.)2 - n(R - J.I.)2) = no-2 - n Var X. 

Var X can vary, according to  the amount and type of  dependence, from 0 (if 
all of the variables are constant) to (T2 (if all of the variables are copies of Xl). 
Substituting these values in the above equation, we get the range of ES2 under 
dependence as 

5.8.3 Chebychev 's Inequality Revisited 
In Section 3.6 we looked at Chebychev's Inequality (see also Miscellanea 3.8.2), 
and in Example 3.6.2 we saw a particularly useful form. That form still requires 
knowledge of the mean and variance of a random variable, and in some cases we 
might be interested in bounds using estimated values for the mean and variance. 

If Xl " ' " Xn is a random sample from a population with mean J.I. and variance (T2, 
Chebychev's Inequality says 

1 P(IX - tLl � ko-) s kZ ' 

Saw et al. (1984) showed that if we substitute X for J.I. and S2 for (T2 , we obtain 

where 

and 

- 1 ( n(n + l )kZ ) P(IX - XI  � kS) S n + 1 9 n 1 + (n + 1)k2 ' 

g et) = { �  
v - I  

if v is even 
if v is odd and t < a 
if v is odd and t > a 

1 . n + 1 v = argest mteger < -t -, (n + 1 ) (n + 1 - v) a =  . 1 + v(n + 1 - v) 
5.8.4 More on the Strong Law 

As mentioned, the Strong Law of Large Numbers, Theorem 5.5.9, can be proved 
under the less restrictive condition that the random variables have only a finite 
mean (see, for example, Resnick 1999, Chapter 7, or Billingsley 1995, Section 22) .  
However, under the assumptions of the existence of  an mgf, Koopmans ( 1993) has 
presented a proof that uses only calculus. 

The type of convergence asserted in the SLLN is the convergence that we are most 
familiar with; it is pointwise convergence of the sequence of random variables Xn 
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to their common mean J..L. As we saw in Example 5.5.8, this is stronger form of 
convergence than convergence in probability, the convergence of the weak law. 
The conclusion of the SLLN is that 

P( lim IXn - J..L I < c) = 1 ;  
11.-+00 

that is, with probability 1 ,  the limit of the sequence of {Xn} is J..L. Alternatively, 
the set where the sequence diverges has probability O. For the sequence to diverge, 
there must exist h > 0 such that for every n there is a k > n with I Xk - J..L I > h. 
'The set of all Xk that satisfy this is a divergent sequence and is represented by the 
set 

A6 = n�=l Uf=n { I Xk - 1-£1 > h}. 

We can get an upper bound on P(Ao) by dropping the intersection term, and then 
the probability of the set where the sequence {Xn} diverges is bounded above by 

00 
:s: I: P( { IXk - 1-£1 > h}) (Boole's Inequality, Theorem 1 .2. 1 1) 

k=n 
00 

:s: 2 I: ck , 0 < c < 1 ,  
k=n 

where Exercise 5.38(  d) can be used to establish the last inequality. We then note 
that we are summing the geometric series, and it follows from ( 1 .5.4) that 

00 11. 
P(Ao) :s: 2 I: ck = 2

1 
c 

c 
---+ 0 as n ---+ 00, 

k=n 

and, hence, the set where the sequence {Xn} diverges has probability 0 and the 
SLLN is established. 

5.8.5 Markov Chain Monte Carlo 
Methods that are collectively known as Markov Chain Monte Carlo (MCMC) meth
ods are used in the generation of random variables and have proved extremely 
useful for doing complicated calculations, most notably, calculations involving in
tegrations and maximizations. The Metropolis Algorithm (see Section 5.6) is an 
example of an MCMC method. 
As the name suggests, these methods are based on Markov chains, a probabilistic 
structure that we haven't explored (see Chung 1974 or Ross 1988 for an introduc
tion) . The sequence of random variables Xl ! X2 , • • •  is a Markov chain if 

that is, the distribution of the present random variable depends, at most, on the 
immediate past random variable. Note that this is a generalization of independence. 
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The Ergodic Theorem, which is a generalization of the Law of Large Numbers, says 
that if the Markov chain Xl , X2 , . '  . satisfies some regularity conditions (which are 
often satisfied in statistical problems) ,  then 

provided the expectation exists. Thus, the calculations of Section 5.6 can be ex
tended to Markov chains and MCMC methods. 

To fully understand MCMC methods it is really necessary to understand more 
about Markov chains, which we will not do here. There is already a vast liter
ature on MCMC methods, encompassing both theory and applications. Tanner 
( 1996) provides a good introduction to computational methods in statistics, 88 
does Robert ( 1994, Chapter 9) ,  who provides a more theoretical treatment with 8. 
Bayesian flavor. An easier introduction to this topic via the Gibbs sampler (a par
ticular MCMC method) is given by Casella and George ( 1992) .  The Gibbs sampler 
is, perhaps, the MCMC method that is still the most widely used and is respon
sible for the popularity of this method (due to the seminal work of Gelfand and 
Smith 1990 expanding on Geman and Geman 1984). The list of references involving 
MCMC methods is prohibitively long. Some other introductions to this literature 
are through the papers of Gelman and Rubin (1992) ,  Geyer and Thompson ( 1992), 
and Smith and Roberts ( 1993) ,  with a particularly elegant theoretical introduction 
given by Tierney ( 1994) .  Robert and Casella ( 1999) is a textbook-length treatment 
of this field. 



Chapter 6 

Principles of Data Reduction 

" . . . we are suffering from a plethora of surmise, conjecture and hypothesis. The 
difficulty is to detach the framework of fact of absolute undeniable fact - from 
the embellishments of theorists and reporters. " 

6.1 Introduction 

Sherlock Holmes 
Silver Blaze 

An experimenter uses the information in a sample Xl " ' "  Xn to make inferences 
about an unknown parameter O. If the sample size n is large, then the observed sam
ple Xl ,  . . .  , Xn is a long list of numbers that may be hard to interpret. An experimenter 
might wish to summarize the information in a sample by determining a few key fea
tures of the sample values. This is usually done by computing statistics, functions of 
the sample. For example, the sample mean, the sample variance, the largest observa
tion, and the smallest observation are four statistics that might be used to summarize 
some key features of the sample. Recall that we use boldface letters to denote multiple 
variates, so X denotes the random variables Xl , . . .  , Xn and x denotes the sample 
Xl l · · ·  , Xn ' 

Any statistic, T(X), defines a form of data reduction or data summary. An experi
menter who uses only the observed value of the statistic, T(x) , rather than the entire 
observed sample, x, will treat as equal two samples, x and y, that satisfy T(x) = T(y) 
even though the actual sample values may be different in some ways. 

Data reduction in terms of a particular statistic can be thought of as a partition 
of the sample space X. Let T = {t : t = T(x) for some x E X} be the image of 
X under T(x) . Then T(x) partitions the sample space into sets At, t E T, defined 
by At = {x : T(x) t} . The statistic summarizes the data in that, rather than 
reporting the entire sample x, it reports only that T(x) = t or, equivalently, x E At . 
For example, if T(x) = Xl + . . . + Xn , then T(x) does not report the actual sample 
values but only the sum. There may be many different sample points that have the 
same sum. The advantages and consequences of this type of data reduction are the 
topics of this chapter. 

We study three principles of data reduction. We are interested in methods of data 
reduction that do not discard important information about the unknown parameter () 
and methods that successfully discard information that is irrelevant as far as gaining 
knowledge about () is concerned. The Sufficiency Principle promotes a method of data 
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reduction that does not discard information about 0 while achieving some summa,... 
rization of the data. The Likelihood Principle describes a function of the parameter, 
determined by the observed sample, that contains all the information about 0 that is 
available from the sample .  The Equivariance Principle prescribes yet another method 
of data reduction that still preserves some important features of the model. 

6.2 The Sufficiency Principle 
A sufficient statistic for a parameter () is a statistic that, in a certain sense, captures 
all the information about () contained in the sample. Any additional information 
in the sample, besides the value of the sufficient statistic, does not contain any more 
information about O. These considerations lead to the data reduction technique known 
as the Sufficiency Principle. 

SUFFICIENCY PRINCIPLE: If T(X) is a sufficient statistic for 0, then any inference 
about () should depend on the sample X only through the value T(X) . That is, if x 
and y are two sample points such that T(x) T(y) ,  then the inference about () 
should be the same whether X = x or X y is observed. 

In this section we investigate some aspects of sufficient statistics and the Sufficiency 
Principle. 

6.2. 1 Sufficient Statistics 

A sufficient statistic is formally defined in the following way. 

Definition 6.2.1 A statistic T(X) is a sufficient statistic for (J if the conditional 
distribution of the sample X given the value of T(X) does not depend on (J. 

If T(X) has a continuous distribution, then Po(T(X) = t) = 0 for all values of t .  A 
more sophisticated notion of conditional probability than that introduced in Chapter 
1 is needed to fully understand Definition 6.2.1 in this case. A discussion of this can be 
found in more advanced texts such as Lehmann (1986) . We will do our calculations in 
the discrete case and will point out analogous results that are true in the continuous 
case. 

To understand Definition 6 .2. 1 ,  let t be a possible value of T(X), that is, a value 
such that Pe(T(X) = t )  > O. We wish to consider the conditional probability Pe(X = 

xIT(X) = t ) .  Ifx is a sample point such that T(x) :f: t, then clearly Pe(X xIT(X) = 
t) = O. Thus, we are interested in P(X = xIT(X) = T(x) ) .  By the definition, if T(X) 
is a sufficient statistic, this conditional probability is the same for all values of () so 
we have omitted the subscript . 

A sufficient statistic captures all the information about () in this sense. Consider 
Experimenter 1 ,  who observes X = x and, of course, can compute T(X) = T(x) . To 
make an inference about () he can use the information that X x and T(X) = T(x) . 
Now consider Experimenter 2, who is not told the value of X but only that T(X) = 

T(x) . Experimenter 2 knows P(X = YIT(X) = T(x)) ,  a probability distribution on 
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AT(X) = {y : T(y) = T(x)}, because this can be computed from the model without 
knowledge of the true value of O. Thus, Experimenter 2 can use this distribution and a 
randomization device, such as a random number table, to generate an observation Y 
satisfying P(Y = YIT(X) = T(x)) = P(X = YIT(X) = T(x) ) .  It turns out that, for 
each value of 0, X and Y have the same unconditional probability distribution, as we 
shall see below. So Experimenter 1, who knows X, and Experimenter 2, who knows Y, 
have equivalent information about 0. But surely the use of the random number table 
to generate Y has not added to Experimenter 2's knowledge of O. All his knowledge 
about fJ is contained in the knowledge that TeX) = T{x). So Experimenter 2, who 
knows only T(X) = T(x) , has just as much information about 0 as does Experimenter 
1 ,  who knows the entire sample X = x. 

1b complete the above argument, we need to show that X and Y have the same 
unconditional distribution, that is, PeeX = x) = Pe(Y = x) for all x and 0 .  Note 
that the events {X = x} and {Y x} are both subsets of the event {T(X) = T(x)} .  
Also recall that 

P(X xIT(X) = T(x)) P(Y xIT(X) = T(x)) 

and these conditional probabilities do not depend on f). Thus we have 

Pe (X = x) 
Pe(X x and T(X) T(x)) 

P(X xIT(X) = T(x))Pe (T(X) = T(x)) 

P(Y xIT(X) T(x) )Pe (T(X) = T(x)) 

( definition of ) 
conditional probability 

= Po (Y = x and T(X) = T(x) ) 
= Po (Y x). 

To use Definition 6.2. 1 to verify that a statistic T(X) is a sufficient statistic for 
fJ, we must verify that for any fixed values of x and t, the conditional probability 
Pe(X = xIT(X) t) is the same for all values of f). Now, this probability is 0 for all 
values of 0 if T(x) ::J. t. So, we must verify only that Pe(X = xIT(X) = T(x)) does 
not depend on O. But since {X = x} is a subset of {T(X) = T(x)}, 

Pe(X = x and T(X) = T(x)) 
Pe (T(X) T(x)) Pe(X xIT(X) = T(x)) 

Po (X = x) = -.,--,�--'--:-:-Po CT(X) = T(x)) 
p(xlf)) = q(T(x) IO) , 

where p(xIO) is the joint pmf of the sample X and q(tIO) is the pmf of T(X). Thus, 
T(X) is a sufficient statistic for 0 if and only if, for every x, the above ratio of pmfs 
is constant as a function of O. If X and T(X) have continuous distributions, then the 
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above conditional probabilities cannot be interpreted in the sense of Chapter 1. But 
it is still appropriate to use the above criterion to determine if T(X) is a sufficient 
statistic for O. 

Theorem 6.2.2 If p(xIO) is the joint pdf or pmf of X and q(t IO) is the pdf or pm! 
of T(X) , then T(X) is a sufficient statistic for 0 if, for every x in the sample space, 
the ratio p(x IO)/q(T(x) IO) is constant as a function of (). 

We now use Theorem 6.2.2 to verify that certain common statistics are sufficient 
statistics. 

Example 6.2.3 (Binomial sufficient statistic) Let Xl , . . .  , Xn be iid Bernoulli 
random variables with parameter 0, 0 < 0 < 1. We will show that T(X) = Xl +- . ·+Xn 
is a sufficient statistic for O. Note that T(X) counts the number of XiS that equal 1 ,  
so T(X) has a binomial(n, ()) distribution. The ratio of  pmfs i s  thus 

p(xIO) 
q (T(x) I()) 

= 

nOXi ( 1  _ 0) I -x, 

( � ) et (l _ o)n-t 

()EXi ( 1  _ O)E(l-Xj) 
(7 ) ()t (l o)n- t  

Ot ( l  ())n-t 

( � ) ()t ( 1  _ o)n-t 

1 = ( � ) 

Since this ratio does not depend on (), by Theorem 6.2.2, T(X) is a sufficient statistic 
for e. The interpretation is this: The total number of Is in this Bernoulli sample 
contains all the information about e that is in the data. Other features of the data, 
such as the exact value of X3, contain no additional information. I I 

Example 6.2.4 (Normal sufficient statistic) Let Xl " ' "  Xn be iid n(J-t, 0-2 ) ,  
where 0-2 is known. We wish to  show that the sample mean, T(X) = X = (Xl + . . . + 
Xn ) /n, is a sufficient statistic for J-t. The joint pdf of the sample X is 

n 
f(xlJ-t) = II (2nu2)-1/2 exp (- (Xi - J-t)2 / (20-2 ) ) 

'1=1 
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= (211'a2) -n/2 exp ( -t(Xi X + X - J.t)2 1(2a2)) (add and subtract x) 

(6.2.1) � (2�.')-n/' exp ( - (t,(x. - x)' + n(x - #)') / (2.')) . 

The last equality is true because the cross-product term 2:�=1 (Xi x ) (x :..... J.t) may 
be rewritten as (x J.t)2:7=1 (Xi - x) , and 2:7=1 (Xi x) O. Recall that the sample 
mean X has a n(J.t, a2 In) distribution. Thus, the ratio of pdfs is 

f(xIO) 
q(T(x) IO) 

(211'a2)-n/2 exp ( - (2:�=1 (Xi - 5:)2 + n(5: J.t)2) I (2a2)) 

(211'a2 In)-
1
/2 exp( -n(x J.t)2/(2a2 ) )  

which does not depend on  J.t. By Theorem 6.2.2, the sample mean i s  a sufficient 
sta.tistic for J.t. " 

In the next example we look at situations in which a substantial reduction of the 
sample is not possible. 

Example 6.2.5 (Sufficient order statistics) Let X 1 ,  . . . , Xn be iid from a pdf 
f, where we are unable to specify any more information about the pdf (as is the case 
in nonparametric estimation) . It then follows that the sample density is given by 

(6.2.2) 

i=l i=l 

where X(i) :5 X(
2
) :5 . . .  :5 xCn) are the order statistics. By Theorem 6.2.2, we can 

show that the order statistics are a sufficient statistic. Of course, this is not much of a 
reduction, but we shouldn't expect more with so little information about the density 
f. 

However, even if we do specify more about the density, we still may not be able to 
get much of a sufficiency reduction. For example, suppose that f is the Cauchy pdf 
f(x IO) = ?r(X�B)2 or the logistic pdf f(xIO) = 

(
1::�;::�»

)
2 '  We then have the same 

reduction as in (6.2.2) , and no more. So reduction to the order statistics is the most 
We can get in these families (see Exercises 6.8 and 6.9 for more examples) . 

It turns out that outside of the exponential family of distributions, it is rare to have 
a sufficient statistic of smaller dimension than the size of the sample, so in many cases 
it will turn out that the order statistics are the best that we can do. (See Lehmann 
and Casella 1998, Section 1 .6, for further details.) I I  

It may be unwieldy to use the definition of a sufficient statistic to find a sufficient 
statistic for a particular modeL To use the definition, we must guess a statistic T(X) 
to be sufficient, find the pmf or pdf of T(X) , and check that the ratio of pdfs or 
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pmfs does not depend on O. The first step requires a good deal of intuition and 
the second sometimes requires some tedious analysis. Fortunately, the next theorem, 
due to Halmos and Savage (1949) , allows us to find a sufficient statistic by simple 
inspection of the pdf or pmf of the sample. 1 

Theorem 6.2.6 (Factorization Theorem) Let f(xlO) denote the joint pdf or 
pmf of a sample X. A statistic T(X) is a sufficient statistic for 0 if and only if there 
exist functions g(t/O) and h(x) such that, for all sample points x and all parameter 
points 0, 

(6.2.3) f (xIB) = g(T(x) IB)h(x) . 
Proof: We give the proof only for discrete distributions. 

Suppose T(X) is a sufficient statistic. Choose g(tIB) = Pe(T(X) = t) and hex) = 

P(X = xIT(X) = T(x)) .  Because T(X) is sufficient, the conditional probability 
defining h(x) does not depend on () .  Thus this choice of hex) and g(tIB) is legitimate, 
and for this choice we have 

f (xIO) = Pe(X = x) 
= PI)(X = x and T(X) = T(x» 
= PI)(T(X) T(x» P(X xIT(X) = T{x» (sufficiency) 
= g(T(x) 18)h(x). 

So factorization (6.2.3) has been exhibited. We also see from the last two lines above 
that 

Pe(T(X) = T(x» = g (T(x) IB) ,  
so g(T(x) I ()  is the pmf of T(X). 

Now assume the factorization (6.2.3) exists. Let q(tl() be the pmf of T(X) . To 
show that T(X) is sufficient we examine the ratio f(xIO)/q(T(x) IB) .  Define AT(x) = 
{y: T(y) = T(x) } .  Then 

f(xIB) = g(T(x) IO)h(x) (since (6.2.3) is satisfied) q(T(x) IB) q(T(x) 1 8) 
g(T(x) IB)h(x) = ������� EAT(,,) g(T(y) IB)h(y) (definition of the pmf of T) 

g(T(x) 18)h(x) 
= -=������ g(T(x) I() EAT(x) h ey) (since T is constant on AT(x) 

_ hex) - EAT(x) h(y) " 
1 Although, according to Halmos and Savage, their theorem "may be recast in a form more akin 

in spirit to previous investigations of the concept of sufficiency." The investigations are those of 
Neyman (1935). (This was pointed out by Prof. J. Beder, University of Wisconsin, Milwaukee.)  
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Since the ratio does not depend on B ,  by Theorem 6.2.2, T(X) is a sufficient statistic 
for e. 0 

To use the Factorization Theorem to find a sufficient statistic, we factor the joint 
pdf of the sample into two parts, with one part not depending on 

e. The part that 
does not depend on 8 constitutes the h(x) function. The other part, the one that 
depends on 8, usually depends on the sample x only through some function T(x) and 
this function is a sufficient statistic for O. This is illustrated in the following example. 

Example 6.2.7 (Continuation of Example 6.2.4) For the normal model de
scribed earlier, we saw that the pdf could be factored as 

(6.2.4) 

We can define 

which does not depend on the unknown parameter J.l. The factor in (6.2.4) that 
contains J.l depends on the sample x only through the function T(x) X, the sample 
mean. So we have 

and note that 

f(xlJ.l) = h (x)g(T(x) IJ.l)· 
Thus, by the Factorization Theorem, T(X) = X is a sufficient statistic for J.l. 

The Factorization Theorem requires that the equality f(xI8) = g(T(x) IB)h(x) hold 
for all x and e. If the set of x on which f(xle) is positive depends on e, care must 
be taken in the definition of h and 9 to ensure that the product is 0 where f is O. Of 
course, correct definition of h and 9 makes the sufficient statistic evident, as the next 
example illustrates. 

Example 6.2.8 (Uniform sufficient statistic) Let Xl , . . .  , Xn be iid observa
tions from the discrete uniform distribution on 1 ,  . . . , e. That is, the unknown param
eter, e, is a positive integer and the pmf of Xi is 

f(xle) = { 8 
Thus the joint pmf of Xl > " " Xn is 

x 1 , 2, . . . , 0  
otherwise. 

f(xle )  = { e-n Xi E { l.' . . . , O} for i = 1 , . . . , n 

o otherwIse. 
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The restriction "Xi E { I, . . . , O} for i = 1 ,  . . . , n" can be re-expressed as "Xi E {I ,  2, . . .  } for i I , . . . , n (note that there is no 0 in this restriction) and maxi Xi ::;; 0." 
If we define T(x) = maxi Xi, 

and 

h(x) = { l xi E { 1.' 2 , . . . } for i = 1 , . . .  , n 
o otherWIse, 

{ o-n t < 0 g(t IO) = 0 otherwise, 
it is easily verified that ! (xIO) g(T(x) IO)h(x) for all x and e. Thus, the largest 
order statistic, T(X) maxi Xi , is a sufficient statistic in this problem. 
This type Df analysis can sometimes be carried out more clearly and concisely using 

indicator functions. Recall that I A (x) is the indicator function of the set Ai that is, 
it is equal to 1 if X E A and equal to 0 otherwise. Let N = {1 , 2 " . .  } be the set of 
pDsitive integers and let No = { I ,  2, . . . , O} . Then the joint pmf of Xl , . ' "  Xn is 

n n 
!(xIO) = II 0- 1 INo (Xi) = e-

n II INe (Xi) . 
i=l 

Defining T(x) maxi Xi , we see that 

Thus we have the factDrization 

i=1 

The first factor depends on Xl, " " xn only through the value of T(x) = maxi Xi , 
and the second factor does not depend on O. By the Factorization Theorem, T(X) = 
maxi Xi is a sufficient statistic for e. " 
In all the previous examples, the sufficient statistic is a real-valued function of the 

sample. All the information about e in the sample x is summarized in the single 
number T(x) . Sometimes, the information cannot be summarized in one number and 
several numbers are required instead. In such cases, a sufficient statistic is a vector, 
say T(X) = (Tl (X), . . .  , Tr (X)) . This situation often occurs when the parameter is 
also a vector, say 8 = (01 , • . •  , es) ,  and it is usually the case that the sufficient statistic 
and the parameter vectors are of equal length, that is, T = s. Different combinations of 
lengths are possible, however, as the exercises and Examples 6.2.15, 6.2.18, and 6.2.20 
illustrate. The Factorization Theorem may be used to find a vector-valued sufficient 
statistic, as in Example 6.2.9. 
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Example 6.2.9 (Normal sufficient statistic, both parameters unknown) 
Again assume that Xl , . ' "  Xn are iid n(p,, 0-2) but, unlike Example 6.2.4, assume 
that both p, and 0-2 are unknown so the parameter vector is () (p,, 0-2) .  Now when 
we use the Factorization Theorem, any part of the joint pdf that depends on either 
JJ. or 0-2 must be included in the 9 function. From (6.2.1)  it is clear that the pdf 
depends on the sample x only through the two values Tl (x) = x and T2 (x) s2 = 
E�l (Xi - x)2/(n - 1) .  Thus we can define hex) = 1 and 

g (t IO) g(h, t2]P" 0'2) 
= (21f0'2)-n/2 exp (- (n(tl - Jl)2 + (n - 1 )t2) /(20-2») . 

Then it can be seen that 

(6.2.5) 

Thus, by the Factorization Theorem, T(X) = (T1 (X) , T2(X» = (X, S2) is a sufficient 
statistic for (p" 0-2) in this normal model. I I  

Example 6.2.9 demonstrates that, for the normal model, the cornmon practice of 
summarizing a data set by reporting only the sample mean and variance is justified. 
The sufficient statistic (X, S2 ) contains all the information about (p,, 0-2) that is avail
able in the sample. The experimenter should remember, however, that the definition 
of a sufficient statistic is model-dependent. For another model, that is, another family 
of densities, the sample mean and variance may not be a sufficient statistic for the 
population mean and variance. The experimenter who calculates only X and S2 and 
totally ignores the rest of the data would be placing strong faith in the normal model 
assumption. 

It is easy to find a sufficient statistic for an exponential family of distributions 
using the Factorization Theorem. The proof of the following important result is left 
as Exercise 6.4. 

Theorem 6.2.10 Let XI . . . .  , Xn be iid observations from a pdf or pmf f(xl(}) that 
belongs to an exponential family given by 

f(xl(}) h(x)c(9) exp (�Wi«(})ti (X») ' 
where () = «(h , O2 , . . •  , Od) ,  d :-:;  k. Then 

T(X) � (t t, (xj ) ,  . . . ,t. t, (Xj )) 

is a sufficient statistic for (). 

6.2.2 Minimal Sufficient Statistics 

In the preceding section we found one sufficient statistic for each model considered. 
In any problem there are, in fact, many sufficient statistics. 
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It is always true that the complete sample, X, is a sufficient statistic. We can factor 
the pdf or pmf of X as f(xJ()) f (T(x) JO)h(x), where T(x) = x and hex) = 1 for all 
x. By the Factorization Theorem, T(X) = X is a sufficient statistic. 

Also, it follows that any one-to-one function of a sufficient statistic is a sufficient 
statistic. Suppose T(X) is a sufficient statistic and define T* (x) r(T(x)) for all x, 
where r is a one-to-one function with inverse r- 1 • Then by the Factorization Theorem 
there exist 9 and h such that 

f(xJ()) = g(T(x) JO)h (x) = g(r-1 (T* (x) ) I ()) h(x). 
Defining g* (t l()) = g(r-1 (t) IB) , we see that 

f (xJO) = g'" (T* (x) JB)h (x) . 
So, by the Factorization Theorem, T* (X) is a sufficient statistic. 

Because of the numerous sufficient statistics in a problem, we might ask whether one 
sufficient statistic is any better than another. Recall that the purpose of a sufficient 
statistic is to achieve data reduction without loss of information about the parameter 
(); thus, a statistic that achieves the most data reduction while still retaining all the 
information about B might be considered preferable. The definition of such a statistic 
is formalized now. 

Definition 6.2.11 A sufficient statistic T(X) is called a minimal sufficient statistic 
if, for any other sufficient statistic T' (X) , T(x) is a function of T(x) . 

To say that T(x) is a function of T'(x) simply means that if T' (x) = T'(y) , then 
T(x) T(y) . In terms of the partition sets described at the beginning of the chapter, 
if {Btl : t' E T'} are the partition sets for T'(x) and {At : t E T} are the partition sets 
for T(x) , then Definition 6.2 . 1 1  states that every Bt' is a subset of some At . Thus, the 
partition associated with a minimal sufficient statistic, is the coarsest possible parti
tion for a sufficient statistic, and a minimal sufficient statistic achieves the greatest 
possible data reduction for a sufficient statistic. 

Example 6.2.12 (Two normal sufficient statistics) The model considered in 
Example 6.2.4 has Xl " ' "  Xn iid n(p., (12) with (12 known. Using factorization (6.2.4) , 
we concluded that T(X) X is a sufficient statistic for p.. Instead, we could write 
down factorization (6.2.5) for this problem «(12 is a known value now) and correctly 
conclude that T'(X) = (X, S2) is a sufficient statistic for p. in this problem. Clearly 
T(X) achieves a greater data reduction than T'(X) since we do not know the sample 
variance if we know only T(X). We can write T(x) as a function of T' (x) by defining 
the function r(a, b) = a. Then T(x) = x = r(x , s2 )  = r(T'(x)) .  Since T(X) and T'(X) 
are both sufficient statistics, they both contain the same information about p.. Thus, 
the additional information about the value of S2, the sample variance, does not add 
to our knowledge of p. since the population variance (12 is known. Of course, if (12 
is unknown, as in Example 6.2.9, TeX) = X is not a sufficient statistic and T'(X) 
contains more information about the parameter (J.t, (12) than does T(X) .  I I  

Using Definition 6.2.1 1  to  find a minimal sufficient statistic i s  impractical, as was 
using Definition 6.2.1 to find sufficient statistics. We would need to guess that T(X) 
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was a minimal sufficient statistic and then verify the condition in the definition. (Note 
that we did not show that X is a minimal sufficient statistic in Example 6.2. 12.) 
Fortunately, the following result of Lehmann and Scheffe ( 1950, Theorem 6.3) gives 
a.n easier way to find a minimal sufficient statistic. 

Theorem 6.2.13 Let f(xIO) be the pmf or pdf of a sample X. Suppose there exists a 
function T(x) such that, for every two sample points x and y, the ratio f (xIO)/ f(y la) 
is constant as a function of 0 if and only ifT(x) = T(y) .  Then T(X) is a minimal 
sufficient statistic for a .  
Proof: To simplify the proof, we assume f(xIO) > 0 for all x E X and O. 

First we show that T(X) is a sufficient statistic. Let T = {t : t T(x) for some 
x E X} be the image of X under T(x) . Define the partition sets induced by T(x) as 
At = {x : T(x) = t}. For each At, choose and fix one element Xt E At . For any x E X, 
XT(x) is the fixed element that is in the same set, At , as x. Since x and XT(x) are 
in the same set At , T(x) = T(XT(x) ) and, hence, f(xIO)/ f (XT(x) I O) is constant as a 
function of a. Thus, we can define a function on X by hex) = f (xla)/f(XT(x) 10) and 
h does not depend on O. Define a function on T by g(t IO) = f(xt la) . Then it can be 
seen that 

f (xla) f(XT(x) l a)f(xIO )  
= g (T(x) la)h(x) f (XT(x) 10) 

and, by the Factorization Theorem, T(X) is a sufficient statistic for a. 
Now to show that T(X) is minimal, let r(X) be any other sufficient statistic. 

By the Factorization Theorem, there exist functions 9' and hi such that f(xla) = 
gl(TI(x) lO)h'(x). Let x and y be any two sample points with T'(x) = T'(y) . Then 

f(xla) gl (T' (x) la)h'(x) 
f(y la) = g'(T' (Y) la)h'(Y) 

'. 

h'(x) 
h' (y) . 

Since this ratio does not depend on a, the assumptions of the theorem imply that 
T(x) = T(y) .  Thus, T(x) is a function of T'(x) and T(x) is minimal. 0 

Example 6.2.14 (Normal minimal sufficient statistic) Let Xl > " " Xn be iid 
n(f..L, 0'2) , both f..L and 0'2 unknown. Let x and y denote two sample points, and let 
(x, s;) and (y, 8;) be the sample means and variances corresponding to the x and y 
samples, respectively. Then, using (6.2 .5) , we see that the ratio of densities is 

f(x lf..L, 0'2) _ (27l"0'2)-n/2 exp (- [n(x f..L)2 + (n 
f(ylf..L , 0'2 )  - (27l"0'2)-n/2 exp (- [n(y f..LF + (n 

= exp ( [  -n(x2 - y2) + 2nf..L(x y) - (n 

1 )8;] / (20'2 )) 
1 )8;] / (20'2)) 

1 ) (8; - 8; )] / (20'2 )) . 

This ratio will be constant as a function of f..L and 0'2 if and only if x = y and 8; 
Thus, by Theorem 6.2�13, (X, S2 ) is a minimal sufficient statistic for (Ii, 0'2) .  

I f  the set o f  xs o n  wbich the pdf or pmf i s  positive depends o n  the parameter a, 
then, for the ratio in Theorem 6.2.13 to be constant as a function of a, the numerator 
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and denominator must be positive for exactly the same values of O. This restriction 
is usually reflected in a minimal sufficient statistic, as the next example illustrates. 

Example 6.2.15 (Uniform minimal sufficient statistic) Suppose Xl , . . .  , Xn 
are iid uniform observations on the interval (0, 0 + 1 ) ,  -00 < 0 < 00. Then the joint 
pdf of X is 

f(xI O) = { � 
which can be written as 

f(x IO) = { � 

o < Xi < 0 + 1 ,  i = 1 ,  . . . , n, 

otherwise, 

maxi Xi - 1 < 0 < mini Xi 
otherwise. 

Thus, for two sample points x and y,  the numerator and denominator of the ratio 
f(xl())/ f(y l()) will be positive for the same values of 0 if and only if mini Xi = mini 1/i 
and maxi Xi maxi lIi . And, if the minima and maxima are equal, then the ratio is 
constant and, in fact, equals 1 .  Thus, letting X(1) mini Xi and X(n) = maxi Xi, 
we have that T(X) = (X(I) , X(n» )  is a minimal sufficient statistic. This is a case in 
which the dimension of a minimal sufficient statistic does not match the dimension 
of the parameter. I I 

A minimal sufficient statistic is not unique. Any one-to-one function of a minimal 
sufficient statistic is also a minimal sufficient statistic. So, for example, T' (X) = 
(X(n) X(1 ) ,  (X(nl + X(1» ) /2) is also a minimal sufficient statistic in Example 6.2.15 
and T' (X) = (E�IXi' E�l Xl) is also a minimal sufficient statistic in Example 6.2. 14. 

6.2.3 Ancillary Statistics 
In the preceding sections, we considered sufficient statistics. Such statistics, in a sense, 
contain all the information about 0 that is available in the sample. In this section we 
introduce a different sort of statistic, one that has a complementary purpose. 

Definition 6.2.16 A statistic S(X) whose distribution does not depend on the 
parameter () is called an ancillary statistic. 

Alone, an ancillary statistic contains no information about (). An ancillary statistic 
is an observation on a random variable whose distribution is fixed and known, unre
lated to (). Paradoxically, an ancillary statistic, when used in conjunction with other 
statistics, sometimes does contain valuable information for inferences about (). We will 
investigate this behavior in the next section. For now, we just give some examples of 
ancillary statistics. 

Example 6.2.17 (Uniform ancillary statistic) As in Example 6.2.15, let 
Xl > '  . .  , Xn be iid uniform observations on the interval (0, 0 + 1 ) ,  - 00 < () < 00. 

Let X(I) < . . .  < X(n) be the order statistics from the sample. We show below that 
the range statistic, R X(n) - XCI ) ,  is an ancillary statistic by showing that the pdf 
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of R does not depend on (). Recall that the cdf of each Xi is 

F(xl()) = { �  x '.5, B  
() () < x < B + l  

() + 1 '.5,  x. 
Thus, the joint pdf of XCI) and X(n) ,  as given by (5.5.7) , is 

g(X( l) , x(n) I B) = { on(n l ) (xCn) - x(1 » )n-2 B < x(1) < x(n) < B + 1 
otherwise. 

283 

Making the transformation R = X(n) -X{l) and M = (XCI) + X(n» ) /2, which has the 
inverse transformation XCI ) (2M - R)/2 and X(n) = (2M + R)/2 with Jacobian 1 ,  
we see that the joint pdf o f  R and M is 

her, mlB) = { �(n 1)rn-2 0 < r < I, B +  (r/2) < m < B +  1 - (r/2) 
otherwise. 

(Notice the rather involved region of positivity for her, mIO) . ) Thus, the pdf for R is 

/o9+I-Cr/2) h(rIO) = n(n - l)rn-2dm 
O+(r/2) 

= n(n - 1)rn-2 ( 1  - r) , 0 < r < 1 .  

This is a beta pdf with (l = n 1 and f3 = 2. More important, the pdf is the same 
for all (). Thus, the distribution of R does not depend on 0, and R is ancillary. I I 

In Example 6.2. 17 the range statistic is ancillary because the model considered there 
, is a location parameter model. The ancillarity of R does not depend on the uniformity 
of the XiS, but rather on the parameter of the distribution being a location parameter. 
We now consider the general location parameter model. 

Example 6.2.18 (Location family ancillary statistic) Let Xl , . . . , X n be iid 
observations from a location parameter family with cdf F(x ()) ,  -00 < B < 00. We 
will show that the range, R X(n) XCI ) ,  is an ancillary statistic. We use Theorem 
3.5.6 and work with Zb " " Zn iid observations from F(x) (corresponding to () = 0) 
with Xl = ZI + 0, . . . , Xn = Zn + B. Thus the cdf of the range statistic, R, is 

FR(rIO) = Po(R '.5, r) 

= Po (max Xi - m�nXi '.5, r) 
t t 

Po(max(Zi + B) - min(Zi + ()) '.5, r) 
t t 

PO (max Zi - m�n Zi + () - 0 '.5,  r) 
t t 

= Pe(m� Zi - min Zi '.5, r) . 
t t 

The last probability does not depend on B because the distribution of ZI , . . . , Zn does 
not depend on O. Thus, the cdf of R does not depend on 0 and, hence, R is an ancillary 
statistic. I I 
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Example 6.2.19 (Scale family ancillary statistic) Scale parameter families 
also have certain kinds of ancillary statistics. Let X I , . . .  , Xn. be iid observations from 
a scale parameter family with cdf F(x/u) , a > O. Then any statistic that depends 
on the sample only through the n - 1 values XI /Xn , . . .  , Xn-I /Xn is an ancillary 
statistic. For example, 

is an ancillary statistic. To see this fact, let Z 1 ,  . . .  , Zn be iid observations from F (x) 
(corresponding to a = 1) with Xi = aZi '  The joint cdf of XI /Xn ,  . . .  , Xn- I/Xn is 

F(Yl , ' " , Yn-da) = Pu (XI/Xn � YI , · · ·  , Xn-dXn 5 Yn-t } 
Pu (a'ZI/(aZn) � Yb " " aZn-d(aZn) 5 Yn-d 

= Pu (ZI /Zn 5 YI , . .  · ,  Zn-t/Zn 5 Yn-l ) . 

The last probability does not depend on a because the distribution of Zl , . . .  , Zn does 
not depend on a. So the distribution of Xd Xn., . . .  , Xn-d Xn is independent of a, 
as is the distribution of any function of these quantities. 

In particular, let Xl and X2 be iid nCO, (2) observations. From the above result, 
we see that Xt/X2 has a distribution that is the same for every value of a. But, in 
Example 4.3.6, we saw that, if a = 1, Xl/ X2 has a Cauchy(O, 1 )  distribution. Thus, 
for any a > 0, the distribution of Xt/X2 is this same Cauchy distribution. II 

In this section, we have given examples, some rather general, of statistics that are 
ancillary for various models. In the next section we will consider the relationship 
between sufficient statistics and ancillary statistics. 

6.2.4 Sufficient, Ancillary, and Complete Statistics 
A minimal sufficient statistic is a statistic that has achieved the maximal amount of 
data reduction possible while still retaining all the information about the parameter 
(J. Intuitively, a minimal sufficient statistic eliminates all the extraneous information 
in the sample, retaining only that piece with information about (J. Since the distri
bution of an ancillary statistic does not depend on (J, it might be suspected that a 
minimal sufficient statistic is unrelated to (or mathematically speaking, functionally 
independent of) an ancillary statistic. However, this is not necessarily the case. In 
this section, we investigate this relationship in some detaiL 

We have already discussed a situation in which an ancillary statistic is not indepen
dent of a minimal sufficient statistic. Recall Example 6.2 .15 in which Xl , . . .  , Xn were 
iid observations from a uniform ( (J, (J + 1 )  distribution. At the end of Section 6.2.2, we 
noted that the statistic (Xen) XCI ) '  (X(n) + X(1 ) )/2) is a minimal sufficient statistic, 
and in Example 6.2 .17, we showed that X(n) X(1 )  is an ancillary statistic. Thus, in 
this case, the ancillary statistic is an important component of the minimal sufficient 
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statistic. Certainly, the ancillary statistic and the minimal sufficient statistic are not 
independent. 

To emphasize the point that an ancillary statistic can sometimes give important 
information for inferences about 0, we give another example. 

Example 6.2.20 (Ancillary precision) Let Xl and X2 be iid observations from 
the discrete distribution that satisfies 

1 Pe(X = 0) = Pe(X = 0 + 1 )  = Po(X = 0 + 2) = - ,  3 

where 0, the unknown parameter, is any integer. Let X(l) ::; X(2J be the order statistics 
for the sample. It can be shown with an argument similar to that in Example 6.2.15 
that (R, M), where R X(2) -X(1 ) and M = (X(I) +X(2» )/2, is a minimal sufficient 
statistic. Since this is a location �arameter family, by Example 6.2 .17, R is an ancillary 
statistic. To see how R might give information about 0, even though it is ancillary, 
consider a sample point (r, m) ,  where m is an integer. First we consider only m; for 

. this sample point to have positive probability, 0 must be one of three values. Either 
e = m or 0 = m - 1 or 0 = m 2. With only the information that M = m, all 
three 0 values are possible values. But now suppose we get the additional information 
that R = 2. Then it must be the case that XCI) = m - 1 and X(2) = m + 1. With 
this additional information, the only possible value for 0 is 0 = m - 1 .  Thus, the 
knowledge of the value of the ancillary statistic R has increased our knowledge about 
e. Of course, the knowledge of R alone would give us no information about O. (The 
idea that an ancillary statistic gives information about the precision of an estimate 
of 0 is not new. See Cox 1971 or Efron and Hinkley 1978 for more ideas.) / I 

For many important situations, however, our intuition that a minimal sufficient 
statistic is independent of any ancillary statistic is correct. A description of situations 
in which this occurs relies on the next definition. 

Definition 6.2.21 Let !(t I8) be a family of pdfs or pmfs for a statistic T(X). The 
family of probability distributions is called complete if Eeg(T) = 0 for all 8 implies 
Pe(g(T) = 0) = 1 for all O. Equivalently, T(X) is called a complete statistic. 

Notice that completeness is a property of a family of probability distributions, not 
of a particular distribution. For example, if X has a nCO, 1)  distribution, then defining 
g(x) = x, we have that Eg(X) = EX = 0. But the function g(x) = x satisfies 
P(g(X) = 0) = P(X = 0) = 0, not 1 .  However, this is a particular distribution, not a 
family of distributions. If X has a nCO , 1 )  distribution, -00 < 0 < 00, we shall see that 
no function of X, except one that is 0 with probability 1 for all 0 ,  satisfies E9g(X) = 0 
for all O. Thus, the family of nCO, 1 )  distributions, -00 < 0 < 00, is complete. 

Example 6.2.22 (Binomial complete sufficient statistic) Suppose that T has 
a binomial( n, p) distribution, 0 < p < 1 .  Let 9 be a function such that Epg(T) = O. 
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Then 

for all p, 0 < p < L The factor (1 - p)n is not 0 for any p in this range. Thus it must 
be that 

for all r, 0 < r < 00. But the last expression is a polynomial of degree n in r, where the 
coefficient of rt is g( t) ( � ) .  For the polynomial to be 0 for all r, each coefficient must be 
O. Since none of the ( � )  terms is 0, this implies that g(t) = 0 for t = 0, 1 ,  . . .  , n. Since 
T takes on the values 0, 1 ,  . . . , n  with probability 1 ,  this yields that Pp(g(T) = 0) = 1 
for all p, the desired conclusion. Hence, T is a complete statistic. II 
Example 6.2.23 (Uniform complete sufficient statistic) Let Xl , . . .  , Xn be 
iid uniform(O, ()) observations, 0 < () < 00. Using an argument similar to that in 
Example 6.2.8, we can see that T(X) = maxi Xi is a sufficient statistic and, by 
Theorem 5.4.4, the pdf of T(X) is 

f(tl()) = { n
o
tn-l()-n 0 < t < () 

otherwise. 

Suppose g(t) is a function satisfying Eog(T) = 0 for all O. Since Eog(T) is constant 
as a function of 0, its derivative with respect to () is 0. Thus we have that 

= ()-nng(O)(r- 1 + 0 ( applying the product ) 
rule for differentiation 

The first term in the next to last line is the result of an application of the Fundamental 
Theorem of Calculus. The second term is 0 because the integral is, except for a 
constant, equal to Eog(T) , which is O. Since O- lng(O) = 0 and ()-In I 0, it must 
be that g«()) = O. This is true for every () > OJ hence, T is a complete statistic. (On 
a somewhat pedantic note, realize that the Fundamental Theorem of Calculus does 
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not apply to all functions, but only to functions that are Riemann-integrable. The 
equation 

d (o 
dB Jo g( t )dt = g (  B) 

is valid only at points of continuity of Riemann-integrable g. Thus, strictly speaking, 
the above argument does not show that T is a complete statistic, since the condition 
of completeness applies to all functions, not just Riemann-integrable ones. From a 
more practical view, however, this distinction is not of concern since the condition of 
Riemann-integrability is so general that it includes virtually any function we could 
think of. ) I I 

We now use completeness to state a condition under which a minimal sufficient 
statistic is independent of every ancillary statistic. 

Theorem 6.2.24 (Basu's Theorem) If T(X) is a complete and rr.inimal suffi
cient statistic, then T(X) is independent of every ancillary statistic. 

Proof: We give the proof only for discrete distributions. 
Let SeX) be any ancillary statistic. Then P(S(X) = s) does not depend on B since 

SeX) is ancillary. Also the conditional probability, 

P(S(X) s IT(X) = t )  = P(X E {x : Sex) = s} IT(X) t ) ,  

does not depend on B because T(X) i s  a sufficient statistic (recall the definition!) .  
Thus, to show that SeX) and T(X) are independent, it suffices t o  show that 

(6.2.6) P(S(X) = s IT(X) = t) = P(S(X) = s) 
for all possible values t E T. Now, 

P(S(X) s) L P(S(X) s IT(X) t )Po (T(X) t) . 
tET 

Furthermore, since EtET Po(T(X) = t) = 1 ,  we can write 

P(S(X) = s) = L P(S(X) s)P9(T(X) t ) .  
tET 

Therefore, if we define the statistic 

get) P(S(X) = s IT(X) = t )  - P(S(X) s ) ,  

the above two equations show that 

Eeg(T) = L g(t)Pe(T(X) = t) = 0 for all B. 
tET 

Since T(X) is a complete statistic, this implies that get) 
t E T. Hence (6.2.6) is verified. 

o for all possible values 
D 
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Basu's Theorem is useful in that it allows us to deduce the independence of two 
statistics without ever finding the joint distribution of the two statistics. To use 
Basu's Theorem, we need to show that a statistic is complete, which is sometimes a 
rather difficult analysis problem. Fortunately, most problems we are concerned with 
are covered by the following theorem. We will not prove this theorem but note that 
its proof depends on the uniqueness of a Laplace transform, a property that was 
mentioned in Section 2.3. 

Theorem 6.2.25 (Complete statistics in the exponential family) Let 
Xl " ' " Xn be iid observations from an exponential family with pdf or pmf of the 
form 

(6.2.7) !(xIO) = h(x)c(O) exp (t. W(9; )t; (X)) , 

where () = ((h , 92 , . • •  , 9k) .  Then the statistic 

is complete as long as the parameter space e contains an open set in lJ?k . 

The condition that the parameter space contain an open set is needed to avoid a sit
uation like the following. The n(e, (2 ) distribution can be written in the form (6.2.7); 
however, the parameter space (e, (j2) does not contain a two-dimensional open set, 
as it consists of only the points on a parabola. As a result, we can find a transfor
mation of the statistic T(X) that is an unbiased estimator of 0 (see Exercise 6.15) .  
(Recall that exponential families such as the n (B, (J2), where the parameter space is a 
lower-dimensional curve, are called curved exponential families; see Section 3.4.) The 
relationship between sufficiency, completeness, and minimality in exponential families 
is an interesting one. For a brief introduction, see Miscellanea 6.6.3. 

We now give some examples of the use of Basu's Theorem, Theorem 6.2.25, and 
many of the earlier results in this chapter. 

Example 6.2.26 (Using Basu's Theorem-I) Let Xl, . . .  , Xn be iid exponential 
observations with parameter B. Consider computing the expected value of 

We first note that the exponential distributions form a scale parameter family and 
thus, by Example 6.2.19, g(X) is an ancillary statistic. The exponential distributions 
also form an exponential family with t(x) = x and so, by Theorem 6.2.25, 

n 
T(X) = 2: Xi 

i=l 
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is a. complete statistic and, by Theorem 6.2.10, T(X) is a sufficient statistic. (As noted 
below, we need not verify that T(X) is minimal, although it could easily be verified 
using Theorem 6.2.13.)  Hence, by Ba.<m's Theorem, T(X) and g(X) are independent. 
Thus we have 

() = E9Xn E9T(X)g(X) (E9T(X»(Eog(X)) = nOE9g(X). 

Hence, for any (), Eog(X) = n-1 . 

Example 6.2.27 (Using Basu's Theorem-II) As another example of the use 
of Basu's Theorem, we consider the independence of X and 82 , the sample mean 
and variance, when sampling from a n(li-, (12) population. We have, of course, already 
shown that these statistics are independent in Theorem 5.3.1 ,  but we will illustrate 
the use of Basu's Theorem in this important context. First consider (12 fixed and let Ii
vary, -00 < Ii- < 00. By Example 6.2.4, X is a sufficient statistic for Ii-. Theorem 6.2.25 
may be used to deduce that the family of n(li-, (12Jn) distributions, -00 < Ii- < 00, 
(1'1.Jn known, is a complete family. Since this is the distribution of X, X is a complete 
statistic. Now consider 82 • An argument similar to those used in Examples 6.2.18 and 
6.2.19 could be used to show that in any location parameter family (remember (12 is 
fixed, Ii- is the location parameter) ,  82 is an ancillary statistic. Or, for this normal 
model, we can use Theorem 5.3.1 to see that the distribution of 82 depends on the 
fixed quantity (12 but not on the parameter Ii-. Either way, S2 is ancillary and so, by 
Basu's Theorem, S2 is independent of the complete sufficient statistic X. For any Ii
and the fixed (12, X and 82 are independent. But since (12 was arbitrary, we have that 
the sample mean and variance are independent for any choice of Ii- and (12. Note that 
neither X nor S2 is ancillary in this model when both Ii- and (12 are unknown, Yet , by 
this argument, we are still able to use Basu's Theorem to deduce independence. This 
kind of argument is sometimes useful, but the fact remains that it is often harder to 
show that a statistic is complete than it is to show that two statistics are independent. 

I I 
It should be noted that the "minimality" of the sufficient statistic was not used 

in the proof of Basu's Theorem. Indeed, the theorem is true with this word omitted, 
because a fundamental property of a complete statistic is that it is minimaL 

Theorem 6.2.28 If a minimal sufficient statistic exists, then any complete statistic 
is also a minimal sufficient statistic. 

So even though the word "minimal" is redundant in the statement of Basu's Theo
rem, it was stated in this way as a reminder that the statistic T(X) in the theorem is 
a minimal sufficient statistic. (More about the relationship between complete statis
tics and minimal sufficient statistics can be found in Lehmann and Scheffe 1950 and 
Schervish 1995, Section 2. L) 

Basu's Theorem gives one relationship between sufficient statistics and ancillary 
statistics using the concept of complete statistics. There are other possible definitions 
of ancillarity and completeness. Some relationships between sufficiency and ancillarity 
for these definitions are discussed by Lehmann (1981 ) . 
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6.3 The Likelihood Principle 
In this section we study a specific, important statistic called the likelihood function 
that also can be used to summarize data. There are many ways to use the likelihood 
function some of which are mentioned in this section and some in later chapters. But 
the main consideration in this section is an argument which indicates that, if certain 
other principles are accepted, the likelihood function must be used as a data reduction 
device. 

6.3. 1 The Likelihood Function 

Definition 6.3.1 Let f(xIO) denote the joint pdf or pmf of the sample X =: 
(Xl . . . .  , Xn) .  Then, given that X = x is observed, the function of 0 defined by 

L(Olx) = f (xIO) 

is called the likelihood function. 

If X is a discrete random vector, then L(Olx) Po (X = x) .  If we compare the 
likelihood function at two parameter points and find that 

POl (X = x) = L(Ol lx) > L(02 Ix) P02 (X = x) , 
then the sample we actually observed is more likely to have occurred if 0 = 01 than if 
0 =  O2 , which can be interpreted as saying that O} is a more plausible value for the true 
value of 0 than is O2 • Many different ways have been proposed to use this information, 
but certainly it seems reasonable to examine the probability of the sample we actually 
observed under various possible values of O. This is the information provided by the 
likelihood function. 

If X is a continuous, real-valued random variable and if the pdf of X is continuous 
in x, then, for small €, Po (x € < X < x + €) is approximately 2€f(xI0) = 2€L(0Ix) 
(this follows from the definition of a derivative) . Thus, 

P01 (x - € < X < x + €) L (Ol lx) 
Po2 (x - € < X < x + €) ::::::: L(02 Ix) , 

and comparison of the likelihood function at two parameter values again gives an 
approximate comparison of the probability of the observed sample value, x. 

Definition 6.3.1 almost seems to be defining the likelihood function to be the same 
as the pdf or pmf. The only distinction between these two functions is which variable 
is considered fixed and which is varying. When we consider the pdf or pmf f(xIO) , 
we are considering 0 as fixed and x as the variable; when we consider the likelihood 
function L(Olx), we are considering x to be the observed sample point and 0 to be 
varying over all possible parameter values. 

Example 6.3.2 (Negative binomial likelihood) Let X have a negative bino
mial distribution with r = 3 and success probability p. If x 2 is observed, then the 
likelihood function is the fifth-degree polynomial on 0 ::; p ::; 1 defined by 

L(pI2) Pp(X = 2) = (�) p3( 1 _ p)2 , 
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In general, if X = x is observed, then the likelihood function is the polynomial of 
degree 3 + x, 

L (p lx) _- (3 + X
x 

1) 3 ( 1  ) � - p' p � . 

The Likelihood Principle specifies how the likelihood function should be used as a 
data reduction device. 

LIKELIHOOD PRINCIPLE: If x and y are two sample points such that L(Olx) is 
proportional to L(Oly) ,  that is, there exists a constant C(x, y )  such that 

(6.3.1 ) L (O lx) C(x, y)L(O ly) for all 0, 

then the conclusions drawn from x and y should be identical. 

Note that the constant C(x, y) in (6.3. 1 )  may be different for different (x, y)  pairs 
but C(x, y) does not depend on O. 
In the special case of C(x, y) = 1 ,  the Likelihood Principle states that if two 

sample points result in the same likelihood function, then they contain the same 
information about e. But the Likelihood Principle goes further. It states that even 
if two sample points have only proportional likelihoods, then they contain equivalent 
information about e. The rationale is this: The likelihood function is used to compare 
the plausibility of various parameter values, and if L(e2 Ix) = 2L(Ol lx) ,  then, in some 
sense, 02 is twice as plausible as 01 ,  If (6.3.1 )  is also true, then L(02 Iy) = 2L(Ody). 
Thus, whether we observe x or y we conclude that O2 is twice as plausible as 01. 
We carefully used the word "plausible" rather than "probable" in the preceding 

paragraph because we often think of e as a fixed (albeit unknown) value. Furthermore, 
although f(x IO) ,  as a function of x, is a pdf, there is no guarantee that L(Olx) , as a 
function of e, is a pdf. 
One form of inference, called fiducial inference, sometimes interprets likelihoods 

as probabilities for e. That is, L(Olx) is multiplied by M (x) U� LCO lx)de) -l  
(the integral is replaced by a sum if the parameter space is countable) and then 
M(x)L (Olx) is interpreted as a pdf for e (provided, of course, that M(x) is finite ! ) . 
Clearly, L (Olx) and L(8Iy) satisfying (6.3 .1 )  will yield the same pdf since the constant 
C(x, y) will simply be absorbed into the normalizing constant. Most statisticians do 
not subscribe to the fiducial theory of inference but it has a long history, dating back 
to the work of Fisher ( 1930) on what was called inverse probability (an application of 
the probability integral transform). For now, we will for history's sake compute one 
fiducial distribution. 

Example 6.3.3 (Normal fiducial distribution) Let Xl , . . . ,Xn be iid n(/L, u2) , 
0-2 known. Using expression (6.2.4) for L(/Llx), we note first that (6.3.1 )  i s satisfied if 
and only if x 'Ii, in which case 
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Thus, the Likelihood Principle states that the same conclusion about IL should be 
drawn for any two sample points satisfying x y. To compute the fiducial pdf for IL, 
we see that if we define M(x) = nn/2 exp(L� 1 (Xi - x)2/(2a2)) , then M(x)L(lLlx) 
(as a function of IL) is a n (x, (12 In) pdf. This is the fiducial distribution of IL, and a 
fiducialist can make the following probability calculation regarding IL. 
The parameter IL has a n(x, (12 In) distribution. Hence, (lL-x)/(a l,fii) has a n(O, 1) 

distribution. Thus we have 

.95 = P (-1.96 < :1; < 1 .96) 
= P( - 1 .96a I v'n < IL - x < 1 .96a l,fii) 
= P(x 1 .96alv'n < IL < x + 1 .96alv'n)· 

This algebra is similar to earlier calculations but the interpretation is quite different. 
Here x is a fixed, known number, the observed data value, and IL is the variable with 
the normal probability distribution. II 
We will discuss other more common uses of the likelihood function in later chapters 

when we discuss specific methods of inference. But now we consider an argument 
that shows that the Likelihood Principle is a necessary consequence of two other 
fundamental principles. 

6.3.2 The Formal Likelihood Principle 
For discrete distributions, the Likelihood Principle can be derived from two intuitively 
simpler ideas. This is also true, with some qualifications, for continuous distributions. 
In this subsection we will deal only with discrete distributions. Berger and Wolpert 
(1984) provide a thorough discussion of the Likelihood Principle in both the discrete 
and continuous cases. These results were first proved by Birnbaum (1962) in a land
mark paper, but our presentation more closely follows that of Berger and Wolpert . 
Formally, we define an experiment E to be a triple (X, 0, {J(xIO ) } ) ,  where X is a 

random vector with pmf f(x IO) for some 0 in the parameter space e. An experimenter, 
knowing what experiment E was performed and having observed a particular sample 
X = x, will make some inference or draw some conclusion about (). This conclusion 
we denote by Ev(E, x), which stands for the evidence about B arising from E and x. 
Example 6.3.4 (Evidence function) Let E be the experiment consisting of 
observing Xl , " " Xn iid n(lL, (12 ) ,  a2 known. Since the sample mean, X,  is a sufficient 
statistic for IL and EX = IL, we might use the observed value X = x as an estimate 
of IL. To give a measure of the accuracy of this estimate, it is common to report the 
standard deviation of X, al,fii. Thus we could define Ev(E, x) = (x, alv'n) . Here 
we see that the x coordinate depends on the observed sample x, while the a I ,fii 
coordinate depends on the knowledge of E. I I 
To relate the concept of an evidence function to something familiar we now restate 

the Sufficiency Principle of Section 6.2 in terms of these concepts. 

I 
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FORMAL SUFFICIENCY PRINCIPLE: Consider experiment E = (X, (), {j(xl())}) 
and suppose T(X) is a sufficient statistic for (). If x and y are sample points satisfying 
T(x) = T(y) ,  then Ev(E, x) = Ev(E, y) . 
Thus, the Formal Sufficiency Principle goes slightly further than the Sufficiency 

Principle of Section 6.2. There no mention was made of the experiment . Here,· we are 
agreeing to equate evidence if the sufficient statistics match. The Likelihood Principle 
can be derived from the Formal Sufficiency Principle and the following principle, an 
eminently reasonable one. 

CONDITIONALITY PRINCIPLE: Suppose that EI = (Xl , (), {II (xI I()) } ) and E2 
= (X2, (), {h(X2 1()) }) are two experiments, where only the unknown parameter () 
need be common between the two experiments. Consider the mixed experiment in 
which the random variable J is observed, where P(J = 1 ) = P(J = 2) = � 
(independent of (), Xl , or X2) ,  and then experiment EJ is performed. Formally, 
the experiment performed is E* = (X* , (), {j* (x* I ())} ) ,  where X* = (j, Xj ) and 
f* (x* I()) = j* ( (j, Xj ) I()) = �iJ(xj l()) · Then 

(6.3.2) Ev(E* , (j,Xj ) ) = Ev(Ej ,xj ) . 
The Conditionality Principle simply says that if one of two experiments is randomly 

chosen .and the chosen experiment is done, yielding data x, the information about () 
depends only on the experiment performed. That is, it is the same information as 
would have been obtained if it were decided (nonrandomly) to do that experiment 
from the beginning, and data x had been observed. The fact that this experiment 
was performed, rather than some other, has not increased, decreased, or changed 
knowledge of (). 

Example 6.3.5 (Binomial/negative binomial experiment) Suppose the pa
rameter of interest is the probability p, 0 < p < 1 , where P denotes the probability 
that a particular coin will land "heads" when it is flipped. Let El be the experiment 
consisting of tossing the coin 20 times and recording the number of heads in those 
20 tosses. El is a binomial experiment and {II (xl lp)} is the family of binomial(20 ,p) 
pmfs. Let E2 be the experiment consisting of tossing the coin until the seventh head 
occurs and recording the number of tails before the seventh head. E2 is a negative 
binomial experiment. Now suppose the experimenter uses a random number table to 
choose between these two experiments, happens to choose E2 , and collects data con
sisting of the seventh head occurring on trial 20. The Conditionality Principle says 
that the information about () that the experimenter now has, Ev(E* , (2, 13) ) , is the 
same as that which he would have, Ev(E2 ' 13) , if he had just chosen to do the negative 
binomial experiment and had never contemplated the binomial experiment. I I 

The following Formal Likelihood Principle can now be derived from the Formal 
Sufficiency Principle and the Conditionality Principle. 

FORMAL LIKELIHOOD PRINCIPLE: Suppose that we have two experiments, 
EI = (Xl , (), {II (xI I())}) and E2 = (X2 , (), {h(X2 1())}) , where the unknown parameter 
8 is the same in both experiments. Suppose xi and x2 are sample points from El and 
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E2, respectively, such that 

(6.3.3) L(O/x;) CL(Olxi) 

for all 0 and for some constant C that may depend on xi and xi but not O. Then 

Ev(EI ' X�) Ev(E2 ' x;) .  

The Formal Likelihood Principle i s  different from the Likelihood Principle in  Section 
6.3. 1 because the Formal Likelihood Principle concerns two experiments, whereas the 
Likelihood Principle concerns only one. The Likelihood Principle, however, can be 
derived from the Formal Likelihood Principle by letting E2 be an exact replicate of 
E1 • Thus, the two-experiment setting in the Formal Likelihood Principle is something 
of an artifact and the important consequence is the following corollary, whose proof 
is left as an exercise. (See Exercise 6.32 .) 

LIKELIHOOD PRINCIPLE COROLLARY: If E (X, 0 ,  {I (xIO)} ) is an experiment, 
then Ev(E, x) should depend on E and x only through L(Olx). 

Now we state Birnbaum's Theorem and then investigate its somewhat surprising 
consequences. 

Theorem 6.3.6 (Birnbaum's Theorem) The Formal Likelihood Principle fol
lows from the Formal Sufficiency Principle and the Conditionality Principle. The 
converse is also true. 

Proof: We only outline the proof, leaving details to Exercise 6.33. Let E1 , E2, xi , 
and xi be as defined in the Formal Likelihood Principle, and let E" be the mixed 
experiment from the Conditionality Principle. On the sample space of E* define the 
statistic 

T( ' x . ) = { ( 1 ,  xi) if j = 1 and Xl = xi or if j = 2 and X2 J, J (j, Xj) otherwise. 

The Factorization Theorem can be used to prove that T( J; XJ) is a sufficient statistic 
in the E· experiment. Then the Formal Sufficiency Principle implies 

(6.3.4) Ev(E", (l, xm Ev(E" , (2, x;)) , 

the Conditionality Principle implies 

(6.3.5) Ev(E* , ( 1 ,  xi )) Ev(E1 , xV 

Ev(E" (2, x;)) = Ev(E2 , x;) , 

and we can deduce that Ev(E1 , xi )  = Ev(E2 , xi) ,  the Formal Likelihood Principle. 
To prove the converse, first let one experiment be the E* experiment and the other 

Ej • It can be shown that Ev(E* , (j, Xj )) Ev(Ej , xj ) ,  the Conditionality Principle. 
Then, if T(X) is sufficient and T(x) = T(y) ,  the likelihoods are proportional and the 
Formal Likelihood Principle implies that Ev( E, x) Ev( E, y), the Formal Sufficiency 
Principle. 0 
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Example 6.3.7 (Continuation of Example 6.3.5) Consider again the binomial 
and negative binomial experiments with the two sample points Xl = 7 (7 out of 20 
heads in the binomial experiment) and X2 = 13 (the 7th head occurs on the 20th flip 
of the coin). The likelihood functions are 

L(Plxl = 7) = ( 2:) p7(1 _ p) 13 for the binomial experiment 

and 

L(Plx2 = 13) = C
6
9) p7( 1 - p)13  for the negative binomial experiment. 

These are proportional likelihood functions, so the Formal Likelihood Principle states 
that the same conclusion regarding p should be made in both cases. In particular, 
the Formal Likelihood Principle asserts that the fact that in the first case sampling 
ended because 20 trials were completed and in the second case sampling stopped 
because the 7th head was observed is immaterial as far as our conclusions about p are 
concerned. Lindley and Phillips (1976) give a thorough discussion of the binomial
negative binomial inference problem. II 

This point, of equivalent inferences from different experiments, may be amplified by 
considering the sufficient statistic, T, defined in the proof of Birnbaum's Theorem and 
the sample points xi = 7 and xi = 13. For any sample points in the mixed experiment, 
other than ( 1 , 7) or (2 , 13) , T tells which experiment, binomial or negative binomial, 
was performed and the result of the experiment. But for ( 1 , 7) and (2, 13) we have 
T(1, 7) T(2 , 13) = ( 1 , 7) . If we use only the sufficient statistic to make an inference 
and if T (1 , 7) , then all we know is that 7 out of 20 heads were observed. We do 

, not know whether the 7 or the 20 was the fixed quantity. 
Many common statistical procedures violate the Formal Likelihood Principle. With 

these procedures, different conclusions would be reached for the two experiments dis
cussed in Example 6.3.5. This violation of the Formal Likelihood Principle may seem 
strange because, by Birnbaum's Theorem, we are then violating either the Sufficiency 
Principle or the Conditionality Principle. Let us examine these two principles more 
closely. 

The Formal Sufficiency Principle is, in essence, the same as that discussed in Section 
6.1 .  There, we saw that all the information about (J is contained in the sufficient 
statistic, and knowledge of the entire sample cannot add any information. Thus, 
basing evidence on the sufficient statistic is an eminently plausible principle. One 
shortcoming of this principle, one that invites violation, is that it is very model
dependent. As mentioned in the discussion after Example 6.2.9, belief in this principle 
necessitates belief in the model, something that may not be easy to do. 

Most data analysts perform some sort of "model checking" when analyzing a set 
of data. Most model checking is, necessarily, based on statistics other than a suffi
cient statistic. For example, it is common practice to examine residuals from a model, 
statistics that measure variation in the data not accounted for by the model. (We will 
see residuals in more detail in Chapters 11 and 12.) Such a practice immediately vio
lates the Sufficiency Principle, since the residuals are not based on sufficient statistics. 
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(Of course, such a practice directly violates the Likelihood Principle also.) Thus, it 
must be realized that before considering the Sufficiency Principle (or the Likelihood 
Principle) ,  we must be comfortable with the modeL 

The Conditionality Principle, stated informally, says that "only the experiment 
actually performed matters." That is, in Example 6.3.5, if we did the binomial ex
periment, and not the negative binomial experiment, then the (not done) negative 
binomial experiment should in no way influence our conclusion about e. This princi
ple, also, seems to be eminently plausible. 

How, then, can statistical practice violate the Formal Likelihood Principle, when 
it would mean violating either the Principle of Sufficiency or Conditionality? Several 
authors have addressed this question, among them Durbin (1970) and Kalbfleisch 
( 1975) . One argument, put forth by Kalbfleisch, is that the proof of the Formal 
Likelihood Principle is not compelling. This is because the Sufficiency Principle is 
applied in ignorance of the Conditionality Principle. The sufficient statistic, T( J, XJ) ,  
used in the proof of Theorem 6.3.6 is defined on the mixture experiment. If the 
Conditionality Principle were invoked first, then separate sufficient statistics would 
have to be defined for each experiment. In this case, the Formal Likelihood Principle 
would no longer follow. (A key argument in the proof of Birnbaum's Theorem is that 
T( J, XJ) can take on the same value for sample points from each experiment. This 
cannot happen with separate sufficient statistics. )  

At  any rate, since many intuitively appealing inference procedures do  violate the 
Likelihood Principle, it is not universally accepted by all statisticians. Yet it is math
ematically appealing and does suggest a useful data reduction technique. 

6.4 The Equivariance Principle 

The previous two sections both describe data reduction principles in the following 
way. A function T(x) of the sample is specified, and the principle states that if x and 
y are two sample points with T(x) = T(y) ,  then the same inference about e should be 
made whether x or y is observed. The function T(x) is a sufficient statistic when the 
Sufficiency Principle is used. The "value" of T(x) is the set of all likelihood functions 
proportional to L(Blx) if the Likelihood Principle is used. The Equivariance Principle 
describes a data reduction technique in a slightly different way. In any application of 
the Equivariance Principle, a function T(x) is specified, but if T(x) T(y), then the 
Equivariance Principle states that the inference made if x is observed should have a 
certain relationship to the inference made if y is observed, although the two inferences 
may not be the same. This restriction on the inference procedure sometimes leads to a 
simpler analysis, just as do the data reduction principles discussed in earlier sections.2 

Although commonly combined into what is called the Equivariance Principle, the 
data reduction technique we will now describe actually combines two different equi
variance considerations. 

2 As in many other texts (Schervish 1995; Lehmann and Casella 1998; Stuart, Ord, and Arnold 
1999) we distinguish between equivariance, in which the estimate changes in a prescribed way as 
the data are transformed, and invariance, in which the estimate remains unchanged as the data 
are transformed. 
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The first type of equivariance might be called measurement equivariance. It pre
scribes that the inference made should not depend on the measurement scale that is 
used. For example, suppose two foresters are going to estimate the average diameter 
of trees in a forest. The first uses data on tree diameters expressed in inches, and 
the second uses the same data expressed in meters. Now both are asked to produce 
an estimate in inches. (The second might conveniently estimate the average diame
ter in meters and then transform the estimate to inches.)  Measurement equivariance 
requires that both foresters produce the same estimates. No doubt, almost all would 
agree that this type of equivariance is reasonable. 

The second type of equivariance, actually an invariance, might be called formal 
invariance. It states that if two inference problems have the same formal structure in 
terms of the mathematical model used, then the same inference procedure should be 
used in both problems. The elements of the model that must be the same are: e, the 
parameter space; {f(x IB) : B E e} ,  the set of pdfs or pmfs for the sample; and the 
set of allowable inferences and consequences of wrong inferences. This last element 
has not been discussed much prior to this; for this section we will assume that the 
Bet of possible inferences is the same as ej that is, an inference is simply a choice of 
an element of e as an estimate or guess at the true value of B. Formal invariance is 
concerned only with the mathematical entities involved, not the physical description 
of the experiment. For example, e may be e = {B : B > O} in two problems. But in one 
problem B may be the average price of a dozen eggs in the United States (measured in 
cents) and in another problem B may refer to the average height of giraffes in Kenya 
(measured in meters).  Yet, formal invariance equates these two parameter spaces since 
they both refer to the same set of real numbers. 

EQUIVARIANCE PRINCIPLE: If Y = g(X) is a change of measurement scale such 
that the model for Y has the same formal structure as the model for X, then an in
ference procedure should be both measurement equivariant and formally equivariant. 

We will now illustrate how these two concepts of equivariance can work together 
to provide useful data reduction. 

Example 6.4.1 (Binomial equivariance) Let X have a binomial distribution 
with sample size n known and success probability p unknown. Let T(x) be the estimate 
of p that is used when X = x is observed. Rather than using the number of successes, X, to make an inference about p, we could use the number of failures, Y = n - X. 
Y also has a binomial distribution with parameters (n, q = 1 - p) . Let T* (y) be the 
estimate of q that is used when Y = y is observed, so that 1 - T* (y) is the estimate 
of p when Y = y is observed. If x successes are observed, then the estimate of p is 
T(x). But if there are x successes, then there are n - x failures and 1 T*(n x) is 
also an estimate of p. Measurement equivariance requires that these two estimates be 
equal, that is, T( x) = 1 - T* (n - x), since the change from X to Y is just a change 
in measurement scale. Furthermore, the formal structures of the inference problems 
based on X and Y are the same. X and Y both have binomial(n, B) distributions, 
o $ B $ 1. So formal invariance requires that T( z) = T* (z) for all z = 0, . . . , n. Thus, 
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measurement and formal invariance together require that 

(6.4. 1 )  T(x) = 1 - T* (n - x) = 1 - T(n - x) .  

If  we consider only estimators satisfying (6.4.1 ) ,  then we have greatly reduced and sim
plified the set of estimators we are willing to consider. Whereas the specification of an 
arbitrary estimator requires the specification of T(O) , T(l) ,  . . .  , T(n), the specification 
of an estimator satisfying (6.4.1) requires the specification only of 
T(O) , T(l ) ,  . . .  , T( [n/2] ) ,  where [n/2] is the greatest integer not larger than n/2. The 
remaining values of T{x) are determined by those already specified and (6.4.1 ) .  For 
example, T(n) = I - T(O) and T(n- I)  = I -T(l ) .  This is the type of data reduction 
that is always achieved by the Equivariance Principle. The inference to be made for 
some sample points determines the inference to be made for other sample points. 

Two estimators that are equivariant for this problem are T) (x) = x/n and T2(x) ::::: 
.9(x/n) + . 1 ( .5) .  The estimator TI (X) uses the sample proportion of successes to 
estimate p. T2(x) "shrinks" the sample proportion toward .5, an estimator that might 
be sensible if there is reason to think that p is near .5.  Condition (6.4 . 1 )  is easily 
verified for both of these estimators and so they are both equivariant. An estimator 
that is not equivariant is T3(x) = .8(x/n) + .2(1 ) .  Condition (6.4 . 1 )  is not satisfied 
since T3(0) = .2 =I 0 = I - T3 (n - 0) . See Exercise 6.39 for more on measurement vs. 
formal invariance. II 

A key to the equivariance argument in Example 6.4.1 and to any equivariance argu
ment is the choice of the transformations. The data transformation used in Example 
6.4.1 is Y = n - X. The transformations (changes of measurement scale) used in any 
application of the Equivariance Principle are described by a set of functions on the 
sample space called a group of transformations. 

Definition 6.4.2 A set of functions {g(x) : 9 E O} from the sample space X onto 
X is called a group of transformations of X if 

(i) ( Inverse) For every 9 E 0 there is a g' E 0 such that g'(g(x)) = x for all x E X. 
(ii) ( Composition) For every 9 E 0 and g' E 0 there exists gil E 0 such that 

g'(g(x)) gil (x) for all x E X. 
Sometimes the third requirement , 

(iii) (Identity) The identity, e(x) , defined by e(x) = x is an element of g, 

is stated as part of the definition of a group. But (iii) is a consequence of (i) and (ii) 
and need not be verified separately. (See Exercise 6.38.)  

Example 6.4.3 (Continuation of Example 6.4.1) For this problem, only two 
transformations are involved so we may set 9 {gl , g2} ,  with gl (X) = n - x and 
g2 (X) = x. Conditions (i) and (ii) are easily verified. The choice of g' = 9 verifies (i) ,  
that is,  each element is its own inverse. For example, 
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In (ii) , if g' = g, then g" = g2 , while if g' =1= g, then gil = 91 satisfies the equality. For 
example, take gl =1= 9 91· Then 

To use the Equivariance Principle, we must be able to apply formal invariance to 
the transformed problem. That is, after changing the measurement scale we must 
still have the same formal structure. As the structure does not change, we want the 
underlying model, or family of distributions, to be invariant. This requirement is 
summarized in the next definition. 

Definition 6.4.4 Let :F = {f(xIO) : 0 E 8} be a set of pdfs or pmfs for X, and let 
g be a group of transformations of the sample space X. Then :F is invariant under 
the group g if for every 0 E e and 9 E g there exists a unique 0' E 8 such that 
Y :;: g(X) has the distribution f(yIO') if X has the distribution f(xIO) . 
Example 6.4.5 (Conclusion of Example 6.4.1) In the binomial problem, 
we must check both 91 and 92 . If X '" binomial(n ,p) ,  then gl (X) = n - X '" 
binomial(n, l p) so p' = 1 - p, where p plays the role of 0 in Definition 6.4.4. 
Also g2 (X) = X rv binomial(n, p) so pI = P in this case. Thus the set of binomial 
profs is invariant under the group g = {g1 , g2 } . I I 

In Example 6.4. 1 ,  the group of transformations bad only two elements. In many 
cases, the group of transformations is infinite, as the next example illustrates (see 
also Exercises 6.41 and 6.42). 

Example 6.4.6 (Normal location invariance) Let Xl , . ' "  Xn be iid n(JI, (]'2 ) , 
both J.L and (]'2 unknown. Consider the group of transformations defined by g = 
{ga(x) , - 00  < a < oo}, where ga (Xl > " " Xn) (Xl + a, . . . , Xn + a) .  To verify that 
this set of transformations is a group, conditions (i) and (ii) from Definition 6.4.2 
must be verified. For (i) note that 

g-a (9a (Xl > " " xn) )  9-a (XI + a, . . .  , Xn + a) 

= (xI + a  a, . . .  , xn + a - a) 

= (Xl , . . . , xn) . 
So if 9 = gal then g' g-a satisfies (i) . For (ii) note that 

9a2 (gal (Xl l . . " Xn ) ) = ga2 (XI + al, . . . , xn + ad 

= (Xl + al + a2 ' ' ' ' , Xn + al + a2 ) 
= gal +a2 (X l l • • •  , Xn) . 

So if 9 = gal and 9' ga2 ' then g" gal +a2 satisfies (ii) , and Definition 6.4.2 is 
verified. g is a group of transformations. 

The set :F in this problem is the set of all joint densities f(Xl l ' ' ' '  Xn lJ.L, (]'2) for 
Xl , . . .  , Xn defined by "Xb . . . , Xn are iid n(J.L, (]'2 ) for some -00 < JI < 00 and 
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0'2 > 0." For any a, -00 < a < 00, the random variables Y1 , ·  • . •  Yn defined by 

(Y1 • · • .  , Yn) = 9a(X1 • • • •  , Xn) = (Xl + a, . . .  , Xn + a) 
are iid n(J.-l + a, (12) random variables. Thus, the joint distribution of Y = 9a(X) is in 
:F and hence :F is invariant under Q. In terms of the notation in Definition 6.4.4, if 
() = (J.-l, (12) , then (}f = (J.-l + a, 0'2) .  I I 

Remember, once again, that the Equivariance Principle is composed of two distinct 
types of equivariance. One type, measurement equivariance, is intuitively reasonable. 
When many people think of the Equivariance Principle, they think that it refers 
only to measurement equivariance. If this were the case, the Equivariance Principle 
would probably be universally accepted. But the other principle, formal invariance, is 
quite different. It equates any two problems with the same mathematical structure, 
regardless of the physical reality they are trying to explain. It says that one inference 
procedure is appropriate even if the physical realities are quite different, an assumption 
that is sometimes difficult to justify. 

But like the Sufficiency Principle and the Likelihood Principle, the Equivariance 
Principle is a data reduction technique that restricts inference by prescribing what 
other inferences must be made at related sample points. All three principles pre
scribe relationships between inferences at different sample points, restricting the set 
of allowable inferences and, in this way, simplifying the analysis of the problem. 

6.5 Exercises ______________________ _ 

6. 1 Let X be one observation from a nCO, (2) population. Is IXI  a sufficient statistic? 
6.2 Let Xl , . . .  , Xn be independent random variables with densities 

fx; (xIB) = { ei8-X x ;::: �B . 
o x < di. 

Prove that T = mini (Xi/i) is a sufficient statistic for B. 
6.3 Let Xl , . . .  , Xn be a random sample from the pdf 

f(xl/l, a) 

Find a two-dimensional sufficient statistic for (/l, a) .  
6 .4  Prove Theorem 6.2.10. 
6.5 Let Xl , . . . •  Xn be independent random variables with pdfs 

f(Xi IB) { 2;8 -i(B - 1 )  < Xi < i(B + 1)  
o otherwise, 

where B > O. Find a two-dimensional sufficient statistic for B. 
6.6 Let Xl , . . .  , Xn be a random sample from a gamma(o, t3) population. Find a two

dimensional sufficient statistic for (0 .  t3) . 
6.7 Let f(x, y1B1 , B2. B3 , B4) be the bivariate pdf for the uniform distribution on the rectan

gle with lower left corner (Bl , B2) and upper right corner (B3 . B4) in !R2• The parameters 
satisfy Bl < B3 and B2 < B4 . Let (Xl , Yr ) • . . .  , (Xn,  Yn) be a random sample from this 
pdf. Find a four-dimensional sufficient statistic for (B1 . B2 , B3 , B4) .  
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6.8 Let Xl, . . .  , Xn be a random sample from a population with location pdf j (x-B). Show 
that the order statistics, T(XI , . . .  , Xn) = (X(l) , . . .  , X(n» ) ,  are a sufficient statistic 
for B and no further reduction is possible. 

6.9 For each of the following distributions let Xl , . . .  , Xn be a random sample. Find a 
minimal sufficient statistic for e. 
(a) 

(b) 

(c) 

(d) 

(e) 

j(xIO) -00 < x < 00, -00 < 0 < 00 
j(xIB) = e-(x-6) , B < x < 00, -00 < 0 < 00 
j (xIO) = 

j (xI O) 

j(xIO) 

I 1f[1+(x-6)2] , 
I -lx-81  '2 e  , 

-00 < x < 00, -00 < e < 00 

-00 < X < 00, -00 < B < 00 
-00 < x < 00, -00 < B < 00 

(normal) 

(location exponential) 

(logistic) 

(Cauchy) 

(double exponential) 

6.10 Show that the minimal sufficient statistic for the uniform(O, 0 + 1 ) ,  found in Example 
6.2. 15, is not complete. 

6.11 Refer to the pdfs given in Exercise 6.9. For each, let XCI) < . . .  < XCn) be the ordered 
sample, and define Y; = XCn) - XCi) ' i = 1, . . .  , n - 1 .  

(a) For each o f  the pdfs in Exercise 6.9, verify that the set (YI , . . .  , Yn-I ) i s  ancillary 
for O. Try to prove a general theorem, like Example 6.2.18, that handles all these 
families at once. 

(b) In each case determine whether the set (Y1 , • • .  , Yn-I ) is independent of the min
imal sufficient statistic. 

6.12 A natural ancillary statistic in most problems is the sample size. For example, let N 
be a random variable taking values 1 , 2, . . .  with known probabilities Pl , P2 ,  . . .  , where 
EPi = 1. Having observed N = n, perform n Bernoulli trials with success probability e, getting X successes. 

(a) Prove that the pair (X, N) is minimal sufficient and N is ancillary for e. (Note 
the similarity to some of the hierarchical models discussed in Section 4.4.) 

(b) Prove that the estimator X/N is unbiased for 0 and has variance B(l - O)E(l/ N). 

6.13 Suppose Xl and X2 are iid observations from the pdf j(xla) = 
O. Show that (log XI )/(log X2) is an ancillary statistic. 

, x > o, a >  

6.14 Let Xl , . . .  , Xn be a random sample from a location family. Show that M X is an 
ancillary statistic, where M is the sample median. 

6.15 Let Xl , . . .  , Xn be iid n(e, a02) ,  where a is a known constant and e > o. (Q.>o ) 
(a) Show that the parameter space does not contain a two-dimensional open set. 
(b) Show that the statistic T 82) is a sufficient statistic for 0, but the family of 

distributions is not complete. 

6.16 A famous example in genetic modeling (Tanner, 1996 or Dempster, Laird, and Rubin 
1977) is a genetic linkage multinomial model, where we observe the multinomial vector 
(XI , X2 , X3 , X4) with cell probabilities given by ( � + � , � ( 1 - 0) ,  i (1 0), � ) .  
(a) Show that this i s  a curved exponential family. 
(b) Find a sufficient statistic for O.  
(c)  Find a minimal sufficient statistic for e. 



302 PRINClPLES OF DATA REDUCTION Section 6.5 

6.17 Let Xl , . . .  , Xn be iid with geometric distribution 

H,(X x) = O(I - 0)'r- l ,  x = I , 2, . . . , 0 < 0 < 1 . 

Show that EX; is sufficient for 0, and find the family of distributions of EX;. Is the 
family complete? 

6.18 Let Xl , . . .  , Xn be Ed Poisson(>..) .  Show that the family of distributions of EX; .is 
complete. Prove completeness without using Theorem 6.2.25. 

6.19 The random variable X takes the values 0, 1, 2 according to one of the following 
distribu tions: 

P(X = 0) P(X = 1) P(X 2) 

Distribution 1 
Distribution 2 

p 
p 

1 - 4p 0 < p < ! 
I _ p _ p2 O < p < �  

In each case determine whether the family of distributions of X is complete. 
6.20 For each of the following pdfs let Xl , . . .  ) X n be Ed observations. Find a complete 

sufficient statistic, or show that one does not exist. 
(a) f(x IO) = �, 0 < x < 0, 0 >  0 
(b) f(xIO) = (1+:)1+6 ' 0 < x < 00, 0 >  0 

(c) f(x I8) (lo:�i9X ,  0 < x < 1 ,  8 >  1 

(d) f(xIO) e-(x-9) exp(_e-{x-9) ) , -00 < x < 00, -00 < 8 < 00 

(e) f(xJ8) = ( ; ) 8x(1  8 )2-"' , x 0, 1 , 2, 0 $ 0 $ 1  
6.21 Let X be one observation from the pdf 

(a) Is X a complete sufficient statistic? 
(b) Is IX J  a complete sufficient statistic? 
(c) Does f(xI8) belong to the exponential class? 

6.22 Let Xl , . . .  , Xn be a random sample from a population with pdf 

f(xI8) 

(a) Is EX; sufficient for 8? 

8 9- 1 X , 0 <  x < 1 ,  

(b) Find a complete sufficient statistic for O. 

8 >  O. 

6.23 Let Xl , . . .  , Xn be a random sample from a uniform distribution on the interval (8, 28) ,  
f} > O .  Find a minimal sufficient statistic for 8. Is the statistic complete? 

6.24 Consider the following family of distributions: 

This is a Poisson family with >.. restricted to be 0 or 1 .  Show that the family 'P is 
not complete, demonstrating that completeness can be dependent on the range of the 
parameter. (See Exercises 6.15 and 6.18.)  
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6.25 We have seen a number of theorems concerning sufficiency and related concepts for 
exponential families. Theorem 5.2. 1 1  gave the distribution of a statistic whose suffi
ciency is characterized in Theorem 6.2. 10 and completeness in Theorem 6.2.25. But if 
the family is curved, the open set condition of Theorem 6.2.25 is not satisfied. In such 
cases, is the sufficient statistic of Theorem 6.2 . 10 also minimal? By applying Theorem 
6 . 2 . 13 to T(x) of Theorem 6.2. 10, establish the following: 

(a) The statistic (I: Xi, I: xl ) is sufficient, but not minimal sufficient, in the n(fJ., fJ.) 
family. 

(b) The statistic I: xl is minimal sufficient in the n(fJ., fJ.) family. 
(c) The statistic (I: Xi, I: Xl) is minimal sufficient in the n(fJ., fJ.2) family. 
(d) The statistic (I: Xi, I: Xl) is minimal sufficient in the nCfJ., (12) family. 

6.26 Use Theorem 6.6.5 to establish that, given a sample Xl , . . .  , Xn, the following statistics 
are minimal sufficient. 

Statistic 
(a) X 
(b) I: Xi 
(c) max Xi 
(d) X(l) , ' " , X(n) 
(e) X(l) , ' " , X(n) 

Distribution 
n(0, 1 )  

gamma(a, ,B) ,  a known 
uniformeD, 0) 
Cauchy(0, 1)  
logistic(fJ., fJ) 

6.27 Let Xl , . . .  , Xn be a random sample from the inverse Gaussian distribution with pdf 

fCxifJ., .\) 

(a) Show that the statistics 

and 

are sufficient and complete. 

0 <  x < 00. 

n T = n i l 
I:i=l Xi - X 

(b) For n 2, show that X has an inverse Gaussian distribution, nVT has a X�-l 
distribution, and they are independent. (Schwarz and Samanta 1991 do the general 
case.) 

The inverse Gaussian distribution has many applications, particularly in modeling of 
lifetimes. See the books by Chikkara and Folks ( 1989) and Seshadri ( 1993) . 

6.28 Prove Theorem 6.6.5. (Hint: First establish that the minimal sufficiency of T(X) in the 
family {fo (x) , . . .  , /k (X)} follows from Theorem 6.2. 13. Then argue that any statistic 
that is sufficient in :F must be a function of T(x) .)  

6.29 The concept of minimal sufficiency can be extended beyond parametric families of 
distributions. Show that if  X I ,  . . •  , Xn are a random sample from a density f that is 
unknown, then the order statistics are minimal sufficient. 
(Hint: Use Theorem 6.6.5, taking the family {fo (x) , . . .  , h ex)} to be logistic densities. )  

6.30 Let Xl , . . .  , Xn be a random sample from the pdf f(x ifJ.) = e-(x-!-') , where -00 < fJ. < 
x < 00. 
(a) Show that X(l) = min; Xi is a complete sufficient statistic. 
(b) Use Basu's Theorem to show that X{! ) and 82 are independent. 



304 PRlNCIPLES OF DATA REDUCTION Section 6.5 

6.31 Boos and Hughes-Oliver ( 1998) detail a number of instances where application of 
Basu's Theorem can simplify calculations. Here are a few. 

(a) Let Xl, . . .  , X", be iid n(fL, 0-2) ,  where 0-2 is known. 

(i) Show that X is complete sufficient for fL, and 82 is ancillary. Hence by Basu's 
Theorem, X and 82 are independent. 

(ii) Show that this independence carries over even if 0-2 is unknown, as knowledge 
of 0-2 has no bearing on the distributions. (Compare this proof to the more 
involved Theorem 5.3.1 (a).) 

(b) A Monte Carlo swindle is a technique for improving variance estimates. Suppose 
that X I ,  . . .  , Xn are iid n(fL, 0-2) and that we want to compute the variance of the 
median, AI. 
0) Apply Basu's Theorem to show that Var(M) = Var(M - X) +  Var(X) ;  thus we 

only have to simulate the Var(M -X) piece of Var(M) (since Var(X) = 0-2 In) . 
(ii) Show that the swindle estimate is more precise by showing that the variance of 

M is approximately 2 [Var(MWI(N 1 )  and that of M X is approximately 
2 [Var(M X )? I(N - 1 ) ,  where N is the number of Monte Carlo samples. 

(c) (i) If XIY and Y are independent random variables, show that 

(X ) k E(Xk) E Y = E(Yk ) " 

(ii) Use this result and Basu's Theorem to show that if Xl , . . .  , X", are iid 
gamma(a, .8) , where a is known, then for T = Li Xj 

6.32 Prove the Likelihood Principle Corollary. That is, assuming both the Formal Sufficiency 
Principle and the Conditionality Principle, prove that if E = (X, 0, {J(xIO)} )  is an 
experiment, then Ev(E, x) should depend on E and x only through L(OJx). 

6.33 Fill in the gaps in the proof of Theorem 6.3.6, Birnbaum's Theorem. 

(a) Define g(t I O) = g( (j, xj ) IO) ::= r« j, Xj ) IO) and 

h(j, Xj) = { C  if (j, Xj) (2, X2 ) 
1 otherWise. 

Show that T(j, Xj) is a sufficient statistic in the E' experiment by verifying that 

for all (j, Xj) .  
(b) A s  T i s  sufficient, show that the Formal Sufficiency Principle implies (6.3.4) . Also 

the Conditionality Principle implies (6 .3.5) , and hence deduce the Formal Likeli
hood Principle. 

(c) To prove the converse, first let one experiment be the E· experiment and the 
other Ej and deduce that Ev(E·,  (j, Xj » = Ev(Ej , xj ) , the Conditionality Prin
ciple. Then, if T{X) is sufficient and T(x) T(y), show that the likelihoods are 
proportional and then use the Formal Likelihood Principle to deduce Ev(E, x) 
Ev(E, y), the Formal Sufficiency Principle. 
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6.34 Consider the model in Exercise 6.12. Show that the Formal Likelihood Principle implies 
that any conclusions about 8 should not depend on the fact that the sample size n 
was chosen randomly. That is, the likelihood for (n, x),  a sample point from Exercise 
6. 12, is proportional to the likelihood for the sample point x, a sample point from a 
fixed-sample-size binomial( n, 8) experiment. 

6.35 A risky experimental treatment is to be given to at most three patients. The treatment 
will be given to one patient. If it is a success, then it will be given to a second. If it 
is a success, it will be given to a third patient. Model the outcomes for the patients 
as independent Bernoulli(p) random variables. Identify the four sample points in this 
model and show that, according to the Formal Likelihood Principle, the inference 
about p should not depend on the fact that the sample size was determined by the 
data. 

6.36 One advantage of using a minimal sufficient statistic is that unbiased estimators will 
have smaller variance, as the following exercise will show. Suppose that TI is sufficient 
and T2 is minimal sufficient, U is an unbiased estimator of 8, and define UI = E(UITI )  
and U2 = E(UIT2) .  

(a) Show that U2 = E(UI IT2) .  
(b) Now use the conditional variance formula (Theorem 4.4.7) to  show that Var U2 :-:; 

Var UI . 

(See Pena and Rohatgi 1994 for more on the relationship between sufficiency and 
unbiasedness. ) 

6.37 Joshi and Nabar (1989) examine properties of linear estimators for the parameter in 
the so-called "Problem of the Nile," where (X, Y) has the joint density 

f(x, y 18) = exp{ - (8x + yj8)} , x >  0, Y > o. 

(a) For an iid sample of size n, show that the Fisher information is 1(8) = 2nj82 • 
(b) For the estimators 

show that 

(i) the information in T alone is [2nj(2n + 1 )]1(8); 
(ii) the information in (T, U) is 1(8); 

(iii) (T, U) is jointly sufficient but not complete. 

6.38 In Definition 6.4.2, show that (iii) is implied by (i) and (ii). 
6.39 Measurement equivariance requires the same inference for two equivalent data points: 

x, measurements expressed in one scale, and y, exactly the same measurements ex
pressed in a different scale. Formal invariance, in the end, leads to a relationship 
between the inferences at two different data points in the same measurement scale. 
Suppose an experimenter wishes to estimate 8, the mean boiling point of water, based 
on a single observation X, the boiling point measured in degrees Celsius. Because of the 
altitude and impurities in the water he decides to use the estimate T(x) = .5x+.5(lOO) . 
If the measurement scale is changed to degrees Fahrenheit, the experimenter would 
use T* (y) = . 5y + .5(212) to estimate the mean boiling point expressed in degrees 
Fahrenheit. 

(a) The familiar relation between degrees Celsius and degrees Fahrenheit would lead 
us to convert Fahrenheit to Celsius using the transformation � (T* (y) - 32). Show 
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that this procedure is measurement equivariant in that the same answer will be 
obtained for the same dataj that is, � (T* (y) - 32) = T(x) . 

(b) Formal invariance would require that T(x) T* (x) for all x. Show that the 
estimators we have defined above do not satisfy this. So they are not equivariant 
in the sense of the Equivariance Principle. 

6.40 Let XI , . . .  , Xn be Ed observations from a location-scale family. Let TdXI , . . .  , Xn) 
and T2 (Xl , . . .  , X  n) be two statistics that both satisfy 

Ti(aXI + b, . . . , aXn + b) aTi (Xl , . . .  , Xn) 

for all values of Xl ,  . . .  , xn and b and for any a > O. 

(a) Show that TI/T2 is an ancillary statistic. 
(b) Let R be the sample range and S be the sample standard deviation. Verify that 

R and S satisfy the above condition so that R/ S is an ancillary statistic. 
6.41 Suppose that for the model in Example 6.4.6, the inference to be made is an estimate 

of the mean iJ.. Let T(x) be the estimate used if X = x is observed. If ga (X) = Y y 
is observed, then let T* (y) be the estimate of iJ. + a, the mean of each Yi. If iJ. + a is 
estimated by T" (y), then iJ. would be estimated by T* (y) a. 

(a) Show that measurement equivariance requires that T(x) =:: T· (y) a for all x 
(Xl ,  . . .  , Xn)  and all a. 

(b) Show that formal invariance requires that T(x) =:: T* (x) and hence the Equiv
ariance Principle requires that T(XI ,  . . .  , Xn)  + a = T(X1 + a, . . .  , Xn + a) for all 
(Xl , . . . , xn )  and all a. 

(c) If XI " " , Xn are iid f(x - 0), show that, as long as EOXI = 0, the estimator 
W(XI , • . •  , Xn)  = X is equivariant for estimating 0 and satisfies EoW =:: B. 

6.42 Suppose we have a random sample Xl > . . .  , Xn from � f((x - B)/u) , a location-scale 
pdf. We want to estimate B, and we have two groups of transformations under consid
eration: 

91 =:: {g",c (x) : -00 < a < 00, C >  O}, 

where ga,c (Xl , . . .  , Xn )  = (CXl + a, . . .  , CXn  + a) ,  and 

92 {g,, (x) :  -00 < a < oo}, 

where go. (Xl , . • •  , Xn)  (Xl + a, . . .  , Xn + a). 
(a) Show that estimators of the form 

W(X l ,  . . .  , Xn)  = x + k, 

where k is a nonzero constant, are equivariant with respect to the group 92 but 
are not equivariant with respect to the group {h . 

(b) For each group, under what conditions does an equivariant estimator W satisfy 
EeW B, that is, it is unbiased for estimating B? 

6.43 Again, suppose we have a random sample Xl , . . .  , Xn from �f((x - B)/u), a location
scale pdf, but we are now interested in estimating u2 • We can consider t hree groups 
of transformations: 

91 {g",c(x): -00 < a < 00, c > O}, 
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where Ya,c(XI , . . .  , x,,) = (exl + a, . . . , ex" + a) ; 

{h {y.,(x) :  -00 < a < oo}, 

where y.,(XI , . . .  , x,,) (Xl + a, . . .  , X., + a); and 

where Yc(XI , . . .  , x,,) = (ex l ,  . . .  , ex,,) . 
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(a) Show that estimators of (j2 of the form k82 , where k is a positive constant and 
82 is the sample variance, are invariant with respect to (12 and equivariant with 
respect to the other two groups. 

(b) Show that the larger class of estimators of (j2 of the form 

where ¢(x) is a function, are equivariant with respect to Qa but not with respect 
to either QI or Q2 , unless ¢(x) is a constant (Brewster and Zidek 1974). 
Consideration of estimators of this form led Stein ( 1964) and Brewster and Zidek 
(1974) to find improved estimators of variance (see Lehmann and Casella 1998, 
Section 3.3). 

8.6 Miscellanea ___________________ . __ _ 

6.6.1 The Converse of Basu 's Theorem 
An interesting statistical fact is that the converse of Basu's Theorem is false. That 
is, if T(X) is independent of every ancillary statistic, it does not necessarily follow 
that T(X) is a complete, minimal sufficient statistic. A particularly nice treatment 
of the topic is given by Lehmann (1981 ) . He makes the point that one reason the 
converse fails is that ancillarity is a property of the entire distribution of a statistic, 
whereas completenes..c; is a property dealing only with expectations. Consider the 
following modification of the definition of ancillarity. 

Definition 6.6.1 A statistic V(X) is called first-order ancillary if EoV(X) is 
independent of O. 

Lehmann then proves the following theorem, which is somewhat of a converse to 
Basu's Theorem. 

Theorem 6.6.2 Let T be a statistic with Var T < 00 .  A necessary and sufficient 
condition for T to be complete is that every bounded first-order ancillary V is 
uncorrelated (for all ()) with every bounded real-valued function of T. 

Lehmann also notes that a type of converse is also obtainable if, instead of modi
fying the definition of ancillarity, the definition of completeness is modified. 
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6.6.2 Confusion About Ancillarity 
One of the prohlems with the concept of anciilarity is that there are many different 
definitions of ancillarity, and different properties are given in these definitions. As 
was seen in this chapter, ancillarity is confusing enough with one definition-with 
five or six the situation becomes hopeless. 

As told by Buehler (1982) , the concept of ancillarity goes back to Sir Ronald Fisher 
( 1925) ,  "who left a characteristic trail of intriguing concepts but no definition." 
Buehler goes on to tell of at least three definitions of ancillarity, crediting, among 
others, Basu ( 1959) and Cox and Hinkley ( 1974) . Buehler gives eight properties of 
ancillary statistics and lists 25 examples. 

However, it is worth the effort to understand the difficult topic of ancillarity, as 
it can play an important role in inference. Brown (1996) shows how ancillarity 
affects inference in regression, and Reid (1995) reviews the role of ancillarity (and 
other conditioning) in inference. The review article of Lehmann and Scholz ( 1992) 
provides a good entry to the topic. 

6.6.3  More on Sufficiency 
1 .  Sufficiency and Likelihood 

There is a striking similarity between the statement of Theorem 6.2.1 3  and the 
Likelihood Principle. Both relate to the ratio L(Olx)/L(Oly), one to describe a 
minimal sufficient statistic and the other to describe the Likelihood Principle. 
In fact, these theorems can be combined, with a bit of care, into the fact that 
a statistic T(x) is a minimal sufficient statistic if and only if it is a one-to-one 
function of L(Olx) (where two sample points that satisfy (6.3. 1 )  are said to have 
the same likelihood function) .  Example 6.3.3 and Exercise 6 .9 illustrate this 
point. 

2. Sufficiency and Necessity 
We may ask, "If there are sufficient statistics, why aren't there necessary statis
tics?" In fact, there are. According to Dynkin ( 1951 ) ,' we have the following 
definition. 

Definition 6.6.3 A statistic is said to be necessary if it can be written as a 
function of every sufficient statistic. 

If we compare the definition of a necessary statistic and the definition of a 
minimal sufficient statistic, it should come as no surprise that we have the 
following theorem. 

Theorem 6.6.4 A statistic is a minimal sufficient statistic if and only if it 
is a necessary and sufficient statistic. 

3. Minimal Sufficiency 
There is an interesting development of minimal sufficiency that actually follows 
from Theorem 6.2.13 (see Exercise 6.28) and is extremely useful in establishing 
minimal sufficiency outside of the exponential family. 
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Theorem 6.6.5 (Minimal sufficient statistics) Suppose that the family of 
densities {fo (x) , . . .  , fdx)} all have common support. Then 

a. The statistic (h(X) h(X) fk(X) ) T(X) = fo(X) ' fo(X) '  . . . , fo(X) 

is minimal sufficient for the family {fo (x) , . . .  , fk (x) } .  
h .  If:F is a family of densities with common support, and 

(i) J; (x) E :F, i 0, 1 ,  . . .  , k, 
(ii) T(x) is sufficient for :F, 

then T(x) is minimal sufficient for :F. 

Although Theorem 6.6.5 can be used to establish the minimal sufficiency of X 
in a n(O, 1 )  family, its real usefulness comes when we venture outside of simple 
situations. For example, Theorem 6.6.5 can be used to show that for samples 
from distributions like the logistic or double exponential, the order statistics are 
minimal sufficient (Exercise 6.26) . Even further, it can extend to nonparametric 
families of distributions (Exercise 6.26) . 

For more on minimal sufficiency and completeness, see Lehmann and Casella 
(1998, Section 1 .6) .  
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Chapter 7 

Point Estimation 

"What! you have solved it already?" 
"Well, that would be too much to say. I have discovered a suggestive fact, that 
is all. " 

Dr. Watson and Sherlock Holmes 
The Sign of Four 

t 7.1 Introduction 

; This chapter is divided into two parts. The first part deals with methods for finding 
� estimators, and the second part deals with evaluating these (and other) estimators. In 
i general these two activities are intertwined. Often the methods of evaluating estima, 

tors will suggest new ones. However, for the time being, we will make the distinction 
� between finding estimators and evaluating them. , 

The rationale behind point estimation is quite simple. When sampling is from a 
population described by a pdf or pmf f(xIO) , knowledge of 0 yields knowledge of the 
entire population. Hence, it is natural to seek a method of finding a good estimator 

I of the point 0, that is, a good point estimator. It is also the case that the parameter 
. () has a meaningful physical interpretation (as in the case of a population mean) so 

there is direct interest in obtaining a good point estimate of B. It may also be the 
case that some function of 0, say r(O) , is of interest. The methods described in this 
chapter can also be used to obtain estimators of r (B) . 

The following definition of a point estimator may seem unnecessarily vague. How
ever. at this point, we want to be careful not to eliminate any candidates from con
sideration. 

Definition 7.1.1 A point estimator is any function W(X1 • • • •  , Xn)  of a sample; 
that is, any statistic is a point estimator. 

Notice that the definition makes no mention of any correspondence between the 
estimator and the parameter it is to estimate. While it might be argued that such a 
statement should be included in the definition, such a statement would restrict the 
available set of estimators. Also, there is no mention in the definition of the range 
of the statistic W(Xl' . . .  , Xn) .  While, in principle, the range of the statistic should 
coincide with that of the parameter, we will see that this is not always the case. 
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There is one distinction that must be made clear, the difference between an estimate 
and an estimator. An estimator is a function of the sample, while an estimate is the 
realized value of an estimator (that is, a number) that is obtained when a sample is 
actually taken. Notationally, when a sample is taken, an estimator is a function of the 
random variables Xl " ' "  Xn , while an estimate is a function of the realized values 
Xl ! • . .  , Xn· 

In many cases, there will be an obvious or natural candidate for a point estimator 
of a particular parameter. For example, the sample mean is a natural candidate for 
a point estimator of the population mean. However, when we leave a simple case like 
this, intuition may not only desert us, it may also lead us astray. Therefore, it is 
useful to have some techniques that will at least give us some reasonable candidates 
for consideration. Be advised that these techniques do not carry any guarantees with 
them. The point estimators that they yield still must be evaluated before their worth 
is established. 

7.2 Methods of Finding Estimators 
In some cases it is an easy task to decide how to estimate a parameter, and often intu
ition alone can lead us to very good estimators. For example, estimating a parameter 
with its sample analogue is usually reasonable. In particular, the sample mean is a 
good estimate for the population mean. In more complicated models, ones that often 
arise in practice, we need a more methodical way of estimating parameters. In this 
section we detail four methods of finding estimators. 

7.2. 1 Method of Moments 

The method of moments is, perhaps, the oldest method of finding point estimators, 
dating back at least to Karl Pearson in the late 1800s. It has the virtue of being 
quite simple to use and almost always yields some sort of estimate. In many cases, 
unfortunately, this method yields estimators that may be improved upon. However, 
it is a good place to start when other methods prove intractable. 

Let Xl > " " Xn be a sample from a population with pdf or pmf f(XIOl , " "  th) ·  
Method of  moments estimators are found by equating the first k sample moments 
to the corresponding k population moments, and solving the resulting system of 
simultaneous equations. More precisely, define 

1 
n 

ml  = L xi ,  f.L't = EX! , n i=l 

(7.2 . 1) 
1 n 

mk = - L Xt, n i=l 
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The population moment Ilj will typically be a function of 011 • • •  , Ok , say 11-' j (Ol l . . .  , Ok)' 
The method of moments estimator (01 , . . . . Ok) of (th , . . .  , Ok )  is obtained by solving 
the following system of equations for (01 • . . .  , 11k) in terms of (ml , " " mk) : 

(7.2.2) 

ml J.L\ (l1l , ' " , 11k ) , 

m2 J.L'2 (111 , · . .  , Ok) ,  

Example 7.2.1 (Normal method of moments) Suppose Xl " " , Xn are iid 
nCO, (72) . In the preceding notation, 01 = 0 and O2 = (72 . We have ml X, m2 
(lin) E Xl, J.L't = 0, J.L'2 = 02 + (72, and hence we must solve 

X = 11, 

Solving for 0 and (72 yields the method of moments estimators 

o = X and 0'2 = ..!:. '\' x2 - X2 = ..!:. '\' (Xi - X)2. n L.t  t n L.t  

In this simple example, the method of moments solution coincides with our intuition 
and perhaps gives some credence to both. The method is somewhat more helpful, 
however, when no obvious estimator suggests itself. 

Example 7.2.2 (Binomial method of moments) Let Xl > . . ' l Xn be iid 
binomial(k, p) ,  that is, 

P(Xi = xlk,p) = G)pX(l - p)k-x, x = 0, 1 ,  . . . , k. 

Here we assume that both k and p are unknown and we desire point estimators 
for both parameters. (This somewhat unusual application. of the binomial model has 
been used to estimate crime rates for crimes that are known to have many unreported 
occurrences. For such a crime, both the true reporting rate, p, and the total number 
of occurrences, k, are unknown.)  

Equating the first two sample moments to those of the popUlation yields the system 
of equations 

X = kp, 
1 ;; L: xl = kp( 1 - p) + k2p2 l 

which now must be solved for k and p. After a little algebra, we obtain the method 
of moments estimators 

_ X2 k = -
X - (lin) E(Xi - X)2 
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and 

_ X p = -::- . 
k 

Admittedly, these are not the best estimators for the population parameters. In 
particular, it is possible to get negative estimates of k and p which, of course, must 
be positive numbers. (This is a case where the range of the estimator does not coincide 
with the range of the parameter it is estimating.) However, in fairness to the method 
of moments, note that negative estimates will occur only when the sample mean is 
smaller than the sample variance, indicating a large degree of variability in the data. 
The method of moments has, in this case, at least given us a set of candidates for 
point estimators of k and p. Although our intuition may have given us a candidate 
for an estimator of p, coming up with an estimator of k is much more difficult. II 

The method of moments can be very useful in obtaining approximations to the dis
tributions of statistics. This technique, sometimes called "moment matching," gives 
us an approximation that is based on matching moments of distributions. In theory, 
the moments of the distribution of any statistic can be matched to those of any distri
bution but, in practice, it is best to use distributions that are similar. The following 
example illustrates one of the most famous uses of this technique, the approximation 
of Satterthwaite (1946) . It is still used today (see Exercise 8.42) . 

Example 7.2.3 (Satterthwaite approximation) If Yi ,  i 1 ,  . . . , k, are inde
pendent X;i random variables, we have already seen (Lemma 5.3.2) that the distribu
tion of E Yi is also chi squared, with degrees of freedom equal to E ri o Unfortunately, 
the distribution of E ai Yi,  where the aiS are known constants, is, in general, quite 
difficult to obtain. It does seem reasonable, however, to assume that a X�, for some 
value of II, will provide a good approximation. 

This is almost Satterthwaite's problem. He was interested in approximating the 
denominator of a t statistic, and E ai Yi represented the square of the denominator 
of his statistic. Hence, for given al , . . .  , ak , he wanted to find a value of II so that 

(approximately) . 

Since E(X�/II) 1 ,  to match first moments we need 

which gives us a constraint on the ais but gives us no information on how to estimate 
II. To do this we must match second moments, and we need 
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Applying the method of moments, we drop the first expectation and solve for v, 
yielding 

2 
aiYi) 2 - 1 

Thus, straightforward application of the method of moments yields an estimator of 
v, but one that can be negative. We might suppose that Satterthwaite was aghast at 
this possibility, for this is not the estimator he proposed. Working much harder, he 
customized the method of moments in the following way. Write 

E (I: aiYi f = Var (I: aiYi) + (E I: aiYi f 
= (E I: ai Yi f [�:t����l + 1] 
= [Var(LaiYi) + 1] . (E LaiYi)2 

Now equate second moments to obtain 

v 2 (E L aiYi )2 
Var(L aiYi) . 

Finally, use the fact that Y1 , • • •  , Yk are independent chi squared random variables 
to write 

Var (I: ai Yi ) I: a;Var Yi 

= 2 '" a;(EYi)2 
L..t ri 

Substituting this expression for the variance and removing the expectations, we obtain 
Satterthwaite's estimator 

This approximation is quite good and is still widely used today. Notice that Sat
terthwaite succeeded in obtaining an estimator that is always positive, thus alleviating 
the obvious problems with the straightforward method of moments estimator. " 

1.2.2 Maximum Likelihood Estimators 

The method of maximum likelihood is, by far, the most popular technique for deriving 
estimators. Recall that if Xl , . . .  , Xn are an iid sample from a population with pdf 
or pmf f(xlfh , . . .  , Bk) ,  the likelihood function is defined by 

(7.2.3) 
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Definition 7.2.4 For each sample point x, let O(x) be a parameter value at whicb 
L( B lx) attains its maximum as a function of B, with x held fixed. A maximum likelihood 
estimator (MLE) of the parameter B based on a sample X is O(X) .  

Notice that, by its construction, the range of the MLE coincides with the range of 
the parameter. We also use the abbreviation MLE to stand for maximum likelihood 
estimate when we are talking of the realized value of the estimator. 

Intuitively, the MLE is a reasonable choice for an estimator. The MLE is the pa� 
rameter point for which the observed sample is most likely. In general, the MLE is a 
good point estimator, possessing some of the optimality properties discussed later. 

There are two inherent drawbacks associated with the general problem of finding 
the maximum of a function, and hence of maximum likelihood estimation. The first 
problem is that of actually finding the global maximum and verifying that, indeed, 
a global maximum has been found. In many cases this problem reduces to a simple 
differential calculus exercise but, sometimes even for common densities, difficulties do 
arise. The second problem is that of numerical sensitivity. That is, how sensitive is 
the estimate to small changes in the data? (Strictly speaking, this is a mathematical 
rather than statistical problem associated with any maximization procedure. Since 
an MLE is found through a maximization procedure, however, it is a problem that 
we must deal with.) Unfortunately, it is sometimes the case that a slightly different 
sample will produce a vastly different MLE, making its use suspect. We consider first 
the problem of finding MLEs. 

If the likelihood function is differentiable (in Bd, possible candidates for the MLE 
are the values of (Bl , . .  , Bk )  that solve 

(7.2.4) 
a 

OBi 
L(Blx) = 0, i = 1 ,  . . . , k . 

Note that the solutions to (7.2.4) are only possible candidates for the MLE since the 
first derivative being 0 is only a necessary condition for a maximum, not a sufficient 
condition. Furthermore, the zeros of the first derivative locate only extreme points 
in the interior of the domain of a function. If the extrema occur on the boundary 
the first derivative may not be O. Thus, the boundary must be checked separately for 
extrema. 

Points at which the first derivatives are 0 may be local or global minima, local or 
global maxima, or inflection points. Our job is to find a global maximum. 

Example 7.2.5 (Normal likelihood) 
L(B lx) denote the likelihood function. Then 

n 
1 2 

L(Blx) = II e-(1/2) (xi -9) 
. (21f) 1/2 t=1 

The equation (djdB)L(B lx) = 0 reduces to 

n 

Let Xl , ' "  , Xn be iid n(B, l ) ,  and let 
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which has the solution i) = x .  Hence, x is a candidate for the MLE. To verify that 
x is, in fact , a global maximum of the likelihood function, we can use the following 
argument . First, note that iJ = x is the only solution to E(Xi - 0) = OJ hence x is the 
only zero of the first derivative. Second, verify that 

Thus, x is the only extreme point in tHe interior and it is a maximum. To finally verify 
that x is a global maximum, we must check the boundaries, ±oo. By taking limits it 
is easy to establish that the likelihood is 0 at ±oo. So iJ = x is a global maximum and 
hence X is the MLE. (Actually, we can he a bit more clever and avoid checking ±oo. 
Since we established that x is a unique interior extremum and is a maximum, there 
can be no maximum at ±oo. If there were, then there would have to be an interior 
minimum, which contradicts uniqueness. )  I I  

Another way to find an MLE is t o  abandon differentiation and proceed with a 
direct maximization. This method is usually simpler algebraically, especially if the 
derivatives tend to get messy, but is sometimes harder to implement because there 
are no set rules to follow. One general technique is to find a global upper bound on 
the likelihood function and then establish that there is a unique point for which the 
upper bound is attained. 

Example 7.2.6 (Continuation of Example 7.2.5) Recall (Theorem 5.2.4) that 
for any number a, 

n 
a)2 � 2)Xi - X)2 

i=l 

with equality if and only if a = x. This implies that for any B, 

with equality if and only if 0 = X. Hence X is the MLE. 

In most cases, especially when differentiation is to be used, it is easier to work 
with the natural logarithm of L(Blx), log L(O lx) (known as the log likelihood), than it 
is to work with L(B lx) directly. This is possible because the log function is strictly 
increasing on (0, 00), which implies that the extrema of L(Blx) and log L(Blx) coincide 
(see Exercise 7.3) . 

Example 7.2.7 (Bernoulli MLE) Let Xl> " " Xn be iid Bernoulli(p) . Then the 
likelihood function is 

n 
L(plx) IIpXi ( l  p) l-x; = pY(l p)n-y, 

i=l 
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where y = L Xi· While this function is not all that hard to differentiate, it is much 
easier to differentiate the log likelihood 

log L(plx) = y logp + (n - y) log(l - p) . 
If 0 < y < n, differentiating log L(plx) and setting the result equal to 0 give the 
solution, p = yin. It is also straightforward to verify that Yin is the global maximum 
in this case. If y 0 or y = n, then { n log( 1  log L(p\x) = n logp 

p) if Y = 0 
if y = n. 

In either case log L(pJx) is a monotone function of p, and it is again straightforward 
to verify that p = yin in each case. Thus, we have shown that L: Xdn is the MLE 
cl � � 

In this derivation we have assumed that the parameter space is 0 � p � 1 .  The 
values p = 0 and 1 must be in the parameter space in order for p = Yin to be the 
MLE for y 0 and n. Contrast this with Example 3.4. 1 ,  where we took 0 < p < 1 to 
satisfy the requirements of an exponential family. 

One other point to be aware of when finding a maximum likelihood estimator is 
that the maximization takes place only over the range of parameter values. In some 
cases this point plays an important part. 

Example 7.2.8 (Restricted range MLE) Let Xl , . "  , Xn be iid n(O, 1 ) ,  where it 
is known that () must be nonnegative. With no restrictions on 0, we saw that the MLE 
of 0 is X; however, if X is negative, it will be outside the range of the parameter. 

If x is negative, it is easy to check (see Exercise 7.4) that the likelihood function 
L(Olx) is decreasing in 0 for 0 � 0 and is maximized at {j = O. Hence, in this case, 
the MLE of () is 

{j = X if X � 0 and {j = 0 if X < O. 1 1 

If L(O\x) cannot be maximized analytically, it may be possible to use a computer 
and maximize L(Olx) numerically. In fact, this is one of the most important features 
of MLEs. If a model (likelihood) can be written down, then there is some hope of 
maximizing it numerically and, hence, finding MLEs of the parameters. When this 
is done, there is still always the question of whether a local or global maximum has 
been found. Thus, it is always important to analyze the likelihood function as much 
as possible, to find the number and nature of its local maxima, before using numeric 
maximization. 

Example 7.2.9 (Binomial MLE, unknown number of trials) Let Xl , " " 
Xn be a random sample from a binomial(k,p) population, where p is known and k is 
unknown. For example, we flip a coin we know to be fair and observe Xi heads but 
we do not know how many times the coin was flipped. The likelihood function is 
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Maximizing L(klx,p) by differentiation is difficult because of the factorials and be
cause k must be an integer. Thus we try a different approach. 

Of course, L(klx, p) = 0 if k < ma,xi Xi . Thus the MLE is an integer k :;:: maxi Xi 
that satisfies L(klx, p)/L(k - l lx, p) :;:: 1 and L(k + l lx, p)/L(klx,p) < 1 .  We will 
show that there is only one such k. The ratio of likelihoods is 

L(klx,p) 
L(k - l lx,p) 

Thus the condition for a maximum is 

(k(1 p»)n 
I1�=l (k Xi) ' 

n n 
(k(l p))n :;:: IT(k - Xi ) and « k + 1 ) ( 1 - p)t < IT(k + 1 - Xi) . 

i=l i=l 
Dividing by kn and letting z = l/k, we want to solve 

n 
( 1  - p)n IT (1 - XiZ) 

i=l 
for 0 S z s 1/  maxi Xi . The right-hand side is clearly a strictly decreasing function 
of z for Z in this range with a value of 1 at z 0 and a value of 0 at Z = 1/ maxi Xi '  
Thus there is a unique z (call it i) that solves the equation. The quantity 1/ i may not 
be an integer. But the integer it: that satisfies the inequalities, and is the MLE, is the 
largest integer less than or equal to l/i (see Exercise 7.5) . Thus, this analysis shows 
that there is a unique maximum for the likelihood function and it can be found by 
numerically solving an nth-degree polynomial equality. This description of the MLE 
for k was found by Feldman and Fox ( 1968) . See Example 7.2. 13 for more about 
estimating k. I I  

A useful property of maximum likelihood estimators is what has come to be known 
as the invariance property of maximum likelihood estimators (not to be confused with 
the type of invariance discussed in Chapter 6). Suppose that a distribution is indexed 
by a parameter 0, but the interest is in finding an estimator for some function of 0,  
say T(O) . Informally speaking, the invariance property of MLEs says that if {) is the 
MLE of 0, then T(O) is the MLE of T(O) . For example, if 0 is the mean of a normal 
distribution, the MLE of sin(O) is sin(X) .  We present the approach of Zehna (1966) , 
but see Pal and Berry ( 1992) for alternative approaches to MLE invariance. 

There are, of course, some technical problems to be overcome before we can formal
ize this notion of invariance of MLEs, and they mostly focus on the function T( 0) that 
we are trying to estimate. If the mapping 0 -+ T(O) is one-to-one (that is, for each 
value of 0 there is a unique value of T(O), and vice versa) , then there is no problem. 
In this case, it is easy to see that it makes no difference whether we maximize the 
likelihood as a function of 0 or as a function of T(O) in each case we get the same 
answer. If we let ry = T(O) , then the inverse function T-1 (ry) = () is well defined and 
the likelihood function of T(O) ,  written as a function of TJ, is given by 

n 
L* (rylx) IT f(Xi IT-1 (TJ) )  L(T-1 (TJ) lx) 

i=l 
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sup L" (17lx) = SUp L(T-1 (17) lx) sup L(O lx).  
1) l) () 

Section 7.2 

Thus, the maximum of P (17 lx) is attained at 17 = 7(0) = 7"(0) , showing that the MLE 
of 7" (0) is 7"(0) . 

In many cases, this simple version of the invariance of MLEs is not useful because 
many of the functions we are interested in are not one-to-one. For example, to estimate 
02 , the square of a normal mean, the mapping 0 ...... (j2 is not one-to-one. Thus, we 
need a more general theorem and, in fact, a more general definition of the likelihood 
function of 7" (0) . 

If 7 (0) is not one-to-one, then for a given value 17 there may be more than one 
value of 0 that satisfies 7"(0) 17. In such cases, the correspondence between the 
maximization over 17 and that over 0 can break down. For example, if {) is the MLE of 
0, there may be another value of 0, say 00, for which 7"(0) = 7(00 ) '  We need to avoid 
such difficulties. 

We proceed by defining for 7"( 0) the induced likelihood function L " ,  given by 

( 7.2.5) L"(17 lx) = sup L(Olx) .  
{9:T(9)=11} 

The value r, that maximizes L" (17lx) will be called the MLE of 1) = T(O) ,  and it can 
be seen from (7.2.5) that the maxima of L" and L coincide. 

Theorem 7.2.10 (Invariance property of MLEs) If B is the MLE of 0, then 
for any function 7 (0) , the MLE of 7"(O)  is 7(0) .  

Proof: Let r, denote the value that maximizes L" (1) lx).  We must show that P (r, lx) 
L" [7"(B) lx] . Now, as stated above, the maxima of L and L" coincide, so we have 

L" (r,lx) = sup sup L(O lx) 
1) {8:r(())=11} 

sup L(O lx) 
8 

L(8Ix) , 

(definition of P)  

(definition of 0) 

where the second equality follows because the iterated maximization is equal to the 
unconditional maximization over 0, which is attained at O. Furthermore 

L(Olx) = sup L(O lx) (iJ is the MLE) 
{8:r«())=r(On 

= r [7"(O) lx] . 

Hence, the string of equalities shows that L" (r,lx) 
MLE of T(O). 

(definition of L" )  

L " (7(0) lx) and that T(O) is the 
o 
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Using this theorem, we now see that the MLE of 02, the square of a normal mean, 
is X2 . We can also apply Theorem 7.2.10 to more complicated functions to see that, 
for example, the MLE of Jp(1 - p) , where p is a binomial probability, is given by 
Jp(1 - p) . 

Before we leave the subject of finding maximum likelihood estimators, there are a 
few more points to be mentioned. 

The invariance property of MLEs also holds in the multivariate case. There is 
nothing in the proof of Theorem 7.2.10 that precludes 0 from being a vector. If 
the MLE of (Ol , . . .  , Ok )  is (Ol , . . .  , Ok), and if r(Ol , . . .  , Ok) is any function of the 
parameters, the MLE of r(Ol , " " Ok ) is r(B1 , • • •  , Ok) .  

If (} (01 , . . .  , Ok) is multidimensional, then the problem of finding an MLE is that 
of maximizing a function of several variables. If the likelihood function is differentiable, 
setting the first partial derivatives equal to 0 provides a necessary condition for an 
extremum in the interior. However, in the multidimensional case, using a second 
derivative condition to check for a maximum is a tedious task, and other methods 
might be tried first. We first illustrate a technique that usually proves simpler, that 
of successive maximizations. 

Example 7.2.11 (Normal MLEs, JL and 0' unknown) Let Xl " ' " Xn be iid 
nCO, 0'2) ,  with both 0 and 0'2 unknown. Then 

and 

L( 8, 0'2 Ix) = 1 e-(1/2)E:::1 (Xi _1:1)2/0'2 

(21fO'2)n/2 

n n 2 1 � 
- log21f - - logO' - L)Xi 2 2 2 ;=1 

The partial derivatives, with respect to 0 and 0'2 , are 

and 

Setting these partial derivatives equal to 0 and solving yields the solution 8 = x, 1.12 
n-l I:�l(Xi - x)2. To verify that this solution is, in fact, a global maximum, recall 

. first that if 0 1  x, then I:(Xi 8)2 > I:(Xi X)2. Hence, for any value of 0'2, 

(7.2.6) 1 e-(1/2)E7=1 (Xi _f)2/.,.2 > 1 e- (1/2)Er=1 (Xt _1:1)2;.,.2 

(21fO'2)n/2 - (21fO'2)n/2 

Therefore, verifying that we have found the maximum likelihood estimators is reduced 
to a one-dimensional problem, verifying that (O'2)-n/2exp( -� I:(Xi-X? / 0'2) achieves 
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its global maximum at a2 = n-1 'L(Xi - X)2 , '!his is straightf�rward to do using 
univariate calculus and, in fact, the estimators (X, n-1 'L(X, - X)2 ) are the MLEs. 

We note that the left side of the inequality in (7.2.6) is known as the profile likelihood 
for a2 • See Miscellanea 7.5.5. 1\ 

Now consider the solution to the same problem using two-variate calculus. 

Example 7.2.12 (Continuation of Example 1.2.11) To use two-variate cal
culus to verify that a function H(fh , 02) has a local maximum at (fh , i}2 ) , it must be 
shown that the following three conditions hold. 
a. The first-order partial derivatives are 0, 

and 

b. At least one second-order partial derivative is negative, 

c. The Jacobian of the second-order partial derivatives is positive, 

[}()�;()2 H(OI , (2) 
�H(01 ) 02) 2 (), =9, .82=0, 

For the normal log likelihood, the second-order partial derivatives are 

82 2 -n 
802 10gL(O, O'  Ix) = � '  
82 2 1 n 1 � )2 8( 2)2 IogL(

0 , a  x) = 20'4 - 6" �(Xi - 0 , 0' 0' 
i=l 

82 2 
80 8O'2 10gL(

0, O'  Ix) 
1 n 

- 4 2)Xi - 0) . 0' 
i=l 

Properties (a) and (b) are easily seen to hold, and the Jacobian is 

0) 
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Thus, the calculus conditions are satisfied and we have indeed found a maximum. 
(Of course, to be really formal, we have verified that (x, &2) is an interior maximum. 
We still have to check that it is unique and that there is no maximum at infinity. ) 
The amount of calculation, even in this simple problem, is formidable, and things will 
only get worse. (Think of what we would have to do for three parameters. )  Thus, the 
moral is that, while we always have to verify that we have, indeed, found a maximum, 
we should look for ways to do it other than using second derivative conditions. II 

Finally, it was mentioned earlier that, since MLEs are found by a maximization 
process, they are susceptible to the problems associated with that process, among 
them that of numerical instability. We now look at this problem in more detail. 

Recall that the likelihood function is a function of the parameter, 0, with the data, 
x, held constant. However, since the data are measured with error, we might ask how 
small changes in the data might affect the MLE. That is, we calculate {) based on 
L(Olx), but we might inquire what value we would get for the MLE if we based our 
calculations on L(Olx + E) , for small E. Intuitively, this new MLE, say 91 , should be 
close to () if E is small. But this is not always the case. 

Example 7.2.13 (Continuation of Example 7.2.2) Olkin, Petkau, and Zidek 
(1981) demonstrate that the MLEs of k and p in binomial sampling can be highly 
unstable. They illustrate their case with the following example. Five realizations of a 
binomial(k ,p) experiment are observed, where both k and p are unknown. The first 
data set is ( 16, 18, 22, 25, 27) . (These are the observed numbers of successes from 
an unknown number of binomial trials. )  For this data set, the MLE of k is k = 99. 
If a second data set is (16, 18, 22, 25, 28) , where the only difference is that the 27 
is replaced with 28, then the MLE of k is k = 190, demonstrating a large amount of 
variability. II 

Such occurrences happen when the likelihood function is very flat in the neigh
borhood of its maximum or when there is no finite maximum. When the MLEs can 
be found explicitly, as will often be the case in our examples, this is usually not a 
problem. However, in many instances, such as in the above example, the MLE cannot 
be solved for explicitly and must be found by numeric methods. When faced with 
such a problem, it is often wise to spend a little extra time investigating the stability 
of the solution. 
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7.2. 9 Bayes Estimators 
The Bayesian approach to statistics is fundamentally different from the classical ap
proach that we have been taking. Nevertheless, some aspects of the Bayesian approach 
can be quite helpful to other statistical approaches. Before going into the methods 
for finding Bayes estimators, we first discuss the Bayesian approach to statistics. 

In the classical approach the parameter, 0, is thought to be an unknown, but fixed, 
quantity. A random sample Xl " ' "  Xn is drawn from a population indexed by 0 
and, based on the observed values in the sample, knowledge about the value of 0 is 
obtained. In the Bayesian approach B is considered to be a quantity whose variation 
can be described by a probability distribution (called the prior distribution) . This is 
a subjective distribution, based on the experimenter's belief, and is formulated before 
the data are seen (hence the name prior distribution) .  A sample is then taken from 
a population indexed by 0 and the prior distribution is updated with this sample 
information. The updated prior is called the posterior distribution. This updating 
is done with the use of Bayes' Rule (seen in Chapter 1 ) ,  hence the name Bayesian 
statistics. 

If we denote the prior distribution by 7r(0) and the sampling distribution by f(xIO), 
then the posterior distribution, the conditional distribution of 0 given the sample, x, 
is 

(7.2.7) 7r(O lx) = f (xIO)7r(B)/m(x) , (f(xIO)7r(O) = f(x, 0)) 

where m(x) is the marginal distribution of X, that is, 

(7.2.8) m(x) = J f(xIB)7r(O) dO. 

Notice that the posterior distribution is a conditional distribution, conditional upon 
observing the sample. The posterior distribution is now used to make statements 
about 0, which is still considered a random quantity. For instance, the mean of the 
posterior distribution can be used as a point estimate of O. 

A note on notation: When dealing with distributions on a parameter, 0, we will break 
our notation convention of using uppercase letters for random variables and lowercase 
letters for arguments. Thus, we may speak of the random quantity 0 with distribution 
7r(0). This is more in line with common usage and should not cause confusion. 

Example 7.2.14 (Binomial Bayes estimation) Let XI " " , Xn be iid 
Bernoulli(p) . Then Y = L Xi is binomial(n, p) . We assume the prior distribution 
on p is beta( Q, /3). The joint distribution of Y and p is 

f(y,p) p)n_y] [ r(Q + /3) pQ- I (l _ P)/J-1] (conditional x marginal) 
r(a)r(/3) f (Ylp) x 7r(p) 
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The marginal pdf of Y is 

(1.2.9) fey) t f( )d = (n) r(a + (3) r(y + a)r(n - y + (3) 
10 y

, P  P Y r(a)r«(3) r(n + a + (3) , 

a distribution known as the beta-binomial (see Exercise 4.34 and Example 4.4.6). The 
posterior distribution, the distribution of p given y, is 

f (pIY) = fj��f) r(n + a + (3) py+a-l (l _ p)n-y+i3-1 
r(y + a)r(n y + (3) , 

which is beta(y + a, n - y + (3) . (Remember that p is the variable and 
y 

is treated 
8fI fixed.) A natural estimate for p is the mean of the posterior distribution, which 
would give us as the Bayes estimator of p, 

I I  

Consider how the Bayes estimate of p is formed. The prior distribution has mean 
a/(a + (3) , which would be our best estimate of p without having seen the data. 
Ignoring the prior information, we would probably use p = yin as our estimate of p. 
The Bayes estimate of p combines all of this information. The manner in which this 
information is combined is made clear if we write fiB as 

Thus 
P

B is a linear combination of the prior mean and the sample mean, with the 
weights being determined by a, (3, and n. 

When estimating a binomial parameter, it is not necessary to choose a prior distri
bution from the beta family. However, there was a certain advantage to choosing the 
beta family, not the least of which being that we obtained a closed-form expression 
for the estimator. In general, for any sampling distribution, there is a natural family 
of prior distributions, called the conjugate family. 

Definition 7.2.15 Let :;: denote the class of pdfs or pmfs f (x /I)) (indexed by I)) . A 
class n of prior distributions is a conjugate family for :;: if the posterior distribution 
is in the class n for all f E :;:, all priors in n, and all x E X. 

The beta family is conjugate for the binomial family. Thus, if we start with a beta 
prior, we will end up with a beta posterior. The updating of the prior takes the form of 
updating its parameters. Mathematically, this is very convenient, for it usually makes 
calculation quite easy. Whether or not a conjugate family is a reasonable choice for a 
particular problem, however, is a question to be left to the experimenter. 

We end this section with one more example. 
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Example 7.2 . 1 6  (Normal Bayes estimators) Let X "'" n(O, 0'2 ) , and Suppose 
that the prior distribution on 0 is n(p.., r2) . (Here we assume that 0'2 , p.., and r2 are 
all known.) The posterior distribution of 0 is also normal, with mean and variance 
given by 

E(O lx) 

(7.2. 1 0) 

(See Exercise 7.22 for details.) Notice that the normal family is its own conjugate 
family. Again using the posterior mean, we have the Bayes estimator of 0 is E(OIX). 

The Bayes estimator is, again ,  a linear combination of the prior and sample means. 
Notice also that as r2 , the prior variance, is allowed to tend to infinity, the Bayes 
estimator tends toward the sample mean. We can interpret this as saying that, as the 
prior information becomes more vague, the Bayes estimator tends to give more weight 
to the sample information. On the other hand, if the prior information is good, so 
that 0'2 > r2 , then more weight is given to the prior mean. I I 

1.2.4 The EM Algorithml 
A last method that we will look at for finding estimators is inherently different in its 
approach and specifically designed to find MLEs. Rather than detailing a procedure 
for solving for the MLE, we specify an algorithm that is guaranteed to converge to 
the MLE. This algorithm is called the EM (Expectation-Maximization) algorithm. It 
is based on the idea of replacing one difficult likelihood maximization with a sequence 
of easier maximizations whose limit is the answer to the original problem. It is partic
ularly suited to "missing data" problems, as the very fact that there are missing data 
can sometimes make calculations cumbersome. However, we will see that filling in the 
"missing data" will often make the calculation go more smoothly. (We will also see 
that "missing data" have different interpretations-see, for example, Exercise 7.30.) 

In using the EM algorithm we consider two different likelihood problems. The 
problem that we are interested in solving is the "incomplete-data" problem, and the 
problem that we actually solve is the "complete-data problem." Depending on the 
situation, we can start with either problem. 

Example 7.2.17 (Multiple Poisson rates) We observe Xl , ' "  , Xn and Yj ,  . . . , 
Yn, all mutually independent, where Yi rv Poisson(,Bri )  and Xi rv Poisson(ri) '  This 
would model, for instance, the incidence of a disease, Yi, where the underlying rate is 
a function of an overall effect ,B and an additional factor rio For example, ri could be 
a measure of population density in area i ,  or perhaps health status of the population 
in area i. We do not see ri but get information on it through Xi,. 

1 This section contains material that is somewhat specialized and more advanced. It may be skipped 
without interrupting the flow of the text. 
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The joint pmf is therefore 

(7.2 . 1 1 )  

f« xl , yd, (X2 ' Y2) , . . .  , (xn' Yn) l.8, 1'1 . 1'2 , · ' "  Tn) 
IIn e-(3Ti (f37i)lIi e-Ti (7i):I'i • 

. � ! Xi ! 1=1 
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The likelihood estimators, which can be found by straightforward differentiation (see 
Exercise 7.27) are 

(7.2 .12) d A Xj + Yj an 7j = A , 
f3 + 1 

j = 1 , 2, , , .  , no 

The likelihood based on the pmf (7.2 . 1 1 )  is the complete-data likelihood, and 
{(Xl , yd , (X2 ' Y2) , . . .  , (Xn , Yn» is called the complete data. Missing data, which is 
8. common occurrence, would make estimation more difficult. Suppose, for example, 
that the value of Xl was missing. We could also discard Yl and proceed with a sample 
of size n - 1 , but this is ignoring the information in Yl . Using this information would 
improve our estimates. 

Starting from the pmf (7.2 . 1 1 ) ,  the pmf of the sample with Xl missing is 

00 
. (7.2.13) L f« xl , Yl ) , (X2 ' Y2) , . . . , (xn , Yn ) 1f3, 1'1 , 72, . . .  , Tn) . 

:1'1=0 

The likelihood based on (7.2. 13) is the incomplete-data likelihood. This is the likeli
hood that we need to maximize. I I 

In general, we can move in either direction, from the complete-data problem to the 
incomplete-data problem or the reverse. If Y = (Yl ,  . • .  , Yn) are the incomplete data, 
and X = (Xl , . . . , X m) are the augmented data, making (Y, X) the complete data, 
the densities g( , 10) of Y and f( , 10) of (Y, X) have the relationship 

(7.2.14) g(yIO) = J f(y, xIO) dx 

with sums replacing integrals in the discrete case. 
If we turn these into likelihoods, L(Oly) = g(y IO) is the incomplete-data likelihood 

and L(Oly, x) f(y, xIO) is the complete-data likelihood. If L(Oly) is difficult to work 
with, it will sometimes be the case that the complete-data likelihood will be easier to 
work with. 

Example 7.2.18 (Continuation of Example 7.2.17) The incomplete-data like
lihood is obtained from (7.2. 1 l )  by summing over Xl ' This gives 

(7.2. 1 5) 
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and (YI , (X2 , Y2) " " , (Xn, Yn) ) is the incomplete data. This is the likelihood that We 
need to maximize. Differentiation leads to the MLE equations 

(7.2. 16) 

/3" = E�-l Yi 
",n . ,  "'-'i=l ri 

Yl = fl�' 
xj + Yj = fj (� + l ) , j = 2 , 3, . . . , n, 

which we now solve with the EM algorithm. II 
The EM algorithm allows us to maximize L(Oly) by working with only L(Oly, x) 

and the conditional pdf or pmf of X given y and 0, defined by 

(7.2 . 17) L(Oly, x) = f(y , xIO) , L(O ly) g(y IO) , f(y, xIO) and k(xIO, y) = 
g(y IO) . 

Rearrangement of the last equation in (7.2 . 17) gives the identity 

(7.2. 18) log L(O ly) = log L(Oly, x) - log k(xIO, y) .  

As x is missing data and hence not observed, we replace the right side of (7.2.18) 
with its expectation under k(xIO', y) ,  creating the new identity 

( 7.2. 19) log L(Oly) = E [log L(O ly, X) IO', yj - E [log k(XIO, y) IO', yJ . 

Now we start the algorithm: From an initial value OCO) we create a sequence oCr) 
according to 

(7.2.20) o(r+1 ) = the value that maximizes E [log L(Oly, x) / o(r\ Y] . 
The "E-step" of the algorithm calculates the expected log likelihood, and the "M
step" finds its maximum. Before we look into why this algorithm actually converges 
to the MLE, let us return to our example. 

Example 7.2.19 (Conclusion or Example 7.2.17) Let (x, y) ( (XI , Y1 ) ,  
(X2 ' Y2) , . . .  , (xn, Yn) )  denote the complete data and (X(-l ) , y)  = (Yb (X2' Y2 ) , . . .  , 
(xn, Yn) )  denote the incomplete data. The expected complete-data log likelihood is 

E[log L (/3 , T} ,  r2 , . . .  , Tn l (x, y) ) IT(r) , (X( -1) , y)] 

(7 .2 .21) 

= 
00 

log 
( n  e-fh; (/3Ti)Yi e-ri (Ti )Xi ) e-rt) (ry» )Xl 

L II y . !  x · l Xl ! %1=0 ;=1 t t 

n n 
= L [-/3ri + Yi(10g /3 + logri) - log y;!] + L [-ri + Xi log Ti log xi I] 

i=l i=2 



where in the last equality we have grouped together terms involving p and 7i and 
terms that do not involve these parameters. Since we are calculating this expected 
log likelihood for the purpose of maximizing it in fJ and 7i l  we can ignore the terms 
in the second set of parentheses. We thus have to maximize only the terms in the first 
set of parentheses, where we can write the last sum as 

(7.2.22) 
00 _.,.(r) ( (r»

)
:l:1 � e 1 71 (r) 

-71 + log 71 L.,; Xl f = -71 + 71 log 71 . 

3:'1 =0 Xl ·  

When substituting this back into (7.2.21 ) ,  we see that the expected complete-data 
likelihood is the same as the original complete-data likelihood, with the exception 
that Xl is replaced by 7i

r)
. Thus, in the rth step the MLEs are only a minor variation 

of (7.2 . 12) and are given by 

(7.2.23) ;j
(r+1 )  = _ E�l Yi 

(r) �n ' 
71 + L..;i=2 Xi 

. (r+l ) _ Xj + Yj J' 
7 · - "  , J 

P(r+1 )  + 1 
2, 3, . , . , n . 

This defines both the E-step (which results in the substitution of fIr) for xr ) and 
the M-step (which results in the calculation in (7.2,23) for the MLEs at the rth it
eration. The properties of the EM algorithm give us assurance that the sequence 
(fJ(r) , ftl ,  fJr) " , .  , f�r» )  converges to the incomplete-data MLE as r -t 00. See Exer
cise 7.27 for more. I I 

We will not give a complete proof that the EM sequence {O(r) } converges to the 
incomplete-data MLE, but the following key property suggests that this is true. The 
proof is left to Exercise 7.31 .  

Theorem 7.2.20 (Monotonic EM sequence) The sequence {OCr) }  defined by 
(7.2.20) satisfies 

(7.2.24) 

with equality holding if and only if successive iterations yield the same value of the 
maximized expected complete-data log likelihood, that is, 
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7.3 Methods of Evaluating Estimators 
The methods discussed in the previous section have outlined reasonable techniques for 
finding point estimators of parameters. A difficulty that arises, however, is that since 
we can usually apply more than one of these methods in a particular situation, we 
are often faced with the task of choosing between estimators. Of course, it is possible 
that different methods of finding estimators will yield the same answer, which makes 
evaluation a bit easier, but, in many cases, different methods will lead to different 
estimators. 

The general topic of evaluating statistical procedures is part of the branch of statis
tics known as decision theory, which will be treated in some detail in Section 7.3.4. 
However, no procedure should be considered until some clues about its performance 
have been gathered. In this section we will introduce some basic criteria for evaluating 
estimators, and examine several estimators against these criteria. 

1.3. 1 Mean Squared Error 
We first investigate finite-sample measures of the quality of an estimator, beginning 
with its mean squared error. 

Definition 7.3.1 The mean squared error (MSE) of an estimator W of a parameter 
a is the function of a defined by Eo(W 0)2. 

Notice that the MSE measures the average squared difference between the estimator 
W and the parameter a, a somewhat reasonable measure of performance for a point 
estimator. In general, any increasing function of the absolute distance [ W  - O[ would 
serve to measure the goodness of an estimator (mean absolute error, Eo ( [W - a t ) ,  is 
a reasonable alternative) , but MSE has at least two advantages over other distance 
measures: First, it is quite tractable analytically and, second, it has the interpretation 

( 7.3.1) 

where we define the bias of an estimator as follows. 

Definition 7.3.2 The bias of a point estimator W of a parameter a is the difference 
between the expected value of W and 0; that is, Biaso W EoW - O. An estimator 
whose bias is identically (in a) equal to 0 is called unbiased and satisfies Eo W = 0 for 
all O. 

Thus, MSE incorporates two components, one measuring the variability of the 
estimator (precision) and the other measuring its bias (accuracy) .  An estimator that 
has good MSE properties has small combined variance and bias. To find an estimator 
with good MSE properties, we need to find estimators that control both variance and 
bias. Clearly, unbiased estimators do a good job of controlling bias. 

For an unbiased estimator we have 

Eo (W 0)2 Varo W, 

and so, if an estimator is unbiased, its MSE is equal to its variance. 
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Example 7.3.3 (Normal MSE) Let Xl, '  . •  , Xn be iid n(p" (72) .  The statistics X 
and 82 are both unbia.sed estima.tors since 

EX = p" E82 = (72 , for all p, and (72 . 

(This is true without the normality assumption; see Theorem 5.2.0.) The MSEs of 
these estimators are given by 

E(X - p,)2 = Var X 
(72 n 

E(82 (72 ) 2  Var 82 2(74 n 1 

The MSE of X remains (72 In even if the normality assumption is dropped. However, 
the above expression for the MSE of 82 does not remain the same if the normality 
assumption is relaxed (see Exercise 5.8) .  I I 

Although many unbiased estimators are also reasonable from the standpoint of 
MSE, be aware that controlling bias does not guarantee that MSE is controlled. In 
particular, it is sometimes the case that a trade-off occurs between variance and bias 
in such a way that a small increase in bias can be traded for a larger decrease in 
variance, resulting in an improvement in MSE. 

Example 7.3.4 (Continuation of Example 7.3.3) An alternative estimator 
for (72 is the maximum likelihood estimator &2 � E�=l (Xi X)2 n;;-1 82. It is 
straightforward to calculate n - 1  2 --(7 ,  n 
so &2 is a biased estimator of (72 . The variance of &2 can also be calculated as 

and, hence, its MSE is given by 

We thus have 

2(n 1 )(74 (n 1 2 2) 2 
-'---::--'- +  --(7 - (7  n2 n (2n - 1) 4 

2 
(7 • n 

showing that fy2 has smaller MSE than 82 • Thus, by trading off variance for bias, the 
MSE is improved. 1 \ 
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We hasten to point out that the above example does not imply that 82 should be 
abandoned as an estimator of 0'2. The above argument shows that, on the average, 8-2 
will be closer to 0'2 than 82 if MSE is used as a measure. However, 8-2 is biased and 
will, on the average, underestimate 0'2. This fact alone may make us uncomfortable 
about using 8-2 as an estimator of 0'2 . Furthermore, it can be argued that MSE, while a 
reasonable criterion for location parameters, is not reasonable for scale parameters, so 
the above comparison should not even be made. (One problem is that MSE penalizes 
equally for overestimation and underestimation, which is fine in the location case. In 
the scale case, however, 0 is a natural lower bound, so the estimation problem is not 
symmetric. Use of MSE in this case tends to be forgiving of underestimation.) The 
end result of this is that no absolute answer is obtained but rather more information 
is gathered about the estimators in the hope that, for a particular situation, a good 
estimator is chosen. 

In general, since MSE is a function of the parameter, there will not be one "best" 
estimator. Often, the MSEs of two estimators will cross each other, showing that 
each estimator is better (with respect to the other) in only a portion of the parameter 
space. However, even this partial information can sometimes provide guidelines for 
choosing between estimators. 

Example 7.3.5 (MSE of binomial Bayes estimator) Let Xl " ' "  Xn be iid 
Bernoulli(p) . The MSE of p, the MLE, as an estimator of p, is 

p(l p) 
n 

Let Y = 2: Xi and recall the Bayes estimator derived in Example 7.2. 14, PB = O!�*�n' 
The MSE of this Bayes estimator of p is 

Ep(PB p)2 Varp PB + (BiaspPB )2 

V ( Y + O: ) (E ( Y + O: ) ) 2 = arp 0: + f3 + n + p 0: + f3 + n - p 

np(l - p) ( np + 0: ) 2 = 
(o: + f3 + n)2 

+ o: + f3 + n - P 

In the absence of good prior information about p, we might try to choose 0: and (3 
to make the MSE of PB constant . The details are not too difficult to work out (see 
Exercise 7.33) , and the choice 0: = (3 = Vn/4 yields 

A Y + vn/4 
PB = y'n and E(PB p)2 

n +  n 
n 

4(n + y'n)2 ' 

If we want to choose between PB and P on the basis of MSE, Figure 7.3.1 is helpful. 
For small n, PB is the better choice (unless there is a strong belief that p is near 0 
or 1 ) .  For large n, P is the better choice (unless there is a strong belief that p is close 
to !) .  Even though the MSE criterion does not show one estimator to be uniformly 
better than the other, useful information is provided. This information, combined 
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.075 MSE(X,) .00075 MSE(X) 

.050 .00050 
MSE(Ps) 

.025 MSE(i>u) .00025 

0 
p 

0 .5 
p 

n =4 n =400 

Figure 7.3.1 .  Comparison of MSE of p and PB for sample sizes n = 4 and n = 400 in 
Example 7.3.5 

with the knowledge of the problem at hand, can lead to choosing the better estimator 
for the situation. " 

In certain situations, particularly in location parameter estimation, MSE can be 
a helpful criterion for finding the best estimator in a class of equivariant estimators 
(see Section 6.4) . For an estimator W(X) of e, using the principles of Measurement 
Equivariance and Formal Invariance, we have 

Measurement Equivariance: W(x) estimates e ::::} g(W(x)) estimates g(e) e'. 

Formal Invariance: W(x) estimates e ::::} W(g(x)) estimates gee) e'. 

Putting these two requirements together gives W(g(x)) = g(W(x)) .  

Example 7.3.6 (MSE o f  equivariant estimators) Let Xl , . . .  , Xn b e  iid f(x 
e).  For an estimator W(XI " " , Xn) to satisfy W(ga (x) )  = ga (W(x) ) ,  we must have 

(7.3.2) W(Xl , . . .  , xn) + a = W(XI + a, . . .  , Xn + a) , 
which specifies the equivariant estimators with.respect to the group of transformations 
defined by g = {ga (x) : -00 < a < oo}, where ga(XI , . ' "  xn) = (Xl + a, . . .  , Xn + a) . 
For these estimators we have 

(7.3.3) 

Ee (W(Xl ' . . .  , Xn) e? 

= Ee (W(XI + a, . . . , Xn + a) - a 0)2 

Ee (W(XI - e, . . . , Xn _ 0))2 
n 

0, . . .  , Xn - e))2 II f(Xi - e) dXi 
i=l 

(a -0) 

(Ui = Xi - O) 
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This last expression does not depend on 9; hence, the MSEs of these equivariant esti
mators are not functions of O. The MSE can therefore be used to order the equivariant 
estimators, and an equivariant estimator with smallest MSE can be found. In fact, 
this estimator is the solution to the mathematical problem of finding the function W 
that minimizes (7.3.3) subject to (7.3.2). (See Exercises 7.35 and 7.36.) I I 

7.3.2 Best Unbiased Estimators 
As noted in the previous section, a comparison of estimators based on MSE consider
ations may not yield a clear favorite. Indeed, there is no one "best MSE" estimator. 
Many find this troublesome or annoying, and rather than doing MSE comparisons of 
candidate estimators, they would rather have a "recommended" one. 

The reason that there is no one "best MSE" estimator is that the class of all 
estimators is too large a class. (For example, the estimator {) = 17  cannot be beaten 
in MSE at 0 17 but is a terrible estimator otherwise.) One way to make the problem 
of finding a "best" estimator tractable is to limit the class of estimators. A popular 
way of restricting the class of estimators, the one we consider in this section, is to 
consider only unbiased estimators. 

If Wl and W2 are both unbiased estimators of a parameter 0, that is, Ee Wl 
EoW2 0, then their mean squared errors are equal to their variances, so we should 
choose the estimator with the smaller variance. If we can find an unbiased estimator 
with uniformly smallest variance-a best unbiased estimator-then our task is done. 

Before proceeding we note that, although we will be dealing with unbiased esti
mators, the results here and in the next section are actually more general. Suppose 
that there is an estimator W" of 0 with Eo W" r(O) :f 0, and we are interested in 
investigating the worth of W" . Consider the class of estimators 

c.,. { W :  EeW r(O)} .  

and MSE comparisons, within the class C.,. , can be based on variance alone. Thus, 
although we speak in terms of unbiased estimators, we really are comparing estimators 
that have the same expected value, r(O). 

The goal of this section is to investigate a method for finding a "best" unbiased 
estimator, which we define in the following way. 

Definition 7.3.7 An estimator W" is a best unbiased estimator of r( 0) if it satisfies 
EIIW" = r(O) for all 0 and, for any other estimator W with EIIW = r(O), we have 
Vare W" � Vare W for all O .  W· is also called a uniform minimum variance unbiased 
estimator (UMVUE) of r(O) . 

Finding a best unbiased estimator (if one exists!) is not an easy task for a variety 
of reasons, two of which are illustrated in the following example. 
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Example 7.3.8 (Poisson unbiased estimation) Let XI . • . .  , Xn be iid 
poisson(A), and let X and S2 be the sample mean and variance, respectively. Re
call that for the Poisson pmf both the mean and variance are equal to A. Therefore, 
applying Theorem 5.2.6, we have 

EAX A, for all A ,  

and 

EAS2 A, for all A, 

so both X and S2 are unbiased estimators of A. 
To determine the better estimator, X or S2 , we should now compare variances. 

Again from Theorem 5.2.6, we have VarA X = A/n, but Var). S2 is quite a lengthy 
calculation (resembling that in Exercise 5.1O(b)) .  This is one of the first problems in 
finding a best unbiased estimator. Not only may the calculations be long and involved, 
but they may be for naught (as in this case) , for we will see that VarA X :5 VarA S2 
for all A. 

Even if  we can establish that X is better than S2 ) consider the class of estimators 

For every constant a, E,\ Wa(X, S2) = A, so we now have infinitely many unbiased 
estimators of A. Even if X is better than S2 , is it better than every Wa(X, S2)?  
Furthermore, how can we be sure that there are not other, better, unbiased estimators 
lurking about? 1/ 

This example shows some of the problems that might be encountered in trying to 
find a best unbiased estimator, and perhaps that a more comprehensive approach is 
desirable. Suppose that, for estimating a parameter 1'(0) of a distribution f(x IO ) , we 
Can specify a lower bound, say B(B) ,  on the variance of any unbiased estimator of 
r(fJ) . If we can then find an unbiased estimator W" satisfying Var9 W" B (O ) ,  we 
have found a best unbiased estimator. This is the approach taken with the use of the 
Cramer-Rao Lower Bound. 

Theorem 7.3.9 (Cramer-Rao Inequality) Let Xl . ' "  , Xn be a sample with pdf 
f(xIB) , and let W(X) W(XI , " " Xn) be any estimator satisfying 

(7.3.4) and 

Then 

(7.3.5) 

d ( 0 
dBE9W(X) = ix ofJ [W(x)f(xIB)] dx 
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Proof: The proof of this theorem is elegantly simple and is a clever application of the 
Cauchy-Schwarz Inequality or, stated statistically, the fact that for any two random 
variables X and Y, 

(7.3.6) [Cov (X, y)]2 :::; (Var X)(Var Y) .  

If  we rearrange (7.3.6) we can get a lower bound on the variance of X,  

V X > [Cov(X, Y)j2 
ar - Var Y 

. 

The cleverness in this theorem follows from choosing X to be the estimator W(X) 
and Y to be the quantity 10 log f(XIO) and applying the Cauchy-Schwarz IneqUality. 

First note that 

!EIIW(X) = L W(x) [:of(X10)] dx 

(7.3.7) [ Iof(XIO) ] Eo W(X) f(XIO) 
(multiply by f(XIO)/ f(XIO)) 

= Ell [W(X) :0 log f(X10)] , (property of logs) 

which suggests a covariance between W(X) and :11 log f(XIO). For it to be a co
variance, we need to subtract the product of the expected values, so we calculate 
Ell (� log f (XIO)) . But if we apply (7.3.7) with W(x) = 1, we have 

(7.3.8) Ell (:0 logf(X10)) = !Eo [l] O. 

Therefore Covo (W(X), :(} log f(XIO)) is equal to the expectation of the product, and 
it follows from (7.3.7) and (7.3.8) that 

(7.3.9) COVII (W(X), :0 log f(X10)) = Eo (W(X) :0 IOg f(X10)) 

Also, since Eo (1o logf(XIO)) = 0 we have 

(7.3 .10) Varo (! log f(X[O)) = Eo ( (:0 IOg f(X10)r) . 

Using the Cauchy-Schwarz Inequality together with (7.3.9) and (7.3. 10), we obtain 

Var(} (W(X)) 2: (foE(}W(X)) 2 , 
Eo ((10 log f(XIO))2) 

proving the theorem. o 
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If we add the assumption of independent samples, then the calculation of the lower 
bound is simplified. The expectation in the denominator becomes a univariate calcu
lation, as the following corollary shows. 

Corollary 7.3.10 (Cramer-Rao Inequality, iid case) If the assumptions of The
orem 7.3.9 are satisfied and, additionally, if Xl , . . .  ,Xn are iid with pdf f(x IO) , then 

Proof: We only need to show that 

Since Xl , . . .  , X n are independent, 

E, (:0 iog f(XIB}) 
2 

109 ( (:0 iogD f(X, I O}) ,) 

(7.3 . 1 1 )  

For i f. j we have 

� E, ( (t,! IOg f(XM}) ,) (pmpeny of log,) 

= tEe ( (:0 lOg f(Xi I O)r) (expand the square) 

+ �Ee (:0 10g f(Xi !O):o log f(Xj !O)) . 
l.,-) 

Ee (:0 log f (Xi IO ) :0 log f(Xj le)) 

= Ee (:0 log f(Xi !O)) Ee (! log f(Xj Ie)) ( independence) 

O. (from (7.3.8)) 

Therefore the second sum in (7.�.-1l) is 0, and the first term is 

which establishes the corollary. o 
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Before going on we note that although the Cramer-Roo Lower Bound is stated 
for continuous random variahles, it also applies to discrete random variables. The 
key condition, (7.3.4) , which allows interchange of integration and differentiation , 
undergoes the obvious modification. If f(x IO) is a prof, then we must be able to 
interchange differentiation and summation. (Of course, this assumes that even though 
f(xIO) is a pmf and not differentiable in x, it is differentiable in O. This is the case 
for most common pmfs.) 

The quantity Ee ( (Ie log f (XIO» ) 2) is called the information number, or Fisher 
information of the sample. This terminology reflects the fact that the information 
number gives a bound on the variance of the best unbiased estimator of O. As the 
information number gets bigger and we have more information about 0, we have a. 
smaller bound on the variance of the best unbiased estimator. 

In fact, the term Information Inequality is an alternative to Cramer-Rao Inequality, 
and the Information Inequality exists in much more general forms than is presented 
here. A key difference of the more general form is that all assumptions about the can
didate estimators are removed and are replaced with assumptions on the underlying 
density. In this form, the Information Inequality becomes very useful in comparing the 
performance of estimators. See Lehmann and Casella ( 1998, Section 2.6) for details. 

For any differentiable function r( 0) we now have a lower bound on the variance of 
any estimator W satisfying (7.3.4) and EI) W = r( 0). The bound depends only on r(O) 
and f(xIO) and is a uniform lower bound on the variance. Any candidate estimator 
satisfying EeW = r(O) and attaining this lower bound is a best unbiased estimator 
of r{O). 

Before looking at some examples, we present a computational result that aids in 
the application of this theorem. Its proof is left to Exercise 7.39. 

Lemma 7.3.11  If f(xIO) satisfies 

:eEe (:0 IOg f(X 10») = J :0 [ (! logf (X10») J(xI0)] dx 

{true for an exponential family}, then 

Using the tools just developed, we return to, and settle, the Poisson example. 

Example 7.3.12 (Conclusion of Example 7.3.8) Here r(A) A, so r'{A) = l .  
Also, since we have an exponential family, using Lemma 7.3. 1 1  gives us 
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= -nE,l.. (:;2 (-A + X log A - logX!)) 
n 

== -,x' 
Hence for any unbiased estimator, W, of A, we must have 

A Var,l.. W ;:: n 
Since Var,l.. X = A/n, X is a best unbiased estimator of A. 

339 

I I  

It is important to remember that a key assumption in the Cramer-Rao Theorem 
is the ability to differentiate under the integral sign, which, of course, is somewhat 
restrictive. As we have seen, densities in the exponential class will satisfy the assump
tions but, in general, such assumptions need to be checked, or contradictions such as 
the following will arise. 

Example 7.3.13 (Unbiased estimator for the scale uniform) Let XI , . . .  , 
Xn be iid with pdf f(xIO) 1/0, 0 < x < O. Since :6 10g f(xI0) -1/0, we have 

Ee ((:0 10g f(X 10)r) = 0
1
2 ' 

The Cramer-Rao Theorem would seem to indicate that if W is any unbiased estimator 
of 0, 

02 VareW � n 
We would now like to find an unbiased estimator with small variance. As a first guess, 
consider the sufficient statistic Y = max(X1 , • . .  , Xn), the largest order· statistic. The 
pdf of Y is Jy (yIO) nyn-l /On, 0 < y < 0, so 

showing that n 

1
e nyn n EeY = -dy = 

o On n +  1 
is an unbiased estimator of O. We next calculate 

( + 1 ) 2 � Vare Y 
= (n: 1 r [Eey2 - (n: 1 or] 

= (n + 1 )
2 
[
_n 02 n n + 2  

1 02 n(n + 2) , 
(
n: lOr] 
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which is uniformly smaller than B2 In. This indicates that the Cramer-Roo Theorem 
is not applicable to this pdf. To see that this is so, we can use Leibnitz's Rule (Section 
2.4) to calculate 

d {O d {O 1 
dB 10 

h(x)f(xIB) dx = dB 10 
h{x) '0 dx 

h( B) (6 () ( 1 )  -B- + 10 hex) ()O '0 dx 

/6 () 
=1= 

0 
hex ) ()Bf{xIB) dx, 

unless h{B)/B = 0 for all (J. Hence, the Cramer-Rao Theorem does not apply. In 
general, if' the range of the pdf depends on the parameter, the theorem will not be 
applicable. I I 

A shortcoming of this approach to finding best unbiased estimators is that, even if 
the Cramer-Roo Theorem is applicable, there is no guarantee that the bound is sharp. 
That is to say, the value of the Cramer-Roo Lower Bound may be strictly smaller than 
the variance of any unbiased estimator. In fact, in the usually favorable case of f(x IB) 
being a one-parameter exponential family, the most that we can say is that there 
exists a parameter T(B) with an unbiased estimator that achieves the Cramer-Roo 
Lower Bound. However, in other typical situations, for other parameters, the bound 
may not be attainable. These situations cause concern because, if we cannot find an 
estimator that attains the lower bound, we have to decide whether no estimator can 
attain it or whether we must look at more estimators. 

Example 1.3.14 (Normal variance bound) Let Xh . . .  , Xn be iid n(lL, (12) , 
and consider estimation of (12, where IL is unknown. The normal pdf satisfies the 
assumptions of the Cramer-Rao Theorem and Lemma 7.3.1 1, so we have 

and 

-E ( {)(�)2 
log f(X IIL, (12) 1 1L, (12) = -E ( 2�4 

(X 
(1/)2 1 1L, (12) 

1 = 2(14 . 

Thus, any unbiased estimator, W, of (12 must satisfy 
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In Example 7.3.3 we saw 

so 82 does not attain the Cramer-Rao Lower Bound. 

In the above example we are left with an incomplete answer; that is, is there a better 
unbiased estimator of a2 than 82 , or is the Cramer-Rao Lower Bound unattainable? 

The conditions for attainment of the Cramer-Rao Lower Bound are actually quite 
simple. Recall that the bound follows from an application of the Cauchy-Schwarz 
Inequality, so conditions for attainment of the bound are the conditions for equality 
in the Cauchy-Schwarz Inequality (see Section 4.7) . Note also that Corollary 7.3.15 is 
a useful tool because it implicitly gives us a way of finding a best unbiased estimator. 

Corollary 7.3.15 (Attainment) Let X! , . . .  , Xn be iid f(x I8) ,  where f (x I8)  sat
isfies the conditions of the Cramer-Rao Theorem. Let L(8 Ix) = n�=l f (xd8) denote 
the likelihood function. If W(X) = W(Xb . . . , Xn) is any unbiased estimator of 7(8) , 
then W(X) attains the Cramer-Rao Lower Bound if and only if 

(7.3.12) a (O) [W(x) 7(8)] {) 8
8

IogL(8 Ix) 

for some function a (8) . 

Proof: The Cramer-Rao Inequality, as given in (7.3.6) , can be written as 

and, recalling that EeW 7(8) , Eo(te log I1�=1 f(Xi I8))  0, and using the results 
of Theorem 4.5.7, we can have equality if and only if W(x) - 7(8) is proportional to 
te log I1�=1 f(xi I8) .  That is exactly what is expressed in (7.3.12) .  0 

Example 7.3.16 (Continuation of Example 7.3.14) Here we have 

and hence 

L( II a2 /x) = 1 e-(1/2)2::�dxi-j.t)2/0'2 ,.., (21l'a2 )n/2 ' 

{) 2 n (� (Xi J,l)2 2) l:l 2 Iog L(J,l, a lx) = 2 4 L..t . - a . ua a i=l n 

Thus, taking a(a2) = nl(2a4) shows that the best unbiased estimator of a2 is 
2:7=1 (Xi J,l)2  In, which is calculable only if J,l is known. If J,l is unknown, the bound 
cannot be attained. /I 
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The theory developed in this section still leaves some questions unanswered. First, 
what can we do if f(xI6l) does not satisfy the assumptions of the Cramer-Roo Theo
rem? (In Example 7.3. 13, we still do not know if �Y is a best unbiased estimator.) 
Second, what if the bound is unattainable by allowable estimators, as in Example 
7.3. 14? There, we still do not know if 82 is a best unbiased estimator. 

One way of answering these questions is to search for methods that are more widely 
applicable and yield sharper (that is, greater) lower bounds. Much research has been 
done on this topic, with perhaps the most well-known bound being that of Chapman 
and Robbins ( 1951) .  Stuart, Ord, and Arnold ( 1999, Chapter 17) have a good treat
ment of this subject. Rather than take this approach, however, we will continue the 
study of best unbiased estimators from another view, using the concept of sufficiency. 

7.3.3 Sufficiency and Unbiasedness 
In the previous section, the concept of sufficiency was not used in our search for 
unbiased estimates. We will now see that consideration of sufficiency is a powerful 
tool, indeed. 

The main theorem of this section, which relates sufficient statistics to unbiased 
estimates, is, as in the case of the Cramer-Rao Theorem, another clever application 
of some well-known theorems. Recall from Chapter 4 that if X and Y are any two 
random variables, then, provided the expectations exist, we have 

(7.3.13) 
EX E[E(XIY)] ' 

Var X = Var[E(X\Y)] + E[Var(XIY)] . 

Using these tools we can prove the following theorem. 

Theorem 7.3.17 (Rao-Blackwell) Let W be any unbiased estimator of T(61) , and 
let T be a sufficient statistic for 61. Define ¢(T) = E (WIT) . Then Eo¢(T) = T(61) and 
Varo ¢(T) � Varo W for all 61; that is, ¢(T) is a uniformly better unbiased estimator 
of T(e) . . 

Proof: From (7.3.13) we have 

so ¢(T) is unbiased for T(e) .  Also, 

Var/! W = Varo [E(WIT)] + Eo [Var(WIT)] 

Var(l ¢(T) + Eo [Var(WIT)] 

2': Vara ¢(T). (Var(WjT) 2': 0) 

Hence ¢(T) is uniformly better than W, and it only remains to show that ¢(T) is 
indeed an estimator. That is, we must show that ¢(T) E(WIT) is a function of only 
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the sample and, in particular, is independent of O. But it follows from the definition of 
sufficiency, and the fact that W is a function only of the sample, that the distribution 
of WIT is independent of O. Hence ¢(T) is a uniformly better unbiased estimator of 
T�. 0 

Therefore, conditioning any unbiased estimator on a sufficient statistic will result 
in a uniform improvement, so we need cOIUlider only statistics that are functions of a 
sufficient statistic in our search for best unbiased estimators. 

The identities in (7.3. 1 3) make no mention of sufficiency, so it might at first seem 
that conditioning on anything will result in an improvement. This is, in effect, true, 
but the problem is that the resulting quantity will probably depend on 0 and not be 
an estimator. 

Example 7.3.18 (Conditioning on an insufficient statistic) Let XI , X2 be 
lid n(O , 1 ) .  The statistic X = � (Xl + X2) has 

- - 1 EeX = 0 and Vare X = 2 ' 

Consider conditioning on Xl> which is not sufficient. Let ¢(Xd = Ee(XIX1 ) .  It follows 
from (7.3. 13) that Ee¢(Xd 0 and Yare ¢(X1 )  ::; Yare X, so ¢(Xd is better than 
X. However, 

¢(X1 ) = Ee(XIX1) 
1 1 

= 2Ee(XI IXl) + 2Ee (X2IXd 

1 1 = 2X1 + 20, 

since Ee(X2 /X1 )  = EeX2 by independence. Hence, ¢(X1) is not an estimator. 

We now know that, in looking for a best unbiased estimator of T(O), we need 
cOIUlider only estimators based on a sufficient statistic. The question now arises that 
if we have Ee¢ = T (  0) and ¢ is based on a sufficient statistic, that is, E( ¢IT) = ¢, how 
do we know that ¢ is best unbiased? Of course, if ¢ attains the Cramer-Roo Lower 
Bound, then it is best unbiased, but if it does not, have we gained anything? For 
example, if ¢* is another unbiased estimator of T (O) ,  how does E(¢* /T) compare to 
¢? The next theorem answers this question in part by showing that a best unbiased 
estimator is unique. 

Theorem 7.3.19 If W is a best unbiased estimator of T(O) ,  then W is unique. 

Proof: Suppose WI is another best unbiased estimator, and consider the estimator 
W* ! (W + W') .  Note that EeW* = r(O) and 
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Yare W* = Yare (�w + �WJ) 

(7.3. 14) 

1 1 I 1 J 4" Yare W + 4" Yare W + 2Cove (W, W ) 

1 1 1 S 4" Vare W + 4" Yare W' + 2 [ (Var9 W)(Var9 W')P/2 

= Vare W. 

Section 1.3 

(Exercise 4.44) 

(Cauchy-Schwarz) 

(Var9 W = Yare W')  

But i f  the above inequality i s  strict, then the best unbiasedness of  W is  contradicted, 
so we must have equality for all O.  Since the inequality is an application of Cauchy
Schwarz, we can have equality only if W' = a(O) W + b(O) . Now using properties of 
covariance, we have 

COV9 ( W, W') = Cove [W, a(O)W + b(O)] 

= COV9[W, a(O)W] 

= a(O)Vare W, 

but COV9(W, W') Yare W since we had equality in (7.3. 14) .  Hence a(O) = 1 and, 
since E9W' = r(O),  we must have b(O) = 0 and W = W', showing that W is unique. 

o 

To see when an unbiased estimator is best unbiased, we might ask how could we 
improve upon a given unbiased estimator? Suppose that W satisfies E9W = T(O), 
and we have another estimator, U, that satisfies E9U = 0 for all e, that is, U is an 
unbiased estimator of O. The estimator 

<Pa W + aU, 

where a is a constant, satisfies Ee<pa = T(O) and hence is also an unbiased estimator 
of r(e) .  Can <Pa be better than W? The variance of <Pa is 

Yare ¢a = Var9 (W + aU) = Var9 W + 2aCove(W, U) + a2Vare U. 

Now, if for some 0 = eo , COV9o (W, U) < 0, then we can make 2aCov9o (W, U) + 
a2Vareo U < 0 by choosing a E (0, -2COV9o (W, U)/Var90 U). Hence, <Pa will be better 
than W at 8 = 80 and W cannot be best unbiased. A similar argument will show that 
if COV9o (W, U) > 0 for any eo, W also cannot be best unbiased. (See Exercise 7.53.) 
Thus, the relationship of W with unbiased estimators of 0 is crucial in evaluating 
whether W is best unbiased. This relationship, in fact, characterizes best unbiased
ness. 

Theorem 7.3.20 If E9W = r(O), W is the best unbiased estimator of r(8) if and 
only if W is uncorrelated with all unbiased estimators of O. 

Proof: If W is best unbiased, the above argument shows that W must satisfy 
Cove (W, U) = 0 for all 0, for any U satisfying EeU O. Hence the necessity is 
established. 
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Suppose now that we have an unbiased estimator W that is uncorrelated with all 
unbiased estimators of o. Let WI be any other estimator satisfying Ee IVI Eo W = 
T(O) . We will show that W is better than WI. Write 

Wi W + (WI W) , 

and calculate 

(7.3.15) Varo Wi Yare W + Varo (WI - W) + 2Covo (W, Wi - W) 
= Varo W + Varo (WI W) , 

where the last equality is true because WI W is an unbiased estimator of 0 and 
is uncorrelated with W by assumption. Since Varo (W' - W) ;::: 0, (7.3. 15) implies 
that Varo WI ;::: Yare W. Since WI is arbitrary, it follows that W is the best unbiased 
estimator of T (O) . 0 

Note that an unbiased estimator of 0 is nothing more than random noise; that is, 
there is no information in an estimator of o. (It makes sense that the most sensible 
way to estimate 0 is with 0, not with random noise.) Therefore, if an estimator 
could be improved by adding random noise to it, the estimator probably is defective. (Alternatively, we could question the criterion used to evaluate the estimator, but in 
this case the criterion seems above suspicion. ) This intuition is what is formalized in 
Theorem 7.3.20. 

Although we now have an interesting characterization of best unbiased estimators, 
its usefulness is limited in application. It is often a difficult task to verify that an 
estimator is uncorrelated with all unbiased estimators of 0 because it is usually difficult 
to describe all unbiased estimators of o. However, it is sometimes useful in determining 
that an estimator is not best unbiased. 

Example 7.3.21 (Unbiased estimators of zero) Let X be an observation from 
a uniform ( 0, 0 + 1) distribution. Then 

(HI 1 EeX = 10 x dx = 0 + 2 '  

and so X � is an unbiased estimator of fJ, and it is easy to check that Varo X = 112 . 
For this pdf, unbiased estimators of zero are periodic functions with period 1 .  This 

follows from the fact that if h(x) satisfies 

then 

(O+l 

10 h(x) dx = 0, for all 0, 

d (Hl 
O = do lo h(x) dx = h(O + l) h( 0) , for all o. 
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Such a function is hex) sin(27rx) . Now 

Cove(X 4 ,  sin( 27rX) )  Covo(X, sin(27rX)) 
fO+l 

= Je 
x sin(2n-x) dx 

_ x cos(27rx) 
1 0+1 

+ 
r+1 

cos(27rx) dx 2n- 0 Jo 27r 

Section 7.3 

(integration by parts) 
cos(27rB) 

27r 
where we used cos(27r(O + 1 ) )  cos(27rO) and sin(27r(B + 1 ) )  sin(27rB). 

Hence X � is correlated with an unbiased estimator of zero, and cannot be a 
best unbiased estimator of e. In fact, it is straightforward to check that the estimator 
X - � + sin(27rX) /(2n-) is unbiased for B and has variance .071 < I I  

To answer the question about existence of a best unbiased estimator, what is needed 
is some characterization of all unbiased estimators of zero. Given such a character
ization, we could then see if our candidate for best unbiased estimator is, in fact, 
optimal. 

Characterizing the unbiased estimators of zero is not an easy task and requires 
conditions on the pdf (or pmf) with which we are working. Note that, thus far in 
this section, we have not specified conditions on pdfs (as were needed, for example, 
in the Cramer-Rao Lower Bound) .  The price we have paid for this generality is the 
difficulty in verifying the existence of the best unbiased estimator. 

If a family of pdfs or pmfs !(xIB) has the property that there are no unbiased 
estimators of zero (other than zero itself) ,  then our search would be ended, since any 
statistic W satisfies Covo( W, 0) O. Recall that the property of completeness, defined 
in Definition 6.1 .4, guarantees such a situation. 

Example 7.3.22 (Continuation of Example 7.3.13) For Xl , . . .  , Xn iid uni
form(O, 0) ,  we saw that n is an unbiased estimator of 8, where Y max{ XI , . . .  , 
Xn}. The conditions of the Cramer-Rao Theorem are not satisfied, and we have not 
yet established whether this estimator is best unbiased. In Example 6.2.23, however, 
it was shown that Y is a complete sufficient statistic. This means that the family of 
pdfs of Y is complete, and there are no unbiased estimators of zero that are based 
on Y. (By sufficiency, in the form of the Rao-Blackwell Theorem, we need consider 
only unbiased estimators of zero based on Y.) Therefore, n�l Y is uncorrelated with 
all unbiased estimators of zero (since the only one is zero itself) and thus �Y is 
the best unbiased estimator of O. I I  

It i s  worthwhile to  note once again that what i s  important i s  the completeness of the 
family of distributions of the sufficient statistic. Completeness of the original family 
is of no consequence. This follows from the Rao-Blackwell Theorem, which says that 
we can restrict attention to functions of a sufficient statistic, so all expectations will 
be taken with respect to its distribution. 
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We sum up the relationship between completeness and best unbiasedness in the 
following theorem. 

Theorem 7.3.23 Let T be a complete sufficient statistic for a parameter 8, and 
let ¢(T) be any estimator based only on T. Then cf>(T) is the unique best unbiased 
estimator of its expected value. 

We close this section with an interesting and useful application of the theory de
veloped here. In many situations, there will be no obvious candidate for an unbiased 
estimator of a function r( 0) ,  much less a candidate for best unbiased estimator. How
ever, in the presence of completeness, the theory of this section tells us that if we 
can find any unbiased estimator, we can find the best unbiased estimator. If T is 
a complete sufficient statistic for a parameter 0 and h(X1 , • . •  , Xn) is any unbiased 
estimator of r(O) , then cf>(T) = E(h(Xl , . . .  , Xn) IT) is the best unbiased estimator of 
r(O) (see Exercise 7.56) . 

Example 7.3.24 (Binomial best unbiased estimation) Let Xl , . . .  , Xn be iid 
binomial(k, 0) . The problem is to estimate the probability of exactly one success from 
a binomial(k, 0) ,  that is, estimate 

r(O) = Po(X = 1 )  = kO(l - O)k-l . 

Now E�l Xi rv binomial(kn, e) is a complete sufficient statistic, but no unbiased 
estimator based on it is immediately evident. When in this situation, try for the 
simplest solution. The simple-minded estimator 

satisfies 

h(X ) = { I if Xl = 1 1 0 otherwise 

k 
Eoh(Xl ) = "'�o h(Xl) (:J 0"'1 (1 - O)k-"'l 

= k8(1 _ e)k-l 

and hence is an unbiased estimator of ke( l  O)k-l . Our theory now tells us that the 
estimator 

is the best unbiased estimator of kO( l -O)k-l . (Notice that we do not need to actually 
calculate the expectation of ¢(E�l Xi) ;  we know that it has the correct expected 
value by properties of iterated expectations.) We must, however, be able to evaluate 
cf>. Suppose that we observe E�=l Xi = t .  Then 
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¢(t) = E ( h(X1 ) 1 tXi = t) 
P (Xl = 1 1 � Xi = t) 
P9(X1 = 1 , E7="'lXi t) = P9(E�1 Xi = t) 
P9(X1 = 1, E�=2 Xi t 

P9 (E�=1 Xi t )  

P9(X1 = 1 )PI/ (E7=2 Xi 

1 )  

t 1 )  

Section 7.3 (the expectation dOes) not depend on 6 

(h is O or 1) 

( definition of ) conditional probability 

(r!iund
1��) 

(Xl is independent) of X2, · · . , Xn 

Now Xl "-' binomial(k, 6) ,  E�=2 Xi "V binomial(k(n - 1 ) , 0) ,  and E�l Xi I'V 
binomial(kn, 0) . Using these facts we have 

Note that all of the Os cancel, as they must since E7=1 Xi is sufficient. Hence, the 
best unbiased estimator of kO(l - O)k-l is 

We can assert unbiasedness without performing the difficult evaluation of 
E9 [<i> (E7=1 Xi)] ' I I 

7.3.4 Loss Function Optimality 
Our evaluations of point estimators have been based on their mean squared error 
performance. Mean squared error is a special case of a function called a loss function. 
The study of the performance, and the optimality, of estimators evaluated through 
loss functions is a branch of decision theory. 

After the data X x are observed, where X "-' f(xIO) , 0 E e, a decision regarding 
8 is made. The set of allowable decisions is the action space, denoted by A. Often in 
point estimation problems A is equal to e, the parameter space, but this will change 
in other problems (such as hypothesis testing-see Section 8.3.5). 

The loss function in a point estimation problem reflects the fact that if an action 
a is close to 0, then the decision a is reasonable and little loss is incurred. If a is far 
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from e, then a large loss is incurred. The loss function is a nonnegative function that 
generally increases as the distance between a and e increases. If e is real-valued, two 
commonly used loss functions are 

and 

absolute error loss, L(O, a) = la 0 1 , 

squared error loss, L( e, a) (a - e? 
Both of these loss functions increase as the distance between 0 and a increases, with 
minimum value L(e, O) O. That is, the loss is minimum if the action is correct. 
Squared error loss gives relatively more penalty for large discrepancies, and absolute 
error loss gives relatively more penalty for small discrepancies. A variation of squared 
error loss, one that penalizes overestimation more than underestimation, is 

_ { (a - 0)2 if a < 0 L(O, a) - 10(a - O)2 if a � O. 

A loss that penalizes errors in estimation more if e is near 0 than if 10 1 is large, a 
relative squared error loss, is 

L(O, a) 
(a _ 0)2 
10 1 + 1 . 

Notice that both of these last variations of squared error loss could have been based 
instead on absolute error loss. In general, the experimenter must consider the con
sequences of various errors in estimation for different values of 0 and specify a loss 
function that reflects these consequences. 

In a loss function or decision theoretic analysis, the quality of an estimator is quan
tified in its risk function; that is, for an estimator 8(x) of 0, the risk function, a 
function of 0, is 

(7.3.16) R(O, 8) EeL(O, 8(X)) .  

At a given 0 ,  the risk function is the average loss that will be incurred i f  the estimator 
· 8(x) is used. 

Since the true value of 0 is unknown, we would like to use an estimator that has 
a small value of R(O, 8) for all values of O. This would mean that, regardless of the 

· true value of 0, the estimator will have a small expected loss. If the qualities of two 
· different estimators, 81 and 62 , are to be compared, then they will be compared by 
comparing their risk functions, R( (), (1 ) and R( () , (2) '  If R( 0, (1 ) < R( e, (2) for all 
() E e, then 61 is the preferred estimator because 61 performs better for all O. More 
typically, the two risk functions will cross. Then the judgment as to which estimator 
is better may not be so clear-cut. 

The risk function for an estimator 8 is the expected loss, as defined in (7.3 .16) . For 
squared error loss, the risk function is a familiar quantity, the mean squared error 
(MSE) that was used in Section 7.3.1. There the MSE of an estimator was defined as 
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MSE(O) Eo (6(X) - 0)2, which is just Ee£(8, 6(X)) = R(8, 6) if £(0, a) (a 8)2, 
As in Chapter 7 we have that, for squared error loss, 

(7.3.17) R(0, 6) = Var/l 6(X) + (E6D(X) () 2 = Vare 6(X) + (Bias/l 6(X» 2 . 

This risk function for squared error loss clearly indicates that a good estimator should 
have both a small variance and a small bias. A decision theoretic analysis would judge 
how well an estimator succeeded in simultaneously minimizing these two quantities. 

It would be an atypical decision theoretic analysis in which the set 'D of allowable 
estimators was restricted to the set of unbiased estimators, as was done in Section 
7.3.2. Then, minimizing the risk would just be minimizing the variance. A decision 
theoretic analysis would be more comprehensive in that both the variance and bias 
are in the risk and will be considered simultaneously. An estimator would be judged 
good if it had a small, but probably nonzero, bias combined with a small variance. 

Example 7.3.25 (Binomial risk functions) In Example 7.3.5 we considered 
Xl , . . .  , Xn ' a random sample from a Bernoulli(p) population. We considered two 
estimators, 

. E�-l Xi + Vn74 PB = r,;;; n + y n 
and 

The risk functions for these two estimators, for n 4 and n = 400, were graphed in 
Figure 7.3. 1 ,  and the comparisons of these risk functions are as stated in Example 
7.3.5.  On the basis of risk comparison, the estimator fiB would be preferred for small 
n and the estimator X would be preferred for large n .  II 

Example 7.3.26 (Risk of normal variance) Let X1 , . . .  , Xn be a random sample 
from a n(J,l, a2) population. Consider estimating a2 using squared error loss. We will 
consider estimators of the form 6b(X) bS2 , where S2 is the sample variance and b 
can be any nonnegative constant. Recall that ES2 = a2 and, for a normal sample, 
Var S2 = 2a4j(n 1).  Using (7.3 . 1 7 ) ,  we can compute the risk function for 6b as 

R« J,l, a2 ) , Ob) Var bS2 + (EbS2 _ a2 ) 2 

b2Var S2 + (bES2 _ a2) 2 

b22a4 = -- + (b 1 )2a4 
n 1 

[� + (b 1 )2] a4 • 
n - 1 

(using Var S2) 

The risk function for Db does not depend on J,l and is a quadratic function of a2• This 
quadratic function is of the form cb(a2)2 ,  where Cb is a positive constant . To compare 
two risk functions, and hence the worth of two estimators, note that if Cb < Cb" then 
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Figure 7.3.2. Risk functions for three variance estimators in Example 7.S.Q6 

for all values of (/-L, (J2) . Thus bb would be a better estimator than bb" The value of b 
tha.t gives the overall minimum value of 

(7.3.18) 

yields the best estimator bb in this class. Standard calculus methods show that b 
(n l )/(n + 1 )  is the minimizing value. Thus, at every value of (/-L, (J2) , the estimator 

-2 n - 1 2 S = --S n + 1  

has the smallest risk among all estimators of the form bS2 • For n 5, the risk 
functions for this estimator and two other estimators in this class are shown in Figure 
·7.3.2. The other estimators are S2, the unbiased estimator, and &2 = n� 1 S2, the 
MLE of (J2. It is clear that the risk function for [;2 is smallest everywhere. I I  

Example 7.3.27 (Variance estimation using Stein's loss) Again we consider 
estimating a population variance (J2 with an estimator of the form bS2• In this analysis 
we can be quite general and assume only that XI , . . .  , Xn is a random sample from 
some population with positive, finite variance (J2. Now we will use the loss function 

2 a a L((J a) = - - 1 - log -' (J2 (J2 ' 

attributed to Stein (James and Stein 1961 ;  see also Brown 1990a) .  This loss is more 
complicated than squared error loss but it has some reasonable properties. Note that 
if a = (J2, the loss is O. Also, for any fixed value of (J2, L ((J2 , a) -+ 00 as a -+ 
o or a -+ 00. That is, gross underestimation is penalized just as heavily as gross 
overestimation. (A criticism of squared error loss in a variance estimation problem is 
that underestimation has only a finite penalty, while overestimation has an infinite 
penalty.) The loss function also arises out of the likelihood function for (J2, if this is 
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a sample from a normal population, and thus ties together good decision theoretic 
properties with good likelihood properties (see Exercise 7.61 ) .  

For the estimator 6"  = b82 , the risk function is ( b82 b82 ) 
E - l - log -0'2 0'2 

82 b82 = bE- - 1 - E log 0'2 
b 10g b 

The quantity E loge 82 / 0'2) may be a function of (12 and other population parameters 
but it is not a function of b .  Thus R( (12 , 6,, )  is minimized in b, for all 0'2 , by the value 
of b that minimizes b log b, that is, b = 1 .  Therefore the estimator of the form b82 
that has the smallest risk for all values of 0'2 is 61 = 82 . I I  

We can also use a Bayesian approach to the problem of loss function optimality, 
where we would have a prior distribution, ?T(O) . In a Bayesian analysis we would use 
this prior distribution to compute an average risk 

fa R(O, 6)?T(O) d8, 

known as the Bayes risk. Averaging the risk function gives us one number for assessing 
the performance of an estimator with respect to a given loss function. Moreover, we 
can attempt to find the estimator that yields the smallest value of the Bayes risk. Such 
an estimator is called the Bayes rule with respect to a prior 1r and is often denoted 
61t • 

Finding the Bayes decision rule for a given prior ?T may look like a daunting task, 
but it turns out to be rather mechanical, as the following indicates. (The technique 
of finding Bayes rules by the method given below works in greater generality than 
presented here; see Brown and Purves 1973.)  

For X rv f(xIO) and 0 rv ?T, the Bayes risk of a decision rule () can be written as 

fa R(O, 6) 1r(8) dO = fa (L L(O, 6 (x))f(xI8) dx) ?T(8) dO. 

Now if we write f(x IO)?T(O) = 1r(Olx)m(x) , where 1r(O lx) is the posterior distribution 
of 0 and m(x) is the marginal distribution of X, we can write the Bayes risk as 

(7.3.19) fa R(O, 6)1r(8) dO = L [fa L (O, 6 (x))1r(O lx) dO] m(x) dx. 

The quantity in square brackets is the expected value of the loss function with respect 
to the posterior distribution, called the posterior expected loss. It is a function only of 
x, and not a function of O. Thus, for each x, if we choose the action 6 (x) to minimize 
the posterior expected loss, we will minimize the Bayes risk. 
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Notice that we now have a recipe for constructing a Bayes rule. For a given obser
vation x, the Bayes rule . should minimize the posterior expected loss. This is quite 
unlike any prescription we have had in previous sections. For example, consider the 
methods of finding best unbiased estimators discussed previously. To use Theorem 
7.3.23, first we need to find a complete sufficient statistic T. Then we need to find 
a function 4J(T) that is an unbiased estimator of the parameter. The Rao-Blackwell 
Theorem, Theorem 7.3 . 17 ,  may be helpful if we know of some unbiased estimator of 
the parameter. But if we cannot dream up some unbiased estimator, then the method 
does not tell us how to construct one. 

Even if the minimization of the posterior expected loss cannot be done analytically, 
the integral can be evaluated and the minimization carried out numerically. In fact, 
having observed X = x, we need to do the minimization only for this particular x. 
However, in some problems we can explicitly describe the Bayes rule. 

Example 7.3.28 (Two Bayes rules) Consider a point estimation problem for a 
real-valued parameter O. 
a. For squared error loss, the posterior expected loss is 

Ie (0 a)21TCOlx) dO = E ((0 - a)2 1X x) . 

Here 0 is the random variable with distribution 1T(Olx). By Example 2.2.6, this 
expected value is minimized by 81r (x) = ECOlx) . So the Bayes rule is the mean of 
the posterior distribution. 

b. For absolute error loss, the posterior expected loss is E ( 10 - a l iX x) . By applying 
Exercise 2.18, we see that this is minimized by choosing 811' (x) median of 1T(Olx) . 

I I  
In Section 7.2.3, the Bayes estimator we discussed was 811' (x) E(Olx), the posterior 

mean. We now see that this is the Bayes estimator with respect to squared error loss. 
If some other loss function is deemed more appropriate than squared error loss, the 
Bayes estimator might be a different statistic. 

Example 7.3.29 (Normal Bayes estimates) Let Xl " ' "  Xn be a random sam
ple from a n(0, a2) population and let 1T(0) be n(t-t, 1'2) .  The values 0'2 ,  IL, and 1'2 are 
known. In Example 7.2. 16, as extended in Exercise 7.22, we found that the posterior 
distribution of () given X x is normal with 

E(() lx) 

and 
Var(O lx) 

1'2 a2jn 
--:--.,..---:::-:--:-X + IL 1'2 + (a2jn) 1'2 + (a2jn) 

1'2a2jn 
1'2 + (0'2 j n) . 

For squared error loss, the Bayes estimator is 81r (x) = E(() lx) . Since the posterior 
distribution is normal, it is symmetric about its mean and the median of 1T(Olx) is 
equal to E(()lx). Thus, for absolute error loss, the Bayes estimator is also 81l'(x) 
E(Olx) . 



354 POINT ESTIMATION Section 7.3 

Table 7.3 .1 .  Three estimators for a binomial p 

n =  10 prior 7r(p) '" uniform(O, I ) 

Bayes Bayes 
absolute squared 

y MLE error error 

a .0000 .06 1 1  .0833 
1 . 1000 . 1480 . 1667 
2 . 2000 .2358 .2500 
3 .3000 .3238 .3333 
4 .4000 .41 19 .4167 
5 .5000 .5000 .5000 
6 .6000 .5881 .5833 
7 .7000 .6762 .6667 
8 .8000 .7642 .7500 
9 .9000 .8520 .8333 

10 1 .0000 .9389 .9137 

Example 7.3.30 (Binomial Bayes estimates) Let Xl , . "  , Xn be iid 
Bernoulli(p) and let Y 'E Xi .  Suppose the prior on p is beta(o, ,8).  In Example 
7.2.14  we found that the posterior distribution depends on the sample only through 
the observed value of Y = y and is beta(y + 0, n - y + ,8). Hence, 671: (y) = E(ply) 
(y + 0)/(0 + ,8  + n) is the Bayes estimator of p for squared error loss. 

For absolute error loss, we need to find the median of 7r(pJy) = beta(y+o, n-y+,8). 
In general, there is no simple expression for this median. The median is implicitly 
defined to be the number, m, that satisfies 

This integral can be evaluated numerically to find (approximately) the value m that 
satisfies the equality. We have done this for n 10 and 0 ,8 = 1 ,  the uniform( 0, 1 ) 
prior. The Bayes estimator for absolute error loss is given in Table 7.3. 1 .  In the table 
we have also listed the Bayes estimator for squared error loss, derived above, and the 
MLE, P yIn. 

Notice in Table 7.3.1 that, unlike the MLE, neither Bayes estimator estimates p to 
be a or 1 ,  even if y is 0 or n. It is typical of Bayes estimators that they would not 
take on extreme values in the parameter space. No matter how large the sample size, 
the prior always has some influence on the estimator and tends to draw it away from 
the extreme values. In the above expression for E(ply) , you can see that even if y a 
and n is large, the Bayes estimator is a positive number. I I  
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1.4 Exercises ------------------ ------

7.1  One observation is taken on a discrete random variable X with pmf f(x IO),  where 
o E {I ,  2, 3}. Find the MLE of O .  . 

x f(xl l) f(x I2 )  f(x I3) 
0 I 1 0 3 4' 
1 1 1 0 3 4' 
2 0 I 1 

'4 4: 
3 I 1 1 

6 '4 '2 
4 1 0 1 6 '4 

7.2 Let Xl , . . .  , X" be a random sample from a gamma(Q;, [3) population. 
(a) Find the MLE of [3, assuming Q; is known. 
(b) If Q; and [3 are both unknown, there is no explicit formula for the MLEs of Q; and [3, 

but the maximum can be found numerically. The result in part (a) can be used to 
reduce the problem to the maximization of a univariate function. Find the MLEs 
for Q; and [3 for the data in Exercise 7 .1O(c). 

7.3 Given a random sample Xl , . . .  , Xn from a population with pdf f(x\O) ,  show that max
imizing the likelihood function, L(Olx) ,  as a function of 0 is equivalent to maximizing 
log L(8\x). 

7.4 Prove the assertion in Example 7.2.8. That is, prove that e given there is the MLE 
when the range of 0 is restricted to the positive axis. 

7.5 Consider estimating the binomial parameter k as in Example 7 .2.9. 
(a) Prove the assertion that the integer k that satisfies the inequalities and is the MLE 

is the largest integer less than or equal to 1 / Z. 
(b) Let p �, n = 4, and Xl = 0, X2 = 20, X3 1 ,  and X4 19. What is k? 

7.6 Let Xl , . . .  , Xn be a random sample from the pdf 

f(x IO) O -2 X , 0 < 0  � x < 00 .  

(a) What is a sufficient statistic for 87 
(b) Find the MLE of 8. 
(c) Find the method of moments estimator of O. 

7.7 Let Xl, . . .  , Xn be iid with one of two pdfs. If 8 = 0, then 

while if 8 1, then 

Find the MLE of O. 

f(x IO) { � 

f(xIO) = { �/ (2 Vx) 

if O < x < l  
otherwise, 

if O < x < l 
otherwise. 
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7.8 One observation, X,  is taken from a nCO, (72 ) population. 
( a) Find an un biased estimator of cr2 • 
(b) Find the MLE of cr: 
(c) Discuss how the method of moments estimator of (7 might be found. 

7.9 Let Xl , . . . , Xn be iid with pdf 
1 f(xI9)  = 8 '  0 � x � 8, 8 >  O.  

SectiQn 1.4 

Estimate 8 using both the method of moments and maximum likelihood. Calculate the 
means and variances of the two estimators. Which one should be preferred and why? 

7.10 The independent random variables Xl ,  . . .  , Xn have the common distribution 

where the parameters a and jJ are positive. 

if x < 0 
if O � x � jJ  
if x > jJ, 

(a) Find a tW<rdimensional sufficient statistic for (a, jJ). 
(b) Find the MLEs of a and jJ. 
(c) The length (in millimeters) of cuckoos' eggs found in hedge sparrow nests can be 

modeled with this distribution. For the data 
22.0, 23.9, 20.9, 23.8, 25.0, 24.0, 21 .7, 23.8, 22.8, 23. 1, 23. 1 ,  23.5, 23.0, 23.0, 

find the MLEs of a and jJ. 
7.11 Let X! , . . .  , X", be iid with pdf 

f(xI9) = 9x9- t ,  0 � X � 1 ,  0 < (} < 00 .  

(a) Find the MLE of 8, and show that its variance --+ 0 as n --+ 00. 
(b) Find the method of moments estimator of (}. 

7.12 Let Xl , . . .  , X", be a random sample from a population with pmf 

Pe(X = x) = 8"' ( 1 - (}) 1-X, x = O or l , o ::; (} � � . 

(a) Find the method of moments estimator and MLE of 8. 
(b) Find the mean squared errors of each of the estimators. 
(c) Which estimator is preferred? Justify your choice. 

7.13 Let Xl ,  . . .  , X", be a sample from a population with double exponential pdf 

f(xl(J) -- 21 e- Ix-91 , (J -00 < x < 00 ,  -00 < < 00 .  

Find the MLE o f  (J. (Hint: Consider the case o f  even n separate from that of odd 
n, and find the MLE in terms of the order statistics. A complete treatment of this 
problem is given in Norton 1984.) 

7.14 Let X and Y be independent exponential random variables, with 

f(xIA) = �e-x/\ x >  0, f(ylJ1.) 1 -II/Ii-- e  , y > O .  J1. 
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We observe Z and W with 

Z = min(X, Y) and W { � if Z = X  
if Z = Y. 

In Exercise 4.26 the joint distribution of Z and W was obtained. Now assume that 
( Zi, W;) ,  i = 1, . . . , n, are n iid observations. Find the MLEs of A and Jl. 

T.llS Let Xl, X2 , . . .  , Xn be a sample from the inverse Gaussian pdf, 

( A ) 1/2 
f(xIJl, A) = 21rx3 exp {-A (X 

(a) Show that the MLEs of Jl and A are 

(b) Tweedie ( 1957) showed that j),n and ).n are independent, j),n having an inverse 
Gaussian distribution with parameters Jl and nA, and nA/).n having a X�- I distri
bution. Schwarz and Samanta (1991 )  give a proof of these facts using an induction 
argument. 
(i) Show that j),2 has an inverse Gaussian distribution with parameters Jl and 2>', 

2>./5.2 has a X� distribution, and they are independent. 
(ii) Assume the result is true for n k and that we get a new, independent 

observation x. Establish the induction step used by Schwarz and Samanta 
( 1991) ,  and transform the pdf f (x, j),k, ).k )  to f(x, j),k+ l ,  ).k+d. Show that this 
density factors in the appropriate way and that the result of Tweedie follows. 

7.16 Berger and Casella ( 1992) also investigate power means, which we have seen in Exercise 
4.57. Recall that a power mean is defined as [� E: l xn l/r . This definition can be 
further generalized by noting that the power function xr can be replaced by any 
continuous, monotone function h, yielding the generalized mean h- I (�  E:, hex,») . 

(a) The least squares problem mina Ei(Xi _a)2 is sometimes solved using transformed 
variables, that is, solving mina E · [h(Xi) - h(a)J2 . Show that the solution to this 
latter problem is a = h- I « l/n) ti h(Xi». 

(b) Show that the arithmetic mean is the solution to the untransformed least squares 
problem, the geometric mean is the solution to the problem transformed by hex) = 
log x, and the harmonic mean is the solution to the problem transformed by hex) = 
l/x. 

(c) Show that if the least squares problem is transformed with the Box-Cox Transfor
mation (see Exercise 1 1 .3) , then the solution is a generalized mean with hex) xA• 

(d) Let Xl , . . .  , Xn be a sample from a lognormal(Jl, u2) population. Show that the 
MLE of Jl is the geometric mean. 

(e) Suppose that X" . . .  , Xn are a sample from a one-parameter exponential family 
f(xIO) = exp{Oh(x) - H(O)}g(x), where h = HI and h is an increasing function. 
(i) Show that the MLE of 0 is e = h-1« I/n) Ei hex, »� . 

(ii) Show that two densities that satisfy h = H' are the normal and the inverted 
gamma with pdf f(xIO) = Ox-2 exp{-O/x} for x > 0, and for the normal the 
MLE is the arithmetic mean and for the inverted gamma it is the harmonic 
mean. 
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7.17 The Borel Paradox (Miscellanea 4.9.3) can also arise in inference problems. Suppose 
that Xl and X2 are iid exponential(lJ) random variables. 
(a) If we observe only X2, show that the MLE of 0 is () = X2 • 

(b) Suppose that we instead observe only Z = (X2 1)1 Xl . Find the joint distribution 
of (XI, Z), and integrate out Xl to get the likelihood function. 

(c) Suppose that X2 == 1. Compare the MLEs for 8 from parts (a) and (b). 
(d) Bayesian analysis is not immune to the Borel Paradox. If 1T(O) is a prior density 

for 0, show that the posterior distributions, at X2 1 ,  are different in parts (a) 
and (b) .  

(Communicated by L .  Mark Berliner, Ohio State University.) 
7.18 Let (Xl , Yd, . . .  , (X"' Yn ) be Ud bivariate normal random variables (pairs) where all 

five parameters are unknown. 
(a) Show that the method of moments estimators for #x , #y , 01 , aL p are jix = - - - -2 1 �( -)2 -2 1 �( -)2 - 1 �( -) (  x, #y = Y, ax = 1i L.., Xi - X , ay = il L.., Yi - Y  , p = il L.., Xi X Yi -

Y)/(axay ) .  
(b )  Derive the MLEs of  the unknown parameters and show that they are the same as 

the method of moments estimators. (One attack is to write the joint pdf as the 
product of a conditional and a marginal, that is, write 

f(x, y i#x , #y , ak ,  a� , p) = f(Y ix, #x , #y ) a� , a� , p)f(xi#x , a� ) , 
and argue that the MLEs for #X and a� are given by x and � L:(x. - X)2 . 
Then, turn things around to get the MLEs for #y and a� . Finally, work with the 
"partially maximized" likelihood function L(x, y, &� ) &� ) pix, y) to get the MLE 
for p. As might be guessed, this is a difficult problem.)  

7.19 Suppose that the random variables YI , . • .  , Yn satisfy 

li (3Xi + fi , i = 1 ,  . . . , n , 

where X I , . . •  , x,.. are fixed constants, and 1"1 , • • •  , 1"" are lid nCO, a2) ,  a2 unknown. 
(a) Find a two-dimensional sufficient statistic for ({3, a2) .  
(b) Find the MLE o f  {3 ,  and show that i t  i s  an unbiased estimator of {3. 
(c) Find the distribution of the MLE of {3. 

7.20 Consider YI , . . . , Yn as defined in Exercise 7.19. 
(a) Show that L: Yil L: Xi is an unbiased estimator of (3. 
(b) Calculate the exact variance of L: lil L: Xi and compare it to the variance of the 

MLE. 
7.21 Again, let YI , . . . , Y" be as defined in Exercise 7.19. 

(a) Show that [L:(lilxi)] In is also an unbiased estimator of (3. 
(b) Calculate the exact variance of [L:(lilx; )] In and compare it to the variances of 

the estimators in the previous two exercises. 
7.22 This exercise will prove the assertions in Example 7.2.16, and more. Let Xl, . . .  , X n be 

a random sample from a n(O, a2) population, and suppose that the prior distribution 
on 0 is n(#, 72) .  Here we assume that a2, #, and 72 are all known. 
(a) Find the joint pdf of X and 8. 
(b) Show that m(x ia2, #, 72) ,  the marginal distribution of X, is n(#, (a2 In) + 72) .  
(c) Show that 1T(Oix, a2 , #, 72 ) ,  the posterior distribution of 0 ,  i s  normal with mean 

and variance given by (7.2.10). 
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".23 If 82 is the sample variance based on a sample of size n from a normal population, 
we know that (n - 1 )82/u2 has a X!-l distribution. The conjugate prior for u2 is the 
inverted gamma pdf, 10(a, {3), given by 

where a and {3 are positive constants. Show that the posterior distribution of u2 is 
10(a + n;l , [ (n_�)s2 + �l-l ) . Find the mean of this distribution, the Bayes estimator 
of u2• 

7.24 Let XI , . . . , Xn be iid Poisson(..\) , and let ..\ have a gamma(a, {3) distribution, the 
conjugate family for the Poisson. 
(a) Find the posterior distribution of ..\. 
(b) Calculate the posterior mean and variance. 

".25 We examine a generalization of the hierarchical (Bayes) model considered in Example 
7.2. 16 and Exercise 7.22. Suppose that we observe Xl , . . .  , Xn• where 

XilBi I'V n(Bi , (2 ) ,  
B i  '" n(p" 7"2 ) , 

i = 1 , . . . , n, independent, 
1, . . .  , n, independent. 

(a) Show that the marginal distribution of Xi is n(p" u2 + 7"2) and that, marginally, 
Xl , . . .  , Xn are iid. (Empirical Bayes analysis would use the marginal distribution 
of the XiS to estimate the prior parameters p, and 7"2 . See Miscellanea 7.5.6. ) 

(b) Show, in general, that if 

Xi lBi '" !(xI8i) , 
Bi '" lI'(BI7"), 

then marginally, Xl , . . .  , Xn are iid. 

1 ,  . . . , n, 
i = 1, . . . , n, 

independent, 
independent, 

7.26 In Example 7.2. 16 we saw that the normal distribution is its own conjugate family. 
It is sometimes the case, however, that a conjugate prior does not accurately reflect 
prior knowledge, and a different prior is sought. Let Xl , . . . , Xn be iid n(B, (2 ) ,  and let 
B have a double exponential distribution, that is, lI'(B) e- 161/a /(2a), a known. Find 
the mean of the posterior distribution of B. 

7.27 Refer to Example 7.2 . 17. 

(a) Show that the likelihood estimators from the complete-data likelihood (7.2. 1 1 )  are 
given by (7.2. 12) .  

(b)  Show: that the limit of the EM sequence in (7.2.23) satisfies (7.2. 16) 
(c) A direct solution of the original (incomplete-data) likelihood equations is passible. 

Show that the solution to (7.2. 16) is given by 

• Xj + Yj J' 7"j = -. -- , 
{3 + 1 

2, 3, . . . , n, 

and that this is the limit of the EM sequence in (7.2.23) . 
7.28 Use the model of Example 7.2 .17 on the data in the following table adapted from 

Lange et al. ( 1994). These are leukemia counts and the associated populations for a 
number of areas in New York State. 
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Cou.nts of leukemia cases 
Population 3540 3560 3739 2784 2571 2729 3952 993 1908 
Number of cases 3 4 1 1 3 1 2 0 2 
Population 948 1 1 72 1047 3138 5485 5554 2943 4969 4828 
Number of cases 0 1 3 5 4 6 2 5 4 

(a) Fit the Poisson model to these data both to the full data set and to an "incomplete" 
data set where we suppose that the first population count (Xl = 3540) is missing. 

(b) Suppose that instead of having an x value missing, we actually have lost a leukemia 
count (assume that Yl = 3 is missing) . Use the EM algorithm to find the MLEs 
in this case, and compare your answers to those of part (a). 

1.29 An alternative to the model of Example 7.2.17 is the following, where we observe 
(Yi, Xi), i = 1 , 2, . . .  , n, where Yi rv Poisson(m,BTi) and (X1 " " , Xn) '" multi
nomial(m; 'T),  where 'T = (71 , T2 , . . .  , Tn) with L�l To 1 .  S o  here, for example, 
we assume that the population counts are multinomial allocations rather than Poisson 
counts. {Treat m =: LXi as known.} 
(a) Show that the joint density of Y = (Yl ,  . . .  , Yn) and X (Xl , . . .  , Xn) is 

fey, xl,B, 'T) 

(b) If the complete data are observed, show that the MLEs are given by 

d '  Xj + Yj an Tj = ",n , j 
Wi=l Xi + Yi 1 , 2, . . . , n. 

(c) Suppose that Xl is missing. Use the fact that Xl '" binomial(m, t1 ) to calculate 
the expected complete-data log likelihood. Show that the EM sequence is given by 

,a(r+l) = 
L�l Yi and T)(r+l ) = _....,....,,--_�--=:..<-___ _ . (r) ",n mTl + wi=2 xi 

j = 1 , 2, . . . , n. 
(d) Use this model to find the MLEs for the data in Exercise 7.28, first assuming that 

you have all the data and then assuming that Xl = 3540 is missing. 
1.30 The EM algorithm is useful in a variety of situation, and the definition of "miss

ing data" can be stretched to accommodate many different models. Suppose that 
we have a mixture density pf(x) + (1 p)g(x), where p is unknown. If we observe 
X = (Xl , . . .  , Xn) , the sample density is 

n 
IIIPf(xi) + (1 - P)g(Xi)] ,  
i=1 

which could be difficult to deal with. (Actually, a mixture of two is not terrible, but 
consider what the likelihood would look like with a mixture L:=l P;Ji(X) for large k.)  
The EM solution is to augment the observed (or incomplete) data with Z (Zl ,  . . .  , 
Zn) ,  where Zi tells which component of the mixture Xi came from; that is, 

Xilzi = 1 rv f(Xi ) and Xilzi = 0 '" g(Xi ) ,  
and P(Z, = 1) = p. 
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(a) Show that the joint density of (X, Z) is given by n:=l[P!(Xi )". I [(l - p)g(x;) l-"' l . 
(b) Show that the missing data distribution, the distribution of Z, !Xi ,p is Bernoulli 

with success probability p!(Xi) / (P!(Xi ) + (1 p)g(x.» . 
(c) Calculate the expected complete-data log likelihood, and show that the EM se

quence is given by 

1 � p(r) f(x;) 
;; � p(r) f (Xi ) + (1 - jj(r» g(Xi ) ' 1.=1 

7.31 Prove Theorem 7.2.20. 

(a) Show that, using (7.2.19),  we can write 

logL(8 (r) ly) E [logL(8(r) ly, X) 18(r) , y] - E [log k(XIO(r) , Y) IO(r) , y] , 

and, since 8(rH) is a maximum, log L(8(rH l ly, X) � E [logL(8(r1 Iy, X) lo(rl , y] . 
When is the inequality an equality? 

(b) Now use Jensen's inequality to show that 

E [log k(XI8(r+ll ,  y) 18(r) , y] � E [log k(XIO(r) , Y)IO(r) , y] , 

which together with part (a) proves the theorem. 
(Hint: If f and 9 are densities, since log is a concave function, Jensen's inequality 
(4.7.7) implies 

/ log (��:j) g(x) dx � log (/ �i:j g(x) dx ) = log (/ f(x) dX) = O. 

By the property of logs, this in turn implies that 

/ log[J(x)Jg(x) dx :-:; / log[g(x)]g(x) dx.) 

7.32 The algorithm of Exercise 5.65 can be adapted to simulate (approximately) a sample 
from the posterior distribution using only a sample from the prior distribution. Let 
Xl ,  . . .  , Xn "" f(xIO) ,  where 0 has prior distribution 1L Generate 01 , • • •  , Om from 7r, 
and calculate qi = L(O, lx)/ 2.::j L(Oj /lx), where L(Olx) TIi f(xdO) is the likelihood 
function. 
(a) Generate Oi , . . . , O; ,  where P(O· = Oi) = q • .  Show that this is a (approximate) 

sample from the posterior in the sense that P(O· :-:; t) converges to J�oc 7r(Olx) dO. 
(b) Show that the estimator 2:r=l h(Oj)/r converges to E[h(O) lx] , where the expec

tation is with respect to the
) 
posterior distribution. 

(c) Ross ( 1996) suggests that Rao-Blackwellization can improve the estimate in part 
(b). Show that for any j, 

m 
E[h(Oj ) IOl , . . .  ) Oml 2.:::'1 �(Oi Ix) � h(Oi)L(Oi lx) 

has the same mean and smaller variance than the estimator in part (b). 

7.33 In Example 7.3.5 the MSE of the Bayes estimator, PB, of a success probability was 
calculated (the estimator was derived in Example 7.2.14). Show that the choice ct 
fJ = .;:;;J4 yields a constant MSE for PB . 
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7.34 Let Xl , . . .  , X" be a random sample from a binomial(n, p) . We want to find equivariant 
point estimators of p using the group described in Example 6.4.1. 
(a) Find the class of estimators that are equivariant with respect to this group. 
(b) Within the class of Bayes estimators of Example 7.2.14, find the estimators that 

are equivariant with respect to this group. 
(c) From the equivariant Bayes estimators of part (b) , find the one with the smallest 

MSE. 

7.35 The Pitman Estimator of Location (see Lehmann and Casella 1998 Section 3 .1 ,  or the 
original paper by Pitman 1939) is given by 

where we observe a random sample Xl , . . .  , Xn from f(x - 0). Pitman showed that 
this estimator is the location-equivariant estimator with smallest mean squared error 
(that is, it minimizes (7.3.3» . The goals of this exercise are more modest. 

(a) Show that dp(X) is invariant with respect to the location group of Example 7.3.6. 
(b) Show that if f(x - 0) is nCO, 1 ) ,  then dp (X) = X. 
(c) Show that if f(x 8) is uniform(O - � , O + � ) , then dp(X) � (X( 1 ) + X(n» '  

7.36 The Pitman Estimator of Scale is given by 

roc tn+r-l nn f(tx · ) dt cr.; (X) - )0 .=1 ' 
P 

- 1000 tn+2T- I n�=l f(tx;) dt ' 

where we observe a random sample Xl , . . .  , X", from �f(x/a) .  Pitman showed that this 
estimator is the scale-equivariant estimator of aT with smallest scaled mean squared 
error (that is, it minimizes E(d _ ar)2/a2r) . 
(a) Show that df, (X) is equivariant with respect to the scale group, that is, it satisfies 

for any constant c > O. 
(b) Find the Pitman scale-equivariant estimator for (12 if X I ,  • • •  , Xn are iid nCO, (12) . 
(c) Find the Pitman scale-equivariant estimator for (J if Xl , . . .  , X" are iid exponential({J). 
(d) Find the Pitman scale-equivariant estimator for 0 if Xl , . . .  , Xn are iid uniform(O, 0). 

7.37 Let Xl, . . .  , X" be a random sample from a population with pdf 

f (xIB) 
1 

28 ' 
-0 < x < B, B > o. 

Find, if one exists, a best unbiased estimator of 8. 
7.38 For each of the following distributions, let Xl , . . .  , X" be a random sample. Is there 

a function of B, say g(B), for which there exists an unbiased estimator whose variance 
attains the Cramer-Rao Lower Bound? If so, find it. If not, show why not. 

(a) f (x IB) = BxO-I ,  0 < x < 1, B > 0 
(b) f(xIO) l�g��) 8x, O < x < l , 0 > 1  

7.39 Prove Lemma 7.3. 1 1 . 
7.40 Let Xl , . . .  , Xn be iid Bernoulli(p). Show that the variance of X attains the CramerRao Lower Bound, and hence X is the best unbiased estimator of p. 
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7.41 Let XI • . . .  , Xn be 8. random sample from a population with mean I-' and variance (1'2 . 
(a) Show that the estimator E�l aiXi is an unbiased estimator of I-' if E:':l ai = L 
(b) Among all unbiased estimators of this form (called linear unbiased estimators) find 

the one with minimum variance, and calculate the variance. 

7.42 Let WI . . . . , Wk be unbiased estimators of a parameter () with Var Wi = (1; and 
Cov(W" Wj) = 0 if i -I j. 

(a) Show that, of all estimators of the form E ai Wi , where the a,s are constant and 

E ('" W )  () h . W· Wi/a; h . . . 8 L.J a, i = , t e estimator 2 as mmlmum variance. 
(1/". ) 

(b) Show that Var W· I 
l:(1/"� ) . 

1.43 Exercise 7.42 established that the optimal weights are q; = ( l/(1'[)/(Ej 1/(1;) .  A result 
due to Thkey (see Bloch and Moses 1988) states that if W = Ei qi Wi is an estimator 
based on another sets of weights qi ? 0, Ei qi 1, then 

Var W < _1_ 
Var W* - 1 - A2 ' 

where A satisfies ( 1  + A)/(l - A) = bmax/bmin, and bmax and bmin are the largest and 
smallest of b; q,/q: . 
(a) Prove Thkey's inequality. 
(b) Use the inequality to assess the performance of the usual mean E Wi/k as a 

. 2 2 
• 

functIOn of (1'max/(1'min 
1.44 Let XI , . . . • X" be iid n((), 1 ) .  Show that the best unbiased estimator of(}2 is X2- ( 1/n) . 

Calculate its variance (use Stein's Identity from Section 3.6) .  and show that it is greater 
than the Cramer-Roo Lower Bound. 

7.45 Let Xl , X2, • • •  , Xn be iid from a distribution with mean I-' and variance (12 , and let 82 
be the usual unbiased estimator of (12 . In Example 7.3.4 we saw that, under normality, 
the MLE has smaller MSE than 82 • In this exercise will explore variance estimates 
some more. 

(a) Show that, for any estimator of the form a82 , where a is a constant, 

(b) Show that 

n - 3 4) -- (1  , n - l  

where K, = E[X I-'J4 is the kurtosis. (You may have already done this in Exercise 
5.8(b).) 

(c) Show that, under normality, the kurtosis is 3(1'4 and establish that, in this case, 
the estimator of the form a82 with the minimum MSE is �+i 82 . (Lemma 3.6.5 
may be helpful.) 

(d) If normality is not assumed, show that MSE(a82) is minimized at 

n - 1  a = -----;-.--:7;--:-:-
(n + 1 )  + =-�n'>":':"'-::..t.. 

which is useless as it depends on a parameter. 
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(e) Show that 

(i) for distributions with K. > 3, the optimal a will satisfy a < �+� ; 
(ii) for distributions with K. < 3, the optimal a will satisfy < a < l .  

See Searls and Intarapanich ( 1990) for more details. 
1.46 Let Xl , X2 , and X3 be a random sample of size three from a uniform(9, 29) distribution, 

where 9 > O. 
(a) Find the method of moments estimator of 9. 
(b) Find the MLE, 8, and find a constant k such that Eo(k8) = 9. 
(c) Which of the two estimators can be improved by using sufficiency? How? 
(d) Find the method of moments estimate and the MLE of ° based on the data 

1 .29, .86, 1.33, 

three observations of average berry sizes (in centimeters) of wine grapes. 
1.41 Suppose that when the radius of a circle is measured, an error is made that has 

a nCO, (12) distribution. If n independent measurements are made, find an unbiased 
estimator of the area of the circle. Is it best unbiased? 

1.48 Suppose that Xi, i = 1 ,  . . . , n, are iid Bernoulli(p) . 
(a) Show that the variance of the MLE of p attains the Cramer-Rae Lower Bound. 
(b) For n ;::: 4, show that the product XlX2XaX4 is an unbiased estimator of p4, and 

use this fact to find the best unbiased estimator of p4. 
1.49 Let Xl , . . .  , Xn be iid exponential(>'). 

( a) Find an unbiased estimator of >. based only on Y min {Xl ,  . . . , X n} .  
(b)  Find a better estimator than the one in  part (a) . Prove that it i s  better. 
(c) The following data are high-stress failure times (in hours) of Kevlarjepoxy spher

ical vessels used in a sustained pressure environment on the space shuttle: 

50. 1 ,  70. 1 ,  137.0, 1 66.9, 170.5, 152.8, 80.5, 123.5, 1 12.6, 148.5, 1 60.0, 125.4 . 

Failure times are often modeled with the exponential distribution. Estimate the 
mean failure time using the estimators from parts (a) and (b) . 

1.50 Let Xl , . . .  , Xn be iid n(O, 92 ) , O  > O. For this model both X and c8 are unbiased 
. v;;:=Tr«n-I )/2) estImators of e, where c = v'2r(n/2) 

(a) Prove that for any number a the estimator aX +(1 -a)(c8) is an unbiased estimator 
of lJ. 

(b) Find the value of a that produces the estimator with minimum variance. 
(c) Show that (X, 82) is a sufficient statistic for 9 but it is not a complete sufficient 

statistic. 
1.51 GIeser and Healy ( 1976) give a detailed treatment of the estimation problem in the 

nCO, a(2 ) family, where a is a known constant (of which Exercise 7.50 is a special case) .  
We explore a small part of their results here. Again let Xl , . . .  , Xn be i id nCO, (2 ), 
6 > 0, and let X and c8 be as in Exercise 7.50. Define the class of estimators 

where we do not assume that al + U2 = l .  

(a) Find the estimator T E T that minimizes Eo (9 T)2; call it TO . 
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(b) Show that the MSE of T* is smaller than the MSE of the estimator derived in 
Exercise 7.50(b) . 

(c) Show that the MSE of T*+ = max{O, TO} is smaller than the MSE of TO,  
(d)  Would 0 be classified as a location parameter or  a sca.le parameter? Explain. 

1.52 Let XI , . . .  , Xn be iid Poisson(A),  and let X and S2 denote the sample mean and 
variance, respectively. We now complete Example 7.3.8 in a different way. There we 
used the Cramer-Rao Bound; now we use completeness. 
(a) Prove that X is the best unbiased estimator of A without using the Cramer-Rao 

Theorem. 
(b) Prove the rather remarkable identity E(S2 IX) X, and use it to explicitly demon

strate that Var S2 > Var X. 
(c) Using completeness, can a general theorem be formulated for which the identity 

in part (b) is a special case? 

1.53 Finish some of the details left out of the proof of Theorem 7.3.20. Suppose W is an 
unbiased estimator of 1'( 0) , and U is an unbiased estimator of O. Show that if, for some 
0 =  00 , COV6() (W, U) i- 0, then W cannot be the best unbiased estimator of 1'(0) . 

1.54 Consider the "Problem of the Nile" (see Exercise 6.37) .  
(a) Show that T i s  the MLE of  0 and U i s  ancillary, and 

ET = r(n + 1/2)r(n 
tr(n»)2 

1/2) 0 d ET2 = r(n + 1)r(n - l) 02 an [r(n)]2 ' 

(b) Let ZI = (n - 1)1 E Xi and Z2 E Yi/n. Show that both are unbiased with 
variances 02/(n - 2) and 02 In, respectively. 

(c) Find the best unbiased estimator of the form aZl + (1-a)Z2 , calculate its variance, 
and compare it to the bias-corrected MLE. 

1.55 For each of the following pdfs, let Xl > . . .  , Xn be a sample from that distribution. In 
each case, find the best unbiased estimator of or. (See Guenther 1978 for a complete 
discussion of this problem. )  
(a) j(x/O )  = � , 0 < x < 0, r < n 
(b) f(xIO) = e-(x-Oj , x >  () 
(c) f(xIO) 0 < x < b, b known 

1.56 Prove the assertion made in the text preceding Example 7.3.24: If T is a complete 
sufficient statistic for a parameter 0, and h(Xl , . . .  , Xn )  is any unbiased estimator of 
1'(0), then ¢J(T) = E(h(Xl ' . . .  ' Xn) IT) is the best unbiased estimator of r«() . 

1.57 Let Xl ,  . . .  , Xn+1 be iid Bernoulli(p), and define the function h(p) by 

the probability that the first n observations exceed the (n + l)st. 
(a) Show that 

is an unbiased estimator of h(p) . 
(b) Find the best unbiased estimator of h(P) .  

i f  E�=l Xi > Xn+1 
otherwise 



366 POINT ESTIMATION Section 7.4 

7.58 Let X be an observation from the pdf 

f(xIO) (�yxl (l _ O)HXI , x = -l , O, l ;  O � O � 1. 

(a) Find the MLE of O. 
(b) Define the estimator T(X) by 

T(X) { � if x = 1 
otherwise. 

Show that T(X) is an unbiased estimator of O. 
(c) Find a better estimator than T{X) and prove that it is better. 

7.59 Let Xl , . . .  , Xn be iid n(J..t, 0'2 ) .  Find the best unbiased estimator of 0'1', where p is a 
known positive constant, not necessarily an integer. 

7.60 Let XI , . . .  , Xn be iid gamma(a, ,B) with a known. Find the best unbiased estimator 
of 1/ fJ. 

7.61 Show that the log of the likelihood function for estimating 0'2, based on observing 
82 '" 0'2X�/1I, can be written in the form 

where Kl ,  K2 , and K3 are constants, not dependent on 0'2. Relate the above log like
lihood to the loss function discussed in Example 7.3.27. See Anderson (198480) for a. 
discussion of this relationship. 

7.62 Let Xl , . . .  , Xn be a random sample from a n(0, 0'2) population, 0'2 known. Consider 
estimating 0 using squared error loss. Let 11'(0) be a n(J..t, T2) prior distribution on 0 and 
let 81f be the Bayes estimator of O. Verify the following formulas for the risk function 
and Bayes risk. 

(a) For any constants a and b, the estimator 6(x) = aX + b has risk function 

R(0, 6) = 

(b) Let 'f/ 0'2/(nT2 + 0'2). The risk function for the Bayes estimator is 

(c) The Bayes risk for the Bayes estimator is 

2 T T/. 

7.63 Let X '" n(J..t, 1 ) .  Let 61f be the Bayes estimator of J..t for squared error loss. Compute and 
graph the risk functions, R(J..t, 6") ,  for 1I'(J..t) ,...., n(O, 1 )  and 1I'{J..t) ,...., n(O, 10). Comment 
on how the prior affects the risk function of the Bayes estimator. 

7.64 Let Xl , . .  " Xn be independent random variables, where Xi has cdf F(xIOd .  Show 
that, for i 1 ,  . . .  , n, if 8;; (Xd is a Bayes rule for estimating 0; using loss L(O;. ad 
and prior 1I'; (Oi ) ,  then 6'" (X) (611'1 (Xl ) ,  . . .  , 6"n (Xn» is a Bayes rule for estimating 
() = (01 , . . .  , On) using the loss L�=l L«(}; , ai ) and prior 7r(0) I17=1 1l'i (Oi ) .  
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.,,615 A loss function by Zellner (1986) is the LINEX (LINear-EXponential) 
loss, a loss function that can handle asymmetries in a smooth way. The LINEX loss is 
given by 

L(8, o,) ec (a-IIj - c(a - 0) 1 ,  

where c i s  a. positive constant. A s  the constant c varies, the loss function varies from 
very asymmetric to almost 

For c = .2, ,5, 1 ,  L(e, a) as a function of a 8. 
(b) If X '" F(xle), show that the estimator of e, using a 1l', is given by 

,,"(X) = c 
(c) Let Xl , be iid n CO, (72) ,  where is known, and suppose that () has the 

noninformative prior 1l'(O) 1. Show that the Bayes estimator versus LINEX loss 
is "B(X) = X -

(d) Calculate the posterior loss for oBeX) and X LINEX loss. 
(e) Calculate the posterior loss for oBeX) and X squared error loss . 

.,,66 The jackknife is a for reducing bias in an estimator 
A one-step estimator is defined as follows. Let Xl • . . .  , X" be a random 

""IUj,JIe, and let Tn = , . . .  , Xn) be some estimator of a parameter (}. In order to 
"jackknife" T" we calculate the n statistics I i = 1, . . . , n, where T" (il is calculated 
just as T" but the n - 1 observations with Xi removed from the sample. The 
jackknife estima.tor of (), denoted by is given by 

_ n : 1 t (il 
;=1 

(In JK(Tn) will have a smaller bias than Tn. See Miller 1974 for a review 
of the properties of the JaCKKlll!e 

to be specific, let . . .  , Xn be iid Bernoulli(9). The object is to estimate (}2. 
(a.) Show that the MLE of (}2 , (�=:l I is a biased estimator of (}2 . 
(b) Derive the estimator based on the MLE. 
(c) Show that the one-step jackknife estimator is  an unbiased estimator of ()2 . (In 

general, jackknifing only reduces bias. In this special case, it removes it  

J=""Iun:: estimator the best unbiased estimator of {}2? If so, prove it. If not, 
find the best unbiased estimator. 

Miscellanea ____________________ _ 

Moment DSL'£1fLULUT/i and MLEs 
In general, method of moments estimators are not functions of sufficient statistics; 
hence, can be improved upon by conditioning on a sufficient statistic. 
In the case exponential families, there can be a correspondence between 
a modified method of moments and maximum likelihood estimation. This 

Davidson and Solomon ( 1974), who also 
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Suppose that we have a random sample X = (Xl , . . .  , Xn) from a pdf in .the 
exponential family (see Theorem 5 .2. 1 1 )  

fex l6) = h(x)c(O) exp (t. Wi(O)ti (X)) , 

where the range of f(x IO) is independent of 6. (Note that 6 may be a vector. )  The 
Likelihood function is of the form 

and a modified method of moments would estimate Wi (O), i 1 ,  . . .  , k, by Wi(O), 
the solutions to the k equations 

Davidson and Solomon, extending work of Huzurbazar ( 1949) , show that the esti� 
mators Wi(O) are, in fact, the MLEs of Wi (O) . If we define 17i = wi (6), i 1 ,  . . .  , k, 
then the MLE of g(17i) is equal to g(fJi) = g(Wi(O)) for any one-to-one function 
g. Calculation of the above expectations may be simplified by using the facts 
(Lehmann 1986, Section 2.7) that 

7.5.2 Unbiased Bayes Estimates 

. .  , z, z 1 ,  . . .  , k, j = 1 ,  . . .  , n. 

As was seen in Section 7.2.3, if a Bayesian calculation is done, the mean of the 
posterior distribution usually is taken as a point estimator. To be specific, if X 
has pdf f(xI6) with Ea (X) = 0 and there is a prior distribution 71'(6) , then the 
posterior mean, a Bayesian point estimator of 6, is given by 

E(Olx) = J 071'(O]x)d6. 

A question that could be asked is whether E(6IX) can be an unbiased estimator 
of 0 and thus satisfy the equation 

Ee [E(6IX)] = J [J 071'(OIX) dO] f(X10) dX = O. 

The answer is no. That is, posterior means are never unbiased estimators. If they 
were, then taking the expectation over the joint distribution of X and 6, we could 
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write 

MISCELLANEA 

E[(X - 0)2J E [X2 - 2X() + 82J 

= E (E(X2 - 2X() + t:J2 18)) 

= E (E(X2 18) - 282 + 82) 

= E (E(X2 18) (2 ) 

E(X2) - E(02 ) 

369 

(expand the square) 

(iterate the expectation) 

(properties of expectations) 

doing the conditioning one way, and conditioning on X, we could similarly calculate 

E[(X - 0)2] E (E[x2 - 2XO + 82 1Xl) 

= E (X2 2X2 + E(82 IX)) 

= E(02 ) E(X2) .  

( E«()IX) = X ) 
by assumption 

Comparing the two calculations, we see that the only way that there is no contra
diction is if E(X2) E(82 ) ,  which then implies that E(X - 8)2 = 0, so X 8.  
This occurs only if P(X = 8) = 1 ,  an uninteresting situation, so we have argued to 
a contradiction. Thus, either E(Xj8) t= () or E(8 jX) t= X, showing that posterior 
means cannot be unbiased estimators. Notice that we have implicitly made the 
assumption that E(X2) < 00, but, in fact, this result holds under more general 
conditions. Bickel and Mallows (1988) have a more thorough development of this 
topic. At a more advanced level, this connection is characterized by Noorbaloochi 
and Meeden ( 1983) .  

7.5.3 The Lehmann-Schejje Theorem 
The Lehmann-Scheffe Theorem represents a major achievement in mathematical 
statistics, tying together sufficiency, completeness, and uniqueness. The develop
ment in the text is somewhat complementary to the Lehmann-Scheffe Theorem, 
and thus we never stated it in its classical form (which is similar to Theorem 
7.3.23) . In fact, the Lehmann-Scheffe Theorem is contained in Theorems 7.3 . 19  
and 7.3.23. 

Theorem 1.5.1 (Lehmann-Scheff e) Unbiased estimators based on complete 
sufficient statistics are unique. 

Proof: Suppose T is a complete sufficient statistic, and c/>(T) is an estimator with 
Eec/>(T) = T(8) . From Theorem 7.3.23 we know that c/>(T) is the best unbiased 
estimator of T(8) , and from Theorem 7.3. 19,  best unbiased estimators are unique. 

o 

This theorem can also be proved without Theorem 7.3.19, using just the conse
quences of completeness, and provides a slightly different route to Theorem 7.3.23. 
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7.5.4 More on the EM Algorithm 
The EM algorithm has its roots in work done in the 1950s (Hartley 1958) but 
really came into statistical prominence after the seminal work of Dempster, Laird, 
and Rubin ( 1977) , which detailed the underlying structure of the algorithm and 
illustrated its use in a wide variety of applications. 
One of the strengths of the EM algorithm is that conditions for convergence to the 
incomplete-data MLEs are known, although this topic has obtained an additional 
bit of folklore. Dempster, Laird, and Rubin's ( 1977) original proof of convergence 
had a flaw, but valid convergence proofs were later given by Boyles ( 1983) and Wu 
( 1983) ; see also Finch, Mendell, and Thode ( 1989) .  
In our development we stopped with Theorem 7.2.20, which guarantees that the 
likelihood will increase at each iteration. However, this may not be enough to con
clude that the sequence {oCr) } converges to a maximum likelihood estimator. Such 
a guarantee requires further conditions. The following theorem, due to Wu (1983) , 
guarantees convergence to a stationary point, which may be a local maximum or 
saddlepoint. 

Theorem 7.5.2 If the expected complete-data log likelihood E [log L(Oly, x) IO', y] 
is continuous in both 0 and 0' , then all limit points of an EM sequence {o(r) } are 
stationary points of L(Oly), and L(o(r) ly) converges monotonically to L(O ly) for 
some stationary point {). 

In an exponential family computations become simplified because the log likelihood 
will be linear in the missing data. We can write 

E Oog L(O ly, x) IO' , y] = E(;II [ lOg (h(Y, X) eL1).«(;IJT.-B«(;IJ) IY] 
= E(;II [log h(y, X )] + L 1Ji (O)E(;I1 [Ti ly] - B(O) . 

Thus, calculating the complete-data MLE involves only the simpler expectation 
Eel [Ti ly] . 
Good overviews of the EM algorithm are provided by Little and Rubin ( 1987) , 
Tanner ( 1996) , and Shafer ( 1997) ; see also Lehmann and Casella (1998, Section 
6.4) . McLachlan and Krishnan ( 1997) provide a book-length treatment of EM. 

7.5.5 Other Likelihoods 
In this chapter we have used the method of maximum likelihood and seen that it 
not only provides us with a method for finding estimators, but also brings along a 
large-sample theory that is quite useful for inference. 
Likelihood has many modifications. Some are used to deal with nuisance parameters 
(such as profile likelihood);  others are used when a more robust specification is 
desired (such as quasi likelihood) ;  and others are useful when the data are censored 
(such as partial likelihood) .  
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There are many other variations, and they all can provide some improvement 
over the plain likelihood that we have described here. Entries to this wealth of 
likelihoods can be found in the review article of Hinkley ( 1980) or the volume of 
review articles edited by Hinkley, Reid, and Snell ( 1991) .  

7.5. 6 Other Bayes Analyses 
1 .  Robust Bayes Analysis The fact that Bayes rules may be quite sensitive to the 

(subjective) choice of a prior distribution is a cause of concern for many Bayesian 
statisticians. The paper of Berger ( 1984) introduced the idea of a robust Bayes 
analysis. This is a Bayes analysis in which estimators are sought that have good 
properties for a range of prior distributions. That is, we look for an estimator 
8* whose performance is robust in that it is not sensitive to which prior 7r, in a 
class of priors, is the correct prior. Robust Bayes estimators can also have good 
frequentist performance, making then rather attractive procedures. The review 
papers by Berger ( 1990, 1994) and Wasserman ( 1992) provide an entry to this 
topic. 

2. Empirical Bayes Analysis In a standard Bayesian analysis, there are usually 
parameters in the prior distribution that are to be specified by the experimenter. 
For example, consider the specification 

X IO  "" nCO, 1 ) ,  

0 172 "-' n(0, 72) .  

The Bayesian experimenter would specify a prior value for 7 2  and a Bayesian 
analysis can be done. However, as the marginal distribution of X is nCO, 72 + 1 ) ,  
it contains information about 7 and can be  used to  estimate 7 .  This idea o f  esti
mation of prior parameters from the marginal distribution is what distinguishes 
empirical Bayes analysis. Empirical Bayes methods are useful in constructing 
improved procedures, as illustrated in Morris (1983) and Casella and Hwang 
(1987) . Gianola and Fernando (1986) have successfully applied these types of 
methods to solve practical problems. A comprehensive treatment of empirical 
Bayes is Carlin and Louis ( 1996) ,  and less technical introductions are found in 
Casella (1985, 1992) . 

3. Hierarchical Bayes Analysis Another way of dealing with the specification 
above, without giving a prior value to 72,  is with a hierarchical specification, 
that is, a specification of a second-stage prior on 72. For example, we could use 

XI O "" nCO, 1 ) ,  

0 172 "-' n(0, 72) ,  

72  rv uniform(O, 00) (improper prior) .  

Hierarchical modeling, both Bayes and non-Bayes, i s  a very effective tool and 
usually gives answers that are reasonably robust to the underlying model. Their 
usefulness was demonstrated by Lindley and Smith ( 1972) and, since then, their 
use and development have been quite widespread. The seminal paper of Gelfand 
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and Smith ( 1990) tied hierarchical models to computing algorithms, and the ap.
plicability of Bayesian methods exploded. Lehmann and Casella (1 998, Section 
4.5) give an introduction to the theory of hierarchical Bayes, and Robert and 
Casella (1999) cover applications and connections to computational algorithms. 



Chapter 8 

Hypothesis Testing 

/lIt is a mistake to confound strangeness with mystery. " 

8.1 Introduction 

Sherlock Holmes 
A Study in Scarlet 

In Chapter 7 we studied a method of inference called point estimation. Now we move 
to another inference method, hypothesis testing. Reflecting the need both to find and 
to evaluate hypothesis tests, this chapter is divided into two parts, as was Chapter 7. 
We begin with the definition of a statistical hypothesis. 

Definition 8.1.1 A hypothesis is a statement about a population parameter. 

The definition of a hypothesis is rather general, but the important point is that a 
hypothesis makes a statement about the population. The goal of a hypothesis test 
is to decide, based on a sample from the population, which of two complementary 
hypotheses is true. 

Definition 8.1.2 The two complementary hypotheses in a hypothesis testing prob
lem are called the null hypothesis and the alternative hypothesis. They are denoted 
by Ho and HI , respectively. 

If 0 denotes a population parameter, the general format of the null and alternative 
hypotheses is Ho : 0 E eo and HI : () E e8, where eo is some subset of the parameter 
space and eg is its complement. For example, if () denotes the average change in a 
patient's blood pressure after taking a drug, an experimenter might be interested in 
testing Ho : () = 0 versus HI : 0 =1= O. The null hypothesis states that, on the average, 
the drug has no effect on blood pressure, and the alternative hypothesis states that 
there is some effect. This common situation, in which Ho states that a treatment has 
no effect ,  has led to the term "null" hypothesis. As another example, a consumer might 
be interested in the proportion of defective items produced by a supplier. If () denotes 
the proportion of defective items, the consumer might wish to test Ho : 0 ;:::: 00 versus 
HI : () < 00. The value ()o is the maximum acceptable proportion of defective items, 
and Ho states that the proportion of defectives is unacceptably high. Problems in 
which the hypotheses concern the quality of a product are called acceptance sampling 
problems. 
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In a hypothesis testing problem, after observing the sample the experimenter must 
decide either to accept Ho as true or to reject Ho as false and decide H1 is true. 

Definition 8.1.3 A hypothesis testing procedure or hypothesis test is a rule that 
specifies: 

i. For which sample values the decision is made to accept llo as true. 

ii. For which sample values Ho is rejected and HI is accepted as true. 

The subset of the sample space for which Ho will be rejected is called the rejection re
gion or critical region. The complement of the rejection region is called the acceptance 
region. 

On a philosophical level, some people worry about the distinction between "reject
ing Ho" and "accepting HI ." In the first case, there is nothing implied about what 
state the experimenter is accepting, only that the state defined by Ho is being rejected. 
Similarly, a distinction can be made between "accepting Ho" and "not rejecting Ho." 
The first phrase implies that the experimenter is willing to assert the state of nature 
specified by Ho, while the second phrase implies that the experimenter really does not 
believe Ho but does not have the evidence to reject it. For the most part, we will not 
be concerned with these issues. We view a hypothesis testing problem as a problem 
in which one of two actions is going to be taken-the actions being the assertion of 
Ho or HI ' 

Typically, a hypothesis test is specified in terms of a test statistic W(XI , . . .  , Xn ) 
= W(X) , a function of the sample. For example, a test might specify that Ho is to be 
rejected if X, the sample mean, is greater than 3. In this case W (X) = X is the test 
statistic and the rejection region is {(Xl , . . .  , Xn) : x > 3} .  In Section 8.2 ,  methods 
of choosing test statistics and rejection regions are discussed. Criteria for evaluating 
tests are introduced in Section 8.3. As with point estimators, the methods of finding 
tests carry no guarantees; the tests they yield must be evaluated before their worth 
is established. 

8.2 Methods of Finding Tests 

We will detail four methods of finding test procedures, procedures that are useful in 
different situations and take advantage of different aspects of a problem. We start 
with a very general method, one that is almost always applicable and is also optimal 
in some cases. 

8.2. 1 Likelihood Ratio Tests 
The likelihood ratio method of hypothesis testing is related to the maximum likelihood 
estimators discussed in Section 7.2.2, and likelihood ratio tests are as widely applicable 
as maximum likelihood estimation. Recall that if Xl , . . .  , Xn is a random sample from 
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a population with pdf or pmf f(xIO) (0 may be a vector) ,  the likelihood function is 
defined as 

n 
L(Olxl , " " Xn) = L(O\x) = f(xIO) II f(Xi IO) . 

i=l 

Let e denote the entire parameter space. Likelihood ratio tests are defined as follows. 

Definition 8.2.1 The likelihood ratio test statistic for testing Ho : 0 E eo versus 
HI : 0 E eg is 

supL(O lx) 
>. (x) = s:�L(Olx) ' 

e 

A likelihood ratio test (LRT) is any test that has a rejection region of the form {x : >.(x) 
::; e} , where e is any number satisfying 0 ::; e ::; 1 .  

The rationale behind LRTs may best b e  understood in the situation in which f(xIO) 
is the pmf of a discrete random variable. In this case, the numerator of >.(x) is the 
maximum probability of the observed sample, the maximum being computed over 
parameters in the null hypothesis. (See Exercise 8.4.) The denominator of >.(x) is 
the maximum probability of the observed sample over all possible parameters. The 
ratio of these two maxima is small if there are parameter points in the alternative 
hypothesis for which the observed sample is much more likely than for any parameter 
point in the null hypothesis. In this situation, the LRT criterion says Ho should be 
rejected and HI accepted as true. Methods for selecting the number c are discussed 
in Section 8.3. 

If we think of doing the maximization over both the entire parameter space (unre
stricted maximization) and a subset of the parameter space (restricted maximization) ,  
then the correspondence between LRTs and MLEs becomes more clear. Suppose {j, 
an MLE of 0, exists; (j is obtained by doing an unrestricted maximization of L(Olx). 
We can also consider the MLE of 0, call it (jo ,  obtained by doir:g a restricted max
imization, assuming eo is the parameter space. That is, 00 = Oo(x) is the value of 
o E eo that maximizes L(Olx). Then, the LRT statistic is 

>.(x) = L({j�ix) . 
L(Olx) 

Example 8.2.2 (Normal LRT) Let Xl : . .  " Xn be a random sample from a 
n(O, 1) population. Consider testing Ho : 0 = 00 versus HI : 0 =1= 00. Here 00 is a 
number fixed by the experimenter prior to the experiment. Since there is only one 
value of 0 specified by Ho, the numerator of .A.(x) is L(Oo lx) . In Example 7.2.5 the 
(unrestricted) MLE of e was found to be X, the sample mean. Thus the denominator 
of >.(x) is L(x lx) . So the LRT statistic is 
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(8.2.1) 

HYPOTHESIS TESTING 

..\(x) = (27r)-n/2 exp (- E�l (Xi (0)2/2] 
(27r)-n/2 exp [- E�= l  (Xi - x)2/2] 

� exp [ (-t,(x; - 00)' + t,(x; - X)') /2] . 

The expression for ..\(x) can be simplified by noting that 
n n 

l)xi - (JO)2 = Z)Xi - X)2 + n(x (0)2. 
i=l ;=1 

Thus the LRT statistic is 

(8.2.2) 

Section 8.2 

An LRT is a test that rejects Ho for small values of ..\(x). From (8.2 .2) , the rejection 
region, {x : ..\ (x) ::; c} , can be written as 

{x : Ix - (Jo l � J-2(log c)/n} . 
As c ranges between 0 and 1 , J-2(log c)/n ranges between 0 and 00. Thus the 
LRTs are just those tests that reject Ho: (J = (Jo if the sample mean differs from the 
hypothesized value (Jo by more than a specified amount. I I 

The analysis in Example 8.2.2 is typical in that first the expression for "\(X) from 
Definition 8.2.1 is found, as we did in (8.2. 1 ) . Then the description of the rejection 
region is simplified, if possible, to an expression involving a simpler statistic, I X (Jo I 
in the example. 

Example 8.2.3 (Exponential LRT) Let Xl , . . . , Xn be a random sample from 
an exponential population with pdf 

f(xl(J) { �-(X-9) 
where -00 < (J < 00. The likelihood function is 

x � (J 
x < (J, 

Consider testing Ho : (J ::; (Jo versus HI : (J > (Jo, where (Jo is a value specified by the 
experimenter. Clearly L«(Jlx) is an increasing function of (J on -00 < (J ::; x( 1) . Thus, 
the denominator of ..\(x), the unrestricted maximum of L«(Jlx),  is 

L(x(l) Ix) = e-Ex.+nX(l ) . 
If x(1 )  ::; (Jo, the numerator of ..\(x) is also L(x(1 ) lx). But since we are maximizing 
L«(Jlx) over (J ::; (Jo , the numerator of ..\(x) is L«(Jo lx) if x(1 ) > (Jo. Therefore, the 
likelihood ratio test statistic is 

..\(x) = { !-n(x(1 ) -90) X(I ) ::; (Jo 
X(I) > 00, 
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o 1.....-__ ieO-_-L_-e-• ..l.+-=2n===::t:==e.=+=4n XU) 

Figure 8.2.1 .  A(X) , a function only of X(l) ' 

A graph of >..(x) is shown in Figure 8.2 . 1 .  An LRT, a test that rejects Ho if >"(X) ::; c, 
is a test with rejection region {x : x(l) � 00 - lo�c } .  Note that the rejection region 
depends on the sample only through the sufficient statistic XCI) .  That this is generally 
the case will be seen in Theorem 8.2.4. / I  

Example 8.2.3 again illustrates the point, expressed in Section 7.2 .2 ,  that differ
entia.tion of the likelihood function is not the only method of finding an MLE. In 
Exa.mple 8.2.3, L(Olx) is not differentiable at 0 = X(l ) '  

I f  T(X) i s  a sufficient statistic for 0 with pdf or pmf g(t IO), then we might con
sider constructing an LRT based on T and its likelihood function L" (Olt) g(t IO) ,  
father than on the sample X and its likelihood function L(Olx) . Let >..* (t) denote 
the likelihood ratio test statistic based on T. Given the intuitive notion that all the 
information about 0 in x is contained in T(x) , the test based on T should be as good 
as the test based on the complete sample X. In fact the tests are equivalent. 

Theorem 8.2.4 JfT(X) is a sufficient statistic for () and >..* (t )  and >.. (x) are the 
LRT statistics based on T and X, respectively, then >"* (T(x)) = >..(x) for every x in 
the sample space. 

Proof: From the Factorization Theorem (Theorem 6.2.6), the pdf or pmf of X can 
be written as f(xIO) g (T(x) IO)h(x) , where g(t IO) is the pdf or pmf of T and h(x) 
does not depend on O. Thus 

sup L((}lx) 
>..( )  60 x = -su

-=-
p-=L""-'( O:-:-Ix-=-) 

6 

sup f (xl(}) 
60 

= sup f (xIO) 
6 

sup g(T(x) I(})h(x) 
60 

= �--����7 sup g(T(x) IO)h(x) 
6 

(T is sufficient) 
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supg (T(x) IO) 
eo = ----"--=-,..-,--,-,-supg (T(x)IO) 
e 
supU(OIT(x) 
eo = --"--::---:-c:-:-=,-;--:-:-sup £" (OIT(x» 
e 

)," (T(x» . 

Section 8.2 

(h does not depend on 0) 

(g is the pdf or pmf of T) 

o 

The comment after Example 8.2.2  was that, after finding an expression for >.(x), we 
try to simplify that expression. In light of Theorem 8.2.4, one interpretation of this 
comment is that the simplified expression for >.(x) should depend on x only through 
T(x) if T(X) is a sufficient statistic for O. 

Example 8.2.5 (LRT and sufficiency) In Example 8.2.2, we can recognize that 
X is a sufficient statistic for 0. We could use the likelihood function associated with 
X (X "" n(O, ::;) to more easily reach the conclusion that a_likelihood ratio test of 
Ho : 0 = 00 versus HI : 0 =I 00 rejects Ho for large values of IX - 00 I ·  
Similarly in Example 8.2.3, X(I) min Xi is a sufficient statistic for 0. The likeli� 

hood function of X(1 ) (the pdf of X(I» ) is 

This likelihood could also be used to derive the fact that a likelihood ratio test of 
Ho : 0 :5 00 versus HI : 0 > 00 rejects Ho for large values of X(I ) '  I I  
Likelihood ratio tests are also useful in situations where there are nuisance param� 

eters, that is, parameters that are present in a model but are not of direct inferential 
interest. The presence of such nuisance parameters does not affect the LRT construc
tion method but, as might be expected, the presence of nuisance parameters might 
lead to a different test. 

Example 8.2.6 (Normal LRT with unknown variance) Suppose Xl " ' "  Xn 
are a random sample from a n(J.l, 0'2 ) , and an experimenter is interested only in in
ferences about J.l , such as testing Ho : J.l :5 J.lo versus HI : J.l > J.lo . Then the parameter 
0'2 is a nuisance parameter. The LRT statistic is 

where p, and &2 are the MLEs of J.l and 0'2 (see Example 7.2. 1 1 ) .  Furthermore, if 
p, :5 J.lo, then the restricted maximum is the same as the unrestricted maximum, 
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. while if jl > Ji.o, the restricted maximum is L(J1.O, iTfi lx) , where iT5 I: (Xi - Ji.O) 2  In. 
Thus 

{ I if jl � Ji.o 
>.(x) = L("o,t75Ix) i f  jl > Ji.o. L ()1,t72 Ix) 

With some algebra, it can be shown that the test based on >.(x) is equivalent to a test 
based on Student's t statistic. Details are left to Exercise 8 .37. (Exercises 8.38-8.42 
also deal with nuisance parameter problems. )  I I  

8.2.2 Bayesian Tests 
Hypothesis testing problems may also be formulated in a Bayesian model. Recall 
from Section 7.2.3 that a Bayesian model includes not only the sampling distribution 
f(xIB) but also the prior distribution rr(B), with the prior distribution reflecting the 
experimenter's opinion about the parameter B prior to sampling. 

The Bayesian paradigm prescribes that the sample information be combined with 
the prior information using Bayes' Theorem to obtain the posterior distribution 
7r(Blx) . All inferences about 0 are now based on the posterior distribution. 

In a hypothesis testing problem, the posterior distribution may be used to calculate 
the probabilities that Ho and HI are true. Remember, rr(Blx) is a probability distri
bution for a random variable. Hence, the posterior probabilities PCB E eolx) P(Ho 
is truelx) and P(O E e8 lx) P(Ht is truelx) may be computed. 

The probabilities P(Ho is true Ix) and P(HI is truelx) are not meaningful to the 
classical statistician. The classical statistician considers B to be a fixed number. Con
sequently, a hypothesis is either true or false. If B E eo, P(Ho is truelx) 1 and 
P(HI is truelx) = 0 for all values of x. If e E eo. these values are reversed. Since 
these probabilities are unknown (since B is unknown) and do not depend on the sam
ple x, they are not used by the classical statistician. In a Bayesian formulation of a 
hypothesis testing problem, these probabilities depend on the sample x and can give 
useful information about the veracity of Ho and HI . 

One way a Bayesian hypothesis tester may choose to use the posterior distribution 
is to decide to accept Ho as true if PCB E eo lX) � PCB E e8 1X) and to reject Ho 
otherwise. In the terminology of the previous sections, the test statistic, a function 
of the sample, is P(O E eg lX) and the rejection region is {x : P CB E eo lx) > D. 
Alternatively, if the Bayesian hypothesis tester wishes to guard against falsely reject
ing Ho, he may decide to reject Ho only if PCB E eg lX) is greater than some large 
number, .99 for example.  

Example 8.2.7 (Normal Bayesian test) Let Xt , . . . , Xn be iid n(B, a2 ) and 
let the prior distribution on 0 be n(p" r2) ,  where a2 , Ji., and r2 are known. Consider 
testing Ho : 0 � 00 versus HI : 0 > 00, From Example 7.2.16, the posterior rr(Blx) is 
normal with mean (nr2x + a2p,)/(nr2 + a2) and variance a2r2 j(nr2 + (72 ) . 

If we decide to accept Ho if and only if P(O E eo lX) � P(O E eg IX),  then we will 
accept Ho if and only if 

1 2 � P(O E eo lX) = P(O � Oo IX) . 
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Since 7i(Olx) is symmetric, this is true if and only if the mean of 7i(Olx) is less than 
or equal to 00 • Therefore Ho will be accepted as true if 

- (12 (OO-JL) X � 00 + 
2 nr 

and HI will be accepted as true otherwise. In particular, if JL = 00 so that prior 
to experimentation probability � is assigned to both Ho and HI , then Ho will be 
accepted as true if x � 00 and HI accepted otherwise. I I 

Other methods that use the posterior distribution to make inferences in hypothesis 
testing problems are discussed in Section 8.3.5. 

8.2.3 Union-Intersection and Intersection-Union Tests 

In some situations, tests for complicated null hypotheses can be developed from tests 
for simpler null hypotheses. We discuss two related methods. 

The union-intersection method of test construction might be useful when the null 
hypothesis is conveniently expressed as an intersection, say 

(8.2.3) 

Here r is an arbitrary index set that may be finite or infinite, depending on the 
problem. Suppose that tests are available for each of the problems of testing Ho-y : () E 
8-y versus H l-y : 0 E e�. Say the rejection region for the test of H O-y is {x : T-y (x) E R-y}. 
Then the rejection region for the union-intersection test is 

(8.2.4) U {x : T-y (x) E R-y}.  
-yEr 

The rationale is simple. If any one of the hypotheses Ho-y is rejected, then HOl which, 
by (8.2.3) , is true only if Ho-y is true for every 'Y, must also be rejected. Only if each of 
the hypotheses Ho-y is accepted as true will the intersection Ho be accepted as true. 

In some situat ions a simple expression for the rejection region of a union-intersection 
test can be found. In particular, suppose that each of the individual tests has a rejec
tion region of the form {x : T-y (x) > c}, where c does not depend on 'Y. The rejection 
region for the union-intersection test, given in (8.2.4) , can be expressed as 

Thus the test statistic for testing Ho is T(x) = sUP-YEr T-y (x). Some examples in which 
T(x) has a simple formula may be found in Chapter 1 1 .  

Example 8.2.8 (Normal union-intersection test) Let Xl , " " Xn be  a ran
dom sample from a n(JL, (12) population. Consider testing Ho : JL J.Lo versus HI :  JL f 
JLo, where JLo is a specified number. We can write Ho as the intersection of two sets, 
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The LRT of HOL : P S Po versus HIL : P > Po is 

reject HOL : P S Po in favor of HlL : P > Po if �j-..fit � tL 

(see Exercise 8.37). Similarly, the LR� of Hou : P � Po versus HlU : P < Po is 

reject Hou : P � Po in favor of Hlu : J.l < J.lo. if �j ..fit S tu· 

381 

Thus the union-intersection test of Ho : P = Po versus Hl : P i= Po formed from these 
two LRTs is 

x -- Po X -- Po reject Ho if Sj.,fii 
;:::: tL or Sj.,fii 

:5 tu · 

If tL = -tu � 0, the union-intersection test can be more simply expressed as 

IX - po l reject Ho if Sj.,fii ;:::: fL · 

It turns out that this union-intersection test is also the LRT for this problem (see 
Exercise 8.38) and is called the two-sided t test. I I  

The union-intersection method of  test construction is useful i f  the null hypothesis 
is conveniently expressed as an intersection. Another method, the intersection-union 
method, may be useful if the null hypothesis is conveniently expressed as a union. 
Suppose we wish to test the null hypothesis 

(8.2.5) Ho : () E U e"r' 
"rEI' 

Suppose that for each , E r, {x : T"r (x) E Ry } is the rejection region for a test of 
H� :  () E e"r versus Hl"r : () E e� . Then the rejection region for the intersection-union 
test of Ho versus HI is 

(8.2.6) n {x : T'Y(x) E Ry } .  
'YEI' 

From (8.2.5), Ho is false if and only if all of the Ho"r are false, so Ho can be rejected 
if and only if each of the individual hypotheses Ho'Y can be rejected. Again, the test 
can be greatly simplified if the rejection regions for the individual hypotheses are all 
of the form {x : T'Y (x) � c} (c independent of ,) .  In such cases, the rejection region 
for Ho is 

n {x : T'Y (x) � c} = {x : infr T'Y (x) � c} . 'YE 'YEI' 
Rere, the intersection-union test statistic is inf"rEI' T-y(X), and the test rejects Ho for 
large values of this statistic. 
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Example 8.2.9 (Acceptance sampling) The topic of acceptance sampling pro
vides an extremely useful application of an intersection -union test, as this example 
will illustrate. (See Berger 1982 for a more detailed treatment of this problem. )  

Two parameters that are important in  assessing the quality o f  upholstery fabric 
are (h , the mean breaking strength, and (h , the probability of passing a flammability 
test. Standards may dictate that ()I should be over 50 pounds and ()2 should be over 
.95, and the fabric is acceptable only if it meets both of these standards. This can be 
modeled with the hypothesis test 

Ho : {lh :$ 50 or ()2 :$ .95} versus HI : {lh > 50 and (}2 > .95} ,  

where a batch of  material i s  acceptable only i f  HI i s  accepted. 
Suppose Xh . • .  , Xn are measurements of breaking strength for n samples and 

are assumed to be iid n(()I , (12 ) .  The LRT of HOI: ()I :$ 50 will reject HOI if (X 
50)/(S/vn) > t. Suppose that we also have the results of m flammability tests, 
denoted by Yr , . . .  , Ym, where Yi = 1 if the ith sample passes the test and Yi 0 
otherwise. If Yj '  . . . •  Ym are modeled as iid Bernoulli(()2 ) random variables, the LRT 
will reject H02 ; ()2 :$ .95 if E�l Yi > b (see Exercise 8.3). Putting all of this together, 
the rejection region for the intersection-union test is given by 

{ :i; - 50 m } 
(x, y) : s / vn 

> t and � Yi > b . 

Thus the intersection-union test decides the product is acceptable, that is, HI is true, 
if and only if it decides that each of the individual parameters meets its standard, that 
is, Hli is true. If more than two parameters define a product's quality, individual tests 
for each parameter can be combined, by means of the intersection�-union method, to 
yield an overall test of the product's quality. I I  

8.3 Methods of Evaluating Tests 

In deciding to accept or reject the null hypothesis Ho, an experimenter might be 
making a mistake. Usually, hypothesis tests are evaluated and compared through 
their probabilities of making mistakes. In this section we discuss how these error 
probabilities can be controlled. In some cases, it can even be determined which tests 
have the smallest possible error probabilities. 

8.3. 1 Error Probabilities and the Power Function 

A hypothesis test of Ho : () E eo versus HI : () E eg might make one of two types 
of errors. These two types of errors traditionally have been given the non-mnemonic 
names, Type I Error and Type II Error. If () E eo but the hypothesis test incorrectly 
decides to reject Ho, then the test has made a Type I Error. If, on the other hand, 
() E e8 but the test decides to accept Ho, a Type II Error has been made. These two 
different situations are depicted in Table 8.3. 1 .  

Suppose R denotes the rejection region for a test. Then for () E eo,  the test will 
make a mistake if x E R, so the probability of a Type I Error is Pe (X E R). For 
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Table 8.3. 1 .  Two types of errors in hypothesis testing 

Decision 
Accept Ho Reject Ho 

Ho Correct Type I 
Truth decision Error 

HI Type I I  Correct 
Error decision 
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o E eo, the probability of a Type II Error is Pe(X E RC) .  This switching from R to 
. RC is a bit confusing, but, if we realize that Pe(X E RC) = 1 - Pe(X E R) , then the 
function of 0, Pe(X E R), contains all the information about the test with rejection 
region R. We have { probability of a Type I Error 

Pe (X E R) one minus the probability of a Type II Error 
This consideration leads to the following definition. 

if (} E 80 
if 0 E eg o 

Definition 8.3.1 The power function of a hypothesis test with rejection region R 
is the function of 0 defined by /3(0) Pe(X E R).  

The ideal power function is 0 for all 0 E eo and 1 for all 0 E 88. Except in trivial 
situations, this ideal cannot be attained. Qualitatively, a good test has power function 
near 1 for most 0 E eg and near 0 for most 0 E eo . 

Example 8.3.2 (Binomial power function) Let X tv binomial(5, 0) . Consider 
testing Ho ; 0 � � versus HI : 0 > � .  Consider first the test that rejects Ho if and 
only if all "successes" are observed. The power function for this test is 

The graph of fh (0) is in Figure 8.3. 1 .  In examining this power function, we might 
decide that although the probability of a Type I Error is acceptably low ({31 (0) :5 
(�)5 = .0312) for all 0 :5  i, the probability of a Type II Error is too high ((31 (0) is too small) for most (} > i .  The probability of a Type II Error is less than � only if 
(} > ( � ) 1/5 .87. To achieve smaller Type II Error probabilities, we might consider 
using the test that rejects Ho if X = 3, 4, or 5. The power function for this test is 

(32 (0) = Pe (X = 3, 4, or 5) = (:) 03( 1 - 0)2 + (�) (}4 ( 1  0)1 + G) 05 (1 - 0)0 . 

The graph of (32 (0) is also in Figure 8.3. 1 .  It can be seen in Figure 8.3 . 1  that the 
second test has achieved a smaller Type II Error probability in that (32(0) is larger for 
o > � . But the Type I Error probability is larger for the second test; /32 (0) is larger 
for 0 :5 � .  If a choice is to be made between these two tests, the researcher must 
decide which error structure, that described by (31 (0) or that described by /32(0) , is 
more acceptable. I I  
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Figure 8.3.1 .  Power functions for Example 8.9.2 

Example 8 .3.3 (Normal power function) Let Xl " ' " Xn be a random sample 
from a n(O, CT2) population, CT2 known. An LRT of Ho : 0 :::; 00 versus H1 : 0 > 00 is a 
test that rejects Ho if (X OO)/ (CT/,fii) > c (see Exercise 8.37) . The constant c can 
be any positive number. The power function of this test is 

jJ(O) = Po (:/� > c) 
(X 0 00 - 0 ) Pe CT /,fii > c + 

CT / ,fii 

= p (z > c +  �o/�) , 

where Z is a standard normal random variable, since (X - O)/(CT /,fii) '" nCO, 1 ) .  As 0 
increases from -00 to 00, it is easy to see that this normal probability increases from 
° to 1 .  Therefore, it follows that jJ(O) is an increasing function of 0, with 

lim jJ(O) = 0, lim (3(0) = 1, and jJ(Oo) = 0' if P(Z > c) = 0'. e�-oo e�C1O 

A graph of (3(0) for c = 1 .28 is given in Figure 8.3.2. 

Typically, the power function of a test will depend on the sample size n. If n can be 
chosen by the experimenter, consideration of the power function might help determine : 
what sample size is appropriate in an experiment. 

Figure 8.3.2. Power function for Example 8.9.9 



Section 8.3 METHODS OF EVALUATING TESTS 385 

Example 8.3.4 (Continuation of Example 8.3.3) Suppose the experimenter 
wishes to have a maximum Type I Error probability of . 1 .  Suppose, in addition, the 
experimenter wishes to have a maximum Type II Error probability of .2 if 8 2: 80 + a.  
We now show how to choose c and n to achieve these goals, using a test that rejects 
Ho : 0 :; 00 if (X - Oo)/(a/fo) > c. As noted above, the power function of such a 
test is ( 80 - 0) 

(3(8) = P Z >  c +  
a/fo . 

Because (3(O) is increasing in 8, the requirements will be met if 

(3(8o) . 1  and (3(80 + a) = .8. 

By choosing c = 1 .28, we achieve (3(8o) P(Z > 1 .28) . 1 ,  regardless of n. Now we 
wish to choose n so that (3(80 + a) = P(Z > 1 .28 fo) .8. But, P(Z > -.84} = .8. 
So setting 1 .28 - fo = -.84 and solving for n yield n = 4.49. Of course n must be an 
integer. So choosing c = 1 .28 and n = 5 yield a test with error probabilities controlled 
as specified by the experimenter. I I  

For a fixed sample size, it is usually impossible to make both types of error proba
bilities arbitrarily small. In searching for a good test, it is common to restrict consid
eration to tests that control the Type I Error probability at a specified level. Within 
this class of tests we then search for tests that have Type II Error probability that 
is as small as possible. The following two terms are useful when discussing tests that 
control Type I Error probabilities. 

Definition 8.3.5 For 0 :; 0: :; 1, a test with power function (3(O) is a size 0: test 
if SUPOEElo (3(8) = 0:. 
Definition 8.3.6 For 0 :; 0: :; 1 ,  a test with power function (3(O) is a level 0: test 
if sUPOEElo (3( 8) :; 0:. 

Some authors do not make the distinction between the terms size and level that 
we have made, and sometimes these terms are used interchangeably. But according 
to our definitions, the set of level 0: tests contains the set of size 0: tests. Moreover, 
the distinction becomes important in complicated models and complicated testing 
situations, where it is often computationally impossible to construct a size 0: test. In 
such situations, an experimenter must be satisfied with a level 0: test, realizing that 
some compromises may be made. We will see some examples, especially in conjunction 
with union-intersection and intersection-union tests. 

Experimenters commonly specify the level of the test they wish to use, with typical 
choices being 0: = .01, .05, and .10. Be aware that, in fixing the level of the test, the 
experimenter is controlling only the Type I Error probabilities, not the Type II Error. 
If this approach is taken, the experimenter should specify the null and alternative 
hypotheses so that it is most important to control the Type I Error probability. 
For example, suppose an experimenter expects an experiment to give support to a 
particular hypothesis, but she does not wish to make the assertion unless the data 
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really do give convincing support . The test can be set up so that the alternative 
hypothesis is the one that she expects the data to support , and hopes to prove. (The 
alternative hypothesis is sometimes called the research hypothesis in this context.) 
By using a level 0: test with small Q, the experimenter is guarding against saying the 
data support the research hypothesis when it is false. 

The methods of Section 8.2 usually yield test statistics and general forms for rejec
tion regions. However, they do not generally lead to one specific test. For example, an 
LRT (Definition 8.2.1) is one that rejects Ho if )'(X) ::; c, but c was unspecified, so 
not one but an entire class of LRTs is defined, one for each value of c. The restriction 
to size 0: tests may now lead to the choice of one out of the class of tests. 

Example 8.3.7 (Size of LRT) In general, a size 0: LRT is constructed by choOSing 
c such that sUPeE90 Pe (>'(X) ::; c) = 0:. How that c is determined depends on the 
particular problem. For example, in Example 8.2.2, 90 consists of the single point () = Bo and v'n(X - Bo)  '" nCO, 1 )  if B (}o. So the test 

reject Ho if IX - (}o l ?: Zo/2/v'n, 

where ZOi/2 satisfies P(Z ?: Zo/2) = 0:/2 with Z ",  nCO, 1 ) ,  is the size 0: LRT. Specif
ically, this corresponds to choosing c exp( -Z';/2/2) , but this is not an important 
point. 

For the problem described in Example 8.2.3, finding a size 0: LRT is complicated 
by the fact that the null hypothesis H 0 :  () ::; ()o consists of more than one point. The 
LRT rejects Ho if X(1) ?: c, where c is chosen so that this is a size 0: test. But if c = (- log o:)/n + Oo , then 

Since () is a location parameter for Xc i ) ,  

Thus 

Pe (X(l )  ?: c) ::; Pea (X(l )  ?: c) for any 0 ::; 00 , 

and this c yields the size 0: LRT. 

A note on notation: In the above example we used the notation Zo/2 to denote the 
point having probaoility 0:/2 to the right of it for a standard normal pdf. We will 
use this notation in general, not just for the normal but for other distributions as 
well (defining what we need to for clarity's sake) .  For example, the point Zo satisfies 
P(Z > ZOi)  = 0:,  where Z '" n(O, l ) ;  tn- 1,o/2 satisfies P(Tn-1  > tn- l,o/2 )  0:/2, 
where Tn-I '" tn- I ;  and X�,1 -0 satisfies P(X� > X;, l-O) 1 0: ,  where X; is a chi 
squared random variable with p degrees of freedom. Points like Zo/2 ' Zo , tn- l,o/2, and 
X;, l-Oi are known as cutoff points. 
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Example 8.3.8 (Size of union-intersection test) The problem of finding a 
size 0: union-intersection test in Example 8.2.8 involves finding constants tL and tu 
such that 

_X-;:-=J..L=O < 
tu) = 0:. 

JS2/n -

But for any (J..L , (12) = () E 90, J..L J..Lo and thus (X J..Lo )/ JS2 /n has a Student 's 
t distribution with n - 1 degrees of freedom. So any choice of tu = tn-l , l -al and 
tL tn-l,a2 '  with 0: 1  + 0: 2  a, will yield a test with Type I Error probability of 
exactly a for all () E 90, The usual choice is tL -tu = tn-l ,a/2 ' I I  

Other than a levels, there are other features o f  a test that might also be  of concern. 
For example, we would like a test to be more likely to reject Ho if () E 98 than if 
8 E 90 , All of the power functions in Figures 8.3 .1 and 8.3.2 have this property, 
yielding tests that are called unbiased. 

Definition 8.3.9 A test with power function �1(()) is unbiased if {J(()I) � ,8(()/I) for 
every ()' E 98 and ()" E 90,  

Example 8.3.10 (Conclusion of Example 8.3.3) An LRT of Ho : () :5 ()o versus 
HI : () > ()o has power function 

f1(()) P (z > c +  �/�) , 

where Z rv nCO, 1 ) .  Since {J(()) is an increasing function of () (for fixed (0) ,  it follows 
that 

,8(0) > ,8(00) = max {J(t ) for all () > 00 t$60 
and, hence, that the test is unbiased. 

In most problems there are many unbiased tests. (See Exercise 8.45.)  Likewise, 
there are many size a tests, likelihood ratio tests, etc. In some cases we have imposed 
enough restrictions to narrow consideration to one test. For the two problems in 
Example 8 .3.7, there is only one size a likelihood ratio test. In other cases there 
remain many tests from which to choose. We discussed only the one that rejects 
Ho for large values of T. In the following sections we will discuss other criteria for 
selecting one out of a class of tests, criteria that are all related to the power functions 
of the tests. 

8.3. 2  Most Powerful Tests 

In previous sections we have described various classes of hypothesis tests. Some of 
these classes control the probability of a Type I Error; for example, level a tests have 
Type I Error probabilities at most a for all () E 90 , A good test in such a class would 
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also have a small Type II Error probability, that is, a large power function for 0 E 98. 
If one test had a smaller Type II Error probability than all other tests in the class, it 
would certainly be a strong contender for the best test in the class, a notion that is 
formalized in the next definition. 

Definition 8.3.11 Let C be a class of tests for testing Ho : 0 E eo versus HI : 0 E 
eg o A test in class C, with power function (3(0) , is a uniformly most powerful (UMP) 
class C test if (3(0) ;::::: (3' (0) for every 0 E eg and every (3'(0) that is a power function 
of a test in class C. 

In this section, the class C will be the class of all level Q tests. The test described 
in Definition 8.3.11 is then called a UMP level Q test. For this test to be interesting, 
restriction to the class C must involve some restriction on the Type I Error probability. 
A minimization of the Type II Error probability without some control of the Type 
I Error probability is not very interesting. (For example, a test that rejects Ho with 
probability 1 will never make a Type II Error. See Exercise 8.16.) 

The requirements in Definition 8.3. 1 1  are so strong that UMP tests do not exist in 
many realistic problems. But in problems that have UMP tests, a UMP test might 
well be considered the best test in the class. Thus, we would like to be able to identify 
UMP tests if they exist. The following famous theorem clearly describes wbich tests 
are UMP level Q tests in the situation where the null and alternative hypotheses both 
consist of only one probability distribution for the sample (that is, when both Ho and 
HI are simple hypotheses) . 

Theorem 8.3.12 (Neyman-Pearson Lemma) Consider testing Ho : 0 00 
versus HI : 0 O} , where the pdf or pmf corresponding to Oi is f(xl0i ) ,  i = 0 , 1 , using 
a test with rejection region R that satisfies 

(8.3 . 1 )  

for some k ;::::: 0, and 

(8.3.2) 

Then 

and 
x E RC if f(x l0d < kf(xIOo) , 

a. (Sufficiency) Any test that satisfies (8.3. 1) and (8.3.2) is a UMP level Q test. 
h. (Necessity) If there exists a test satisfying (8.3.1) and (8.3.2) with k > 0, then 

every UMP level Q test is a size Q test (satisfies (8.3. 2)) and every UMP level Q test 
satisfies (8.3. 1) except perhaps on a set A satisfying POa (X E A) = POI (X E A) = 
0 .  

Proof: We will prove the 
'
theorem for the case that f(xIOo)  and f(xlOd are pdfs of 

continuous random variables. The proof for discrete random variables can be accom� 
plished by replacing integrals with sums. (See Exercise 8.21 . )  
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Note first that any test satisfying (8.3.2) is a. size 0 and, hence, a level 0 test 
because sUPOESo Po (X E R) = Peo (X E R) = 0, since eo has only one point. 

To ease notation, we define a test junction, a function on the sample space that 
is 1 if x E R and 0 if x E Re. That is, it is the indicator function of the rejection 
region. Let ¢(x) be the test function of a test satisfying (8.3. 1 )  and (8.3.2) . Let ¢/(X) 
be the test function of any other level 0 test, and let (3(O) and (3'(O) be the power 
functions corresponding to the tests ¢ and ¢/, respectively. Because 0 ;.:; ¢'(x) ;.:; 1 ,  
(8.3. 1 )  implies that (¢(x) ¢' (x)) (f(xIOd - kf(xIOo)}  � 0 for every x (since ¢ 1 if 
f(xlOd > kf(xI80 )  and ¢ = 0 if f (xlOd < kf(xI80 ) ) .  Thus 

(8.3.3) 0 � ! [¢(x) - ¢' (x)] [f (x I8d kf(xI8o)] dx 

= {3(Od - (3'(8d k({3(80) (3'(OO ) ) '  

Statement (a) is proved by noting that, since ¢' i s  a level 0 test and ¢ is a size 0 
test , (3(80) - (3' (80) 0 (3'(80) � O. Thus (8.3.3) and k � 0 imply that 

0 ;':; (3(Od - (3'(Ol ) - k({3(80 )  - (3'(Oo ) )  ;.:; {3(8d {3'(8d, 

showing that {3(8d � (3'(81 ) and hence ¢ has greater power than <1/. Since ¢' was an 
arbitrary level 0 test and 81 is the only point in eg, ¢ is a UMP level a test. 

To prove statement (b) , let ¢' now be the test function for any UMP level a test . 
By part (a), ¢, the test satisfying (8.3. 1 )  and (8.3.2) ,  is also a UMP level 0 test, thus 
{3(Ol ) = (3'(Od. This fact, (8.3.3) , and k >  0 imply 

0 - (31 (80) = (3(80 )  - (3'(80) ;.:; O. 

Now, since ¢' is a level 0 test, (3'(80) ;.:; a. Thus (3'(80 )  = 0, that is, ¢' is a size 0 
test, and this also implies that (8.3.3) is an equality in this case. But the nonnegative 
integrand (¢(x) ¢' (x)) (f (xI8d-kf(x I80) )  will have a zero integral only if ¢' satisfies 
(8.3. 1 ) ,  except perhaps on a set A with fA f(xI8i) dx = O. This implies that the last 
assertion in statement (b) is true. 0 

The following corollary connects the �eyman-Pearson Lemma to sufficiency. 

Corollary 8.3.13 Consider the hypothesis problem posed in Theorem 8.3. 12. Sup
pose T(X) is a sufficient statistic for 0 and g (  t I8; ) is the pdf or pmf ofT corresponding 
to Oil i = 0, 1 .  Then any test based on T with rejection region S (a subset of the sample 
space of T) is a UMP level a test if it satisfies 

t E S if g(t I81 ) > kg(tI80 )  
(8.3.4) and 

for some k � 0, where 

(8.3.5) 
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Proof: In terms of the original sample X, the test based on T has the rejection 
region R = {x : T(x) E S}. By the Factorization Theorem, the pdf or pmf of X can 
be written as f(xIOi )  g(T(x) IOdh(x) , i 0 , 1 , for some nonnegative function hex) . 
Multiplying the inequalities in ( 8.3.4) by this nonnegative function, we see that R 
satisfies 

and 

x E R if f(xllh) = g (T(x) IOl )h(x) > kg(T(x) loo)h(x) kf(x IOo) 

x E RC if f(xlol ) g(T(x) IOI )h(x) < kg(T(x) loo)h(x) = kf(x IOo) .  

Also, by (8.3.5 ) ,  

POo (X E R) = POo CT(X) E S) = a.  
So, by the sufficiency part of  the Neyman�Pearson Lemma, the test based on T is a 
UMP level a test. 0 

When we derive a test that satisfies the inequalities (8.3 . 1 )  or (8.3.4) , and hence is a 
UMP level a test, it is usually easier to rewrite the inequalities as f (xIOl ) /  f (xIOo )  > k. 
(We must be careful about dividing by 0.) This method is used in the following 
examples. 

Example 8.3.14 (UMP binOInial test) Let X '" binomial(2, 0) .  We want to 
test Ho : 0 = � versus HI : () = � .  Calculating the ratios of the pmfs gives 

f(Olo = �) 1 
f(OIO � )  = 4 '  

f( 1 10 = � ) 
f{ 1 10 = � )  

3 
4 '  

f(21° = � ) and 
f(210 = � )  

9 
4 

If we choose � < k < � ,  the Neyman-Pearson Lemma says that the test that rejects 
Ho if X 2 is the UMP level a = P(X = 2 10  � )  = 1 test. If we choose � < k < � ,  
the Neyman-Pearson Lemma says that the test that rejects Ho i f  X = 1 or 2 i s  the 
UMP level a = P(X 1 or 2 10 = � )  = � test. Choosing k < � or k > � yields the 
UMP level a = 1 or level a 0 test. 

Note that if k = � ,  then (8.3.1) says we must reject Ho for the sample point x = 2 
and accept Ho for x = 0 but leaves our action for x 1 undetermined. But if we 
accept Ho for x = 1 ,  we get the UMP level a = i test as above. If we reject Ho for 
x 1 ,  we get the UMP level a � test as above. I I  

Example 8.3 .14 also shows that for a discrete distribution, the a level at which a 
test can be done is a function of the particular pmf with which we are dealing. (No 
such problem arises in the continuous case. Any a level can be attained.) 

Example 8.3.15 (UMP normal test) Let X I, . . .  , Xn be a random sample from 
a n(o, O'2 )  population, 0'2 known. The sample mean X is a sufficient statistic for A. 
Consider testing Ho : 0 = 00 versus HI : 0 = 01 , where 00 > 01 . The inequality (8.3.4) , 
g (xlod > kg(xloo) ,  is equivalent to 

_ (20'2 log k)/n - 05 + Or 
x < 

2(01 _ (0) 
. 
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The fact that (h - Bo < 0 was used to obtain this inequality. The right-hand side 
increases from -00 to 00 as k increases from 0 to 00. Thus, by Corollary 8.3.13, the 
test with rejection region x < c is the UMP level Q test, where Q = P9o (.X < c) . If a 
particular Q is specified, then the UMP test rejects Ho if X < c = -aza/.fii, + 00 . 
This choice of c ensures that (8.3.5) is true. II 

Hypotheses, such as Ho and HI in the Neyman-Pearson Lemma, that specify only 
one possible distribution for the sample X are called simple hypotheses. In most real
istic problems, the hypotheses of interest specify more than one possible distribution 
for the sample. Such hypotheses are called composite hypotheses. Since Definition 
8.3.1 1  requires a UMP test to be most powerful against each individual B E 88, 
the Neyman-Pearson Lemma can be used to find UMP tests in problems involving 
composite hypotheses. 

In particular, hypotheses that assert that a univariate parameter is large, for exam
ple, H :  B � Bo, or small, for example, H :  () < 00, are called one-sided hypotheses. Hy
potheses that assert that a parameter is either large or small, for example, H :  B i 00, 
are called two-sided hypotheses. A large class of problems that admit UMP level Q 
tests involve one-sided hypotheses and pdfs or pmfs with the monotone likelihood 
ratio property. 

Definition 8.3.16 A family of pdfs or pmfs {g(t IB) ; B E 9} for a univariate random 
variable T with real-valued parameter B has a monotone likelihood ratio (MLR) if, 
for every B2 > Ol l g(t l(}2 )/g(t IOI ) is a monotone (nonincreasing or nondecreasing) 
function of t on { t :  g(t IBI )  > 0 or g(t IB2 ) > O}.  Note that c/O is defined as 00 if 0 < c. 

Many common families of distributions have an MLR. For example, the normal 
(known variance, unknown mean),  Poisson, and binomial all have an MLR. Indeed, 
any regular exponential family with g (t IB) = h(t)c«(})ew(9)t has an MLR if w(B) is a 
nondecreasing function (see Exercise 8.25). 

Theorem 8.3.17 (Karlin-Rubin) Consider testing Ho : B :::; 00 versus HI : 
o > Bo . Suppose that T is a sufficient statistic for 0 and the family of pdfs or pmfs 
{g(t IO) : 0 E 9} of T has an MLR. Then for any to, the test that rejects Ho if and 
only if T > to is a UMP level Q test, where Q = P9o (T > to) .  

Proof: Let {3«(}) Pe(T > to) be the power function of the test. Fix 0' > 00 and 
consider testing HI; : 0 = 00 versus H� : 0 B'. Since the family of pdfs or pmfs of T 
has an MLR, {3(O) is nondecreasing (see Exercise 8.34) , so 
i. SUP9:<>eo{3(O) {3«(}o )  = Q, and this is a level Q test. 

ii. If we define 

k' = inf 
g(t IB') 

tET g(t IOo ) ' 

where T = {t : t > to and either g( t I O' )  > 0 or g(t l(}o )  > a}, it follows that 

g( t I O' )  , T >  to ¢} g(t IOo )  > k . 



392 HYPOTHESIS TESTING Section 8.3 

Together with Corollary 8.3.13, (i) and (ii) imply that {3(O') � /3· (0') ,  where /3* (9) 
is the power function for any other level Ct test of H�, that is, any test satisfying 
{3(90) � Ct. However, any level a test of Ho satisfies {3* (90) � sUPeeso {3*CO) � Ct. 
Thus, {3(O') ?: {3* (O') for any level a test of Ho· Since 0' was arbitrary, the test is a 
UMP level a test. 0 

By an analogous argument, it can be shown that under the conditions of Theorem 
8.3.17, the test that rejects Ho : 8 ?: 00 in favor of HI : 0 < 80 if and only if T < to is 
a UMP level a Pea (T < to) test. 

Example 8.3.18 (Continuation of Example 8.3.15) Consider testing H� : 8 ?: 
00 versus Hi : 8 < 00 using the test that rejects H6 if 

As X is sufficient and its distribution has an MLR (see Exercise 8.25) , it follows from 
Theorem 8.3. 17  that the test is a UMP level a test in this problem. 

As the power function of this test, 

{3(8) PrJ (X < -?n + (0) , 

is a decreasing function of 8 (since (J is a location parameter in the distribution of X), 
the value of a is given by sUPe�eo /3(0) = ,8(00) = a.  I I 

Although most experimenters would choose to use a UMP level Ct test if they knew 
of one, unfortunately, for many problems there is no UMP level a test. That is, no 
UMP test exists because the class of level a tests is so large that no one test dominates 
all the others in terms of power. In such cases, a common method of continuing the 
search for a good test is to consider some subset of the class of level a tests and 
attempt to find a UMP test in this subset . This tactic should be reminiscent of what 
we did in Chapter 7, when we restricted attention to unbiased point estimators in 
order to investigate optimality. We illustrate how restricting attention to the subset 
consisting of unbiased tests can result in finding a best test. 

First we consider an example that illustrates a typical situation in which a UMP 
level a test does not exist. 

Example 8.3.19 (Nonexistence of UMP test) Let XI , , , , , Xn be iid n(9, a2 ) ,  
a2 known. Consider testing Ho : 0 = 00 versus Hl : 8 =I 00 , For a specified value of  a, 
a level a test in this problem is any test that satisfies 

(8.3.6) 

Consider an alternative parameter point (it < 00 . The analysis in Example 8.3.18 
shows that, among all tests that satisfy (8.3.6) , the test that rejects Ho if X < 
-azo./..fii+ Oo has the highest possible power at (h . Call this Test 1 .  Furthermore, by 
part (b) (necessity) of the Neyman-Pearson Lemma, any other level a test that has 
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as high a power as Test 1 at 81 must have the same rejection region as Test 1 except 
possibly for a set A satisfying fA !Cx IOi) dx = O. Thus, if a UMP level Q: test exists 
for this problem, it must be Test 1 because no other test has as high a power as Test 
1 at 01 , 

Now consider Test 2, which rejects Ho if X >  (iZa/.,fii + 00 . Test 2 is also a level 
a test. Let (3i(O) denote the power function of Test i .  For any 02 > 00 , 

( - (iZa ) P(J� X < - + 00 

(31 (02) , 

( Z '" nCO, 1 ) ,  ) > since 00 (h < 0 

Thus Test 1 is not a UMP level Q: test because Test 2 has a higher power than Test 
1 at O2 , Earlier we showed that if there were a UMP level Q: test, it would have to be 
Test 1. Therefore, no UMP level 0: test exists in this problem. I I  

Example 8 .3 .19 illustrates again the usefulness of the Neyman-Pearson Lemma. 
Previously, the sufficiency part of the lemma was used to construct UMP level 0: 
tests, but to show the nonexistence of a UMP level 0: test, the necessity part of the 
lemma is used. 

Example 8.3.20 (Unbiased test) When no UMP level 0: test exists within the 
class of all tests, we might try to find a UMP level 0: test within the class of unbiased 
tests. The power function, (33 (0), of Test 3, which rejects Ho : 0 = 00 in favor of 
HI : 0 =i 00 if and only if 

X >  (iZa/2/.,fii + 00 or X < -(iZa/2/.,fii + 00, 

as well as (31 (0) and (3-;.(0) from Example 8.3. 19, is shown in Figure 8.3.3. Test 3 is 
actually a UMP unbiased level 0: test; that is, it is UMP in the class of unbiased tests. 

Note that although Test 1 and Test 2 have slightly higher powers than Test 3 for 
some parameter points, Test 3 has much higher power than Test 1 and Test 2 at 
other parameter points. For example, (33 (92 ) is near 1 ,  whereas (31 (02 ) is near O. If 
the interest is in rejecting Ho for both large and small values of 0, Figure 8.3.3 shows 
that Test 3 is better overall than either Test 1 or Test 2.  I I  
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O. - 2111.,[i1 

Figure 8.3.3. Power functions for three tests in Example 8.3. 19; f33(8) is the power function 
of an unbiased level a = .05 test 

8.3.3 Sizes of Union-Intersection and Intersection�Union Tests 

Because of the simple way in which they are constructed, the sizes of union-intersection 
tests (UIT) and intersection union tests (IUT) can often be bounded above by the 
sizes of some other tests. Such bounds are useful if a level a test is wanted, but the 
size of the UIT or IUT is too difficult to evaluate. In this section we discuss these 
bounds and give examples in which the bounds are sharp, that is, the size of the test 
is equal to the bound. 

First consider UITs. Recall that, in this situation, we are testing a null hypothesis 
of the form Ho : () E 80, where 80 n'/'Er 8,/" To be specific, let A,/, (X) be the LRT 
statistic for testing Ho'/' : () E 8,/, versus HI')' : () E 8�, and let A (X) be the LRT 
statistic for testing Ho : () E 80 versus HI : () E 80, Then we have the following 
relationships between the overall LRT and the UIT based on A,/, (X), 

Theorem 8.3.21 Consider testing Ho : () E 80 versus HI : () E 8o, where 80 

n'/'Er 8,/, and A,/, (X) is defined in the previous paragraph. Define T(x) = inf")'ErA,/, (x) , 
and form the UIT with rejection region 

{x : A,/, (X) < c for some 'Y E r} = {x : T{x) < c} . 

Also consider the usual LRT with rejection region {x : A(X) < c} . Then 
a. T(x) :::,. A(X) for every x; 
h. If f3r(()) and /3x(() are the power functions for the tests based on T and A, respec

tively, then f3r( ()) � /3>. (()) for every () E 8; 
c. If the LRT is a level a test, then the UIT is a level a test. 

Proof: Since 80 n'/'Er 8,/, C 8,/, for any 'Y, from Definition 8.2 . 1  we see that for 
any x, 

>",/, (X) � A(X) for each 'Y E r 
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because the region of maximization is bigger for the individual >.-y. Thus T(x) = 

inf1'Er >.-y (x) � >.(x) , proving (a) . By (a) ,  {x:  T(x) < c} C {x : >. (x) < c}, so 

f3T(O) = Pe (T(X) < c) � Pe (>'(X) < c) f3;.. (O) , 

proving (b). Since (b) holds for every 0, sUPeEso f3T( 0) s sUPeEso (3).. (0) S a, proving 
(c). 0 

Example 8.3.22 (An equivalence) In some situations, T(x) >.(x) in Theorem 
8.3.21 .  The UIT built up from individual LRTs is the same as the overall LRT. This 
was the case in Example 8.2.8. There the UIT formed from two one-sided t tests was 
equivalent to the two-sided LRT. I I  

Since the LRT is uniformly more powerful than the UIT in Theorem 8.3.21 ,  we 
might ask why we should use the UIT. One reason is that the UIT has a smaller Type 
I Error probability for every 0 E So. Furthermore, if Ho is rejected, we may wish to 
look at the individual tests of Ho1' to see why. As yet, we have not discussed inferences 
for the individual Ho-y . The error probabilities for such inferences would have to be 
examined before such an inference procedure were adopted. But the possibility of 
gaining additional information by looking at the Ho-y individually, rather than looking 
only at the overall LRT, is evident. 

N ow we investigate the sizes of IUTs. A simple bound for the size of an IUT is 
related to the sizes of the individual tests that are used to define the IUT. Recall that 
in this situation the null hypothesis is expressible as a union; that is, we are testing 

Ho : 0 E So versus HI : 0 E 80 , where So U S,)" -YEr 
An IUT has a rejection region of the form R = n')'ErR-y , where R-y is the rejection 
region for a test of Ho')' : 0 E S')' . 

Theorem 8.3.23 Let a1' be the size of the test of HI.Yy with rejection region R-y .  
Then the IUT with rejection region R = n-YErR-y is a level a sup')'Ha1' test. 

Proof: Let 0 E So. Then 0 E S')' for some "I and 

Since 0 E So was arbitrary, the IUT is a level a test. o 

Typically, the individual rejection regions R-y are chosen so that a')' a for all "I. 
In such a case, Theorem 8.3.23 states that the resulting IUT is a level a test. 

Theorem 8.3.23, which provides an upper bound for the size of an IUT, is somewhat 
more useful than Theorem 8.3.21 , which provides an upper bound for the size of a 
VIT. Theorem 8.3.21 applies only to UITs constructed from likelihood ratio tests. In 
contrast, Theorem 8.3.23 applies to any IUT. 

The bound in Theorem 8.3.21 is the size of the LRT, which, in a complicated 
problem, may be difficult to compute. In Theorem 8.3.23, however, the LRT need not 
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be used to obtain the upper bound. Any test of Ho'Y with known size 0:.., can be used, 
and then the upper bound on the size of the IUT is given in terms of the known sizes 
0:.." "Y E r. 

The IUT in Theorem 8.3 .23 is a level 0 test. But the size of the IUT may be much 
less than 0; the IUT may be very conservative. The following theorem gives conditions 
under which the size of the IUT is exactly 0 and the IUT is not too conservative. 

Theorem 8.3.24 Consider testing Ho : () E U;=l ej , where k is a finite positive 
integer. For each j = 1 ,  . . .  , k, let Rj be the rejection region of a level 0 test of 
Hoj . Suppose that for some i I , . . .  , k, there exists a sequence of parameter points, 
(}l E ei , 1 =  1 , 2, . . .  , such that 
i. liml ...... "" POI (X E �) 0:, 

ii .  for each j 1, . . . , k, j =F i ,  lim/ ...... "" po! (X E Rj) 1 .  

Then, the JUT with rejection region R = n;=l Rj is a size 0 test. 
Proof: By Theorem 8.3.23, R is a level 0 test, that is, 

(8.3.7) sup Po (X E R) � O. 
/JEBo 

But, because all the parameter points (}l satisfy (}l E ei c eo, 

sup Po(X E R) � lim POI (X E R) 
/lEBo I ...... "" 

k 
= lim P/lI (X E n Rj) I ...... "" j=l 

(k - l) + o - (k 1 ) 

0:. 
This and (8.3.7) imply the test has size exactly equal to o. 

(Bonferroni's) 
Inequality 

(by (i) and (i1 ) )  

o 

Example 8.3.25 (Intersection-union test) In Example 8.2.9, let n = m = 58, 
t = 1 .672, and b = 57. Then each of the individual tests has size 0 = .05 (approx
imately) . Therefore, by Theorem 8.3.23, the IUT is a level 0 .05 test; that is, 
the probability of deciding the product is good, when in fact it is not, is no more 
than .05. In fact, this test is a size 0 .05 test. To see this consider a sequence of 
parameter points (}l = (all ,  (}2 ) ,  with all -t 00 as I -t 00 and O2 .95. All such 
parameter points are in eo because (}2 � .95. Also, P81 (X E R1 ) -t 1 as all -t 00, 
while PIll (X E R2) = .05 for all 1 because 02 = .95. Thus, by Theorem 8.3.24, the 
IUT is a size 0 test. I I  

Note that, in Example 8.3.25, only the marginal distributions of the Xl " ' "  Xn and 
Y1 , . • .  , Y m were used to find the size of the test. This point is extremely important 
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and directly relates to the usefulness of IUTs, because the joint distribution is often 
difficult to know and, if known, often difficult to work with. For example, Xi and 
Yi may be related if they are measurements on the same piece of fabric, but this 
relationship would have to be modeled and used to calculate the exact power of the 
IUT at any particular parameter value. 

8.3.4 p- Values 

After a hypothesis test is done, the conclusions must be reported in some statistically 
meaningful way. One method of reporting the results of a hypothesis test is to report 
the size, Q, of the test used and the decision to reject Ho or accept Ho. The size of 
the test carries important information. If Q is small, the decision to reject Ho is fairly 
convincing, but if Q is large, the decision to reject Ho is not very convincing because 
the test has a large probability of incorrectly making that decision. Another way of 
reporting the results of a hypothesis test is to report the value of a certain kind of 
test statistic called a p-value. 

Definition 8.3.26 A p-value p(X) is a test statistic satisfying 0 � p(x) � 1 for 
every sample point x. Small values of p(X) give evidence that HI is true. A p-value 
is valid if, for every 0 E 90 and every 0 � Q � 1 ,  

(8.3.8) Po (p(X) � Q ) ::; Q .  

If p(X) i s  a valid p-value, it is easy to  construct a level Q test based on p(X). The 
test that rejects Ho if and only if p(X) � Q is a level a test because of (8.3.8) .  An 
advantage to reporting a test result via a p-value is that each reader can choose the Q 
he or she considers appropriate and then can compare the reported p(x) to Q and know 
whether these data lead to acceptance or rejection of Ho. Furthermore, the smaller 
the p-value, the stronger the evidence for rejecting Ho. Hence, a p-value reports the 
results of a test on a more continuous scale, rather than just the dichotomous decision 
"Accept Ho" or "Reject Ho." 

The most common way to define a valid p-value is given in Theorem 8.3.27. 

Theorem 8.3.27 Let W(X) be a test statistic such that large values of W give 
evidence that HI is true. For each sample point x, define 

(8.3.9) p(x) sup Po (W(X) :::>: W(x) ) . OE90 
Then, p(X) is a valid p-value. 

Proof: Fix (j E 90. Let Fo(w) denote the cdf of -W(X). Define 

po(x) = Pe (W(X) :::>: W(x)) = Po (-W(X) ::; -W(x)) = Fo (-W(x)) . 

Then the random variable po(X) is equal to Fo(-W(X)) .  Hence, by the Probability 
Integral Transformation or Exercise 2. 10, the distribution of pe(X) is stochastically 
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greater than or equal to a uniform(O, l )  distribution. That is, for every 0 � 0: � 1, 
Pe (pe(X) � 0:) � a. Because p(x) = sUP9'E60 pe' (x) � Pe (x) for every x, 

Pe (p(X) � 0:) � Pe (pe(X) � 0:) � 0:. 
This is true for every 0 E eo and for every 0 � 0: � 1; p(X) is a valid p-value. 0 

The calculation of the supremum in (8.3.9) might be difficult. The next two ex
amples illustrate common situations in which it is not too difficult. In the first, no 
supremum is necessary; in the second, it is easy to determine the 0 value at which 
the supremum occurs. 

Example 8.3.28 (Two-sided normal p-value) Let Xl , " " Xn be a random 
sample from a n(J.L, 0"2 ) population. Consider testing Ho : J.L = J.Lo versus HI :  J.L i:- J.Lo .  
By Exercise 8.38, the LRT rejects Ho for large values of  W(X) IX - J.Lol/(S/ v'n). If 
J.L = J.Lo, regardless of the value of 0", (X J.Lo)/(S/..fii) has a Student's t distribution 
with n 1 degrees of freedom. Thus, in calculating (8.3.9) , the probability is the 
same for all values of 0, that is, all values of 0". Thus, the p-value from (8.3.9) for this 
two-sided t test is p(x) 2P(Tn-1 � I x - J.Lo l / (s/..fii) ) ,  where Tn-1 has a Student's 
t distribution with n 1 degrees of freedom. I I  

Example 8.3.29 (One-sided normal p-value) Again consider the normal model 
of Example 8.3.28, but consider testing Ho : J.L � J.Lo versus Hl : J.L > J.Lo. By Exercise 
8.37, the LRT rejects Ho for large values of W(X) = (X - J.Lo)/(S/..fii) .  The following 
argument shows that, for this statistic, the supremum in (8.3.9) always occurs at a 
parameter (J.Lo , a) , and the value of 0" used does not matter. Consider any J.L � J.Lo and 
any a: 

p�.(f (W(X) � W(x) ) = p�.(f (�/fo° � W(X)) 
(X - J.L J.Lo J.L) P/l-,(f S/..fii � W(x) + 

S/..fii 

= P�,(f (Tn-1 � W(x) + �/;) 
:::; P (Tn-1 � W(x)) .  

Here again, Tn-1 has a Student 's t distribution with n 1 degrees of  freedom. The 
inequality in the last line is true because J.Lo � J.L and (J.Lo -J.L) / (S /..fii) is a nonnegative 
random variable. The subscript on P is dropped here, because this probability does 
not depend on (J.L, O") . Furthermore, 

P (Tn-1 � W(x)) P/l-O,U ( �/ .fit � W(X)) = P/l-O,U (W(X) � W(x)) , 

and this probability is one of those considered in the calculation of the supremum in 
(8.3.9) because (J.Lo, a) E eo. Thus, the p-value from (8.3.9) for this one-sided t test 
is p(x) P(Tn-1 � W(x) ) P(Tn-1 � (x - J.Lo)/(s/ fo)) ·  I I  
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Another method for defining a valid p-value, an alternative to using (8.3.9), involves 

conditioning on a sufficient statistic. Suppose 8(X) is a sufficient statistic for the 
Dlodel {/(xI9) : 9 E eo} .  (To avoid tests with low power it is important that 8 is 
sufficient only for the null model, not the entire model {/(xI9) : () E e} . )  If the null 
hypothesis is true, the conditional distribution of X given 8 = 8 does not depend on 
(). Again, let W(X) denote a test statistic for wbich large values give evidence that 
HI is true. Tben, for each sample point x define 

(8.3.10) p(x) P (W(X) � W(x) 18  8(x» .  

Arguing as in Theorem 8.3.27, but considering only the single distribution that is the 
conditional distribution of X given 8 = s, we see that, for any 0 � a � 1 ,  

p (p(X) � a l8 = s )  � a. 

Then, for any e E eo, unconditionally we have 

,9 8 

Thus, p(X) defined by (8.3.10) is a valid p-value. Sums can be replaced by integrals for 
continuous 8, but this method is usually used for discrete 8, as in the next example. 

Example 8.3.30 (Fisher's Exact Test) Let 81 and 82 be independent ob
servations with 81 '" binomial(n1 , P1 )  and 82 '" binomial(n2 , P2 ) .  Consider testing 
Ho : PI P2 versus HI : PI > P2. Under Ho, if we let P denote the common value of 
PI = P2, the joint pmf of (81 , 82) is 

f(s} ,  s2 lp) (:: ) p8I (1 - p)nl- SI (:: ) p82 (1 _ p)n2-S2 

= (:: ) (:: ) p81 +82 (I _ ptl+n2-(sl+S2 ) .  

Thus, 8 = 81  + 82 i s  a sufficient statistic under Ho. Given the value of 8 = s, i t  is 
reasonable to use 81 as a test statistic and reject Ho in favor of HI for large values 
of 81 , because large values of 81 correspond to small values of 82 s 81 • The 
conditional distribution 81 given 8 8 is hypergeometric( n1 + n2 ,  n l , s) (see Exercise 
8.48) .  Thus the conditional p-value in (8.3. 10) is 

min{nl 'S} 

P(Sl ' 82) = L fUls) , 
j=81 

the sum of hypergeometric probabilities. The test defined by this p-value is called 
Fisher's Exact Test. I I  
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8.S.5 L088 Function Optimality 
A decision theoretic analysis, as in Section 7.3.4, may be used to compare hypothesis 
tests, rather than just comparing them via their power functions. To carry out this 
kind of analysis, we must specify the action space and loss function for our hypothesis 
testing problem. 

In a hypothesis testing problem, only two actions are allowable, "accept Ho" or 
"reject HQ." These two actions might be denoted ao and aI , respectively. The action 
space in hypothesis testing is the two-point set A = {ao, al } .  A decision rule 8(x) (a 
hypothesis test) is a function on X that takes on only two values, ao and al. The set 
{x : 8 (x) = ao} is the acceptance region for the test, and the set {x : 8(x) = al } is 
the rejection region, just as in Definition 8.1 .3 .  

The loss function in a hypothesis testing problem should reflect the fact that, if 
() E eo and decision a1 is made, or if () E eo and decision ao is made, a mistake has 
been made. But in the other two possible cases, the correct decision has been made. 
Since there are only two possible actions, the loss function L(e, a) in a hypothesis 
testing problem is composed of only two parts. The function L«(), ao) is the loss 
incurred for various values of () if the decision to accept Ho is made, and L(O, ad is 
the loss incurred for various values of e if the decision to reject Ho is made. 

The simplest kind of loss in a testing problem is called 0-1 loss and is defined by 

L(O, ao) = { �  and o E eo 
o E ego 

With 0-1 loss, the value 0 is lost if a correct decision is made and the value 1 is lost 
if an incorrect decision is made. This is a particularly simple situation in which both 
types of error have the same consequence. A slightly more realistic loss, one that gives 
different costs to the two types of error, is generalized 0-1 lOS8, 

(8.3.1 1 )  { 0 e E eo L (O, ao) = () ec cn E - 0 {' er () E eo 
o 0 E ego 

In this loss, cr is the cost of a Type I Error, the error of falsely rejecting Ho, and ClI 
is the cost of a Type II Error, the error of falsely accepting Ho. (Actually, when we 
compare tests, all that really matters is the ratio err/er ,  not the two individual values. 
If CI = Cn , we essentially have 0-1 10ss. )  

. 

In a decision theoretic analysis, the risk function (the expected loss) is used to 
evaluate a hypothesis testing procedure. The risk function of a test is closely related 
to its power function, as the following analysis shows. 

Let {3«()) be the power function of the test based on the decision rule 8. That is, if 
R {x : 8(x) ad denotes the rejection region of the test, then 

{3(O) = Po(X E R) = Po(8(X) al ) .  

The risk function associated with (8.3 . 1 1) and, i n  particular, 0-1 loss i s  very simple. 
For any value of () E e, L«(), a) takes on only two values, 0 and CI if () E eo and 0 and 
Cll if () E eg . Thus the risk is 
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(8.3.12) 
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R(O, 6) = OPe (6(X) = aD) + CIPe(6(X) al ) cI(3(O) if 0 E 80, 
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R(O, 6) = cnPo (6(X) ao) + OPe (6(X) = ad = cu (1 - (3(0» if 0 E ego 
This similarity between a decision theoretic approach and a more traditional power 
approach is due, in part, to the form of the loss function. But in all hypothesis testing 
problems, as we shall see below, the power function plays an important role in the 
risk function. 

Example 8.3.31 (Risk of UMP test) Let Xl " ' "  Xn be a random sample 
from a n(J.t, 0-2) population, (72 known. The UMP level a test of Ho : 0 � 00 versus 
HI: 0 < 00 is the test that rejects Ho if (X -(0)/(0-/ fo) < - Za: (see Example 8.3.15) . 
The power function for this test is 

(3(0) = Pe ( Z < -Za: 0 - (0) 
o-/..fii ' 

where Z has a nCO, 1) distribution. For a = . 10, the risk function (8.3. 12) for CI 8 
and cn = 3 is shown in Figure 8.3.4. Notice the discontinuity in the risk function at 
8 = 00 , This is due to the fact that at 00 the expression in the risk function changes 
from (3(0) to 1 (3(0) as well as to the difference between CI and Crr·  I I 

The O� 1 loss judges only whether a decision is right or wrong. It may be the case 
that some wrong decisions are more serious than others and the loss function should 
reflect this. When we test Ho : 0 � 00 versus HI : 0 < 00 , it is a Type I Error to 
reject Ho if 0 is slightly bigger than 00, but it may not be a very serious mistake. The 
adverse consequences of rejecting Ho may be much worse if 0 is much larger than 00 • 
A loss function that reflects this is 

(8.3. 13) { D O  � 00 L(O, ao) = b(Oo - 0) 0 < 00 

R(8, 6) 
3 

3 - 2  - I  0 

and L(O, ad 

Figure 8.3.4. Risk function for test in Example 8.S.S1 
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where b and c are positive constants. For example, if an experimenter is testing 
whether a drug lowers cholesterol level, Ho and HI might be set up like this with 
00 = standard acceptable cholesterol level. Since a high cholesterol level is associated 
with heart disease, the consequences of rejecting Ho when 0 is large are quite serious. 
A loss function like (8.3.13) reflects such a consequence. A similar type of loss function 
is advocated by Vardeman ( 1987) . 

Even for a general loss function like (8.3. 13) ,  the risk function and the power func
tion are closely related. For any fixed value of 0, the loss is either L(O, ao) or L(O, aI ) . 
Thus the expected loss is 

(8.3. 1 4) 
R(O, b) = L(O, ao)po (6(X) = ao) + L(O, al )Po (b(X) = al) 

= L(O, ao) ( l  !3(O)) + L(O, ad!3(O) . 

The power function of a test is always important when evaluating a hypothesis test. 
But in a decision theoretic analysis, the weights given by the loss function are also 
important . 

8.4 Exercises ______________________ _ 

8.1 In 1,000 tosses of a coin, 560 heads and 440 tails appear. Is it reasonable to assume 
that the coin is fair? Justify your answer. 

8.2 In a given city it is assumed that the number of automobile accidents in a given year 
follows a Poisson distribution. In past years the average number of accidents per year 
was 15, and this year it was 10. Is it justified to claim that the accident rate has 
dropped? 

8.3 Here, the LRT alluded to in Example 8.2.9 will be derived. Suppose that we observe 
m iid Bernoulli(9) random variables, denoted by Yl, . . .  , Ym• Show that the LRT of 
Ho : 9 :::; 90 versus HI : 9 > 90 will reject Ho if 2:::1 Y; > b. 

8.4 Prove the assertion made in the text- after Definition 8.2. 1 .  If f(x I9) is the pmf of a dis
crete random variable, then the numerator of ),(x), the LRT statistic, is the maximum 
probability of the observed sample when the maximum is computed over parameters in 
the null hypothesis. Furthermore, the denominator of ),(x) is the maximum probability 
of the observed sample over all possible parameters. 

8.5 A random sample, Xl , . . .  , XT).,  is drawn from a Pareto population with pdf 

f(xI9, 1/) 9119 

X9+1 I[V,OO) (x), 9 >  0, 1/ > o .  

(a )  Find the MLEs of  9 and II. 
(b) Show that the LRT of 

Ho : 9 1 ,  II unknown, versus HI : 9 i= 1 ,  1I unknown, 

has critical region of the form {x : T(x) :::; CI or T(x) � C2} , where ° < C1 < C2 
and 
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(c) Show that, under Ho, 2T has a chi squared distribution, and find the number of 
degrees of freedom. (Hint: Obtain the joint distribution of the n - 1 nontrivial 
terms Xi I (mini Xi) conditional on mini Xi . Put these n - 1 terms together, and 
notice that the distribution of T given mini Xi does not depend on mini Xi, so it 
is the unconditional distribution of T.) 

8.6 Suppose that we have two independent random samples: Xl , . . .  , X" are exponential«()) , 
and E ,  . . .  , Ym are exponential(p,) . 

(a) Find the LRT of Ho : () p, versus HI : () # p,. 
(b) Show that the test in part (a) can be based on the statistic 

T = 
EX; 

EXt + EYi 

(c) Find the distribution of T when Ho is true. 

8.7 We have already seen the usefulness of the LRT in dealing with problems with nuisance 
parameters. \Ve now look at some other nuisance parameter problems. 

(a) Find the LRT of 

Ho : () :::: 0 versus HI : () > 0 

based on a sample Xl , . . .  , X" from a population with probability density function 
f(xl(), A) = ie-(x-9)/AI[9,oo) (x), where both () and A are unknown. 

(b) We have previously seen that the exponential pdf is a special case of a gamma pdf. 
Generalizing in another way, the exponential pdf can be considered as a special case 
of the Weibull( I, f3) . The Weibull pdf, which reduces to the exponential if I = 1 ,  
is very important in modeling reliability of systems. Suppose that Xl , . . .  , Xn is a 
random sample from a Wei bull population with both I and ,8 unknown. Find the 
LRT of Ho : I = 1 versus HI : l ol L  

8.8 A special case of a normal family is one in which the mean and the variance are related, 
the n(f), af)) family. If we are interested in testing this relationship, regardless of the 
value of f), we are again faced with a nuisance parameter problem. 

(a) Find the LRT of Ho : a 1 versus HI : a # 1 based on a sample Xl , . . .  , Xn from 
a n( () , a()) family, where f) is unknown. 

(b) A similar question can be asked about a related family, the n«(), aB2) family. Thus, 
if Xl , . . .  , Xn are iid nCB, a()2) ,  where B is unknown, find the LRT of Ho : a = 1 
versus HI : a # l .  

8.9  Stefanski ( 1996) establishes the arithmetic-geometric-harmonic mean inequality (see 
Example 4.7.8 and Miscellanea 4.9.2) using a proof based on likelihood ratio tests. 
Suppose that YI , . . .  , Yn are independent with pdfs Aie-AiYi , and we want to test 
Ho: Al . . . = An vs. HI: Ai are not all equaL 

(a) Show that the LRT statistic is given by (yrn I(TI. y;)-l and hence deduce the 
arithmetic-geometric mean inequality. 

(b) Make the transformation Xi l/Yi,  and show that the LRT statistic based on 
Xl , . . .  , X" is given by [nl L:i( 11  Xi)t I TIl Xi and hence deduce the geometric
harmonic mean inequality. 

8.10 Let X! , . . .  , X" be iid Poisson(A) , and let A have a gamma(a, f3) distribution, the 
conjugate family for the Poisson. In Exercise 7.24 the posterior distribution of A was 
found, including the posterior mean and variance. Now consider a Bayesian test of 
Ho : A :::: Ao versus HI : A > Ao . 
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(a) Calculate expressions for the posterior probabilities of Ho and HI . 
(b) If Q = � and /3 = 2, the prior distribution is a chi squared distribution with 5 

degrees of freedom. Explain how a chi squared table could be used to perform a 
Bayesian test. 

8.11 In Exercise 7.23 the posterior distribution of u2 , the variance of a normal population, 
given 82 , the sample variance based on a sample of size n, was found using a conjugate 
prior for u2 (the inverted gamma pdf with parameters Q and fJ) . Based on observing 
82 , a decision about the hypotheses Ho : a ::; 1 versus HI : a > 1 is to be made. 

(a) Find the region of the sample space for which P(u ::; 1 182) > P(CT > 1 182 ) , the 
region for which a Bayes test will decide that CT ::; 1 .  

(b) Compare the region in part (a) with the acceptance region of an LRT. Is there 
any choice of prior parameters for which the regions agree? 

8.12 For samples of size n = 1 , 4, 16, 64, 100 from a normal population with mean IJ. and 
known variance a2 , plot the power function of the following LRTs. Take 0 = .05. 

(a) Ho : IJ. ::; 0 versus HI : IJ. > 0 
(b) Ho : IJ. 0 versus HI : IJ. I  0 

8.13 Let Xl , X2 be iid uniform(B, B + 1 ) .  For testing Ho : B 0 versus HI : B > 0, we have 
two competing tests: 

I/lI (Xt) :Reject Ho if XI > .95, 

1/l2 (Xl , X2) :Reject Ho if XI + X2 > C. 
(a) Find the value of C so that 1/l2 has the same size as <Pl . 
(b) Calculate the power function of each test. Draw a well-labeled graph of each power 

function. 
(c) Prove or disprove: ¢2 is a more powerful test than <Pl . 
(d) Show how to get a test that has the same size but is more powerful than <P2. 

8.14 For a random sample Xl , . . .  , Xn of Bernoulli(p) variables, it is desired to test 

Ho : p = .49 versus HI : p .51 .  

Use the Central Limit Theorem to determine, approximately, the sample size needed 
so that the two probabilities of error are both about .01.  Use a test function that 
rejects Ho if 2:7=1 Xi is large. 

8.15 Show that for a random sample Xl , " " Xn from a nCO, (2) population, the most 
powerful test of H 0 :  a = uo versus HI : u = CTl , where CTO < aI , is given by 

if EX: > c 
if EX: ::; c. 

For a given value of 0, the size of the Type I Error, show how the value of c is explicitly 
determined. 

8.16 One very striking abuse of 0 levels is to choose them after seeing the data and to 
choose them in such a way as to force rejection (or acceptance) of a null hypothesis. 
To see what the true Type I and Type II Error probabilities of such a procedure are, 
calculate size and power of the following two trivial tests: 
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(a) Always reject Ho , no matter what data are obtained (equivalent to the practice 
of choosing the a: level to force rejection of Ho) . 

(b) Always accept Ho, no matter what data are obtained (equivalent to the practice 
of choosing the a: level to force acceptance of Ho) .  

8.11 Suppose that Xl , . . .  , Xn are iid with a beta(Jl, l )  pdf and Yl , . . .  , Ym are iid with a 
beta«(}, 1 )  pdf. Also assume that the XS are independent of the Ys. 

(a) Find an LRT of Ho : (J = Jl versus HI : (J :f. Jl. 
(b) Show that the test in part (a) can be based on the statistic 

T = � log Xj 
� log Xi + � log Y; 

(c) Find the distribution of T when Ho is true, and then show how to get a test of 
size a: . 10. 

8.18 Let Xl , . . .  , Xn be a random sample from a n(O, 0-2) population, 0-2 known. An LRT 
of Ho : 0 = 80 versus HI : 8 ¥- (Jo is a test that rejects Ho if IX - (Jo l / (o-/..Jii) > c. 

(a) Find an expression, in terms of standard normal probabilities, for the power func
tion of this test. 

(b) The experimenter desires a Type I Error probability of .05 and a maximum Type 
II Error probability of .25 at 0 00 + 0-. Find values of n and c that will achieve 
this. 

8.19 The random variable X has pdf f(x) = e-X , x > O. One observation is obtained on 
the random variable Y = X9, and a test of Ho : (} = 1 versus HI : (J = 2 needs to 
be constructed. Find the UMP level a: = . 10  test and compute the Type II Error 
probability. 

8.20 Let X be a random variable whose pmf under Ho and HI is given by 

x 
f(xIHo)  
f(xIHl ) 

1 2 
. 01 .0 1  
.06 .05 

3 4 5 6 
.01 .01 .01 .01 
.04 .03 .02 .01  

7 
.94 
.79 

Use the Neyman-Pearson Lemma to find the most powerful test for Ho versus HI with 
size a: .04. Compute the probability of Type II Error for this test. 

8.21 In the proof of Theorem 8.3.12 (Neyman-Pearson Lemma), it was stated that the 
proof, which was given for continuous random variables, can easily be adapted to cover 
discrete random variables. Provide the details; that is, prove the Neyman-Pearson 
Lemma for discrete random variables. Assume that the a: level is attainable. 

8.22 Let X I ,  • . .  , X 10 be iid BernoulIi(p) . 

(a) Find the most powerful test of size a: = .0547 of the hypotheses Ho : p � versus 
HI : p = -l .  Find the power of this test. 

(b) For testing Ho : p S; � versus HI : P > � ,  find the size and sketch the power 
function of the test that rejects Ho if E!�I Xi � 6 .  

(c )  For what a: levels does there exist a UMP test of  the hypotheses in part (a)? 

8.23 Suppose X is one observation from a population with beta«(J, l)  pdf. 

(a) For testing Ho : (J S; 1 versus Hl : (J > 1 ,  find the size and sketch the power function 
of the test that rejects Ho if X > � .  

(b) Find the most powerful level a: test o f  Ho : (} 1 versus HI : (J 2. 
(c) Is there a UMP test of Ho : (} S; 1 versus HI : (} > I? If so, find it. If not, prove so. 
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8.24 Find the LRT of a simple Ho versus a simple HI . Is this test equivalent to the one 

obtained from the Neyman-Pearson Lemma? (This relationship is treated in some 
detail by Solomon 1975.) 

8.25 Show that each of the following families has an MLR. 
(a) n(0, 0'2) family with 0'2 known 
(b) Poisson (0) family 
(c) binomial(n, O) family with n known 

8.26 (a) Show that if a family of pdfs {J(xIO) : 0 E 8} has an MLR, then the corresponding 
family of cdfs is stochastically increasing in O. (See the Miscellanea section.) 

(b) Show that the converse of part (a) is false; that is, give an example of a family 
of cdfs that is stochastically increasing in 0 for which the corresponding family of 
pdfs does not have an MLR. 

8.27 Suppose g(t IO) = h(t)c(O)ew(6)t is a one-parameter exponential family for the random 
variable T. Show that this family has an MLR if w(O) is an increasing function of O. 
Give three examples of such a family. 

8.28 Let f(xIO) be the logistic location pdf 

e (z-B) 
f(x IO) = 

(1 + e(x-B) 2 ' -00 < x < 00 , -00 < 0 < 00. 

(a) Show that this family has an MLR. 
(b) Based on one observation, X, find the most powerful size 0: test of Ho : 0 = 0 

versus HI : 0 1 .  For 0: .2 , find the size of the Type II Error. 
( c) Show that the test in part (b) is UMP size 0: for testing H 0 : 0 s: 0 versus HI : 0 > O. 

What can be said about UMP tests in general for the logistic location family? 
8.29 Let X be one observation from a Cauchy(O) distribution. 

(a) Show that this family does not have an MLR. 
(b) Show that the test 

¢(x) = { � if 1 < x < 3 
otherwise 

is most powerful of its size for testing Ho : 0 = 0 versus HI : 0 = 1 .  Calculate the 
Type I and Type II Error probabilities. 

(c) Prove or disprove: The test in part (b) is UMP for testing Ho : 0 s: 0 versus 
HI : 0 > O. What can be said about UMP tests in general for the Cauchy location 
family? 

8.30 Let f(xIO) be the Cauchy scale pdf 

f(xjO) 
o 1 
7r 02 + x2 ' 

-00 < x < 00, 

(a) Show that this family does not have an MLR. 

0 >  O. 

(b) If X is one observation from f(xIO) , show that JX I is sufficient for 0 and that the 
distribution of IX I  does have an MLR. 

8.31 Let Xl , . . . , Xn be iid Poisson(A). 
(a) Find a UMP test of Ho : A S:  AO versus Hl : A > Ao. 
(b) Consider the specific case Ho : A s: 1 versus Hl : A > 1 .  Use the Central Limit 

Theorem to determine the sample size n so a UMP test satisfies P(reject Ho lA = 
1 )  .05 and P(reject Ho lA  = 2) = .9. 
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8.32 Let XI , . . .  , Xn be iid nCO, 1 ) ,  and let 00 be a specified value of O. 

(a) Find the UMP, size 0:, test of Ho : 0 ;::: 00 versus HI : 0 < 00 . 
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(b) Show that there does not exist a UMP, size 0:, test of Ho : 0 = 00 versus HI : 0 =1= 00. 

8.33 Let Xl , . . .  , Xn be a random sample from the uniform(O, 0 + 1) distribution. To test 
Ho : 6 0 versus HI : 0 > 0, use the test 

reject Ho if Yn � 1 or Yl � k,  

where k is  a constant, Y1 == min{Xl , . . .  , Xn} ,  Yn = max{Xl , . . .  , Xn}.  

(a) Determine k so that the test will have size 0:. 
(b) Find an expression for the power function of the test in part (a) . 
(c) Prove that the test is UMP size 0:. 
(d) Find values of n and k so that the UMP .10 level test will have power at least .8 

if 0 > 1. 

8.34 In each of the following two situations, show that for any number c, if 61 :S 02 , then 

Pe, (T > c) :S Pe2 (T > c) . 

(a) 0 is a location parameter in the distribution of the random variable T. 
(b) The family of pdfs of T, {g(tI6) : 0 E 8}, has an MLR. 

8.35 The usual t distribution, as derived in Section 5.3.2, is also known as a central t 
distribution. It can be thought of as the pdf of a random variable of the form T = 
nCO , 1 )/  jx�/v, where the normal and the chi squared random variables are indepen
dent. A generalization of the t distribution, the noncentral t, is of the form T' = 
nett, 1)/ jx�/v, where the normal and the chi squared random variables are indepen
dent and we can have tt =1= O. (We have already seen a noncentral pdf, the noncentral 
chi squared, in (4.4.3) .) Formally, if X '"'" n(tt, l )  and Y '"'" x�, independent of X ,  
then T' = X/ jy/v has a noncentral t distribution with v degrees of freedom and 

non centrality parameter 8 p. 
( a) Calculate the mean and variance of T'. 
(b) The pdf of T' is given by 

Show that this pdf reduces to that of a central t if 8 O. 
(c) Show that the pdf of T' has an MLR in its noncentrality parameter. 

8.36 We have one observation from a beta(l, 0) population. 

(a) To test Ho : 61 :S 0 :S O2 versus HI : 0 < 01 or 0 > 02 , where 01 = l and (}2 = 2, 
a test satisfies Eel ¢ = .5 and E82¢ = .3. Find a test that is as good, and explain 
why it is as good. 

(b) For testing Ho : 0 = 01 versus HI : 0 =1= 01 , with 01 = 1 ,  find a two-sided test (other 
than ¢ == . 1 )  that satisfies Eel ¢ . 1  and !eEe(¢) l e=ol O. 

8.37 Let Xl , . . .  , Xn be a random sample from a n( 6 ,  (]'2) population. Consider testing 

Ho : O :S  00 versus 
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(a) If 172 is known, show that the test that rejects Ho when 

X > 80 + zo Va21n 

is a test of size Q. Show that the test can be derived as an LRT. 
(b) Show that the test in part (a) is a UMP test. 
(c) If 172 is unknown, show that the test that rejects Ho when 

X > 80 + tn-l ,o VS2 In 

is a test of size Q. Show that the test can be derived as an LRT. 

Section 8 .... 

8.38 Let Xl , . . .  , Xn be iid n (O, a2 ) , where (Jo is a specified value of 8 and 172 is unknown. 
We are interested in testing 

Ho : (J = 80 versus 

(a) Show that the test that rejects Ho when 

IX 80 1 >  tn-l ,a/2VS2In 

is a test of size Q. 
(b) Show that the test in part (a) can be derived as an LRT. 

8.39 Let (Xl , Yd, . . .  , (Xn , Yn) be a random sample from a bivariate normal distribution 
with parameters fJ.x \ fJ.y , ui , u} , p. We are interested in testing 

Ho : fJ.X = fJ.Y versus 

(a) Show tha.t the random variables Wi = Xi - Y; are iid n(fJ.W , ufv ) . 
(b) Show that the above hypothesis can be tested with the statistic 

11 _ W 
W - VJ.S2 ' n W 

- 1 �n 2 1 �n - 2 where W = n L...ti=l Wi and Sw = (n-I) L...t i=l (Wi W) . Furthermore, show 
that, under Ho, Tw IV Student 's t with n- 1 degrees of freedom. (This test is 
known as the paired-sample t test.) 

8.40 Let (Xl , Yt } ,  . . .  , (Xn, Yn) be a random sample from a bivariate normal distribution 
with parameters fJ.x , fJ.Y , ui , u}, p. 
(a) Derive the LRT of 

Ho : fJ.x = fJ.Y versus 

where ai, u}, a.nd p are unspecified and unknown. 
(b) Show that the test derived in part (a) is equivalent to the paired t test of Exercise 

8.39. 
(Hint: Straightforward maximization of the bivariate likelihood is possible but 
somewhat nasty. Filling in the ga.ps of the following argument gives a more elegant 
proof.) 
Make the transformation u x y, v = x + y. Let I (x, y) denote the bivariate 
normal pdf, and write 

I(x, y) g( vlu)h( u) ,  
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where g(vlu) is the conditional pdf of V given U, and h(u) is the marginal pdf 
of U. Argue that (1)  the likelihood can be equivalently factored and (2) the piece 
involving g(vlu) has the same maximum whether or not the means are restricted. 
Thus, it can be ignored (since it will cancel) and the LRT is based only on h(u). 
However, h(u) is a normal pdf with mean J.LX - J.Ly, and the LRT is the usual 
one-sample t test, as derived in Exercise 8.38. 

8.41 Let Xl, . . .  , Xn be a random sample from a n (J.£x, 01·), and let Yl , . . .  , Ym be an 
independent random sample from a n(J.£ Y , O"� ) . We are interested in testing 

Ho : J.£x J.£Y versus 

with the assumption that (1� = (1� = (12. 

(a) Derive the LRT for these hypotheses. Show that the LRT can be based on the 
statistic 

where 

(The quantity S� is sometimes referred to as a pooled variance estimate. This type 
of estima.te will be used extensively in Section 1 1 .2.) 

(b) Show that, under Ho , T rv tn+m-2' (This test is known as the two-sample t test.) 

(c) Samples of wood were obtained from the core and periphery of a certain Byzantine 
church. The date of the wood was determined, giving the following data. 

Core Periphery 

1294 1251 1284 1274 
1279 1248 1272 1264 
1274 1240 1256 1256 
1264 1232 1254 1250 
1263 1220 1242 
1254 1218 
1251 1210 

Use the two-sample t test to determine if the mean age of the core is the same as 
the mean age of the periphery. 

8.42 The assumption of equal variances, which was made in Exercise 8.4 1 ,  is not always 
tenable. In such a case, the distribution of the statistic is no longer a t .  Indeed, there 
is doubt as to the wisdom of calculating a pooled variance estimate. (This problem, of 
making inference on means when variances are unequal, is, in general, quite a difficult 
one. It is known as the Behrens-Fisher Problem.) A natural test to try is the following 
modification of the two-sample t test: Test 

Ho : J.LX = J.LY versus 
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where we do not assume that uk = u} , using the statistic 

where 

x - v  
T' = ��======== 

2 1 � - 2 Sx = nI L.,, (Xi - X) 
i=1 

2 1 
and Sy = 

m 

m 
" - 2 L." (Yi - Y) . 
;=1 

Section 8.4 

The exact distribution of T' is not pleasant, but we can approximate the distribution 
using Satterthwaite's approximation (Example 7.2.3) . 
(a) Show that 

(approximately), 

where II can be estimated with 

(b) Argue that the distribution of T' can be approximated by a t distribution with v 
degrees of freedom. 

(c) Re-examine the data from Exercise 8.41 using the approximate t test of this ex
ercise; that is, test if the mean age of the core is the same as the mean age of the 
periphery using the T' statistic. 

(d) Is there any statistical evidence that the variance of the data from the core may 
be different from the variance of the data from the periphery? (Recall Example 
5.4. 1 . )  

8.43 Sprott and Farewell ( 1993) note that in  the two-sample t test, a valid t statistic can be 
derived as long as the ratio of variances is known. Let Xl ,  . . .  , Xn1 be a sample from a 
n(t-h , (72) and Y1 ,  . . . , Y"2 a sample from a n(/-£2, p2(72) ,  where p2 i s  known. Show that 

"1 (n1 -1)si; +n2 ("2-I)si I p2 

"1+"'2-2 

2 
has Student's t distribution with nl + n2 - 2 degrees of freedom and � has an F p nlBx 
distribution with nl - 1 and n2 - 1 degrees of freedom. 

Sprott and Farewell also note that the t statistic is maximized at p2 = nl �8: ' 

n2 n2 - lsy 
and they suggest plotting the statistic for plausible values of p2 , possibly those in a 
confidence interval. 

8.44 Verify that Test 3 in Example 8 .3.20 is an unbiased level a test. 
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8.45 Let Xl , " " X" be a random sample from a n(8, (72) population. Consider testing 

Ho : 8 :5  80 versus 

Let Xm denote the sample mean of the first m observations, Xl , " " Xm, for m = 
1, . . .  , n. If (72 is known, show that for each m = 1 ,  . . .  , n, the test that rejects Ho 
when 

Xm > 80 + Z",V/72/m 

is an unbiased size (l test. Graph the power function for each of these tests if n = 4 .  
8.46 Let X 1 ,  • • •  ,X  n be a random sample from a n( 8 ,  (72) population. Consider testing 

versus 

(a) Show that the test 

reject Ho if X >  82 + tn-l ,Ol/2 VS2/n or X < 81 - tn_l,a/2VS2/n 

i s  not a size (l test. 
(b) Show that, for an appropriately chosen constant k, a size (l test is given by 

reject Ho if IX - 81 > kV S2 In, 

where (j (81 + (2 )/2. 
(c) Show that the tests in parts (a) and (b) are unbiased of their size. (Assume that 

the noncentral t distribution has an MLR.) 

8.47 Consider two independent normal samples with equal variances, as in Exercise 8.41 .  
Consider testing Ho : /-LX /-Ly :5 -8 or /-Lx - /-LY � 8 versus HI : -8 < /-LX - /-LY < 8, 
where 8 is a specified positive constant. (This is called an equivalence testing problem.) 

(a) Show that the size (l LRT of He; : /-LX - /-LY :5 -6 versus Hl : /-LX - /-LY > -6 
rejects He; if 

T
- = _X-;::=Y=- =-=( -=o==.) - � tn+m-2,o" JS;,(� + !n) 

(b) Find the size a LRT of Hit : /-LX - /-L Y  � 0 versus Hi : /-LX - /-LY < 8 .  
(c) Explain how the tests in (a) and (b)  can be combined into a level a test of  Ho 

versus HI . 
(d) Show that the test in (c) is a size a test. (Hint: Consider (7 -+ 0.) 
This procedure is sometimes known as the two one-sided tests procedure and was de
rived by Schuirmann ( 1987) (see also Westlake 1981) for the problem of testing bioe
quivalence. See also the review article by Berger and Hsu ( 1996) and Exercise 9.33 for 
a confidence interval counterpart. 

8.48 Prove the assertion in Example 8.3.30 that the conditional distribution of SI given S 
is hypergeometric. 

8.49 In each of the following situations, calculate the p-value of the observed data. 

(a) For testing Ho : 8 :5 � versus HI : (} > � ,  7 successes are observed out of 10 
Bernoulli trials. 
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(b) For testing Ho : A 5 1 versus HI : A > I , X  3 are observed, where X '" 
Poisson(A) . 

(c) For testing Ho : A � 1 versus HI : A > 1, Xl = 3, X2 = 5, and Xa = 1 are observed, 
where Xi '" Poisson(A) ,  independent. 

S.50 Let Xl, . . . , Xn be iid n(0, (12) ,  (12 known, and let 0 have a double exponential dis
tribution, that is, 11"(0) = e-191/a /(20.), a known. A Bayesian test of the hypotheses 
Ho : 0 � 0 versus HI : 0 > 0 will decide in favor of HI if its posterior probability is 
large. 

(a) For a given constant K, calculate the posterior probability that 0 > K, that is, 
P(O > Klxl , . . . , Xn,  a ) . 

(b) Find an expression for lima_co P(O > Klxl , . . . , Xn, a) . 
(c) Compare your answer in part (b) to the p-value associated with the classical 

hypothesis test. 

8.51 Here is another common interpretation of p-values. Consider a problem of testing Ho 
versus HI . Let W(X) be a test statistic. Suppose that for each Q, 0 � Q � 1, a critical 
value COl can be chosen so that {x : W(x) ;:::: COl} is the rejection region of a size Q test 
of Ho. Using this family of tests, show that the usual p-value p(x), defined by (8.3.9), 
is the smallest Q level at which we could reject Ho, having observed the data x. 

8.52 Consider testing Ho : () E U7=1 8j . For each j 1 ,  . . .  , k, let pj (x) denote a valid 
p-value for testing HOi : B E 8j . Let p(x) = maxl�j$k pj (x) . 
(a) Show that p(X) is a valid p-value for testing Ho. 
(b) Show that the Q level test defined by p(X) is the same as an Q level IUT defined 

in terms of individual tests based on the Pj (x)s. 

8.53 In Example 8.2.7 we saw an example of a one-sided Bayesian hypothesis test. Now we 
will consider a similar situation, but with a two-sided test. We want to test 

Ho : 0 = 0 versus HI : 0 'I- 0, 

and we observe Xl , . . .  , Xn ,  a random sample from a n(0, 0-2 ) population, 0-2 known. 
A type of prior distribution that is often used in this situation is a mixture of a point 
mass on (J 0 and a pdf spread out over HI . A typical choice is to take P(O = 0) = � ,  
and if 0 '1- 0,  take the prior distribution to  be �n (O, 72 ) ,  where 72 i s  known. 

(a) Show that the prior defined above is proper, that is, P( -00 < 0 < (0) 1 .  
(b)  Calculate the posterior probability that Ho is  true, P{O = O lxl , " " Xn) . 
(c) Find an expression for the p-value corresponding to a value of x. 
(d) For the special case (12 = 72 1, compare P(O = 0lxI , . . .  , xn) and the p-value 

for a range of values of x. In particular, 

(i) For n = 9, plot the p-value and posterior probability as a function of x, and 
show that the Bayes probability is greater than the p-value for moderately 
large values of x. 

(ii) Now, for Q = .05, set x Z",/2/ fo, fixing the p-value at Q for all n. Show 
that the posterior probability at x Z"'/2/ fo goes to 1 as n -+ 00. This is 
Lindley 's Paradox. 

Note that small values of P(B = O lxl , . . .  , Xn) are evidence against Ho, and thus 
this quantity is similar in spirit to a p-value. The fact that these two quantities 
can have very different values was noted by Lindley ( 1957) and is also examined 
by Berger and Sellke ( 1987). (See the Miscellanea section.) 
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8.1S4 The discrepancies between p-values and Bayes posterior probabilities are not as dra
matic in the one-sided problem, as is discussed by Casella and Berger ( 1987) and also 
mentioned in the Miscellanea section. Let Xl , . . . , Xn be a random sample from a 
n(B, 0'

2) population, and suppose that the hypotheses to be tested are 

Ho : e :5  0 versus HI : e >  O. 

The prior distribution on e is nCO, 1"2) , 1"2 known, which is symmetric about the hy
potheses in the sense that P(B :5 0) p(e > 0) = � .  

(a) Calculate the posterior probability that Ho is true, p(e :5 0lxI , . . .  , Xn) . 
(b) Find an expression for the p-value corresponding to a value of X, using tests that 

reject for large values of X. 
(c) For the special case 0'2 7"2 = 1, compare p(e :5 OlxI, . . . , Xn ) and the p-value 

for values of x > O. Show that the Bayes probability is always greater than the 
p-value. 

(d) Using the expression derived in parts (a) and (b) ,  show that 

lim p(e :5 0lxI , . . . , Xn) p-value, 
r2-+oo 

an equality that does not occur in the two-sided problem. 
8.65 Let X have a nCO, 1 )  distribution, and consider testing Ho : e � eo versus HI : 0 < Bo. 

Use the loss function (8.3.13) and investigate the three tests that reject Ho if X < 
-zo: + eo for a = . 1 , .3, and .5. 
(a) For b = c = 1, graph and compare their risk functions. 
(b) For b = 3, c = 1 ,  graph and compare their risk functions. 
(c) Graph and compare the power functions of the three tests to the risk functions in 

parts (a) and (b) . 
8.56 Consider testing Ho : p :5 � versus HI : P > � ,  where X '" binomial(5,p) ,  using 0-1 

loss. Graph and compare the risk functions for the following two tests. Test I rejects 
Ho if X = 0 or 1. Test II rejects Ho if X 4 or 5. 

8.57 Consider testing Ho : I-' :5 0 versus HI : Jl. > 0 using 0-1 loss, where X '" n(l-', l ) .  
Let 6c b e  the test that rejects Ho i f  X > c. For every test i n  this problem, there is 
a 6c in the class of tests {Dc, - 00  :5 c :5 oo} that has a uniformly smaller (in 1-') risk 
function. Let 6 be the test that rejects Ho if 1 < X < 2. Find a test 6c that is better 
than 6. (Either prove that the test is better or graph the risk functions for 6 and 6c 
and carefully explain why the proposed test should be better.) 

8.58 Consider the hypothesis testing problem and loss function given in Example 8.3.31, 
and let (J' = n = 1 .  Consider tests that reject Ho if X < -Zo: + eo . Find the value of a 
that minimizes the maximum value of the risk function, that is, that yields a minimax 
test. 

8.5 Miscellanea ____________________ _ 

8.5. 1 Monotonic Power FUnction 
In this chapter we used the property of MLR quite extensively, particularly in re
lation to properties of power functions of tests. The concept of stochastic ordering 
can also be used to obtain properties of power functions. (Recall that stochastic 
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ordering has already been encountered in previous chapters, for example, in Ex
ercises 1 .49, 3.41-3.43, and 5. 19. A cdf F is stochastically greater than a cdf G 
if F(x) $ G(x) for all X, with strict inequality for some X, which implies that if 
X "" F, Y /"'U G, then P(X > x) � P(Y > x) for all X, with strict inequality for 
some x. In other words, F gives more probability to greater values.) 

In terms of hypothesis testing, it is often the case that the distribution under the 
alternative is stochastically greater than under the null distribution. For example, 
if we have a random sample from a n( 0, 0'2) population and are interested in testing 
Ho : 0 $ Bo versus HI : 0 > 00 , it is true that all the distributions in the alternative 
are stochastically greater than all those in the null. GHat (1977) uses the property 
of stochastic ordering, rather than MLR, to prove monotonicity of power functions 
under general conditions. 

8.5.2 Likelihood Ratio As Evidence 
The likelihood ratio L(Ol lx)IL(Oo lx) = f(xIOdlfex IBo) plays an important role in 
the testing of Ho : 0 = 00 versus HI : B = (h . This ratio is equal to the LRT statistic 
>.(x) for values of x that yield small values of >.. Also, the Neyman-Pearson Lemma 
says that the UMP level Q' test of Ho versus HI can be defined in terms of this 
ratio. This likelihood ratio also has an important Bayesian interpretation. Suppose 
11"0 and 11"1 are our prior probabilities for 00 and B1 • Then, the posterior odds in 
favor of Bl are 

PCB B1 1x) f(xIB1)1I"I/m(x) f(xIBJ ) 11"1 
P (O = Bo lx) 

= 
f(xIBo)1I"0Im(x) 

= 
f(x IOo) 

. 
11"0

' 

1I"d1l"0 are the prior odds in favor of 01,  The likelihood ratio is the amount these 
prior odds should be adjusted, having observed the data X x, to obtain the 
posterior odds. If the likelihood ratio equals 2, then the prior odds are doubled. The 
likelihood ratio does not depend on the prior probabilities. Thus, it is interpreted 
as the evidence in the data favoring HI over Ho. This kind of interpretation is 
discussed by Royall ( 1997) .  

8.5.3 p- Values and Posterior Probabilities 
In Section 8.2.2, where Bayes tests were discussed, we saw that the posterior prob
ability that Ho is true is a measure of the evidence the data provide against (or for) 
the null hypothesis. We also saw, in Section 8.3.4, that p-values provide a measure 
of data-based evidence against Ho . A natural question to ask is whether these two 
different measures ever agree; that is, can they be reconciled? Berger (James, not 
Roger) and Sellke ( 1987) contended that, in the two-sided testing problem, these 
measures could not be reconciled, and the Bayes measure was superior. Casella and 
Berger (Roger 1987) argued that the two-sided Bayes problem is artificial and that 
in the more natural one-sided problem, the measures of evidence can be reconciled. 
This reconciliation makes little difference to Schervish (1996), who argues that, as 
measures of evidence, p-values have serious logical flaws. 
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8.5.4 Confidence Set p- Values 
Berger and Boos ( 1994) proposed an alternative method for computing p-values. In 
the common definition of a p-value (Theorem 8.3.27) . the "sup" is over the entire 
null space 80. Berger and Boos proposed taking the sup over a subset of 80 called 
C. This set C C(X) is determined from the data and has the property that, if 
() E 80. then Po«() E C(X)) � 1 {3. (See Chapter 9 for a discussion of confidence 
sets like C.) Then the confidence set p-value is 

pc(x) = sup Po (W(X) � W(x) )  + ,8. 
BEC(x) 

Berger and Boos showed that Pc is a valid p-value. 
There are two potential advantages to Pc. The computational advantage is that 
it may be easier to compute the sup over the smaller set C than over the larger 
set 80• The statistical advantage is that, having observed X, we have some idea of 
the value of 8; there is a good chance 8 E C. It seems irrelevant to look at values 
of () that do not appear to be true. The confidence set p-value looks at only those 
values of () in 80 that seem plausible. Berger and Boos ( 1994) and Silvapulle ( 1996) 
give numerous examples of confidence set p-values. Berger ( 1996) points out that 
confidence set p-values can produce tests with improved power in the problem of 
comparing two binomial probabilities. 





Interval Estimation 

Itl fear, " said Holmes, "that if the matter is beyond humanity it is certainly 
beyond me. Yet we must exhaust all natural explanations before we fall back 
upon such a theory as this. " 

Sherlock Holmes 
The Adventure of the Devil 's Foot 

9.1 Introduction 

In Chapter 7 we discussed point estimation of a parameter (), where the inference is a 
guess of a single value as the value of (). In this chapter we discuss interval estimation 
a.nd, more generally, set estimation. The inference in a set estimation problem is the 
statement that "8 E e," where e c e and e = e(x) is a set determined by the value 
of the data X x observed. If () is real-valued, then we usually prefer the set estimate 
C to be an interval. Interval estimators will be the main topic of this chapter. 

As in the previous two chapters, this chapter is divided into two parts, the first con
cerned with finding interval estimators and the second part concerned with evaluating 
.the worth of the estimators. We begin with a formal definition of interval estimator, 
s. definition as vague as the definition of point estimator. 

Definition 9.1.1 An interval estimate of a real-valued parameter 8 is any pair of 
functions, L(xl , " " xn} and U(Xl , " " xn} ,  of a sample that satisfy L(x) � U(x) for 
all x E X. If X x is observed, the inference L(x) � () � U(x) is made. The random 
interval [L(X), U (X)] is called an interval estimator. 

We will use our previously defined conventions and write [L(X), U(X)] for an inter
val estimator of 8 based on the random sample X = (Xl > . ' "  Xn) and [L(x), U(x)] for 
the realized value of the intervaL Although in the majority of cases we will work with 
finite values for L and U, there is sometimes interest in one-sided interval estimates. 
For instance, if L(x) = -00, then we have the one-sided interval (-00, U(x)] and the 
assertion is that "8 � U(x) ," with no mention of a lower bound. We could similarly 
take U(x) = 00 and have a one-sided interval [L(x), 00) . 

Although the definition mentions a closed interval [L(x) , U(x)], it will sometimes 
be more natural to use an open interval (L(x) , U(x)) or even a half-open and half
closed interval, as in the previous paragraph. We will use whichever seems most 
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approp:iate for the ��ti<;ular problem �i }fnd, although the preference will be for a 
closed mterval. ,\. "'\' . .., '" 'lI/.' '\:-. " ,  ,. ' ;;." �() 14 ,,\ .", � .� Example 9.1 .2 (Intervar-�) For a sample Xl , X2 , X3, X4 from a n(f..L, 1) ,  
an interval estimator of f..L is [X - I, X + 1 1 .  This means that we will assert that f..L is 
in this interval. I I  

At this point, it is natural to inquire as to what is gained by using an interval 
estimator. Previously, we estimated f..L with X, and now we have the less precise 
estimator IX - 1, X + 1] . We surely must gain something! By giving up some precision 
in our estimate (or assertion about f..L) ,  we have gained some confidence, or assurance, 
that our assertion is correct. 

Example 9.1.3 (Continuation of Example 9.1.2) When we estimate f..L by X, 
the probability that we are exactly correct, that is, P(X f..L) ,  is O.  However, with 
an interval estimator, we have a positive probability of being correct. The probability 
that f..L is covered by the interval IX - 1 ,  X + IJ can be calculated as 

P(f..L E [X 1 , X + l] )  P(X - l :::; f..L :::; X + l) 

P(-l :::; X - f..L :::; l) 

P (-2 < X - f..L 
< 2) - Ji74 -

= P(-2 :::; Z :::; 2) ( � is standard normal) 
.9544. 

Thus we have over a 95% chance of covering the unknown parameter with our interval 
estimator. Sacrificing some precision in our estimate, in moving from a point to an 
interval, has resulted in increased confidence that our assertion is correct. I I 

The purpose of using an interval estimator rather than a point estimator is to have 
some guarantee of capturing the parameter of interest. The certainty of this guarantee 
is quantified in the following definitions. 

Definition 9.1 .4 For an interval estimator [L(X) , U(X)] of a parameter 0, the cover
age probability of [L(X) , U(X)J is the probability that the random interval 
[L(X), U(Xl] covers the true parameter, O. In symbols, it is denoted by either Pe(O E 
[L(X) , U(X)]) or P(O E [L(X) , U(X)l IO) . 

Definition 9.1.5 For an interval estimator [L(X) , U(X)] of a parameter 0, the 
confidence coefficient of [L(X) , U(X)J is the infimum of the coverage probabilities, 
infe Pe(O E [L(X) , U(X)] ) .  

There are a number of  things to  be aware of in these definitions. One, it i s  important 
to keep in mind that tbe interval is the random quantity, not the parameter. There-
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fore, when we write probability statements such as P(J(O E [L(X) , U(X)] ) ,  these prob
ability statements refer to X, not O. In other words, think of Pe(O E [L(X) , U(X)]) , 
which might look like a statement about a random 0, as the algebraically equivalent 
P(J(L(X) S e, U(X) ;:::: e), a statement about a random X. 

Interval estimators, together with a measure of confidence (usually a confidence 
coefficient) ,  are sometimes known as confidence internals. We will often use this term 
interchangeably with interval estimator. Although we are mainly concerned with con
fidence intervals, we occasionally will work with more general sets. When working in 
general, and not being quite sure of the exact form of our sets, we will speak of confi
dence sets. A confidence set with confidence coefficient equal to some value, say 1 Q;, 
is simply called a 1 - Q; confidence set. 

Another important point is concerned with coverage probabilities and confidence 
coefficients. Since we do not know the true va.lue of 0, we can only guarantee a coverage 
probability equal to the infimum, the confidence coefficient. In some cases this does 
not matter because the coverage probability will be a constant function of e. In other 
cases, however, the coverage probability can be a fairly varia.ble function of e. 

Example 9.1.6 (Scale uniform interval estimator) Let Xl , " " Xn be a ran
dom sample from a uniform(O, e) population and let Y = max{Xl J . . .  , Xn}. We 
are interested in an interval estimator of e. We consider two candidate estimators: 
faY, bY] , 1 S a < b, and [Y + c, Y + d] , 0 S c < d, where a, b, c, and d are specified 
constants. (Note that e is necessarily larger than y.) For the first interval we have 

P9 (e E [aY, bY]) = Pe (aY S O  S bY) 
= R9 (! < Y < !) b - O - a 
= P(J (� S T S �) . (T = y/e) 

We previously saw (Example 7.3. 13) that fy(y) = nyn- I/en, 0 S y S e, so the pdf of 
T is fret) ntn- 1 , 0 S t S 1 .  We therefore have ( 1 1 ) jl/a ( l ) n ( l ) n Pe b S T S -;: = 

lib 
ntn- 1 dt = -;: - b 

The coverage probability of the first interval is independent of the value of 0, and 
thus (� )n (i )n is the confidence coefficient of the intervaL 

For the other interval, for e ;:::: d a similar calculation yields 

Pe(e E [Y + c, Y + dj) = Pe(Y + c S 0 S Y + d) 

Pe (1 - < T < l - -
d c) 
0 - - e 

jl-CI(J 
ntn-1 dt 

I -die 

n ( d) n 
(1 �) - 1 - e 

(T = YI()) 
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In this case, the coverage probability depends on I). FUrthermore, it is straightforward 
to calculate that for any constants c and d, 

lim (1 _ !::) n _ (l _ �) n 0 
8-00 I) I) '  

showing that the confidence coefficient of this interval estimator is O. 

9.2 Methods of Finding Interval Estimators 

I I  

We present four subsections of methods of finding estimators. This might seem to 
indicate that there are four different methods for finding interval estimators. This 
is really not so; in fact, operationally all of the methods presented in the next four 
subsections are the same, being based on the strategy of inverting a test statistic. 
The last subsection, dealing with Bayesian intervals, presents a different construction 
method. 

9.2. 1 Inverting a Test Statistic 

There is a very strong correspondence between hypothesis testing and interval esti� 
mation. In fact, we can say in general that every confidence set corresponds to a test 
and vice versa. Consider the following example. 

Example 9.2.1 (Inverting a normal test) Let Xl ! . . .  , Xn be iid n(J.L, 0'2) and 
consider testing Ho: J.L J.Lo versus Hi: J.L j J.Lo . For a fixed Q level, a reasonable test (in 
fact, the most powerful unbiased test) has rejection region {x: Ix - J.Lo I > Za/20' /.;n}. 
Note that Ho is accepted for sample points with Ix J.Lo l � Za/2(]' 1.Jii or, equivalently, 

0' 0' X - Za/2 .Jii � J.Lo � x + Za/2 .Jii' 

Since the test has size Q, this means that P(Ho is rejectedlJ.L = J.Lo) Q or, stated 
in another way, P(Ho is accepted lJ.L J.Lo) = 1 Q .  Combining this with the above 
characterization of the acceptance region, we can write 

J.LO) = 1 - Q. 

But this probability statement is true for every J.Lo . Hence, the statement 

PJl ( X - Za/2 :5n � J.L � X + Za/2 :5n) 1 - Q 

is true. The interval [x - Za/2(]' 1.Jii, x + Za/20' /.Jiil , obtained by inverting the accep
tance region of the level Q test , is a 1 Q confidence interval. I I  

We have illustrated the correspondence between confidence sets and tests. The 
acceptance region of the hypothesis test, the set in the sample space for which 
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Figure 9.2.1. Relationship between confidence intervals and acceptance regions for tests. The 
upper line is if = It + zQj2C! l..;n and the lower line is if It Za/2C! l..;n· 

Ho: f.L = f.Lo is accepted, is given by 

and the confidence interval, the set in the parameter space with plausible values of f.L, 
is given by 

C(Xl l  • . • , xn) {It : it - Za/2 .5n � f.L � it + ZOt/2 .5n} . 
These sets are connected to each other by the tautology 

The correspondence between testing and interval estimation for the two-sided nor
mal problem is illustrated in Figure 9.2 .1 .  There it is, perhaps, more easily seen that 
both tests and intervals ask the same question, but from a slightly different perspec
tive. Both procedures look for consistency between sample statistics and population 
parameters. The hypothesis test fixes the parameter and asks what sample values 
(the acceptance region) are consistent with that fixed value. The confidence set fixes 
the sample value and asks what parameter values (the confidence interval) make this 
sample value most plausible. 

The correspondence between acceptance regions of tests and confidence sets holds 
in generaL The next theorem gives a formal version of this correspondence. 

Theorem 9.2.2 For each 00 E e, let A(Oo) be the acceptance region of a level a 
test of Ho : 0 = 00 , For each x E X, define a set C(x) in the parameter space by 

I 

(9.2 .1) C(x) = {Oo : x E A(Oo ) } .  
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Then the random set C(X) is a 1 - 0: confidence set. Conversely, let C(X) be a 1 - Q 
confidence set. For any 00 E e, define 

A(Oo)  {x:  00 E C(x)}. 

Then A(Oo) is the acceptance region of a level 0: test of Ho : 0 = 00 , 

Proof: For the first part, since A(Oo) is the acceptance region of a level 0: test, 

Since 00 is arbitrary, write 0 instead of 00 , The above inequality, together with (9.2 .1) ,  
shows that the coverage probability of the set C(X) is given by 

Po (O E C(X)) = Po(X E A(O) � 1 0:, 

showing that C(X) is a 1 0: confidence set. 
For the second part, the Type I Error probability for the test of Ho : () ()o with 

acceptance region A(()o)  is 

So this is a level 0: test. o 

Although it is common to talk about inverting a test to obtain a confidence set, 
Theorem 9.2.2 makes it clear that we really have a family of tests, one for each value 
of ()o E e, that we invert to obtain one confidence set. 

The fact that tests can be inverted to obtain a confidence set and vice versa is 
theoretically interesting, but the really useful part of Theorem 9.2.2 is the first part. 
It is a relatively easy task to construct a level 0: acceptance region. The difficult 
task is constructing a confidence set. So the method of obtaining a confidence set 
by inverting an acceptance region is quite useful. All of the techniques we have for 
obtaining tests can immediately be applied to constructing confidence sets. 

In Theorem 9.2.2, we stated only the null hypothesis Ho : 0 = 00• All that is required 
of the acceptance region is 

In practice, when constructing a confidence set by test inversion, we will also have in 
mind an alternative hypothesis such as HI : () ::I ()o or Hi : () > ()o . The alternative 
will dictate the form of A(()o) that is reasonable, and the form of A (()o) will determine 
the shape of C(x) . Note, however, that we carefully used the word set rather than 
interval. This is because there is no guarantee that the confidence set obtained by test 
inversion will be an interval. In most cases, however, one-sided tests give one-sided 
intervals, two-sided tests give two-sided intervals, strange-shaped acceptance regions 
give strange-shaped confidence sets. Later examples will exhibit this. 

The properties of the inverted test also carry over (sometimes suitably modified) 
to the confidence set. For example, unbiased tests, when inverted, will produce unbi
ased confidence sets. Also, and more important, since we know that we can confine 
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Figure 9.2.2. Acceptance region and confidence interval for Example 9.2.3. The acceptance 
region is A(.-\o) {X : eEi xi/Aot e-L."'l!AQ � k*} and the Cf)nfidence region is C(x) = 

{A : (Li xi/At e-L.:ri/A ? k" } . 
attention to sufficient statistics when looking for a good test, it follows that we can 
confine attention to sufficient statistics when looking for good confidence sets. 

The method of test inversion really is most helpful in situations where our intuition 
deserts us and we have no good idea as to what would constitute a reasonable set. 
We merely fall back on our all-purpose method for constructing a reasonable test. 

Example 9.2.3 (Inverting an LRT) Suppose that we want a confidence interval 
for the mean, >., of an exponential(>') population. We can obtain such an interval by 
inverting a level 0: test of Ho : >. = >'0 versus HI : >. :f. >'0. 

If we take a random sample X} , . . .  , Xn, the LRT statistic is given by 

-Le-Exd'>'o -Le-Exd'>'Q 
(

""
) 

n 
'>'0 '>'0 L." Xi n -E:z: '  1>'0 ---"-�--....,..- - - -- e e • 

sup ..l...e-E:Z:i/'>' - 1 e-n - n>.o 
. 

A An (Ex.ln)" 

For fixed >'0, the acceptance region is given by 

(9.2.2) A(>'o) = {x : (�:i) 
n 

e-ExdAo � e} , 
where k* is a constant chosen to satisfy PAo (X E A(>'o ) )  1 -0:. (The constant en Inn 
has been absorbed into k* . )  This is a set in the sample space as shown in Figure 9.2.2. 
Inverting this acceptance region gives the 1 - 0: confidence set 

C(x) = {>. :  (L/i ) n 
e-Exd'>' � k* } . 

This is an interval in the parameter space as shown in Figure 9.2.2. 
The expression defining C(x) depends on x only through L Xi ,  So the confidence 

interval can be expressed in the form \ 

(9.2.3) 
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where L and U are functions determined by the constraints that the set (9.2.2) has 
probability 1 a and 

(9.2.4) 

If we set 

(9 .2 .5) 

( L Xi ) n e-Exi/L(Exd = ( L Xi )n e-Ex;jU(Exd 
L(L Xi) U(L Xi) 

. 

where a > b are constants, then (9.2.4) becomes 

(9 . 2 .6) 

which yields easily to numerical solution. To work out some details, let n 2 and 
note that L Xi ""' gamma(2 , A) and L Xi/A '" gamma(2, 1 ) .  Hence, from (9.2.5), the 
confidence interval becomes {A :  � L Xi :::; A :::; i L Xi}, where a and b satisfy 

and, from (9 .2.6) , a2e-a = b2e-b• Then 

P (b :::; 
A
Xi � a) = 1a 

te-t dt 

(integration) 
by parts 

To get, for example, a 90% confidence interval, we must simultaneously satisfy the 
probability condition and the constraint . To three decimal places, we get a = 5.480, 
b = .441 , with a confidence coefficient of .90006. Thus, 

p).. 
( 5.�80 L Xi :::; A � .4�1 L Xi) = .90006. 

The region obtained by inverting the LRT of Ho : 8 80 versus HI : 8 # 80 
(Definition 8.2.1 ) is of the form 

. L (8o lx) 
accept Ho If , < k(8o) , 

L (8 Ix) -

with the resulting confidence region 

(9 .2.7) {8 : L(8Ix) :::: k' (x, 8n , 

for some function k' that gives 1 - a confidence. 
In some cases (such as the normal and the gamma distribution) the function k' 

will not depend on 8. In such cases the likelihood region has a particularly pleasing 
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interpreta.tion, consisting of those values of () for which the likelihood is highest. 
We will also see such intervals arising from optimality considerations in both the 
frequentist (Theorem 9.3.2) and Bayesian (Corollary 9.3.10) realms. 

The test inversion method is completely general in tha.t we can invert any test and 
obtain a confidence set. In Example 9.2.3 we inverted LRTs, but we could have used a 
test constructed by any method. Also, note that the inversion of a two-sided test gave 
a. two-sided interval. In the next examples, we invert one-sided tests to get one-sided 
intervals .  

Example 9.2.4 (Normal one-sided confidence bound) Let Xl • . . .  , Xn be a 
ra.ndom sample from a n(J..L , (12) population. Consider constructing a 1 - a upper 
confidence bound for J..L. That is, we want a confidence interval of the form C(x) 
(-00, U(x)] . To obtain such an interval using Theorem 9.2.2, we will invert one-sided 
tests of Ho : J..L J..Lo versus HI : J..L < J..Lo . (Note that we use the specification of HI to 
determine the form of the confidence interval here. HI specifies "large" values of J..Lo , 
so the confidence set will contain "small" values, values less than a bound. Thus, we 
will get an upper confidence bound.) The size a LRT of Ho versus HI rejects Ho if 

X - J..Lo 
Sj fo 

< -tn- l ,l> 

(similar to Example 8.2.6). Thus the acceptance region for this test is 

A(J..Lo ) = {x :  x � J..Lo tn-I ,l> s } 

and x E A(J..Lo ) ¢:} x + tn-l,osjfo � J..Lo . According to (9.2.1 ) ,  we define 

C(x) {J..Lo : x E A(J..Lo )} {J..Lo : x + tn-l,l> In � J..Lo } . 

By Theorem 9.2.2, the random set C(X) = (-00, X+tn- l ,oSj Vnl is a I-a confidence 
set for J..L. We see that, indeed, it is the right form for an upper confidence bound. 
Inverting the one-sided test gave a one-sided confidence interval. I I  

Example 9.2.5 (Binomial one-sided confidence bound) As a more difficult 
example of a one-sided confidence interval, consider putting a I a lower confidence 
bound on p, the success probability from a sequence of Bernoulli trials. That is, we 
observe Xl . . . . •  Xn• where Xi '" Bernoulli(p), and we want the interval to be of the 
form (L(Xl " ' " xn ) , 1 ] , where Pp(p E (L(Xl • . . .  , Xn), l]) � 1 - a. (The interval we 
obtain turns out to be open on the left, as will be seen.) 

Since we want a one-sided interval that gives a lower confidence bound, we consider 
inverting the acceptance regions from tests of 

Ho : p Po versus 

To simplify things, we know that we can base our test on T = 2:;:"1 X. '" bino
mial(n,p),  since T is sufficient for p. (See the Miscellanea section.) Since the binomial 
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distribution has monotone likelihood ratio (see Exercise 8.25) , by the Karlin-Rubin 
Theorem (Theorem 8.3.17) the test that rejects Ho if T > k(po) is the UMP test of its 
size. For each Po, we want to choose the constant k(po) (it can be an integer) so that 
we have a level a test . \Ve cannot get the size of the test to be exactly a, except for 
certain values of Po, because of the discreteness of T. But we choose k(po) so that the 
size of the test is as close to a as possible, without being larger. Thus, k(po) is defined 
to be the integer between ° and n that simultaneously satisfies the inequalities 

(9.2.8) 
k(po ) - l  ( ) 
L ; P3(1  
y=o 

Pot-y < 1 - a. 

Because of the MLR property of the binomial, for any k = 0, . . .  , n, the quantity 

f(Po lk) t (n
) 

p3( 1 - po)n-y 
y=o y 

is a decreasing function of Po (see Exercise 8 .26). Of course, f(OIO) = 1 ,  so k(O) = 
o and f(Po IO) remains above 1 - a for an interval of values. Then, at some point 
f(PojO) 1 - 0: and for values of Po greater than this value, f(Po IO) < 1 - 0:. So, 
at this point, k(po) increases to 1 .  This pattern continues. Thus, k(po) is an integer
valued step-function. It is constant for a range of Po ; then it jumps to the next bigger 
integer. Since k(po) is a nondecreasing function of Po , this gives the lower confidence 
bound. (See Exercise 9.5 for an upper confidence bound.) Solving the inequalities in 
(9.2.8) for k(po) gives both the acceptance region of the test and the confidence set. 

For each Po, the acceptance region is given by A(po) {t : t :::; k(po)} ,  where k(po) 
satisfies (9.2.8) . For each value of t, the confidence set is C(t) = {po : t :::; k(po )} .  This 
set, in its present form, however, does not do us much practical good. Although it is 
formally correct and a 1 - a confidence set, it is defined implicitly in terms of Po and 
we want it to be defined explicitly in terms of Po. 

Since k(po) is nondecreasing, for a given observation T = t, k(po) < t for all Po 
less than or equal to some value, call it k-1 (t) . At k-l (t) , k(po) jumps up to equal t 
and k(po) ::::: t for all Po > k-1 (t) . (Note that at Po = k- 1 (t) , f(Po l t  1) 1 - a. So 
(9.2.8) is still satisfied by k(po) t - 1 . Only for Po > k-1 (t) is k(po) ::::: t . )  Thus, the 
confidence set is 

(9.2.9) 

and we have constructed a I-a lower confidence bound of the form C(T) = (k-1 (T), 1]. 
The number k-1 (t) can be defined as 

(9.2.10) 
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Realize that k- l (t )  is not really an inverse of k (po) because k(po) is not a one-to
one function. However, the expressions in (9.2.8) and (9.2. 10) give us well-defined 
quantities for k and k-l . 

The problem of binomial confidence bounds was first treated by Clopper and Pear
son ( 1934) , who obtained answers similar to these for the two-sided interval (see Exer
cise 9.21) and started a line of research that is still active today. See Miscellanea 9.5.2. 

I I  

9.2.2 Pivotal Quantities 

The two confidence intervals that we saw in Example 9. 1 .6 differed in many respects. 
One important difference was that the coverage probability of the interval {aY, bY} 
did not depend on the value of the parameter £J, while that of {Y +c, Y + d} did. This 
happened because the coverage probability of {aY, bY} could be expressed in terms 
of the quantity Yj£J, a random variable whose distribution does not depend on the 
parameter, a quantity known as a pivotal quantity, or pivot. 

The use of pivotal quantities for confidence set construction, resulting in what has 
been called pivotal inference, is mainly due to Barnard ( 1949, 1980) but can be traced 
as far back as Fisher ( 1930) ,  who used the term inverse probability. Closely related 
is D. A. S. Fraser's theory of structural inference (Fraser 1968, 1979) . An interesting 
discussion of the strengths and weaknesses of these methods is given in Berger and 
Wolpert ( 1984) .  

Definition 9.2.6 A random variable Q(X, 0) = Q(X1 , • • •  , Xn, £J) is a pivotal quan
tity (or pivot) if the distribution of Q(X, 0) is independent of all parameters. That is, 
if X rv F(xIO), then Q(X, 0) has the same distribution for all values of B. 

The function Q(x, £J) will usually explicitly contain both parameters and statistics, 
but for any set A, Po (Q(X, B) E A) cannot depend on O. The technique of constructing 
confidence sets from pivots relies on being able to find a pivot and a set A so that 
the set {O : Q(x, 0) E A} is a set estimate of O. 

Example 9.2.7 (Location-scale pivots) In location and scale cases there are lots 
of pivotal quantities. We will show a few here; more will be found in Exercise 9.8. 
Let Xl " ' "  Xn be a random sample from the indicated pdfs, and let X and S be the 
sample mean and standard deviation. To prove that the quantities in Table 9 .2 .1 are 
pivots, we just have to show that their pdfs are independent of parameters (details 
in Exercise 9.9) . Notice that, in particular, if Xl , . . . , Xn is a random sample from 

Table 9.2. 1 .  Location-scale pivots 

Form of pdf Type of pdf Pivotal quantity 

f(x - J1.) Location X - J1.  

�f(�)  Scale K a 

;/(7) Location-scale X-y 
s 
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a n(;.t, 0-2 ) population, then the t statistic (X - ;.t)/ (SI.fii) is a pivot because the t 
distribution does not depend on the parameters ;.t and 0-2 • I I 

Of the intervals constructed in Section 9.2. 1  using the test inversion method, some 
turned out to be based on pivots (Examples 9.2.3 and 9.2.4) and some did not (Ex
ample 9.2.5) . There is no all-purpose strategy for finding pivots. However, we can be 
a little clever and not rely totally on guesswork. For example, it is a relatively easy 
task to find pivots for location or scale parameters. In general, differences are pivotal 
for location problems, while ratios (or products) are pivotal for scale problems. 

Example 9.2.8 (Gamma pivot) Suppose that Xl " ' " Xn are iid exponential(>"). 
Then T = E Xi is a sufficient statistic for >.. and T rv gamma( n, >..) .  In the gamma pdf 
t and >.. appear together as tl>" and, in fact the gamma(n, >..) pdf (r(n)>..n )-l tn-1e-t/A 
is a scale family. Thus, if Q(T, >..) = 2T 1 >.. , then 

Q(T, >..) rv gamma(n, >''(21)'') )  = gamma(n, 2) , 

which does not depend on >.. . The quantity Q(T, >..) 
gamma(n, 2) ,  or X�n ' distribution. 

2T I>" is a pivot with a 
I I  

We can sometimes look to the form of the pdf to see if  a pivot exists. In the above 
example, the quantity t / >.. appeared in the pdf and this turned out to be a pivot. In 
the normal pdf, the quantity (x - ;.t)/o- appears and this quantity is also a pivot. In 
general, suppose the pdf of a statistic T, f(t lfJ) ,  can be expressed in the form 

(9.2.1 1 )  f(tlfJ) = g (Q(t, fJ)) I !Q(t, O) 1 
for some function 9 and some monotone function Q (monotone in t for each fJ) .  Then 
Theorem 2 .1 .5 can be used to show that Q(T, fJ) is a pivot (see Exercise 9.10). 

Once we have a pivot, how do we use it to construct a confidence set? That part is 
really quite simple. If Q(X, fJ) is a pivot, then for a specified value of a we can find 
numbers a and b, which do not depend on fJ, to satisfy 

Then, for each fJo E e, 

(9.2. 12) A(Oo) = {x: a S Q(x, Oo) S b} 
is the acceptance region for a level a test of Ho : () ()o. We will use the test inversion 
method to construct the confidence set, but we are using the pivot to specify the 
specific form of our acceptance regions. Using Theorem 9.2.2, we invert these tests to 
obtain 

(9.2. 13) C(x) = {()o : a S Q(x, Oo) S b}, 
and C(X) is  a 1 a confidence set for (). If () is a real-valued parameter and if, for each 
x E X, Q(x, ()) is a monotone function of fJ, then C(x) will be an interval. In fact, if 
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Q(x, 0) is an increasing function of 0, then C(x) has the form L(x, a) ::; 0 ::; U(x, b) . 
If Q(x, 0) is a decreasing function of 0 (which is typical) , then C(x) has the form 
L(x, b) ::; 0 ::; U(x, a) . 

Example 9.2.9 (Continuation of Example 9.2.8) In Example 9.2.3 we obtained 
a confidence interval for the mean, >. ,  of the exponential(>') pdf by inverting a level 
a LRT of Ho : >. = >'0 versus HI : >. =1= >'0 . Now we also see that if we have a sample 
Xl " ' "  Xn , we can define T l: Xi and Q(T, >.) = 2T/,\ "'" X�n ' 

If we choose constants a and b to satisfy P( a ::; X�n ::; b) 1 - a, then 

p>. (a ::;  2� ::; b) = P>.(a ::; Q(T, ,\) ::;  b) = P(a ::;  X�n ::; b) I - a. 

Inverting the set A('\) = {t : a ::;  ¥ ::; b} gives C(t) = {,\ :  ¥ ::;  >. ::;  �} ,  which is a 
1 a confidence interval. (Notice that the lower endpoint depends on b and the upper 
endpoint depends on a, as mentioned above. Q(t, '\) = 2t/'\ is decreasing in '\.) For 
example, if n 10, then consulting a table of XZ cutoffs shows that a 95% confidence 
interval is given by {,\ :  3�� 7 ::; ,\ ::; 9�r9}' I I  

For the location problem, even if the variance is unknown, construction and calcu
lation of pivotal intervals are quite easy. In fact , we have used these ideas already but 
have not called them by any formal name. 

Example 9.2.10 (Normal pivotal interval) It follows from Theorem 5.3.1 that 
if Xl , . . .  , X n are iid n(J1., o-Z) , then (X J1.) / (0-/ v'n) is a pivot. If 0-2 is known, we can 
use this pivot to calculate a confidence interval for J1.. For any constant a, 

P ( -a ::; ;/ In ::; a) = P( -a ::; Z ::; a), (Z is standard normal) 

and (by now) familiar algebraic manipulations give us the confidence interval 

If 0-2 is unknown, we can use the location-scale pivot ff; fo' Since 
dent's t distribution, 

has Stu-

Thus, for any given a, if we take a tn-1,o:jZ , we find that a 1 - a confidence interval 
is given by 

(9.2. 14) 

which is the classic 1 - a confidence interval for J1. based on Student 's t distribution. 
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Continuing with this case, suppose that we also want an interval estimate for a. 
Because (n - 1 )S2ja2 '" X�-l '  (n 1)S2/a2 is also a pivot. Thus, if we choose a and 
b to satisfy 

we can invert this set to obtain the 1 - 0: confidence interval 

or, equivalently, 

One choice of a and b that will produce the required interval is a X�-1 . 1-<lr/2 and 
b = X�-1 .<lr/2 ' This choice splits the probability equally, putting 0:/2 in each tail of the 
distribution. The X�-l distribution, however, is a skewed distribution and it is not 
immediately clear that an equal probability split is optimal for a skewed distribution. 
(It is not immediately clear that an equal probability split is optimal for a symmetric 
distribution, but our intuition makes this latter case more plausible. )  In fact, for the 
chi squared distribution, the equal probability split is not optimal, as will be seen in 
Section 9.3. (See also Exercise 9.52. ) 

One final note for this problem. We now have constructed confidence intervals for 
p and a separately. It is entirely plausible that we would be interested in a confidence 
set for p and a simultaneously. The Bonferroni Inequality is an easy (and relatively 
good) method for accomplishing this. (See Exercise 9.14.) I I  

9.2.3 Pivoting the GDF 
In previous section we saw that a pivot, Q, leads to a confidence set of the form 
(9.2.13), that is 

C(x) = {Oo : a :::; Q (x, (}o )  :::; b} . 
If, for every x, the function Q (x, 0) is a monotone function of (}, then the confidence set 
C(x) is guaranteed to be an interval. The pivots that we have seen so far, which were 
mainly constructed using location and scale transformations, resulted in monotone Q 
functions and, hence, confidence intervals. 

In this section we work with another pivot, one that is totally general and, with 
minor assumptions, will guarantee an interval. 

If in doubt, or in a strange situation, we would recommend constructing a confidence 
set based on inverting an LRT, if possible. Such a set, although not guaranteed to 
be optimal, will never be very bad. However, in some cases such a tactic is too 
difficult, either analytically or computationally; inversion of the acceptance region 
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can sometimes be quite a chore. If the method of this section can be applied, it is 
rather straightforward to implement and will usually produce a set that is reasonable. 

To illustrate the type of trouble that could arise from the test inversion method, 
without extra conditions on the exact types of acceptance regions used, consider 
the following example, which illustrates one of the early methods of constructing 
confidence sets for a binomial success probability. 

Example 9.2.11 (Shortest length binomial set) Sterne (1954) proposed the 
following method for constructing binomial confidence sets, a method that produces 
a set with the shortest length. Given a, for each value of p find the size a acceptance 
region composed of the most probable x values. That is, for each p, order the x = 
0, . . .  , n values from the most probable to the least probable and put values into the 
acceptance region A(p) until it has probability 1 - a. Then use (9.2.1 )  to invert these 
acceptance regions to get a 1 - a confidence set, which Sterne claimed had length 
optimality properties. 

To see the unexpected problems with this seemingly reasonable construction, con
sider a small example. Let X rv binomial(3, p) and use confidence coefficient 1 - a = 
.442. Table 9.2.2 gives the acceptance regions obtained by the Sterne construction 
and the confidence sets derived by inverting this family of tests. 

Surprisingly, the confidence set is not a confidence interval. This seemingly reason
able construction has led us to an unreasonable procedure. The blame is to be put 
on the pmf, as it does not behave as we expect. (See Exercise 9.18.) I I 

We base our confidence interval construction for a parameter 0 on a real-valued 
statistic T with cdf FT(t IO) .  (In practice we would usually take T to be a sufficient 
statistic for 0, but this is not necessary for the following theory to go through. ) We 
will first assume that T is a continuous random variable. The situation where T is 
discrete is similar but has a few additional technical details to consider. We, therefore, 
state the discrete case in a separate theorem. 

First of all, recall Theorem 2 .1 .10, the Probability Integral Transformation, which 
tells us that the random variable FT(TIO) is uniform(O, 1 ) ,  a pivot. Thus, if a1 + a2 = 

Table 9.2.2. Acceptance region and confidence set for Sterne 's construction, X '" 

binomial(3, p) and I - 0: = .442 
p Acceptance region = A (p) x Confidence set = C(x) 

[.000, .238] {O} 
(.238, .305) {O, l }  0 [.000, .305) U (.362, .366) 
[.305, .362] {I}  
(.362, .366) {O, l }  1 ( .238, .634] 
[.366, .634] {1 , 2} 
(.634, .638) {2, 3} 2 [.366, .762) 
[.638, .695] {2} 
(.695, .762) {2, 3} 3 (.634, .638) U ( .695, 1 .00] 
[.762, 1 .00] {3} 
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0:, an o:-level acceptance region of the hypothesis Ho : () = ()o is (see Exercise 9. 1 1 )  

with associated confidence set 

Now to guarantee that the confidence set is an interval, we need to have FT(t l()) to 
be monotone in (). But we have seen this already, in the definitions of stochastically 
increasing and stochastically decreasing. (See the Miscellanea section of Chapter 8 
and Exercise 8.26, or Exercises 3.41-3.43.) A family of cdfs F(tl()) is stochastically 
increasing in () (stochastically decreasing in () if, for each t E T, the sample space of 
T, F(tl() is a decreasing (increasing) function of (). In what follows, we need only the 
fact that F is monotone, either increasing or decreasing. The more statistical concepts 
of stochastic increasing or decreasing merely serve as interpretational tools. 

Theorem 9.2.12 (Pivoting a continuous cdf) Let T be a statistic with contin
uous cdf FT(tl()) . Let 0:1 + 0:2 = 0: with 0 < Q < 1 be fixed values. Suppose that for 
each t E T, the functions ()dt) and ()u (t) can be defined as follows. 
i. If FT(t l() is a decreasing function of () for each t, define ()dt) and ()u (t) by 

FT(tl()u (t» = 0:1 \ FT(tl ()t (t» 1 0:2. 

it If FT(t I() is an increasing function of e for each t, define ()dt) and ()dt) by 

Then the random interval [edT), eu (T)] is a 1 0: confidence interval for e .  
Proof: We will prove only part (i) . The proof of  part (ii) is similar and is  left as 
Exercise 9.19. 

Assume that we have constructed the 1 - 0: acceptance region 

Since FT(t le) is a decreasing function of e for each t and 1 0:2 > 0:1 , ()dt)  < edt), 
and the values edt) and eu (t) are unique. Also, 

FT(t l() < 0:1 # e > ()u (t) , 
FT(t le) > 1 - 0:2 # () < ()dt) , 

and hence {() : 0:1 :-:::: FT(t l() :-:::: 1 - 0:2} = {() : ()dT) :-:::: () :-:::: ()u(T) } .  o 

We note that, in the absence of additional information, it is common to choose 
0:1 0:2 0:/2 . Although this may not always be optimal (see Theorem 9 .3 .2) ,  it is 
certainly a reasonable strategy in most situations. If a one-sided interval is desired, 
however, this can easily be achieved by choosing either 0:1 or 0:2 equal to O. 
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The equations for the stochastically increasing case, 

(9.2 . 15) 
can also be expressed in terms of the pdf of the statistic T. The functions Bu(t) and 
Bdt) can be defined to satisfy 

[tx; h(uIBu (t)) du = al and 100 h(uIBdt)) du = a2 . 

A similar set of equations holds for the stochastically decreasing case. 

Example 9.2.13 (Location exponential interval) This method can be used to 
get a confidence interval for the location exponential pdf. (In Exercise 9 .25 the answer 
here is compared to that obtained by likelihood and pivotal methods. See also Exercise 
9.41. ) 

If Xl , , , . , Xn are lid with pdf f(xlJ.l) e-(x-J.L)I[J.L,oo) (x), then Y = min{Xl l 
• • .  \ Xn} is sufficient for J.l with pdf 

fy(ylJ.l) = ne-n(V-J.L)I[J.L,oo) (y) . 

Fix a and define J.ldy) and J.lu(y) to satisfy 

[V ne-n(u-J.Lu(y» du = � ,  [00 ne-n(U-J.LL(Y» du = � .  
JJ.Lu (y) 2 Jy 2 

These integrals can be evaluated to give the equations 

1 - e-n(y-J.Lu (Y» = �, e-n(Y-J.LL(Y» = � . 
2 2 '  

which give us the solutions 

J.lu(y) = y + � log (l i ) , J.ldy) y + � IOg (i) · 

Hence, the random interval 

C(Y) = {J.l : Y + � log (i) :::; J.l :::; Y + � log (1 i) } , 

a 1 - a confidence interval for J.l. 

Note two things about the use of this method. First, the actual equations (9.2.15) 
need to be solved only for the value of the statistics actually observed. If T = to is 
observed, then the realized confidence interval on B will be [OL (tO ) ,  Bu(to)] . Thus, we 
need to solve only the two equations jto -

00 
h(uIBu(to» du = al and 1.00 h(uIBdto» du to 

for Odto) and Bu(to) .  Second, realize that even if these equations cannot be solved 
analytically, we really only need to solve them numerically since the proof that we 
have a 1 - a confidence interval did not require an analytic solution. 

We now consider the discrete case. 
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Theorem 9.2.14 (Pivoting a discrete cdf) Let T be a discrete statistic with cdf 
FT(t IO) = peT $ t IO ) . Let 0::1 + 0::2 0:: with 0 < 0:: < 1 be fixed values. Suppose that 
for each t E T, fJL (t) and Ou (t) can be defined as follows. 
i. If FT(t IO) is a decreasing function of ° for each t, define edt )  and Ou (t) by 

peT $ t lfJu (t)) = 0::1 ,  peT � t IOdt)) 0::2 . 
ii. If FT(t lfJ) is an increasing function of ° for each t, define edt) and fJu(t) by 

peT � t I Ou(t) )  = 0::1 , peT $ t l fJL(t)) = 0::2 ' 
Then the random interval [fJL(T) , Ou (T)] is a 1 - 0:: confidence interval for 0.  

Proof: We will only sketch the proof of part (i) . The details, as well as the proof of 
part (ii) , are left to Exercise 9.20. 

First recall Exercise 2. 10, where it was shown that FT(TIO) is stochastically greater 
than a uniform random variable, that is, PO(FT (TlfJ) $ x) $ x. Furthermore, this 
property is shared by FT(TlfJ) = peT � t IO) , and this implies that the set 

{fJ : FT(TIO) $ 0::1 and FT(TlfJ) $ o::d 
is a 1 - 0:: confidence set. 

The fact that FT(t lfJ) is a decreasing function of ° for each t implies that F(tlfJ) is 
a nondecreasing function of ° for each t .  It therefore follows that 

0 > Ou (t) :::} FT(tIO) < � ,  
0 <  edt) :::} FT(t IO) < � ,  

and hence { O  : FT(TIO) $ 0:: 1 and FT(TlfJ) $ 0::2} = {fJ  : fJdT) $ ° $ fJu(T)} .  0 

We close this section with an example to illustrate the construction of Theorem 
9.2.14. Notice that an alternative interval can be constructed by inverting an LRT 
(see Exercise 9.23) . 
Example 9.2.15 (Poisson interval estimator) Let Xl , . ' "  Xn be a random 
sample from a Poisson population with parameter .\ and define Y = E Xi' Y is 
sufficient for .\ and Y "'" Poisson(n.\) . Applying the above method with 0::1 = 0::2 
0::/2, if Y = Yo is observed, we are led to solve for .\ in the equations 

(9.2.16) 2 

Recall the identity, from Example 3.3 . 1 ,  linking the Poisson and gamma families. 
Applying that identity to the sums in (9.2.16), we can write (remembering that Yo is 
the observed value of Y) 

� = t e-n).. (n�)k = P(Y $ yo l.\) P (X�(YO+1) > 2n.\ ) , k=O 
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where X�( 0+1) is a chi squared random variable with 2(yo + 1) degrees of freedom. 
Thus, the 

lI
solution to the above equation is to take 

1 2 A = 2n X2(lIo+1).Q/2 · 

Similarly, applying the identity to the other equation in (9.2 .16) yields 

Q 
2 

f: e-n'\ (n�)k = P(Y � yo lA) = P(X�1I0 < 2nA) . 
k=yo 

Doing some algebra, we obtain the 1 - Q confidence interval for A as 

(9.2. 17) 

(At Yo 0 we define X�.1-Q/2 = 0.)  
These intervals were first derived by Garwood ( 1936) . A graph of the coverage 

probabilities is given in Figure 9.2.5. Notice that the graph is quite jagged. The jumps 
occur at the endpoints of the different confidence intervals, where terms are added or 
subtracted from the sum that makes up the coverage probability. (See Exercise 9.24.) 

For a numerical example, consider n 10 and observe Yo = E Xi 6. A 90% 
confidence interval for A is given by 

1 2 < A < 1 2 
20X12 • .  95 - - 20X14 • .  05' 

which is 

.262 $ A $ 1 .184. 

Similar derivations, involving the negative binomial and binomial distributions, are 
given in the exercises. II 

9.2·4 Bayesian Intervals 
Thus far, when describing the interactions between the confidence interval and the 
parameter, we have carefully said that the interval covers the parameter, not that 
the parameter is inside the interval. This was done on purpose. We wanted to stress 
that the random quantity is the interval, not the parameter. Therefore, we tried to 
make the action verbs apply to the interval and not the parameter. 

In Example 9.2. 15 we saw that if Yo = Ei�l Xi 6, then a 90% confidence interval 
for A is .262 $ A $ 1 . 184. It is tempting to say (and many experimenters do) that "the 
probability is 90% that A is in the interval [ .262, 1 . 184] ." Within classical statistics, 
however, such a statement is invalid since the parameter is assumed fixed. Formally, 
the interval [.262, 1 . 184] is one of the possible realized values of the random interval 
[ 2�X�y,.95 ' 2�X�(y +1) ,.05] and, since the parameter A does not move, A is in the realized 
interval [.262, 1 . 184] with probability either 0 or 1. When we say that the realized 
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interval [.262, 1 . 184] has a 90% chance of coverage, we only mean that we know that 
90% of the sample points of the random interval cover the true parameter. 

In contrast, the Bayesian setup allows us to say that >.. is inside [.262, 1 .184] with 
some prohability, not 0 or 1 .  This is because, under the Bayesian model, >.. is a random 
variable with a probability distribution. All Bayesian claims of coverage are made with 
respect to the posterior distribution of the parameter. 

To keep the distinction between Bayesian and classical sets clear, since the seta 
make quite different probability assessments, the Bayesian set estimates are referred 
to as credible sets rather than confidence sets. 

Thus, if 7r(Olx) is the posterior distribution of 0 given X = x, then for any set 
A c e, the credible probability of A is 
(9.2.18) P(O E A lx) = L 7r(O lx) dB, 

and A is a credible set for O. If 7r(Olx) is a pmf, we replace integrals with sums in the 
above expressions. 

Notice that both the interpretation and construction of the Bayes credible set are 
more straightforward than those of a classical confidence set. However, remember that 
nothing comes free. The ease of construction and interpretation comes with additional 
assumptions. The Bayesian model requires more input than the classical model. 

Example 9.2.16 (Poisson credible set) We now construct a credible set for the 
problem of Example 9.2.15. Let Xl " ' " Xn be iid Poisson(>..) and assume that >.. has 
a gamma prior pdf, >.. '" gamma(a, b) .  The posterior pdf of >.. (see Exercise 7.24) is 
(9.2.19) 7r(>" IEX = Ex) gamma(a + Ex, [n + (ljb)t l ) .  

We can form a credible set for >.. in many different ways, as any set A satisfying 
(9.2 .18) will do. One simple way is to split the a equally between the upper and lower 
endpoints. From (9.2 . 19) it follows that 2(n:+l) >.. '" X�(a+Exi) (assuming that a is an 
integer) ,  and thus a 1 - a credible interval is 

(9.2.20) {>.. ' b 2 < >.. < b 2 } . 2(nb + 1 ) X2(Ex+a) . I-a/2 - - 2(nb + 1 ) X2(Ex+a).a/2 . 

If we take a = b 1 , the posterior distribution of >.. given E X = E x can then 
be expressed as 2(n + 1 )>" '" X�(:Ex+l) '  As i n  Example 9.2.15, assume n = 10 and 
E x  = 6. Since Xf4, .95 = 6.571 and Xf4 • .  05 = 23.685, a 90% credible set for >.. is given 
by [.299, 1 .077] . 

The realized 90% credible set is different from the 90% confidence set obtained in 
Example 9.2.15, [.262, 1 . 184] . To better see the differences, look at Figure 9.2.3, which 
shows the 90% credible intervals and 90% confidence intervals for a range of x values. 
Notice that the credible set has somewhat shorter intervals, and the upper endpoints 
are closer to O. This reflects the prior, which is pulling the intervals toward O .  \ I  

It is important not to confuse credible probability (the Bayes posterior probability) 
with coverage probability (the classical probability). The probabilities are very differ
ent entities, with different meanings and interpretations. Credible probability comes 
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Figure 9.2.3. The 90% credible intervals (dashed lines) and 90% confidence intervals (solid 
lines) from Example 9.2. 16 

, 
from the posterior distribution, which in turn gets its probability from the prior dis
tribution. Thus, credible probability reflects the experimenter's subjective beliefs, as 
expressed in the prior distribution and updated with the data to the posterior dis
tribution. A Bayesian assertion of 90% coverage means that the experimenter, upon 
combining prior knowledge with data, is 90% sure of coverage. 

Coverage probability, on the other hand, reflects the uncertainty in the sampling 
procedure, getting its probability from the objective mechanism of repeated experi
mental trials. A classical assertion of 90% coverage means that in a long sequence of 
identical trials, 90% of the realized confidence sets will cover the true parameter. 

Statisticians sometimes argue as to which is the better way to do statistics, classical 
or Bayesian. We do not want to argue or even defend one over another. In fact, 
we believe that there is no one best way to do statistics; some problems are best 
solved with classical statistics and some are best solved with Bayesian statistics. The 
important point to realize is that the solutions may be quite different. A Bayes solution 
is often not reasonable under classical evaluations and vice versa. 

Example 9.2.17 (Poisson credible and coverage probabilities) The 90% con
fidence and credible sets of Example 9.2.16 maintain their respective probability guar
antees, but how do they fare under the other criteria? First, lets look at the credible 
probability of the confidence set (9.2. 17) , which is given by 

(9.2.21 )  

where A has the distribution (9.2. 19) . Figure 9.2.4 shows the credible probability of 
the set (9.2.20) , which is constant at 1 - a, along with the credible probability of the 
confidence set (9.2.21) . 

This latter probability seems to be steadily decreasing, and we want to know if it 
remains above 0 for all values of EXi (for each fixed n) .  To do this, we evaluate the 
probability as EXi -+ 00. Details are left to Exercise 9.30, but it is the case that, as 
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Figure 9 2 . .J .  Credible probabilities of the 90% credible int rual (da::;h<:d line) ond 90% con
fidtnce inter'vals (solid line) from E.rampl 9.,':. 1 6  

L:x;  --+ 00 ,  the probabil ity (9 , 2 .2 1 ) --+ 0 unless & = l i n ,  Thus, the confid<'ncr interval 
cannot maintain a nonzero credi ble probabi l i ty. 

The credible spt (9 .2 , :20 )  d oes not farr much brtter when evaluated as a confidence 
set. Figure 9 . 2 . 5  suggests that t he coverage probabi lity uf the crpclible set is going to 
o as .A -, 00, Tu evaluate the coverage probabil i ty, write 

.A ? .A = -£-)(2Y , \2) '  
where X�y i s  <3 chi squared random variable with 21 ' degrees u f  freedom. and Y � 

Poisson (n.A ) , Then, as .A -> 00, A/xh· --+ 1/ (2'11 ) ,  and t he coveragp probability of 
(9 .2 . 20) becomes 

( 9 . 2 . 22) -- - < - , < --( nb ? ? n& 2 ) p nb -i . 1 ·\'2 ( I "+a) , 1 -u/2 - \ 2 )  - nb + 1 X2(Y+a) ,a:/2 ' 

That this probability goes to 0 as .A -+ ')0 is established in Exercise 9 .31 .  I I 

The behavior exhibiteel i ll Example 9 .2 . 17  is sOI1H'what typical. Here is an example 
wl1f're the calculations can be done explici tly. 

Example 9 . 2 . 1 8  (Coverage of a normal credible set) Let Xl " ' "  X" be i i d  
n(8 ,  (J'2) , and let 8 have the prior p d f  n(p" T2 ) ,  where I I ,  (J' ,  and T are al l known , III 
Example 7 . 2 , 16 WI' sa\-v that 

where 

B . (J'2 nT2 15 (:7: ) = 2 2 P, + ?  2 J; and 
(J' + nT (J'- . '  nT 

It tllPrefore follows t hat und('!' the p osterior d istributioll , 
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Figure 9 2 .0 .  Coverage probabilitzes of thr 90% credible inttT'vals (dashed lines) and 90% 
confidence intervals (solid lines) from Example 9. 2. 1 6  

and a 1 - 0: credibJ(' set for e is given by 

(9 .2 .23 )  

We now calculate the cov('rage probability of the Bayesian region (9 .2 .23) . Under 
the classical model R is the random variable, B is fixed, and R "-- n(e,  (J2/n) . For ease 
of notation define "I = (J2/(nT2 ) ,  and from the definitions of bB (R)  and Var(eIX) and 
a l ittle algebra, the coverage probahility of (9 .2 .23) is 

Pe ( ie  - 8B (X) 1 � ZO:/2jVar(e rR)) 
= Pe ( Ie - (_"I tL + _

1 
x) I � -:0:/2 

1 + "1 1 + ;' 

a2 ) 
n(l + 'Y) 

where the last equality used th(' fact that fo(X - B)/(J = Z � n(O, 1 ) .  
Although we started with a 1 - 0: credible set, we d o  not have a 1 - 0: confidence 

set ,  as can be seen by considering the following parameter configuration. Fix e i Il 
and let T = (J/Jii, so that "I = 1 .  Also, let (J/Jii be very small ( --. 0) . Then it. is easy 
to see that the above probabil ity goes to 0, s ince if B > tL the low('r bound goes to 
infinity, and if e < Ji. the upper bound goes to - ex .  If (i = tL, huwever , the coverage 
probability is bounded away from O .  
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On the other hand, the usual 1 - a confidence set for () is {() : I() - xl � Z",/2(J / .Jii} .  
The credible probability of this set (now () '" 1T«() Ix» is given by 

Px ( I() - x l  � Z",/2 fo) 
= Px (He bB(x)] + [bB (x) - xl i $ Z",/2 �) 

( r;-;-:: l'(x p) r;-;-:: l'(x - p) ) = Px - y  1 + I'Z",/2 + 
VI + l'u/.Jii $ Z � Y 1 + I'Z",/2 + 

�(J/v'n ' 

where the last equality used the fact that «() 8B (x» /y'Var(Olx) Z rv n(O, 1 ) .  
Again, it i s  fairly easy to  show that this probability i s  not bounded away from 0, 
showing that the confidence set is also not, in general, a credible set. Details are in 
Exercise 9.32. I I 

9.3 Methods of Evaluating Interval Estimators 

We now have seen many methods for deriving confidence sets and, in fact, we can 
derive different confidence sets for the same problem. In such situations we would, 
of course, want to choose a best one. Therefore, we now examine some methods and 
criteria for evaluating set estimators. 

In set estimation two quantities vie against each other, size and coverage probability. i 
Naturally, we want our set to have small size and large coverage probability, but such 1 
sets are usually difficult to construct. (Clearly, we can have a large coverage probability . j 
by increasing the size of our set. The interval (-00, 00) has coverage probability 1 !) 1 
Before we can optimize a set with respect to size and coverage probability, we must . 
decide how to measure these quantities. 

The coverage probability of a confidence set will, except in special cases, be a func
tion of the parameter, so there is not one value to consider but an infinite number 
of values. For the most part, however, we will measure coverage probability perfor
mance by the confidence coefficient, the infimum of the coverage probabilities. This 
is one way, but not the only available way of summarizing the coverage probability 
information. (For example, we could calculate an average coverage probability.) 

When we speak of the size of a confidence set we will usually mean the length of the 
confidence set, if the set is an interval. If the set is not an interval, or if we are dealing 
with a multidimensional set, then length will usually become volume. (There are also 
cases where a size measure other than length is natural, especially if equivariance is 
a consideration. This topic is treated by Schervish 1995, Chapter 6, and Berger 1985, 
Chapter 6.) 

9.3. 1 Size and Coverage Probability 
We now consider what appears to be a simple, constrained minimization problem. For 
a given, specified coverage probability find the confidence interval with the shortest 
length. We first consider an example. 



Section 9.3 METHODS OF EVALUATING INTERVAL ESTIMATORS 441 

Example 9.3.1 (Optimizing length) Let Xl ! ' . .  , Xn be iid n(fJ" (12) , where (1 is 
known. From the method of Section 9.2.2 and the fact that 

Z =
X fJ, 
fJlVii 

is a pivot with a standard normal distribution, any a and b that satisfy 

P(a � Z � b) = 1 - a 

will give the 1 Q confidence interval 

fJ fJ } . � fJ, � x -

Which choice of a and b is best? More formally, what choice of a and b will minimize 
the length of the confidence interval while maintaining 1 - a coverage? Notice that 
the length of the confidence interval is equal to (b - a)fJ I Vii but, since the factor 
fJ I Vii is part of each interval length, it can be ignored and length comparisons can 
be based on the value of b - a. Thus, we want to find a pair of numbers a and b that 
satisfy P(a � Z � b) 1 a and minimize b - a. 

In Example 9.2.1 we took a = -zn/2 and b Zn/2 , but no mention was made of 
optimality. If we take 1 Q = .90, then any of the following pairs of numbers give 
90% intervals: 

Three 90% normal confidence intervals 
a b Probability b - a  

- 1.34 2.33 P(Z < a) = .09, P(Z > b) = .01 3.67 
- 1.44 1 .96 P(Z < a) = .075, P(Z > b) = .025 3.40 
- 1 .65 1 .65 P(Z < a) = .05, P(Z > b) = .05 3.30 

This numerical study suggests that the choice a - 1 .65 and b 1.65 gives the best 
interval and, in fact, it does. In this case splitting the probability Q equally is an 
optimal strategy. I I  

The strategy of splitting a equally, which is optimal in the above case, is not always 
optimal. What makes the equal a split optimal in the above case is the fact that the 
height of the pdf is the same at and zn/2 ' We now prove a theorem that will 
demonstrate this fact, a theorem that is applicable in some generality, needing only 
the assumption that the pdf is unimodaL Recall the definition of unimodal: A pdf 
f(x) is unimodal if there exists x* such that f(x) is nondecreasing for x � x* and 
f (x) is nonincreasing for x � x* . (This is a rather weak requirement .)  

Theorem 9.3.2 Let f(x) be a unimodal pdf If the interval [a,  b] satisfies 

i. J: f(x) dx 1 a, 
it f(a) = f(b) > 0, and 
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iii. a $ x· $ b, where x" is a mode of f(x), 
then [a, b] is the shortest among all intervals that satisfy {i}. 
Proof: Let [ai, b/] be any interval with b' - a' < b - a. We will show that this implies 

J:: f(x) dx < 1 - a. The result will be proved only for a' $ a, the proof being similar 
if a < a'. Also, two cases need to be considered, b' $ a and b' > a. 

If b' $ a, then a' $ b' $ a $ x· and 

b' 1, f(x) dx � f(b') (b' - a') 

� f(a) (b' - a') 

< f(a)(b - a) 

� lb f(x) dx 

= I - a, 

(x � b' $ x" =} f(x) $ f(b') ) 

(b' � a $ x" =} f(b') � f(a» 

(b' - a' < b - a and f(a) > 0) ( (ii) , (iii) , and unimodality ) 
=} f(x) � f(a) for a $ x $ b 

(i) 
completing the proof in the first case. 

If b' > a, then a' $ a < b' < b for, if b' were greater than or equal to b, then b' - a' 
would be greater than or equal to b - a. In this case, we can write 

fbI f(x) dx = lb f (x) dx + [ r f(x) dx - [b f(x) dX] la' a la' Jbl 
= ( 1 - a) + [1� f(x) dx - 1� f(x) dX] , 

and the theorem will be proved if we show that the expression in square brackets is 
negative. Now, using the unimodality of f, the ordering a' � a < b' < b, and (ii) , we 
have 

and 

Thus, 

1� f(x) dx $ f(a) (a a'l 

[b f(x) dx � f(b)(b b') .  Jb' 

1� f(x) dx - Lb f(x) dx � f(a) (a - a'l - f(b) (b b') 

= f(a) [(a - a'l - (b - b')] (j(a) = feb)) 

= f(a) [(b' - a'l - (b - a)l , 
which is negative if (b' - a') < (b - a) and f(a) > O. 0 
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. H we are willing to put more assumptions on f, for instance, that f is continuous, 
then we can simplify the proof of Theorem 9.3.2. (See Exercise 9.38.) 

Recall the discussion after Example 9.2.3 about the form of likelihood regions, which 
we now see is an optimal construction by Theorem 9.3.2. A similar argument, given 
in Corollary 9.3. 10, shows how this construction yields an optimal Bayesian region. 
Also, we can see now that the equal O! split, which is optimal in Example 9.3 . 1 ,  will 
be optimal for any symmetric unimodal pdf (see Exercise 9.39). Theorem 9.3.2 may 
even apply when the optimality criterion is somewhat different from minimum length. 

"
Example 9.3.3 (Optimizing expected length) For normal intervals based on 
the pivot ff;Ji;. we know that the shortest length 1 O! confidence interval of the form 

S 8 X - b- < /1. < X - a-.;n - r- - .;n 
has a = -tn-l,a/2 and b = tn-I ,Dl.j2. The interval length is a function of s, with 
general form 

Length(s) 

It is easy to see that if we had considered the criterion of expected length and wanted 
to find a 1 - O! interval to minimize 

Ea (Length(S) )  = (b - a)� = (b - a)c(n) In' 
then Theorem 9.3.2 applies and the choice a -tn-1 ,DI./2 and b tn- 1 ,c./2 again 
gives the optimal interval. (The quantity c( n) is a constant dependent only on n. See 
Exercise 7.50.) I I  

In some cases, especially when working outside of the location problem, we must be 
careful in the application of Theorem 9.3.2. In scale cases in particular, the theorem 
may not be directly applicable, but a variant may be. 

Example 9.3.4 (Shortest pivotal interval) Suppose X rv gamma(k, .B) . The 
quantity Y X/.B is a pivot, with Y "" gamma(k, I) ,  so we can get a confidence 
interval by finding constants a and b to satisfy 

(9.3 .1) pea $ Y $ b) = 1 - O! .  

However, blind application of Theorem 9.3 .2 will not give the shortest confidence 
interval. That is, choosing a and b to satisfy (9.3 . 1 )  and also Jy (a) = Jy(b) is not 
optimal. This is because, based on (9.3 .1 ) ,  the interval on .B is of the form 

{.B : � � .B � �} , 
so the length of the interval is ( �  - i )x; that is, it is proportional to ( 1/a) - (lib) 
and not to b a. 
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Although Theorem 9.3.2 is not directly applicable here, a modified argument can 

solve this problem. Condition (a) in Theorem 9.3.2 defines b as a function of a, say 
b(a) . We must solve the following constrained minimization problem: 

Minimize, with respect to a: : 1 
ii(ii) 

subject to: J:(a) fy(y) dy 1 - a. 
Differentiating the first equation with respect to a and setting it equal to 0 yield the 
identity db/ da b2 / a2 • Substituting this in the derivative of the second equation,' 
which must equal 0, gives f(b)b2 = f(a)a2 (see Exercise 9.42) .  Equations like these 
also arise in interval estimation of the variance of a normal distribution; see Example 
9.2.10 and Exercise 9.52. Note that the above equations define not the shortest overall 
interval, but the shortest pivotal interval, that is, the shortest interval based on the 
pivot X! /3. For a generalization of this result, involving the NeymarI-Pearson Lemma, 
see Exercise 9.43. I I 

9.9.2 Test-Related Optimality 
Since there is a one-to-one correspondence between confidence sets and tests of hy
potheses (Theorem 9.2.2) , there is some correspondence between optimality of tests 
arId optimality of confidence sets. Usually, test-related optimality properties of con
fidence sets do not directly relate to the size of the set but rather to the probability 
of the set covering false values. 

The probability of covering false values, or the probability of false coverage, indi
rectly measures the size of a confidence set. Intuitively, smaller sets cover fewer values 
and, hence, are less likely to cover false values. Moreover, we will later see arI equation 
that links size arId probability of false coverage. 

We first consider the general situation, where X f"V f(x IO) , arId we construct a 1 - 0 
confidence set for 0, C(x), by inverting an acceptance region, A(O) . The probability 
of coverage of C(x) , that is, the probability of true coverage, is the function of 0 given 
by Po(O E C(X) ) .  The probability of false coverage is the function of 0 and 0' defined 
by 

(9.3.2) 

Po (0' E C(X)) ,  0 'I- (J', if C(X) = [L(X), U(X)J, 
Po «()' E C(X)) ,  0' < 0, if C(X) [L(X), oo) , 
Po (()' E C(X)) ,  (J' > 0, if C(X) (-00, U(X)) , 

the probability of covering 0' when () is the true parameter. 
It makes sense to define the probability of false coverage differently for one-sided 

and two-sided intervals. For example, if we have a lower confidence bound, we are 
asserting that 0 is greater than a certain value and false coverage would occur only if 
we cover values of (J that are too small. A similar argument leads us to the definitions 
used for upper confidence bounds and two-sided bounds. 

A 1 a confidence set that minimizes the probability of false coverage over a 
class of 1 a confidence sets is called a uniformly most accurate (UMA) confidence 
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set. Thus, for example, we would consider looking for a UMA confidence set among 
sets of the form [L(x) , (0). UMA confidence sets are constructed by inverting the 
acceptance regions of UMP tests, as we will prove below. Unfortunately, although a 
UMA confidence set is a desirable set, it exists only in rather rare circumstances (as 
do UMP tests) . In particular, since UMP tests are generally one-sided, so are UMA 
intervals. They make for elegant theory, however. In the next theorem we see that a 
UMP test of Ho : (J (Jo versus HI : (J > (Jo yields a UMA lower confidence bound. 

Theorem 9.3.5 Let X '" f(xl(J), where (J is a real-valued parameter. For each 
Bo E e, let A· ((Jo) be the UMP level Q acceptance region of a test of Ho : (J = (Jo 
versus HI: (J > (Jo . Let C· (x) be the I - a confidence set forrned by inverting the UMP 
acceptance regions. Then for any other 1 - a confidence set C, 

Pa(()' E C· (X))  � Pa(fJ' E C(X)) for all (Jf < (J. 
Proof: Let ()f be any value less than O. Let A(O') be the acceptance region of the level 
a test of Ho : (J (J' obtained by inverting C. Since A"'((J') is the UMP acceptance 
region for testing Ho : () ()' versus HI : () > ()' , and since 0 > (J', we have 

p()((J' E C* (X)) = p() (X E A·((J' ) )  

� Po (X E A(O' ) )  

= Po(()' E C(X)) . 

(invert the confidence set) ( true for any A ) 
since A'" is UMP (invert A to) 

obtain C 
Notice that the above inequality is "�" because we are working with probabilities of 
acceptance regions. This is 1 power, so UMP tests will minimize these acceptance 
region probabilities. Therefore, we have established that for (Jf < (J, the probabil
ity of false coverage is minimized by the interval obtained from inverting the UMP 
�. D 

Recall our discussion in Section 9.2 .1 .  The UMA confidence set in the above theorem 
is constructed by inverting the family of tests for the hypotheses 

Ho : (J = (Jo versus 

where the form of the confidence set is governed by the alternative hypothesis. The 
above alternative hypotheses, which specify that (Jo is less than a particular value, 
lead to lower confidence bounds; that is, if the sets are intervals, they are of the form 
[L(X) , (0). 
Example 9.3.6 (UMA confidence bound) Let Xl , " " Xn be iid n(J.l, 0'2) , where 
0'2 is known. The interval 

C(x) = {J.l : J.l ?: x - ZQ:n} 
is a 1 - a UMA lower confidence bound since it can be obtained by inverting the 
UMP test of Ho : J.l = J.lo versus HI : J.l > Jlo · 
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The more common two-sided interval, 

CUt) = {J.t : x - Ze./2 .::n $; J.t $; x + Zar/2 .::n} , 
is not UMA, since it is obtained by inverting the two-sided acceptance region from 
the test of Ho : J.t = J.to versus H1 : J.t i= J.to, hypotheses for which no UMP test exists. 

I I  

In the testing problem, when considering two-sided tests, we found the property of 
unbiasedness to be both compelling and useful. In the confidence interval problem, 
similar ideas apply. When we deal with two-sided confidence intervals, it is reasonable 
to restrict consideration to unbiased confidence sets. Remember that an unbiased test 
is one in which the power in the alternative is always greater than the power in the 
null. Keep that in mind when reading the following definition. 

Definition 9.3.7 A 1 a: confidence set C(x) is unbiased if Po (8' E C(X) ) $; 1 a: 
for all (J i= (J'. 

Thus, for an unbiased confidence set, the probability of false coverage is never 
more than the minimum probability of true coverage. Unbiased confidence sets can 
be obtained by inverting unbiased tests. That is, if A((Jo )  is an unbiased level a: 
acceptance region of a test of Ho : (J = (Jo versus HI : (J i= (Jo and C(x) is the 1 a: 
confidence set formed by inverting the acceptance regions, then C(x) is an unbiased 
1 a: confidence set (see Exercise 9.46) .  

Example 9.3.8 (Continuation of Example 9.3.6) The two-sided normal interval 

C(x) = {J.t: x - Zar/2.::n $; J.t $; x + Zar/2.::n} 
is an unbiased interval. It can be obtained by inverting the unbiased test of Ho : J.t = J.to 
versus Hi : J.t i= J.to given in Example 8.3.20. Similarly, the interval (9.2.14) based on 
the t distribution is also an unbiased interval, since it also can be obtained by inverting 
a unbiased test (see Exercise 8.38) . I I  

Sets that minimize the probability of false coverage are also called Neyman-shortest. 
The fact that there is a length connotation to this name is somewhat justified by the 
following theorem, due to Pratt (1961 ) .  

Theorem 9.3.9 (Pratt) Let X be a real-valued random variable with X '"V f(x l(J) , 
where () is a real-valued parameter. Let C(x) = [L(x) , U(x)] be a confidence interval 
for (). If L(x) and U(x) are both increasing junctions of x, then for any value e* , 

(9.3.3) Eoo (Length[C(X)] ) = ( po. (e E C(X)) de. 
J!)#IJ. 

Theorem 9.3.9 says that the expected length of C(x) is equal to a sum (integral) of 
the probabilities of false coverage, the integral being taken over all false values of the 
parameter. 
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. 
'Proof: From the definition of expected value we can write 

E8· (Length[C(X) ] )  = L Length[C(x)Jf(xIO*) dx 

L[U(X) - L(x)]f(xIO*) dx 

= r [ rU(X) dO] f(xIO*) dx 1x 1L(x) 
r [ rL-1(8) f(xIO* )  dx] dO 

1e 1u-l«(J) 

(definition of length) 

( using 0 as a ) 
dummy variable 

( invert the order of ) 
integration--see below 

= L' [P(Jo (U-l (O) ::; X ::; L-1 (O))] dO (definition) 

L [P(I. (0 E C(X))] dO 

r [P(Jo (0 E C(X))] dO. 18'1u), 

( invert the ) 
acceptance region ( one point does ) 
not change value 

The string of equalities establishes the identity and proves the theorem. The inter
'change of integrals is formally justified by Fubini's Theorem (Lehmann and Casella 
1998, Section 1 .2) but is easily seen to be justified as long as all of the integrands 
are finite. The inversion of the confidence interval is standard, where we use the 
relationship 

o E {O : L (x) ::; 0 ::; U(x)} <=> x E {x : U-1 (0) ::;  x ::; L-1 (0) } , 
which is valid because of the assumption that L and U are increasing. Note that the 
theorem could be modified to apply to an interval with decreasing endpoints. 0 

Theorem 9.3.9 shows that there is a formal relationship between the length of a 
confidence interval and its probability of false coverage. In the two-sided case, this 
implies that minimizing the probability of false coverage carries along some guarantee 
of length optimality. In the one-sided case, however, the analogy does not quite work. 
In that case, intervals that are set up to minimize the probability of false coverage 
are concerned with parameters in only a portion of the parameter space and length 
optimality may not obtain. Madansky ( 1962) has given an example of a 1 a UMA 
interval (one-sided) that can be beaten in the sense that another, shorter 1- a interval 
can be constructed. (See Exercise 9.45.)  Also, Maatta and Casella (1981) have shown 
that an interval obtained by inverting a UMP test can be suboptimal when measured 
against other reasonable criteria. 

9.3.3 Bayesian Optimality 

The goal of obtaining a smallest confidence set with a specified coverage probability 
can also be attained using Bayesian criteria. If we have a posterior distribution n(Olx) , 
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the posterior distribution of B given X = x, we would like to find the set C(x) that 
satisfies 

(i) r 7r(Blx)dx = 1 a ic(x) 

(ii) Size (C(x)) 5 Size (C' (x)) 

for any set C'(x) satisfying fCt(x) 7r(O lx)dx ;::: 1 - a. 

If we take our measure of size to be length, then we can apply Theorem 9.3.2 and 
obtain the following result. 

Corollary 9.3.10 If the posterior density 7r(Blx) is unimodal, then for a given value .  
of a, the shortest credible interval for B is given by 

{B : 7r(B lx) ;::: k} where r rr(B lx)dB 1 - a. i{9!1r(9Ix)?;.k} 

The credible set described in Corollary 9.3.10 is called a highest posterior density 
(HPD) region, as it consists of the values of the parameter for which the posterior 
density is highest. Notice the similarity in form between the HPD region and the 
likelihood region. 

Example 9.3.11  (Poisson HPD region) In Example 9.2.16 we derived a 1 a 
credible set for a Poisson parameter. We now construct an HPD region. By Corollary 
9.3.10, this region is given by p. : rr(A! L X) ;::: k}, where k is chosen so that 

1 a = r rr(A !Lx) dA. iP,!7r(AI!:.x)?;.k} 

Recall that the posterior pdf of A is gamma ( a + LX, [n + (1/ b) ] - 1 ) ,  so we need to find 
AL and AU such that 

rr(AU ! L X) and 
lAU 

AL 
rr(AI L X)dA = 1 a. 

If we take a = b 1 (as in Example 9.2.16) , the posterior distribution of A given 
L X  L X  can be expressed as 2(n + I)A "" X�(!:.x+ l) and, if n 10 and L X  = 6, 
the 90% HPD credible set for >. is given by [ .253, 1 .005] . 

In Figure 9.3.1 we show three 1 a intervals for >.: the 1 a equal-tailed Bayes 
credible set of Example 9.2.16, the HPD region derived here, and the classical 1 a 
confidence set of Example 9.2 . 15. 

The shape of the HPD region is determined by the shape of the posterior distribu
tion. In general, the HPD region is not symmetric about a Bayes point estimator but, 
like the likelihood region, is rather asymmetric. For the Poisson distribution this is 
clearly true, as the above example shows. Although it will not always happen, we can 
usually expect asymmetric HPD regions for scale parameter problems and symmetric 
HPD regions for location parameter problems. 
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Figure 9.3. 1 .  Three interval estimators from Example 9.2. 16 

. 
Example 9.3.12 (Normal HPD region) The equal-tailed credible set derived in 
Example 9.2.18 is, in fact , an HPD region. Since the posterior distribution of () is 
normal with mean OB , it follows that {() : 1I'«()lx) ;::: k} = {() :  () E OB ± k/} for some kl 

. (see Exercise 9.40) . So the HPD region is symmetric about the mean OB (x) . I I  

9.3.4 Loss Function Optimality 

In the previous two sections we looked at optimality of interval estimators by first 
requiring them to have a minimum coverage probability and then looking for the 
shortest interval. However, it is possible to put these requirements together in one 
loss function and use decision theory to search for an optimal estimator. In interval 
estimation, the action space A will consist of subsets of the parameter space e and, 
more formally, we might talk of "set estimation," since an optimal rule may not 
necessarily be an interval. However, practical considerations lead us to mainly consider 
set estimators that are intervals and, happily, many optimal procedures turn out to 
be intervals. 

We use 0 (for confidence interval) to denote elements of A, with the meaning of 
the action 0 being that the interval estimate "() E 0" is made. A decision rule o(x) 
simply specifies, for each x E X, which set 0 E A will be used as an estimate of () if 
X = x is observed. Thus we will use the notation O(x) , as before. 

The loss function in an interval estimation problem usually includes two quantities: 
a measure of whether the set estimate correctly includes the true value () and a 
measure of the size of the set estimate. We will, for the most part, consider only sets 
C that are intervals, so a natural measure of size is Length{ 0) = length of O. To 
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express the correctness measure, it is common to use 

IdO) = { b o E C 
o rt c. 

That is, IdO) 1 if the estimate is correct and 0 otherwise. In fact, IdO) is just the 
indicator function for the set C. But realize that C will be a random set determined 
by the value of the data X. 

The loss function should reflect the fact that a good estimate would have Length ( C) 
small and Ic(O) large. One such loss function is 

(9.3.4) L(O, C) = b Length(C) IdO), 

where b is a positive constant that reflects the relative weight that we want to give to 
the two criteria, a necessary consideration since the two quantities are very different. 
If there is more concern with correct estimates, then b should be small, while a large 
b should be used if there is more concern with interval length. 

The risk function associated with (9.3.4) is particularly simple, given by 

R(U, C) = bEo [Length(C(X))] Eolc(x) (0) 

bEo [Length(C(X))] Po (IC(X) (0) 1) 

bEo [Length(C(X))] Po(O E C(X)) .  

The risk has two components, the expected length of the interval and the coverage 
probability of the interval estimator. The risk reflects the fact that, simultaneously, 
we want the expected length to be small and the coverage probability to be high, 
just as in the previous sections. But now, instead of requiring a minimum coverage 
probability and then minimizing length, the trade-off between these two quantities is 
specified in the risk function. Perhaps a smaller coverage probability will be acceptable 
if it results in a greatly decreased length. 

By varying the size of b in the loss (9.3.4), we can vary the relative importance 
of size and coverage probability of interval estimators, something that could not be 
done previously. As an example of the flexibility of the present setup, consider some 
limiting cases. If b 0, then size does not matter, only coverage probability, so the 
interval estimator C = (-00, 00) , which has coverage probability 1 ,  is the best decision 
rule. Similarly, if b = 00, then coverage probability does not matter, so point sets are 
optimal. Hence, an entire range of decision rules are possible candidates. In the next 
example, for a specified finite range of b, choosing a good rule amounts to using the 
risk function to decide the confidence coefficient while, if b is outside this range, the 
optimal decision rule is a point estimator. 

Example 9.3.13 (Normal interval estimator) Let X I'V n(IL, 0'2) and assume 0'2 
is known. X would typically be a sample mean and 0'2 would have the form r2/n, 
where 72 is the known population variance and n is the sample size. For each c � 0, 
define an interval estimator for IL by C(x) [x - ca, x + cal . We will compare these 
estimators using the loss in (9.3.4) . The length of an interval, Length(C(x)) 2ca, 
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does not depend on x. Thus, the first term in the risk is b(2cO'} . The second term in 
the risk is 

= 2P(Z ::; c) 1 , 

where Z ,...., n(O, 1 ) . Thus, the risk function for an interval estimator in this class is 

(9.3.5) R(f.L, C} = b(2oo} [2P(Z ::; c) 1 ] . 

The risk function is constant, as i t does not depend on f.L, and the best interval 
estimator in this class is the one corresponding to the value c that minimizes (9.3.5). 
If 00 > 1/ V27f, it can be shown that R(p" C) is minimized at c O. That is, the 

length portion completely overwhelms the coverage probability portion of the loss, and 
the best interval estimator is the point estimator C(x} [x, x] . But if bO' ::; 1/V27f, 
the risk is minimized at c = J -2 10g(bO'V27f}. If we express c as Za/2 for some 0:, 
then the interval estimator that minimizes the risk is just the usual 1 - 0: confidence 
interval. (See Exercise 9.53 for details. ) I I  

The use of decision theory in interval estimation problems is not as widespread as 
in point estimation or hypothesis testing problems. One reason for this is the difficulty 
in choosing b in (9.3.4) (or in Example 9.3. 13) . We saw in the previous example that 
a choice that might seem reasonable could lead to un intuitive results, indicating that 
the loss in (9.3.4) may not be appropriate. Some who would use decision theoretic 
analysis for other problems still prefer to use only interval estimators with a fixed 
confidence coefficient ( 1 - 0:) . They then use the risk function to judge other qualities 
like the size of the set. 
Another difficulty is in the restriction of the shape of the allowable sets in A. Ideally, 

the loss and risk functions would be used to judge which shapes are best. But one 
can always add isolated points to an interval estimator and get an improvement in 
coverage probability with no loss penalty regarding size. In the previous example we 
could have used the estimator 

C(x) = [x - 00, x + ooj U {all integer values of p}. 

The "length" of these sets is the same as before, but now the coverage probability is 
1 for all integer values of p. Some more sophisticated measure of size must be used 
to avoid such anomalies. (Joshi 1969 addressed this problem by defining equivalence 
classes of estimators. ) 

9.4 Exercises _______________________ _ 

9.1 If L(x) and U(x) satisfy P8 (L(X) :s; 8) 1 0<1 and P8(U(X) ;?: 8) = 1 - 0<2, and 
L(x) :s; U(x) for all x, show that PIJ (L(X) :s; e :s; U(X)) 1 0<1 0<2. 
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9.2 Let Xl , . . .  , Xn be iid n(8, 1 ) .  A 95% confidence interval for 8 is X ± 1 . 961 '\,/"n. Let p 
denote the probability that an additional independent observation, Xn+ l t  will fall in 
this interval. Is p greater than, less than, or equal to .95? Prove your answer. 

9.3 The independent random variables Xl , . . .  , Xn have the common distribution 

P(Xi '5 x) ;;;: (xl(3t if 0 < x < (3 
{ 0 if x < 0 

1 if x � (3. 
(a) In Exercise 7.10 the MLEs of a and (3 were found. If a is a known constant, ao, 

find an upper confidence limit for (3 with confidence coefficient .95. 
(b) Use the data of Exercise 7.10 to construct an interval estimate for (3. Assume that 

a is known and equal to its MLE. 
9.4 Let Xl , . .  " Xn be a random sample from a n(O, 01) ,  and let YI , • . •  , Ym be a random 

sample from a n{O, O'�) ,  independent of the X s. Define A O'� 1 O'� . 

(a) Find the level ex LRT of Ho : A Ao versus HI : A :f:. Ao . 
(b) Express the rejection region of the LRT of part (a) in terms of an F random 

variable. 
(c) Find a 1 - a confidence interval for A. 

9.5 In Example 9.2.5 a lower confidence bound was put on p, the success probability from 
a sequence of Bernoulli trials. This exercise will derive an upper confidence bound. 
That is, observing Xl , . . .  , Xn, where Xi '" Bernoulli(p), we want an interval of the 
form [0, U(Xl , . . .  , Xn)) ,  where Pp(p E [0, U(X1 , . . . , Xn))) � 1 a . 

(a) Show that inversion of the acceptance region of the test 

Ho : p = pO versus 

will give a confidence interval of the desired confidence level and form. 
(b) Find equations, similar to those given in (9.2.8), that can be used to construct the 

confidence interval. 
9.6 (a) Derive a confidence interval for a binomial p by inverting the LRT of Ho : p = po 

versus HI : p ::J. po . 
(b) Show that the interval is a highest density region from pll(l  p)n-1J and is not 

equal to the interval in ( 10.4.4). 
9.1 (a) Find the 1 - a confidence set for a that is obtained by inverting the LRT of 

Ho : a ao versus HI : a ::J.  ao based on a sample XI , . . .  , Xn from a n(8, a8) 
family, where 0 is unknown. 

(b) A similar question can be asked about the related family, the n (8, a(2) family. If 
X!, . . .  , Xn are iid n(8, a(2) ,  where 0 is unknown, find the 1 a confidence set 
based on inverting the LRT of Ho : a = ao versus HI : a =1= ao . 

9.8 Given a sample XI , . . .  , Xn from a pdf of the form �f( (x - 0)10'), list at least five 
different pivotal quantities. 

9.9 Show that each of the three quantities listed in Example 9.2.7 is a pivot . 
9.10 (a) Suppose that T is a real-valued statistic. Suppose that Q(t, 8) is a monotone 

function of t for each value of 8 E e. Show that if the pdf of T, f(tIO), can be 
expressed in the form (9.2.11)  for some function g, then Q(T, O) is a pivot. 

(b) Show that (9.2. 1 1 )  is satisfied by taking g = 1 and Q(t, O) Fo(t), the cdf of T. 
(This is the Probability Integral Transform.) 
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9.11 If T is a continuous random variable with cdf FT(tIB) and 0;1 + 0:2 = 0:, show that an 0; 
level acceptance region of the hypothesis Ho : B = Bo is {t : 0:1 � FT(tIBo) � 1 0;2} , 
with associated confidence 1 0; set {6 : 0:1 S FT(tIB) S 1 0;2} . 

9.12 Find a pivotal quantity based on a random sample of size n from a n(B, B) population, 
where B > O. Use the pivotal quantity to set up a 1 - 0; confidence interval for B. 

9.13 Let X be a single observation from the beta(B, l) pdf. 

(a) Let Y = - (log X)-I . Evaluate the confidence coefficient of the set [y/2, yj . 
(b) Find a pivotal quantity and use it to set up a confidence interval having the same 

confidence coefficient as the interval in part (a). 
(c) Compare the two confidence intervals. 

9.14 Let Xl , . . .  , Xn be iid n(J.L, 0'2) ,  where both parameters are unknown. Simultaneous 
inference on both J.L and 0' can be made using the Bonferroni Inequality in a number 
of ways. 

( a) Using the Bonferroni Inequality, combine the two confidence sets 

k8 < . < x + � } 
_

J.L
_ ..jii and 

{ 2 . (n - 1 )82 < 2 < (n - 1 )82 } 
0' .  

b _ 0' _ a 

into one confidence set for (J.L, O') . Show how to choose a, b, and k to make the 
simultaneous set a 1 - 0; confidence set. 

(b) Using the Bonferroni Inequality, combine the two confidence sets 

and 

into one confidence set for (J.L, O') . Show how to choose a, b, and k to make the 
simultaneous set a 1 - 0; confidence set. 

(c) Compare the confidence sets in parts (a) and (b). 

9.15 Solve for the roots of the quadratic equation that defines Fieller's confidence set for the 
ratio of normal means (see Miscellanea 9.5.3). Find conditions on the random variables 
for which 

(a) the parabola opens upward (the confidence set is an interval). 
(b) the parabola opens downward (the confidence set is the complement of an interval) .  
( c )  the parabola has no real roots. 

In each case, give an interpretation of the meaning of the confidence set. For example, 
what would you tell an experimenter if, for his data, the parabola had no real roots? 

9.16 Let Xl " ' "  Xn be iid n(B, 0'2), where 0'2 is known. For each of the following hypotheses, 
write out the acceptance region of a level 0; test and the 1 - 0; confidence interval that 
results from inverting the test. 

(a) Ho : B Bo versus HI ; B #- Bo 
(b) Ho : B � Bo versus HI : B < Bo 
(c) Ho : 6 S 60 versus HI : B > Bo 

9.17 Find a 1 - 0; confidence interval for 6, given Xl , . . .  1 X,.. iid with pdf 

(a) f(xI6) = 1, 6 � < x < B + � .  
(b) f(xI6) = 2x/fP, 0 < x < B, B > O. 

9.18 In this exercise we will investigate some more properties of binomial confidence sets 
and the Sterne (1954) construction in particular. As in Example 9.2 . 11 ,  we will again 
consider the binornial(3, p) distribution. 
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(a) Draw, as a functi�n of p, a g�aph of the four probability functions Pp(X = x), 

x = 0, . . .  , 3. IdentIfy the maluma of Pp(X 1) and Pp(X = 2).  , 
(b) Show that for small f, Pp(X = 0) > Pp(X 2) for p i + f. ! 
(c) Show that the most probable construction is to blame for the difficulties with the 

Sterne sets by showing that the following acceptance regions can be inverted to 
obtain a 1 - (X .442 confidence interval. 

p 
[.000, .238J 
( .238, .305) 
[.305, .362J 
(.362, .634) 
[.634, .695J 
( .695, .762) 
[.762, 1 .00J 

Acceptance region 
{OJ 

{a, 1 } 
{ I }  

{ 1 ,  2} 
{2} 

{2 , 3} 
{3} 

(This is essentially Craw's 1956 modification of Sterne's construction; see Miscel
lanea 9.5.2.) 

9.19 Prove part (b) of Theorem 9.2 .12. 
9.20 Some of the details of the proof of Theorem 9.2.14 need to be filled in, and the second 

part of the theorem needs to be proved. 

(a) Show that if FT(TI8) is stochastically greater than or equal to a uniform random 
variable, then so is FT (TI8) . That is, if Pe (FT (T 18) ;::; x) ;::; x for every x, 0 ;::; x ;::; 1 ,  
then Pe (FT(TI9) ;::; x )  ;::; x for every x, O ;::; x .$  1 .  

(b) Show that for (X l  + (X2 = (x ,  the set {8 : FT(TIB) ;::; (X l  and FT(TIB) .$ (X2} is a 
1 (X confidence set. 

(c) If the cdf FT(tI8) is a decreasing function of 8 for each t, show that the function 
FT(tIB) defined by FT(tI8) = peT ;::: t lB) is a nondecreasing function of 8 for each 
t. 

(d) Prove part (b) of Theorem 9.2.14. 

9.21 In Example 9.2. 1 5  it was shown that a confidence interval for a Poisson parameter can 
be expressed in terms of chi squared cutoff points. Use a similar technique to show 
that if X ",  binomial(n,p) ,  then a 1 (X confidence interval for p is 

.tl! p.  1 < < n-% 2(%+1) ,2(n-%),<>/2 

� I:'  - p
- 1 .tl! D  ' 1 + -% r2(n-x+ l) ,2%,n/2 + n-x r2(x+ l ) ,2(n-x),a/2 

where F"l ."l ,n is the upper (X cutoff from an F distribution with VI and V2 degrees of 
freedom, and we make the endpoint adjustment that the lower endpoint is 0 if x 0 
and the upper endpoint is 1 if x n. These are the Clopper and Pearson ( 1934) 
intervals. 
(Hint: Recall the following identity from Exercise 2.40, which can be interpreted in 
the following way. If X rv binomial(n, 8), then PI!(X ;::: x) P(Y ;::; B), where Y rv 

beta(x, n  - x + 1 ) .  Use the properties of the F and beta distributions from Chapter 
5.) 

9.22 If X rv negative binomial(r,p) , use the relationship between the binomial and negative 
binomial to show that a 1 - (X confidence interval for p is given by 

1 r P. 
__ ..,...,.-_____ < < ;- 2r,2x,a/2 

with a suitable modification if x = O. 

- P - l + r p. , 
;- 2r,2x,a/2 
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9.23 (a) Let Xl ) . . .  , Xn be a random sample from a Poisson population with parameter )' 
and define Y = L Xi. In Example 9.2.15 a confidence interval for )' was found 
using the method of Section 9.2.3. Construct another interval for )' by inverting 
an LRT, and compare the intervals. 

(b) The following data, the number of aphids per row in nine rows of a potato field, 
can be assumed to follow a Poisson distribution: 

155, 104, 66, 50, 36, 40, 30, 35, 42. 

Use these data to construct a 90% LRT confidence interval for the mean number 
of aphids per row. Also, construct an interval using the method of Example 9.2.15. 

9.24 For X t"V Poisson(>.), show that the coverage probability of the confidence interval 
[L(X), U(X)] in Example 9.2.15 is given by 

"" ->'>.x 
PAC>' E [L(X) , U(X)]) = L 1[L(z),u(X)] (),)7 

x=o 

and that we can define functions XI (),) and xu(>') so that 

xu(A) -AX" P>.(), E [L(X), U(X)]) = L e 
"''''XI (>') 

Hence, explain why the graph of the coverage probability of the Poisson intervals 
given in Figure 9.2.5 has jumps occurring at the endpoints of the different confidence 
int'tlrvals. 

9.25 If Xl , . . .  , Xn are iid with pdf I(xlp) = e-("'-I-') 1[1-',00) (x), then Y min{XI )  . . .  , Xn} 
is sufficient for p with pdf 

Jy(ylp) ne -n(y-I-') 1[1-',00) (y) . 

In Example 9.2.13 a 1 - Q confidence interval for p was found using the method of 
Section 9.2.3. Compare that interval to 1 - Q intervals obtained by likelihood and 
pivotal methods. 

9.26 Let Xl ) " , ) X" be iid observations from a beta(B, I) pdf and assume that B has a 
gamma(r, ),) prior pdf. Find a 1 Q Bayes credible set for 6. 

9.27 (a) Let Xl , • . •  , Xn be iid observations from an exponential(>') pdf, where ), has the 
conjugate IG(a, b) prior, an inverted gamma with pdf 

1 ( 1 ) a+1 - l/(b>') 7T(>"la, b) = r(a)ba 'X e , 0  < ),  < 00. 

Show how to find a 1 Q Bayes HPD credible set for >... 
(b) Find a 1 - a: Bayes HPD credible set for 0'2 , the variance of a normal distribu

tion, based on the sample variance 82 and using a conjugate IG(a, b) prior for 
(12 .  

(c) Starting with the interval from part (b), find the limiting I -a: Bayes HPD credible 
set for (12 obtained as a -+ 0 and b -+ 00 .  

9.28 Let Xl , . . .  , X" be iid n(B, (12) ,  where both () and (12 are unknown, but there is only 
interest on inference about (). Consider the prior pdf 

(B 2 1 2 b) _ 1 _ (8_1-')2/(2".2.,.2 ) _1_ (�) a+l - 1 !(b.,.2 ) 7T , (1 p, l' ) a, - .  �e r( ) b  2 
e , v 27T1'2 (12 a a (1 
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(a) Show that this prior is a conjugate prior for this problem. 
(b) Find the posterior distribution of (J and use it to construct a 1 - a. credible set for 

(J • 
(c) The classical 1 - a. confidence set for (J can be expressed as 

Is there any (limiting) sequence of 72 , a, and b that would allow this set to be 
approached by a Bayes set from part (b)? 

9.29 Let Xl ,  . . .  , Xn are a sequence of n Bernoulli(p) trials. 
(a) Calculate a 1 a. credible set for p using the conjugate beta(a, b) prior. 
(b) Using the relationship between the beta and F distributions, write the credible set 

in a form that is comparable to the form of the intervals in Exercise 9.21 .  Compare 
the intervals. 

9.30 Complete the credible probability calculation needed in Example 9.2. 17. 
(a) Assume that a is an integer, and show that T = 2(n�+l) >. tv X�(a+Ex) ' 
(b) Show that 

X� - V Ii\:: ---+ n(O, 1 )  
v2v 

as v ---+ 00. (Use moment generating functions. The limit is difficult to evaluate
take logs and then do a Taylor expansion. Alternatively, see Example A.O.8 in 
Appendix A.)  

(c) Standardize the random variable T of part (a) , and write the credible probability 
(9.2.2 1 )  in terms of this variable. Show that the standardized lower cutoff point 
---+ 00 as EXi ---+ 00, and hence the credible probability goes to O. 

9.31 Complete the coverage probability calculation needed in Example 9.2.17. 
(a) If X�Y is a chi squared random variable with Y ",Poisson(>') , show that E(X�Y) = 

2>', Var(x�y )  = 8>', the mgf of X� is given by exp (->. + 1�2t ) '  and 

X��>. ---+ n(O, 1 )  
8>' 

as >. ---+ 00. (Use moment generating functions. )  
(b) Now evaluate (9.2.22) as >. ---+ 00 by first standardizing X�y .  Show that the stan

dardized upper limit goes to - 00  as >. ---+ 00, and hence the coverage probability 
goes to O. 

9.32 In this exercise we will calculate the classical coverage probability of the HPD re
gion in (9.2.23), that is, the coverage probability of the Bayes HPD region using the 
probability model it. '" 0(9, (J'2 In). 

(a) Using the definitions given in Example 9.3.12, prove that 
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(b) Show that the above set, although a 1 0: credible set, is not a 1 0: confidence 
set. (Fix 0 =F Ji., let l' = u I Vn, so that 'Y = L Prove that as u2 In -+ 0, the above 
probability goes to 0.)  

(c) If e = Ji., however, prove that the coverage probability is bounded away from O. 
Find the minimum and maximum of this coverage probability. 

(d) Now we will look at the other side. The usual 1 0: confidence set for e is 
{8 : 18 - xl � zOt/2ulvn}. Show that the credible probability of this set is 
given by 

and that this probability is not bounded away from O. Hence, the 1 0: confidence 
set is not a 1 0: credible set. 

9.33 Let X '" n(Ji., 1 )  and consider the confidence interval 

Ga(x) {Ji. : min{O, (x - an � Ji. � max{O, (x + an } · 

(a) For a 1 .645, prove that the coverage probability of Ga(x) is exactly .95 for all 
Ji., with the exception of Ji. = 0, where the coverage probability is 1 .  

(b) Now consider the so-called noninformative prior 7r(Ji.) = 1 .  Using this prior and 
again taking a = 1 .645, show that the posterior credible probability of Ga(x) is 
exactly .90 for -1 .645 � x � 1 .645 and increases to .95 as Ix l  -+ 00. 
This type of interval arises in the problem of bioequivalence, where the objective 
is to decide if two treatments (different formulations of a drug, different delivery 
systems of a treatment) produce the same effect. The formulation of the prob
lem results in "turning around" the roles of the null and alternative hypotheses 
(see Exercise 8.47), resulting in some interesting statistics. See Berger and Hsu 
( 1996) for a review of bioequivalence and Brown, Casella, and Hwang ( 1995) for 
generalizations of the confidence set. 

9.34 Suppose that X I ,  . . . , X  n is a random sample from a n(Ji., (2) population. 
(a) If (12 is known, find a minimum value for n to guarantee that a .95 confidence 

interval for Ji. will have length no more than (114. 
(b) If (12 is unknown, find a minimum value for n to guarantee, with probability .90, 

that a .95 confidence interval for Ji. will have length no more than (114. 
9.35 Let Xl , . . .  , Xn be a random sample from a n(Ji., (12) popUlation. Compare expected 

lengths of 1 - 0: confidence intervals for Ji. that are computed assuming 
(a) (12 is known. 
(b) (12 is unknown. 

9.36 Let Xl " ' "  Xn be independent with pdfs ix, (xIO) = ei8-", 1[,8.00) (x). Prove that 
T min, CX; /i) is a sufficient statistic for e. Based on T, find the 1 0: confidence 
interval for e of the form [T + a, T + b] which is of minimum length. 

9.37 Let Xl , . . .  , Xn be iid uniform(O, e). Let Y be the largest order statistic. Prove that 
YI8 is a pivotal quantity and show that the interval 

{8 :  y < 8 < -Y- } - - o:l/n 

is the shortest 1 - 0: pivotal intervaL 
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9.38 

9.39 

9.40 
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If, in Theorem 9.3.2, we assume that f is continuous, then we can simplify the proof . .  
For fixed c, consider the integral J:+c f(x)dx. 

(a) Show that d� J:+c f(x) dx = f (a + c) - J(a). 

(b) Prove that the unimodality of J implies that J:+c f (x) dx is maximized when a 
satisfies f(a + c) J(a) = O. 

) • J.�� 1 -(c Suppose that, given a, we choose c and a* to satisfy a. f (x) dx 
a and J(a* + CO) - f(aO) = O. Prove that this is the shortest 1 - a inter
val. 

Prove a special case of Theorem 9.3.2. Let X ", f(x), where J is a symmetric unimodal 
pdf. For a fixed value of 1 - a, of all intervals [a, bl that satisfy J: f(x) dx 1 - a, the 
shortest is obtained by choosing a and b so that J:'"" J (x) dx = a/2 and J"oo f(x) dx = 
a/2. 
Building on Exercise 9.39, show that if J is symmetric, the optimal interval is of the 
form m ± k, where m is the mode of f and k is a constant. Hence, show that (a) 
symmetric likelihood functions produce likelihood regions that are symmetric about 
the MLE if k' does not depend on the parameter (see (9.2.7» , and (b) symmet
ric posterior densities produce HPD regions that are symmetric about the posterior 
mean. 

9.41 (a) Prove the following, which is related to Theorem 9.3.2. Let X rv f(x), where f is 
a strictly decreasing pdf on [0, (0) . For a fixed value of 1 a, of all intervals [a, bl 
that satisfy I: f(x) dx = 1 - a, the shortest is obtained by choosing a = 0 and b 
so that I: J(x) dx = 1 - a. 

(b) Use the result of part (a) to find the shortest 1 a confidence interval in Example 
9.2. 13. 

9.42 Referring to Example 9.3.4, to find the shortest pivotal interval for a gamma scale 
parameter, we had to solve a constrained minimization problem. 

(a) Show that the solution is given by the a and b that satisfy I: Jy(y) dy = 1 Q 
and J (b)b2 f(a)a2 • 

(b) With one observation from a gamma(k, ,B) pdf with known shape parameter k, 
find the shortest 1 a (pivotal) confidence interval of the form {,B : x/b :<::: ,B :<::: 
x/a}. 

9.43 Juola (1993) makes the following observation. If we have a pivot Q(X, B) , a 1 a 
confidence interval involves finding a and b so that pea < Q < b) 1 a. Typically 
the length of the interval will be some function of a and b like b a or 1 /b2 1/a2 • 
If Q has density f and the length can be expressed as I: get) dt the shortest pivotal 
interval is the solution to 

or, more generally, 

min I" get) dt subject to Ib 
f(t) dt 1 - a {a.b} a a 

min 1 get) dt subject to 1 f(t) dt � 1 a. e c c 

(a) Prove that the solution is C = {t : get) < Af(t)} ,  where A is chosen so that Ie f (t) dt I -a. (Hint: You can adapt the proof of Theorem 8.3.1 2, the Neyman
Pearson Lemma.) 
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(b) Apply the result in part (a) to get the shortest intervals in Exercises 9.37 and 
9.42. 

9.44 (a) Let Xl , . . .  , X" be iid Poisson(A) . Find a UMA 1 - 0  confidence interval based on 
inverting the UMP level 0 test of Ho : ). = Ao versus HI : A > Ao. 

(b) Let f(xJB) be the logistic(B, 1) location pdf. Based on one observation, X, find the 
UMA one-sided 1 - 0 confidence interval of the form {B : B � U (x) } . 

9.45 Let Xl , . . .  , X" be iid exponential()'). 

(a) Find a UMP size 0 hypothesis test of Ho : ). Ao versus HI : ). < Ao. 
(b) Find a UMA 1 0 confidence interval based on inverting the test in part (a). Show 

that the interval can be expressed as 

(c) Find the expected length of C"(XI , " " Xn) .  
(d) Madansky ( 1962) exhibited a 1 - 0 interval whose expected length is shorter than 

that of the UMA interval. In general, Madansky's interval is difficult to calculate, 
but in the following situation calculation is relatively simple. Let 1 - 0 = .3 and 
n 120. Madansky's interval is 

X(I) } log(.99) 
, 

which is a 30% confidence interval. Use the fact that X�40,.7 251.046 to show 
that the 30% UMA interval satisfies 

9.46 Show that if A( Bo) is an unbiased level 0 acceptance region of a test of Ho : B Bo ver-
sus HI : B 1-: Bo and C(x) is the 1 0 confidence set formed by inverting the acceptance 
regions, then C(x) is an unbiased 1 0 confidence set. 

9.47 Let 41 > " " Xn be a random sample from a n(B, O'2) population, where 0'2 is known. 
Show that the usual one-sided 1 0 upper confidence bound {B :  B � x + ZoO' / v'n} is 
unbiased, and so is the corresponding lower confidence bound. 

9.48 Let XI , . . .  , Xn be a random sample from a n(B, O'2) popUlation, where 0'2 is un
known. 

(a) Show that the interval B � X+tn-l,Q -jn can be derived by inverting the acceptance 
region of an LRT. 

(b) Show that the corresponding two-sided interval in (9.2. 14) can also derived by 
inverting the acceptance region of an LRT. 

(c) Show that the intervals in parts (a) and (b) are unbiased intervals. 

9.49 ( Cox's Paradox) We are to test 

Ho : B Bo versus 

where B is the mean of one of two normal distributions and Bo is a fixed but arbitrary 
value of B. We observe the random variable X with distribution 

x '" { nCB, 100) with probability p 
n(B, 1 )  with probability 1 - p. 
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(a) Show that the test given by 

reject Ho if X > Bo + %,,0", 

where 0" 1 or 10 depending on which population is sampled, is a level Q 
test. Derive a 1 Q confidence set by inverting the acceptance region of this 
test. 

(b) Show that a more powerful level Q test (for Q > p) is given by 

reject Ho if X > Bo + z(a-p)/( I -p) and 0' 1; otherwise always reject Ho. 

Derive a 1 - Q confidence set by inverting the acceptance region of this test, and 
show that it is the empty set with positive probability. (Cox's Paradox states that 
classic optimal procedures sometimes ignore the information about conditional 
distributions and provide us with a procedure that, while optimal, is somehow 
unreasonable; see Cox 1958 or Cornfield 1969.) 

9.50 Let X '" f (xIB) , and suppose that the interval {B : a(X) � B � b(X)}  is a UMA 
confidence set for B. 
(a) Find a UMA confidence set for l/B. Note that if a(x) < 0 < b(x), this set is 

{l/B : l /b(x) � l/B} U {l/B : 1/0 � l/a(x)} .  Hence it is possible for the UMA 
confidence set to be neither an interval nor bounded. 

(b) Show that, if h is a strictly increasing function, the set {h( B) : h( a( X) )  � h( 0) � 
h(b(X)) }  is a UMA confidence set for h(B) . Can the condition on h be relaxed? 

9.51 If XI , . . .  , Xn are iid from a location pdf f(x - B) , show that the confidence set 

where kl and k2 are constants, has constant coverage probability. (Hint: The pdf of 
X is of the form fx (x - 0).)  

9.52 Let X I , . . . , Xn be a random sample from a n(p,, 0"2) population, where both p, and 
0'2 are unknown. Each of the following methods of finding confidence intervals for 0"2 
results in intervals of the form { 2 .  (n 1)s2 < 2 < (n 1 )82 } 

U . b _ 0' - a ' 

but in each case a and b will satisfy different constraints. The intervals given in 
this exercise are derived by Tate and Klett ( 1959), who also tabulate some cutoff 
points. 
Define frAt) to be the pdf of a X; random variable with p degrees of freedom. In order 
to have a 1 - a confidence interval, a and b must satisfy 

but additional constraints are required to define a and b uniquely. Verify that each of 
the following constraints can be derived as stated. 
(a) The likelihood ratio interval: The 1 - a confidence interval obtained by inverting 

the LRT of Ho : 0' 0'0 versus HI : 0" i- 0'0 is of the above form, where a and b 
also satisfy fn+2 (a) fn+2 (b) . 
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(b) The minimum length interval: For intervals of the above form, the 1 Q confi
dence interval obtained by minimizing the interval length constrains a and b to 
satisfy fn+3(a) = fn+3(b) . 

(c) The shortest unbiased interlJal: For intervals of the above form, the 1 - Q confi
dence interval obtained by minimizing the probability of false coverage among all 
unbiased intervals constrains a and b to satisfy fn+1 (a) fn+l (b) .  This interval 
can also be derived by minimizing the ratio of the endpoints. 

(d) The equal-tail interIJal: For intervals of the above form, the 1 - Q confidence in
terval obtained by requiring that the probability above and below the interval be 
equal constrains a and b to satisfy 

(This interval, although very common, is clearly nonoptimal no matter what length 
criterion is used.) 

(e) For Q = . 1  and n 3, find the numerical values of a and b for each of the above 
cases. Compare the length of this intervals. 

9.53 Let X '" n(Jk, (2), a2 known. For each c � 0, define an interval estimator for Jk by 
e(x) = Ix ca, x + cal and consider the loss in (9.3.4). 
(a) Show that the risk function, R(Jk, e), is given by 

R(Jk, e) = b(2ca) P(-c :C:; z :c:;  c). 

(b) Using the Fundamental Theorem of Calculus, show that 

2b 
2 _c2/2 a - -- e 

V21r 

and, hence, the derivative is an increasing function of c for c � O. 
(c) Show that if ba > 1/V21r, the derivative is positive for all c � ° and, hence, 

R(Jk, C) is minimized at c = O. That is, the best interval estimator is the point 
estimator e(x) = [x, x] .  

(d) Show that if ba :c:; 1/V21r, the c that minimizes the risk is c vi -2 Iog(baV21r) .  
Hence, if b is chosen so that c = Zo./2 for some Q, then the interval estimator that 
minimizes the risk is just the usual I -a confidence interval. 

9.54 Let X '" n(Jk, (2) ,  but now consider a2 unknown. For each c � 0, define an interval 
estimator for Jk by e(x) = Ix - cs, x + cs] , where S2 is an estimator of a2 independent 
of X, IIS2/a2 ,...., X� (for example, the usual sample variance) . Consider a modification 
of the loss in (9.3.4) , 

b 
L« J-L, a) , e) = -Length(e) - IC(J-L). a 

(a) Show that the risk function, R« J-L, u) , e), is given by 

R« Jk, u) , e) = b(2cM) - [2P(T :c:; c) 1] , 

where T ",  tv and M = ES/a. 
(b) If b :c:; 1/ V21r, show that the c that minimizes the risk satisfies 

b =  
1 (_11_) (11+1)/2 

II + c2 
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(c) Reconcile this problem with the known u2 case. Show that as v -> 00, the solu
tion here converges to the solution in the known u2 problem. (Be careful of the 
rescaling done to the loss function.) 

9.55 The decision theoretic approach to set estimation can be quite useful (see Exercise 
9.56) but it can also give some unsettling results, showing the need for thoughtful 
implementation. Consider again the case of X '" n(;.t, (2 ) ,  u2 unknown, and suppose 
that we have an interval estimator for ;.t by C(x) [x - cs, X + cs] , where 82 is an 
estimator of u2 independent of X, VS2/U2 '" X� . This is, of course, the usual t interval, 
one of the great statistical procedures that has stood the test of time. Consider the 
loss 

L« ;.t, u), C) b Length(C) - Ic(;.t) ,  

similar to  that used in  Exercise 9.54, but without scaling the length. Construct another 
procedure C' as 

C' { [x - ca, x + cal if s < K 
o if a � K, 

where K is a positive constant. Notice that C' does exactly the wrong thing. When S2 
is big and there is a lot of uncertainty, we would want the interval to be wide. But C' 
is empty! Show that we can find a value of K so that 

R« ;.t, u) ,  C' ) $ R« ;.t, u), C) for every (;.t, u) 

with strict inequality for some (;.t, u).  
9.56 Let X '" f(xlt9) and suppose that we want to estimate t9 with an interval estimator 

C using the loss in (9.3.4). If 0 has the prior pdf 11'(0), show that the Bayes rule is 
given by 

C1r = {O:  lI'(Olx) � b}. 

(Hint: Write Length(C) Ie I dO and use the Neyman-Pearson Lemma.) 

The following two problems relate to Miscellanea 9.5.4. 
9.57 Let Xl , . . . , Xn be iid n(;.t, (2) ,  where u2 is known. We know that a 1 - 0: confidence 

interval for ;.t is x ± ZQ/2 *' 
(a) Show that a I 0: prediction interval for Xn+l is x ± zo</2uJ1 + 1i .  
(b) Show that a I 0: tolerance interval for lOOp% of the underlying population is 

given by x ± Zo</2U ( 1 + -jn) . 
(c) Find a 1 0: prediction interval for Xn+l if u2 is unknown. 
(If u2 is unknown, the 1 0: tolerance interval is quite an involved calculation.) 

9.58 Let Xl , . ' "  Xn be Ed observations from a population with median m. Distribution
free intervals can be based on the order statistics X(1) $ . . . $ X(n) in the following 
way. 
(a) Show that the one-sided intervals (-oo, X(,,) ] and [x(1) , oo) are each confidence in

tervals for m with confidence coefficient 1 - (1/2)", and the confidence coefficient 
of the interval [X(1 ) , X(,,) ] is I 2(1/2)n. 

(b) Show that the one-sided intervals of part (a) are prediction intervals with coeffi
cient n/(n + 1 )  and the two-sided interval is a prediction interval with coefficient 
(n l)/(n + 1 ). 
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(c) The intervals in part (a) can also be used as tolerance intervals for proportion p of 
the underlying population. Show that, when considered as tolerance intervals, the 
one-sided intervals have coefficient 1 -pn and the two-sided interval has coefficient 
1 - pn n(1 - p)pn-l . Vardeman ( 1992) refers to this last calculation as a "nice 
exercise in order statistics." 

9.5 Miscellanea ---------------------

9.5. 1 Confidence Procedures 
Confidence sets and tests can be related formally by defining an entity called a 
confidence procedure (Joshi 1969). If X I'V l(xIO) ,  where x E X and 0 E e, then a 
confidence procedure is a set in the space X x e, the Cartesian product space. It 
is defined as 

{(X, 0) : (x, O) E C} 

for a set C E X x 8. 
From the confidence procedure we can define two slices, or sections, obtained by 
holding one of the variables constant. For fixed x, we define the O-section or confi
dence set as 

C(x) {o : (x, 0) E C}. 

For fixed 0, we define the x-section or acceptance region as 

A(O) {x : (x, O) E C}. 

Although this development necessitates working with the product space X x 8, 
which is one reason we do not use it here, it does provide a more straightforward 
way of seeing the relationship between tests and sets. Figure 9.2.1 illustrates this 
correspondence in the normal case. 

9.5. � Confidence Intervals in Discrete Distributions 
The construction of optimal (or at least improved) confidence intervals for param
eters from discrete distributions has a long history, as indicated in Example 9.2.1 1 ,  
where we looked at the Sterne (1954) modification to  the intervals o f  Clopper and 
Pearson (1934) . Of course, there are difficulties with the Sterne construction, but 
the basic idea is sound, and Crow (1956) and Blyth and Still (1983) modified 
Sterne's construction, with the latter producing the shortest set of exact intervals. 
Casella (1986) gave an algorithm to find a class of shortest binomial confidence 
intervals. 

The history of Poisson interval research (which often includes other discrete dis
tributions) is similar. The Garwood (1936) construction is exactly the Clopper
Pearson argument applied to the binomial, and Crow and Gardner ( 1959) improved 
the intervals. Casella and Robert (1989) found a class of shortest Poisson intervals. 
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Blyth (1986) produces very accurate approximate intervals for a binomial param� 
eter, Leemis and Trivedi ( 1996) compare normal and Poisson approximations, and 
Agresti and Coull (1998) argue that requiring discrete intervals to maintain cov� 
erage above the nominal level may be too stringent. Blaker (2000) constructs im� 
proved intervals for binomial, Poisson, and other discrete distributions that have a 
nesting property: For a < a', the 1 - a intervals contain the corresponding 1 - a' 

intervals. 

9.5.3 Fidler 's Theorem 
Fieller's Theorem (Fieller 1954) is a clever argument to get an exact confidence set 
on a ratio of normal means. 

Given a random sample (Xl , Yd, . . . , (Xn , Yn) from a bivariate normal distribution 
with parameters (/lx ,J,ty , al , a� , p) , a confidence set on 0 /ly//lx can be formed 
in the following way. For i 1 , . . . , n, define Z(ji = Yi OXi and Z(j Y OX. It 
can be shown that Z(j is normal with mean 0 and variance 

1 ( 2 V(j = - ay n 
Va can be estimated with Ve, given by 

where 

, I n 
V; "(Z Z(j)2 (j = n(n - 1) f=: (ji 

_1_ (S2 20Syx + 02SX2 ) , n - 1  y 

n 
S� 1 � - 2 - L.,, (Yi - Y) , n i=1 

2 1 " - 2 Sx = - L.,,(Xi - X) , n i=l 
1 n 

SyX = - i:(Yi n ;=1 X). 

Furthermore, it also can be shown that EV(j = V(j, V(j is independent of Ze , and 
(n - 1) Ve /V(j f'V X�-I ' Hence, Z(j / VVo f'V and the set 

• Z(j 2 { -2 } O . 1I(j ::; tn- 1 ,Crf2 
defines a 1 - a confidence set for 0, the ratio of the means. This set defines a 
parabola in 0, and the roots of the parabola give the endpoints of the confidence 
set. Writing the set in terms of the original variables, we get 

t�-I ,af2 S2) < o} . n - l  y -

One interesting feature of this set is that, depending on the roots of the parabola, 
it can be an interval, the complement of an interval, or the entire real line (see 
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Exercise 9.15) .  Furthermore, to maintain 1 0: confidence, this interval must be 
infinite with positive probability. See Hwang ( 1995) for an alternative based on 
bootstrapping, and TSM and Hwang ( 1998, 1999) for an alternative confidence 
approach. 

9,5.4 What About Other Intervals? 
Vardeman ( 1992) asks the question in the title of this Miscellanea, arguing that 
mainstream statistics should spend more time on intervals other than two-sided 
confidence intervals. In particular, he lists (a) one-sided intervals, (b) distribution
free intervals, (c) prediction intervals, and (d) tolerance intervals. 
We have seen one-sided intervals, and distribution-free intervals are intervals whose 
probability guarantee holds with little (or no) assumption on the underlying cdf 
(see Exercise 9.58). The other two interval definitions, together with the usual 
confidence interval, provide use with a hierarchy of inferences, each more stringent 
than the previous. 
If Xl > X2 , · , . ,  Xn are iid from a population with cdf F(xIB) , and C(x) [lex) , u(x)] 
is an interval, for a specified value 1 0: it is a 

(i) confidence interval if Po [l(X) :::; () :::; u(X)] � 1 0: ;  
(ii) prediction interval i f  polleX) :::; Xn+1 :::; u (X)] � 1 0:; 

(iii) tolerance interval if, for a specified value p, Po [F(u (X) IO) - F(l(X) I()) � p] � 
1 - a. 

So a confidence interval covers a mean, a prediction interval covers a new random 
variable, and a tolerance interval covers a proportion of the population. Thus, each 
gives a different inference, with the appropriate one being dictated by the problem 
at hand. 
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Chapter 10 

Asymptotic Evaluations 

"1 know, my dear Watson, that you share my love of all that is bizarre and 
outside the conventions and humdrum routine of everyday life. " 

Sherlock Holmes 
The Red-headed League 

All of the criteria we have considered thus far have been finite-sample criteria. In 
contrast, we might consider asymptotic properties, properties describing the behavior 
of a procedure as the sample size becomes infinite. In this section we will look at 
!lOme of such properties and consider point estimation, hypothesis testing, and inter
val estimation separately. We will place particular emphasis on the asymptotics of 
snaximum likelihood procedures. 

The power of asymptotic evaluations is that, when we let the sample size become 
infinite, calculations simplify. Evaluations that were impossible in the finite-sample 
case become routine. This simplification also allows us to examine some other tech
niques (such as bootstrap and M-estimation) that typically can be evaluated only 
asymptotically. 

Letting the sample size increase without bound (sometimes referred to as "asymp
topia" ) should not be ridiculed as merely a fanciful exercise. Rather, asymptotics 
uncover the most fundamental properties of a procedure and give us a very powerful 
and general evaluation tool. 

lO.l  Point Estimation 

10. 1 . 1  Consistency 
The property of consistency seems to be quite a fundamental one, requiring that the 
estimator converges to the "correct" value as the sample size becomes infinite. It is 
such a fundamental property that the worth of an inconsistent estimator should be 
questioned (or at least vigorously investigated) .  

Consistency (as well as all asymptotic properties) concerns a sequence of estimators 
rather than a single estimator, although it is common to speak of a "consistent esti
mator." If we observe Xl , X2, • • •  according to a distribution f(xIB) ,  we can construct 
a sequence of estimators Wn W n (X I ,  . . .  , X n) merely by performing the same esti
mation procedure for each sample size n. For example, Xl = XI , X2 = (Xl + X2)/2, 
X3 = (Xl + X2 + X3)/3, etc. We can now define a consistent sequence. 
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Definition 10.1 .1  A sequence of estimators Wn = Wn(Xl , "  . , Xn)  is a consistent 
sequence of estimators of the parameter () if, for every f > 0 and every () E e, 

(10. 1 . 1 )  

Informally, (10. 1 . 1 )  says that as the sample size becomes infinite (and the sample 
information becomes better and better) , the estimator will be arbitrarily close to the 
parameter with high probability, an eminently desirable property. Or, turning things 
around, we can say that the probability that a consistent sequence of estimators 
misses the true parameter is small. An equivalent statement to (10. 1 . 1 )  is this: For 
every € > 0 and every 0 E e, a consistent sequence Wn will satisfy 

(10.1 .2) 

Definition 10. 1 . 1  should be compared to Definition 5 .5 .1 ,  the definition of convergence 
in probability. Definition 10. 1 . 1  says that a consistent sequence of estimators converges 
in probability to the parameter e it is estimating. Whereas Definition 5 .5 .1  dealt with 
one sequence of random variables with one probability structure, Definition 10. 1 . 1  
deals with an entire family of  probability structures, indexed by O .  For each different 
value of 0, the probability structure associated with the sequence Wn is different . And 
the definition says that for each value of 0, the probability structure is such that the 
sequence converges in probability to the true (). This is the usual difference between a 
probability definition and a statistics definition. The probability definition deals with 
one probability structure, but the statistics definition deals with an entire family. 

Example 10.1.2 (Consistency of X) Let Xl , X2 , . . .  be iid n(e, 1) ,  and consider 
the sequence 

Recall that Xn rv nCO, lin), so 

jf 1 
= ( � ) l! e-(n/2)y2 dy 

_< 27r 

= � 2 e-(1/2)t2 dt 
j<..;;:; ( ) 1 

_<..;;:; 27r 

= P( -€Vn < Z < €Vn) 

-+ 1 as n -+ 00, 

and, hence, Xn is a consistent sequence of estimators of O .  

( definition) 

(substitute y = fin - 0) 

(substitute t yJ1i,) 

(Z rv nCO, 1 ) )  



Section 10. 1 POINT ESTIMATION 469 

In general, a detailed calculation, such as the above, is not necessary to verify 
consistency. Recall that, for an estimator Wm Chebychev's Inequality states 

so if, for every () E e, 

then the sequence of estimators is consistent. Furthermore, by (7.3.1 ) ,  

(10.1 .3) 

Putting this all together, we can state the following theorem. 

Theorem 10.1.3 If Wn is a sequence of estimators of a parameter () satisfying 
i. limn-> 00 Varo Wn = 0, 

iL limn-+ooBiaso Wn = 0, 
for every () E e, then W n is a consistent sequence of estimators of (). 

Example 10.1.4 (Continuation of Example 10.1.2) Since 

1 
n 

the conditions of Theorem 10.1 . 3  are satisfied and the sequence Xn is consistent . 
Furthermore, from Theorem 5.2.6, if there is iid sampling from any population with 
mean (), then Xn is consistent for () as long as the population has a finite variance. II 

At the beginning of this section we commented that the worth of an inconsistent 
sequence of estimators should be questioned. Part of the basis for this comment is 
the fact that there are so many consistent sequences, as the next theorem shows. Its 
proof is left to Exercise 10.2. 

Theorem 10.1.5 Let Wn be a consistent sequence of estimators of a parameter (). 
Let al , a2, . . .  and b1 , b2, . . . be sequences of constants satisfying 
i. limn-+ooan = 1 ,  

iL liffin_ 00 bn = O .  
Then the sequence Un an Wn + bn is a consistent sequence of estimators of () .  

We close this section with the outline of a more general result concerning the consis
tency of maximum likelihood estimators. This result shows that MLEs are consistent 
estimators of their parameters and is the first case we have seen in which a method 
of finding an estimator guarantees an optimality property. 

To have consistency of the MLE, the underlying density (likelihood function) must 
satisfy certain "regularity conditions" that we will not go into here, but see Miscel
lanea 10.6.2 for details. 
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Theorem 10.1.6 (Consistency of MLEs) Let Xb X2, . . .  , be iid f(xl()), and let 
L(()lx) = n�=l f(xi l()) be the likelihood function. Let 0 denote the MLE of O. Let r(O) 
be a continuous function of O .  Under the regularity conditions in Miscellanea 10.6.2 
on f(xl()) and, hence, L(()lx), for every E > 0 and every 0 E e, 

limn_ooHI(lr(O) - r(O) 1 ;:::: E} = O. 

That is, r(O) is a consistent estimator of r(()) . 

Proof: The proof proceeds by showing that � log L(O lx) converges almost surely to 
Ee (log f (XI()))  for every 0 E e. Under some conditions on f(xIO), this implies that 
o converges to 0 in probability and, hence, r(O) converges to r(()) in probability. For 
details see Stuart, Ord, and Arnold ( 1999, Chapter 18) .  0 

1 0. 1 . 2 Efficiency 

The property of consistency is concerned with the asymptotic accuracy of an estima
tor: Does it converge to the parameter that it is estimating? In this section we look 
at a related property, efficiency, which is concerned with the asymptotic variance of 
an estimator. 

In calculating an asymptotic variance, we are, perhaps, tempted to proceed as fol
lows. Given an estimator Tn based on a sample of size n, we calculate the finite-sample 
variance Var Tn, and then evaluate limn-.oo kn Var Tn, where kn is some normalizing 
constant . (Note that, in many cases, Var Tn -; 0 as n --t 00, so we need a factor kn 
to force it to a limit.) 

Definition 10.1.7 For an estimator Tn , if limn_oo kn VarTn = r2 < 00 ,  where 
{kn}  is a sequence of constants, then r2 is called the limiting variance or limit of the 
variances. 

Example 10.1.8 (Limiting variances) For the mean Xn of n iid normal obser
vations with EX J-L and Var X = (J'2 , if we take Tn = Xn, then lim vfnVar Xn = (J'2 
is the limiting variance of Tn . 

But a troubling thing happens if, for example, we were instead interested in es
timating 1/ J-L using 1/ Xn. If we now take Tn = 1/  Xn, we find that the variance is 
VarTn 00, so the limit of the variances is infinity. But recall Example 5.5.23, where 
we said that the "approximate" mean and variance of 1/  Xn are 

2 and thus by this second calculation the variance is VarTn Ri � < 00. I I 
This example points out the problems of using the limit of the variances as a large 

sample measure. Of course the exact finite sample variance of 1/ X is 00. However, if 
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f.L =I 0, the region where 1/ X gets very large has probability going to 0. So the second 
approximation in Example 10. 1 .8 is more realistic (as well as being much more useful) .  
It is this second approach to  calculating large sample variances that we adopt. 

Definition 10.1.9 For an estimator Tn, suppose that kn (Tn - T(O)) -+ n(0 , a2) in 
distribution. The parameter 0'2 is called the asymptotic variance or variance of the 
limit distribution of Tn . 

For calculations of the variances of sample means and other types of averages, the 
limit variance and the asymptotic variance typically have the same value. But in more 
complicated cases, the limiting variance will sometimes fail us. It is also interesting 
to note that it is always the case that the asymptotic variance is smaller than the 
limiting variance (Lehmann and Casella 1998, Section 6 . 1 ) .  Here is an illustration. 

Example 10.1 .10 (Large-sample mixture variances) The hierarchical model 
Yn lWn Wn rv n (0, Wn + ( 1  wn )a;) , 

Wn "-' Bernoulli(Pn ) , 
can exhibit big discrepancies between the asymptotic and limiting variances. (This 
is also sometimes described as a mixture model, where we observe Yn "" nCO, 1 )  with 
probability Pn and Yn "-' nCO, a;) with probability 1 - Pn. )  

First, using Theorem 4.4.7 we have 

Var(Yn )  = Pn + ( 1  Pn )a�. 

It then follows that the limiting variance of Yn is finite only if limn-+oc ( 1 -Pn )0'; < 00. 
On the other hand, the asymptotic distribution of Yn can be directly calculated 

using 

P(Yn < a) = PnP(Z < a) + ( 1  - Pn)P(Z < a/an ) . 
Suppose now we let Pn -+ 1 and an -+ 00 in such a way that ( 1  - Pn)a; -'+ 00. It then 
follows that P(Yn < a) -+ P(Z < a) , that is, Yn -+ nCO, 1 ) ,  and we have 

limiting variance = lim Pn + ( 1 - Pn)a; = 00, n-+oc 
asymptotic variance = 1 .  

See Exercise 10.6 for more details. 

In the spirit of the Cramer-Rao Lower Bound (Theorem 7.3.9 ) ,  there is an optimal 
asymptotic variance. 

Definition 10.1 .11  A sequence of estimators Wn is asymptotically efficient for a 
parameter T(O) if v'n[Wn - T(O)] -+ n[O, v (O)] in distribution and 

v(O) = [T'(O)j2 
; 

Ee (Cfe IOg f (XI0)) 2) 
that is, the asymptotic variance of Wn achieves the Cramer-Rao Lower Bound. 
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Recall that Theorem 10.1.6 stated that, under general conditions, MLEs are con
sistent. Under somewhat stronger regularity conditions, the same type of theorem 
holds with respect to asymptotic efficiency so, in general, we can consider MLEs to 
be consistent and asymptotically efficient. Again, details on the regularity conditions 
are in Miscellanea 10.6.2. 

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let Xl> X2, • • •  , be iid 
f(xIB), let iJ denote the MLE of B, and let r(O) be a continuous junction of B. Under 
the regularity conditions in Miscellanea 1 0. 6.2 on f(xIB) and, hence, L(Blx) ,  

v'n[r(iJ) - r(B)] -t n[O, v(B)] , 

where v(B) is the Cramer-Rao Lower Bound. That is, r(iJ) is a consistent and asymp
totically efficient estimator of r( 0) . 

Proof: The proof of this theorem is interesting for its use of Taylor series and its 
exploiting of the fact that the MLE is defined as the zero of the likelihood function. 
We will outline the proof showing that iJ is asymptotically efficient; the extension to 
r( iJ) is left to Exercise 10.7. 

Recall that l(Blx) I: logf(xi IB) is the log likelihood functioR. Denote derivatives 
(with respect to B) by [' , [II , . . . .  Now expand the first derivative of the log likelihood 
around the true value Bo, 
( 10.1 .4) l'(B lx) = ['(Bo lx) + (B - Bo)[I/(Oo lx) + " ' , 
where we are going to ignore the higher-order terms (a justifiable maneuver under 
the regularity conditions) .  

Now substitute the MLE iJ for B ,  and realize that the left-hand side of (10.1 .4) is O. 
Rearranging and multiplying through by .;n gives us 

( 10.1.5) 
A -l' (Oo lx) -fn['(Bo lx) 

v'n(0 - (0) = v'n [" (Oo lx) = �l"(Oo lx) 

If we let I(Bo) = E[[' (Oo IX)]2 l/v(O) denote the information number for one ob
servation, application of the Central Limit Theorem and the Weak Law of Large 
Numbers will show (see Exercise 10.8 for details) 

(10.1.6) 
-)nl'(Oo IX) -t n[O, I(Oo)] , 

�l"(Oo IX) -T I(Bo ) . n 

(in distribution) 

(in probability) 

Thus, if we let W '" n[O, I (Bo)] , then .;n(O-Oo) converges in distribution to W/I(Oo) tv 

n [O , l/I(Bo) ] ' proving the theorem. 0 

Example 10.1.13 (Asymptotic normality and consistency) The above the
orem shows that it is typically the case that MLEs are efficient and consistent. We 
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want to note that this phrase is somewhat redundant, as efficiency is defined only 
when the estimator is asymptotically normal and, as we will illustrate, asymptotic 
normality implies consistency. Suppose that 

Vn Wn It -> Z in distribution, 
a-

where Z '" nCO, 1 ) .  By applying Slutsky's Theorem (Theorem 5.5. 17) we conclude 

W71. - It = (fo) (VnWna-- It) -> !�� (fo) Z 0, 

so Wn - It -> ° in distribution. From Theorem 5.5. 13 we know that convergence in 
distribution to a point is equivalent to convergence in probability, so W71. is a consistent 
estimator of It. I I 

10. 1.3 Calculations and Comparisons 
The asymptotic formulas developed in the previous sections can provide us with 
approximate variances for large-sample use. Again, we have to be concerned with reg
ularity conditions (Miscellanea 10.6.2), but these are quite general and almost always 
satisfied in common circumstances. One condition deserves special mention, however, 
whose violation can lead to complications, as we have already seen in Example 7.3.13. 
For the following approximations to be valid, it must be the case that the support of 
the pdf or pmf, hence likelihood function, must be independent of the parameter. 

If an MLE is asymptotically efficient, the asymptotic variance in Theorem 10.1 .6 
is the Delta Method variance of Theorem 5.5.24 (without the lin term) . Thus, we 
can use the Cramer- Rao Lower Bound as an approximation to the true variance of 
the MLE. Suppose that Xl " ' " Xn are iid f(xIO), 0 is the MLE of (), and In((}) = 
Eo (-& log L((} IX)) 2 is the information number of the sample. From the Delta Method 
and asymptotic efficiency of MLEs, the variance of h( 0) can be approximated by 

(10.1 .  7) 

Eo (-� 10g L(OIX)) 
[h'(O)J2 Io_o � {)2 • 

88'I log L((} IX) lo=o 

(using the identity) of Lemma 7.3 . 11  

(the denominator is  i71. (O) ,  the) observed information number 

Furthermore, it has been shown (Efron and Hinkley 1978) that use of the observed 
information number is superior to the expected information number, the information 
number as it appears in the Cramer-Rae Lower Bound. 

Notice that the variance estimation process is a two-step procedure, a fact that is 
somewhat masked by ( 10.1 .7) .  To estimate Vare h(O) ,  first we approximate Vare h(O) ; 
then we estimate the resulting approximation, usually by substituting iJ for (). The 
resulting estimate can be denoted by Vare h(O) or \Ta:f.e h(O). 
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It follows from Theorem 10.1 .6 that -�� log L (9IX) ls=8 is a consistent estimator 
of 1(0), so it follows that Vare h(9) is a consistent estimator of Vars h(O) . 

Example 10.1 .14 (Approximate binomial variance) In Example 7.2.7 we saw 
that p = L Xdn is the MLE of p, where we have a random sample Xl , . . .  , Xn from 
a Bernoulli(p) population. We also know by direct calculation that 

'tT A p(l - p) varp p = , n 

and a reasonable estimate of Varp p is 

(10. 1 .8) - A p(1 - ]3) Varp p = . 
n 

If we apply the approximation in (10.1 .7), with h(p) p, we get as an estimate of 
Varpp, 

Recall that 

'Va:rp p � -8""'2:----
1
---- . 1Jij'I log L (plx) Ip=p 

log L(Plx) = np log(p) + n(l - p) log(l - p) , 

and so 
(}2 np n(l ]3) 
8p2 log L (plx) = - p2 - (1 p)2 ' 

Evaluating the second derivative at p p yields 

:2 log L(P1x) j 
. p p=p 

np 
- �  P 

n(l p) 
( 1  - p)2 

n 
]3(1 p) , 

which gives a variance approximation identical to (10.1 .8) .  We now can apply Theorem 
10. 1 .6 to assert the asymptotic efficiency of p and, in particular, that 

Vri(p p) -4 n[O ,p(l - p)] 

in distribution. If we also employ Theorem 5.5.17 (Slutsky's Theorem) we can conclude 
that 

Vri p P 
-4 n[O, 1] . 

vlp(l � p) 

Estimating the variance of p is not really that difficult, and it is not necessary to 
bring in all of the machinery of these approximations. If we move to a slightly more 
complicated function, however, things can get a bit tricky. Recall that in Exercise 
5.5.22 we used the Delta Method to approximate the variance ofi>/(l -p), an estimate 
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of the odds p/(I -p) .  Now we see that this estimator is, in fact, the MLE of the odds, 
and we can estimate its variance by 

= [�rlp=p 
p(l�p) Ip=p p = n(l - p)3 ' 

Moreover, we also know that the estimator is asymptotically efficient. 

The MLE variance approximation works well in many cases, but it is not infallible. 
In particular, we must be careful when the function h(B) is not monotone. In such 
cases, the derivative hi will have a sign change, and that may lead to an underesti
mated variance approximation. Realize that, since the approximation is based on the 
Cramer-Rao Lower Bound, it is probably an underestimate. However, nonmonotone 
functions can make this problem worse. 

Example 10.1 .15 (Continuation of Example 10.1 .14) Suppose now that we 
want to estimate the variance of the Bernoulli distribution, p( 1 -p) . The MLE of this 
variance is given by p(1 - p), and an estimate of the variance of this estimator can 
be obtained by applying the approximation of (10. 1 .7) . We have 

_ [tp (p(l - p))f I - � 
Var (p(1 - p)) = p-p 

-� log L(plx) Ip=p (1 - 2p)2 Ip=p 
p(l�p) I � p=p p(1 - p) (1 - 2p)2 n 

which can be 0 if P = � ,  a clear underestimate of the variance of p(1 - p). The fact 
that the function p(1 - p) is not monotone is a cause of this problem. 

Using Theorem 10.1 .6, we can conclude that our estimator is asymptotically efficient 
as long as p =1= 1/2. If p = 1/2 we need to use a second-order approximation as given 
in Theorem 5.5.26 (see Exercise 10 .10) . I I  
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The property of asymptotic efficiency gives us a benchmark for wha.t we can hope 
to attain in asymptotic variance (although see Miscellanea 10.6.1 ) .  We also can use 
the asymptotic variance as a means of comparing estimators, through the idea of 
asymptotic relative efficiency. 
Definition 10.1.16 If two estimators Wn and Vn satisfy 

In[Wn - r (O)] -> n[O, O'?v] 
In[Vn - r(O)] -> n[O, O'�] 

in distribution, the asymptotic relative efficiency (ARE) of Vn with respect to Wn is 
0'2 

ARE(Vn , Wn) = 1J' .  
O'v 

Example 10.1. 17 (AREs of Poisson estimators) Suppose that Xl > X2, • • .  are 
iid Poisson(>. ) ,  and we are interested in estimating the 0 probability. For example, 
the number of customers that come into a bank in a given time period is sometimes 
modeled as a Poisson random variable, and the 0 probability is the probability that no 
one will enter the bank in one time period. If X "V Poisson(>.) ,  then P(X = 0) = e->., 
and a natural (but somewhat naive) estimator comes from defining Yi = J(Xi = 0) 
and using 

f 1 
n - 2:Yi. n i==1 

The Yis are Bernoulli(e->- ) ,  and hence it  follows that 

e->- ( 1 - e->-) E(f) = e->- and Var(f) 
n 

Alternatively, the MLE of e->- is e-'X ,  where >. "£i Xdn is the MLE of >.. Using 
Delta Method approximations, we have that 

Since 

In(f - e->- ) -> n[O, e->- ( 1  e->-)] 
In(e->' - e->-)  -> n[O, >.e-2>-] 

in distribution, the ARE of f with respect to the MLE e->' is 
. >'e-2>- >. ARE(f, e->-)  = e->- ( 1  e->- ) �. 

Examination of  this function shows that it i s  strictly decreasing with a maximum of 
1 (the best that f could hope to do) attained at >. = 0 and tailing off rapidly (being 
less than 10% when >. = 4) to asymptote to 0 as >. --+ 00. (See Exercise 10.9.) II 
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Since the MLE is typically asymptotically efficient , another estimator cannot hope 
to beat its asymptotic variance. However, other estimators may have other desir
able properties (ease of calculation, robustness to underlying assumptions) that make 
them desirable. In such situations, the efficiency of the MLE becomes important in 
calibrating what we are giving up if we use an alternative estimator. 

We will look at one last example, contrasting ease of calculation with optimal 
variance. In the next section the robustness issue will be addressed. 

Example 10.1.18 (Estimating a gamma mean) Difficult as it may seem to 
believe, estimation of the mean of a gamma distribution is not an easy task. Recall 
that the gamma pdf f(xla, {3) is given by 

f(xla, {3) 

The mean of this distribution is a{3, and to compute the maximum likelihood estima
. tor we have to deal with the derivative the of the gamma function (called the digamma 

function) ,  which is never pleasant. In contrast, the method of moments gives us an 
easily computable estimate. 

To be specific, suppose we have a random sample Xb X2, • • •  , Xn from the gamma 
density above, but reparameterized so the mean, denoted by p = a{3, is explicit. This 
gives 

and the method of moments estimator of p is X, with variance {3p/n. 
To calculate the MLE, we use the log likelihood 

n 
l(p, {3lx) = I )og f(xi lp, {3) . 

i==l 

To ease the computations, assume that {3 is known so we solve d� l(p, {3[x) 0 to get 
the MLE [1,. There is no explicit solution, so we proceed numerically. 

By Theorem 10.1 .6 we know that [1, is asymptotically efficient. The question of 
interest is how much do we lose by using the easier-to-calculate method of moments 
estimator. To compare, we calculate the asymptotic relative efficiency, 

ARE(X, M 
E (-£,:l(p, {3IX)) 

{3p 

and display it in Figure 10. 1 . 1  for a selection of values of {3. Of course, we know that 
the ARE must be greater than 1 ,  but we see from the figure that for larger values of 
{3 it pays to do the more complex calculation and use the MLE. (See Exercise 10. 1 1  
for an extension, and Example A.0.7 for details on the calculations.) II 
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Figure 10. 1 . 1 .  Asymptotic relative efficiency of the method of moments estimator versus the 
MLE of a gamma mean. The four curves correspond to scale parameter values of (l, S,S,lO), 
with the higher curves corresponding to the higher values of the scale parameter. 

10. 1 .4 Bootstrap Standard Errors 
The bootstrap, which we first saw in Example 1 .2.20, provides an alternative means of 
calculating standard errors. (It can also provide much more; see Miscellanea 10.6.3.) 

The bootstrap is based on a simple, yet powerful, idea (whose mathematics can get 
quite involved) . l  In statistics, we learn about the characteristics of the population by 
taking samples. As the sample represents the population, analogous characteristics 
of the sample should give us information about the population characteristics. The 
bootstrap helps us learn about the sample characteristics by taking resamples (that 
is, we retake samples from the original sample) and use this information to infer to 
the population. The bootstrap was developed by Efron in the late 1970s, with the 
original ideas appearing in Efron ( 1979a, b) and the monograph by Efron ( 1982) .  See 
also Efron (1998) for more recent thoughts and developments. 

Let us first look at a simple example where the bootstrap really is not needed. 

Example 10.1.19 (Bootstrapping a variance) In Example 1 .2.20 we calculated 
all possible averages of four numbers selected from 

2, 4, 9, 12, 

where we drew the numbers with replacement. This is the simplest form of the boot
strap, sometimes referred to as the nonparametric bootstrap. Figure 1 .2.2 displays 
these values in a histogram. 

What we have created is a resample of possible values of the sample mean. We 
saw that there are (4+:-1) 35 distinct possible values, but these values are not 
equiprobable (and thus cannot be treated like a random sample) .  The 44 = 256 
(nondistinct) resamples are all equally likely, and they can be treated as a random 
sample. For the ith resample, we let xi be the mean of that resample. We can then 

1 See Lehmann (1999, Section 6.5) for a most readable introduction. 
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estimate the variance of the sample mean X by 

(10. 1 .9) 

where x* = ,: .. E��l if: , the mean of the resamples. (It is standard to let the notation 
.. denote a bootstrapped, or resampled, value. )  

For our example we have that the bootstrap mean and variance are x" 6.75 and 
Var'" (X) = 3.94. It turns out that, as far as means and variances are concerned, the 
bootstrap estimates are almost the same as the usual ones (see Exercise 10.13) .  " 

We have now seen how to calculate a bootstrap standard error, but in a problem 
where it is really not needed. However, the real advantage of the bootstrap is that, 
like the Delta Method, the variance formula (10.1 .9) is applicable to virtually any 
estimator. Thus, for any estimator O(x) 0, we can write 

(10.1. 10) 

� ::: 1 n" '. where 0; is the estimator calculated from the ith resample and O· n" Ei=l OJ , the 
mean of the resampled values. 

Example 10.1.20 (Bootstrapping a binomial variance) In Example 10.1 . 15 ,  
we used the Delta. Method to estimate the variance of .13(1 - .13) .  Based on a sample of 
size n, we could alternatively estimate this variance by 

But now a problem pops up. For our Example 10.1 . 19, with n = 4, there were 
256 terms in the bootstrap sum. In more typical sample sizes, this number grows so 
large as to be uncomputable. (Enumerating all the possible resamples when n > 15  
i s  virtually impossible, certainly for the authors.) But now we remember that we are 
statisticians - we take a sample of the resamples. 

Thus, for a sample x = (X l >  X2, • • .  , xn) and an estimate O(X l !  X2 , • • .  , xn) = 0, select 
B resamples (or bootstrap samples) and calculate 

1 B . �(O· 0*)2. 
B - 1  L...." i 

i=1 
(1O. 1 . 1 1 )  

Example 10.1.21 (Conclusion of  Example 10.1.20) For a sample ofsize n = 24, 
we compute the Delta Method variance estima.te and the bootstrap variance estimate 
of .13(1 -.13) using B = 1000. For .13 =f. 1/2, we use the first-order Delta Method variance 
of Example 10. 1 . 15, while for .13 = 1/2, we use the second-order variance estimate 
of Theorem 5.5.26 (see Exercise 1O.16) . We see in Table 10. 1 . 1  that in all cases the 
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Table 1 0. 1 . 1 .  Bootstrap and Delta Method variances of p(l - p) . The second-order Delta. 
Method (see Theorem 5.5.26) is used when p = 1/2. The true variance is calcula.ted numer
ically assuming that p p. 

Bootstrap 
Delta Method 

True 

P 1/4 
.00508 
.00195 
.00484 

p = 1/2 
.00555 
.00022 
.00531 

p =  2/3 
.00561 
.00102 
.00519 

bootstrap variance estimate is closer to the true variance, while the Delta Method 
variance is an underestimate. (This should not be a surprise, based on ( 10 .1 .7) , which 
shows that the Delta Method variance estimate is based on a lower bound.) 

The Delta Method is a "first-order" approximation, in that it is based on the first 
term of a Taylor series expansion. When that term is zeroed out (as when p = 1/2), we 
must use the second-order Delta Method. In contrast, the bootstrap can often have 
"second-order" accuracy, getting more than the first term in an expansion correct 
(see Miscellanea 10.6.3) . So here, the bootstrap automatically corrects for the 'case 
p = 1/2. (Note that 2424 � 1 .33 X 1013, an enormous number, so enumerating the 
bootstrap samples is not feasible. )  I I  

The type of bootstrapping that we have been talking about so far is called the 
nonparametric bootstrap, as we have assUllled no functional form for the population 
pdf or cdf. In contrast, we may also have a parametric bootstrap. 

Suppose we have a sample Xl , X2, . . •  , Xn from a distribution with pdf f(x llJ) ,  
where () may be a vector of parameters. We can estimate IJ with 0, the MLE, and 
draw samples 

X�, X; , . . .  , X� '" f(x liJ) .  

If we take B such samples, we can estimate the variance of iJ using ( 10. 1 . 1 1) .  Note 
that these samples are not resamples of the data, but actual random samples drawn 
from f(xliJ), which is sometimes called the plug-in distribution. 
Example 10.1.22 (Parametric bootstrap) Suppose that we have a sample 

-1.81 , 0.63, 2.22, 2 .41, 2.95, 4 . 16, 4.24, 4.53, 5.09 

with x 2.71 and 82 = 4.82. If we assume that the underlying distribution is normal, 
then a parametric bootstrap would take samples 

X;, X; ,  . . .  , X� '" n(2.71 , 4.82). 

Based on B = 1000 samples, we calculate Var'B(82)  = 4.33. Based on normal 
theory, the variance of 82 is 2 (0"2) 2/8, which we could estimate with the MLE 
2 (4.82)2/8 = 5.81. The data values were actually generated from a normal distribu
tion with variance 4, so Var 82 = 4.00. The parametric bootstrap is a better estimate 
here. (In Example 5.6.6 we estimated the distribution of 82 using what we now know 
is the parametric bootstrap.) I I  
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Now that we have an all-purpose method for computing standard errors, how do 

we know it is a good method? In Example lO.1.21 it seems to do better than the 
Delta Method, which we know has some good properties. In particular, we know that 
the Delta Method, which is based on maximum likelihood estimation, will typically 
produce consistent estimators. Can we say the same for the bootstrap? Although 
we cannot answer this question in great generality, we say that, in many cases, the 
bootstrap does provide us with a reasonable estimator that is consistent. 

To be a bit more precise, we separate the two distinct pieces in calculating a boot
strap estimator. 

' a. Establish that (10. 1 . 1 1 )  converges to (10 .1 .10) as B --+ 00, that is, 

, b. Establish the consistency of the estimator (10 .1 . 10) , which uses the entire bootstrap 
sample, that is, 

Part (a) can be established using the Law of Large Numbers (Exercise 10.15). Also 
notice that all of part (a) takes place in the sample. (Lehmann 1999, Section 6.5, calls 
Var�(O) an approximator rather than an estimator. ) 

Establishing part (b) is a bit delicate, and this is where consistency is established. 
Typically consistency will be obtained in iid sampling, but in more general situations 
it may not occur. (Lehmann 1999, Section 6.5, gives an example. ) For more details 
on consistency (necessarily at a more advanced level) ,  see Shao and Tu (1995, Section 
3.2.2) or Shao (1999, Section 5.5.3). 

10.2 Robustness 

Thus far, we have evaluated the performance of estimators assuming that the under
lying model is the correct one. Under this assumption, we have derived estimators 
that are optimal in some sense. However, if the underlying model is not correct, then 
we cannot be guaranteed of the optimality of our estimator. 

We cannot guard against all possible situations and, moreover, if our model is ar
rived at through some careful considerations, we shouldn't have to. But we may be 
concerned about small or medium-sized deviations from our assumed model. This 
may lead us to the consideration of robust estimators. Such estimators will give up 
optimality at the assumed model in exchange for reasonable performance if the as
sumed model is not the true model. Thus we have a trade-off, and the more important 
criterion, optimality or robustness, is probably best decided on a case-by-case basis. 

The term "robustness" can have many interpretations, but perhaps it is best sum
marized by Huber ( 1981 ,  Section 1.2) ,  who noted: 

. . .  any statistical procedure should possess the following desirable features: 

( 1 )  It should have a reasonably good (optimal or nearly optimal) efficiency at 
the assumed model. 
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(2) It should be robust in the sense that small deviations from the model as

sumptions should impair the performance only slightly . . . .  
(3) Somewhat larger deviations from the model should not cause a catastrophe. 

We first look at some simple examples to understand these items better; then We 
proceed to look at more general robust estimators and measures of robustness. 

10.2. 1 The Mean and the Median 
Is the sample mean a robust estimator? It may depend on exactly how we formalize 
measures of robustness. 

Example 10.2.1 (Robustness of the sample mean) Let X1 , X2, .  " , Xn be iid 
n(J.L, 0'2) .  We know that X has variance Var(X) a2 In, which is the Cramer-Roo 
Lower Bound. Hence, X satisfies ( 1 )  in that it attains the best variance at the assumed 
model. 

To investigate (2) ,  the performance of X under small deviations from the model, 
we first need to decide on what this means. A common interpretation is to use an 
8-contamination model; that is, for small 0, assume that we observe 

X, ,,,, { n(J.L, a2) with probability l 0 
t f(x) with probability 8, 

where f(x) is some other distribution. 
Suppose that we take f(x) to be any density with mean () and variance 72 . Then 

Var(X) = ( 1  _ 0) 0'
2 

+ 8 7
2 

+ 
0(1  - 8) (0 - J.L)2 . n n n 

This actually looks pretty good for X, since if (j R:: J.L and a R:: 7, X will be near 
optimaL We can perturb the model a little more, however, and make things quite 
bad. Consider what happens if f(x) is a Cauchy pdf. Then it immediately follows 
that Var(X) 00. (See Exercises 10.18  for details and 10.19 for another situation.) I I 

Turning to item (3) , we ask what happens if there is an usually aberrant observation. 
Envision a particular set of sample values and then consider the effect of increasing 
the largest observation. For example, suppose that X(n) x, where x -> 00. The 
effect of such an observation could be considered "catastrophic." Although none of the 
distributional properties of X are affected, the observed value would be "meaningless." 
This illustrates the breakdown value, an idea attributable to Hampel ( 1974) .  

Definition 10.2.2 Let XU) < . . .  < X(n} be an ordered sample of size n,  and let Tn 
be a statistic based on this sample. Tn has breakdown value b, O :::; b :::; 1 ,  if, for every 
f > 0, 

lim Tn < 00 and lim Tn = 00. 
X({ ( l-b}n } )-OO X({(l- (b+<» n})-oo 

(Recall Definition 5.4.2 on percentile notation. )  
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It is easy to see that the breakdown value of X is OJ that is, if any fraction of 
the sample is driven to infinity, so is the value of X. In stark contrast, the sample 
median is unchanged by this change of the sample values. This insensitivity to extreme 
observations is sometimes considered an asset of the sample median, which has a 
breakdown value of 50%. (See Exercise 10.20 for more about breakdown values.) 

Since the median is improving on the robustness of the mean, we might ask if we 
are losing anything by switching to a more robust estimator (of course we must! ) .  
For example, in the simple normal model of Example 10.2.1 ,  the mean is the best 
unbiased estimator if the model is true. Therefore it follows that at the normal model 
(and close to it) ,  the mean is a better estimator. But, the key question is, just how 
much better is the mean at the normal model? If we can answer this, we can make 
an informative choice on which estimator to use-and which criterion (optimality or 
robustness) we consider more important. To answer this question in some generality 
we cali on the criterion of asymptotic relative efficiency. 

To compute the ARE of the median with respect to the mean, we must first establish 
the asymptotic normality of the median and calculate the variance of the asymptotic 
distribution. 

Example 10.2.3 (Asymptotic normality of the median) To find the limiting 
distribution of the median, we resort to an argument similar to that in the proof of 
Theorems 5.4.3 and 5.4.4, that is, an argument based on the binomial distribution. 

Let Xl , " "  Xn be a sample from a population with pdf f and cdf F (assumed to 
be differentiable) ,  with P(Xi :::; J.L) = 1/2, so J.L is the population median. Let Mn be 
the sample median, and consider computing 

lim P (.;n(Mn J.L) :::; a) n->CXl 

for some a. If we define the random variables Yi by { 1 if Xi :::; J.L + a/ ..;n 
o otherwise, 

it follows that Yi is a Bernoulli random variable with success probability Pn F(J.L + 
a/ ..;n) . To avoid complications, we will assume that n is odd and thus the event 
{Mn :::; J.L + a/..;n} is equivalent to the event {Li Yi 2: (n + 1 )/2}.  

Some algebra then yields 

Now Pn -> P = F(J.L) = 1/2 ,  so we expect that an application of the Central Limit 

Theorem will show that 7jYi-np" 
converges in distribution to Z, a standard normal np,, ( l-PnJ 

random variable. A straightforward limit calculation will also show that 
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Putting this all together yields that 

p (.jii(Mn - /1-) � a) � P (Z � -2a!(jJ.)) .  

and thus .jii(Mn - /1-) is asymptotically normal with mean 0 and variance 1/[2!(/1-)]2. 
(For details, see Exercise 10.22, and for a rigorous, and more general, development of 
this result, see Shoo 1999, Section 5.3.) II 

Example 10.2.4 (AREs of the median to the mean) As there are simple ex� 
pressions for the asymptotic variances of the mean and the median, the ARE is easily 
computed. The following table gives the AREs for three symmetric distributions. We 
find, as might be expected, that as the tails of the distribution get heavier, the ARE 
gets bigger. That is, the performance of the median improves in distributions with 
heavy tails. See Exercise 10.23 for more comparisons. 

Median/mean asymptotic relative efficiencies 
Normal Logistic Double exponential 

.64 .82 2 I I 

10. 2.2  M-Estimators 
Many of the estimators that we use are the result of minimizing a particular cri· 
terion. For example, if Xll X2, • • •  , Xn are iid from !(xIB), possible estimators are 
the mean, the minimizer of L:(Xi - a)2 j the median, the minimizer of L: IXi a l i 
and the MLE, the maximizer of n�=l !(xi IB) (or the minimizer of the negative like-
lihood). As a systematic way of obtaining a robust estimator, we might attempt to 
write down a criterion function whose minimum would result in an estimator with 
desirable robustness properties. 

In an attempt at defining a robust criterion, Huber (1964) considered a compromise 
between the mean and the median. The mean criterion is a square, which gives it 
sensitivity, but in the "tails" the square gives too much weight to big observations. In 
contrast, the absolute value criterion of the median does not overweight big or small 
observations. The compromise is to minimize a criterion function 

( 10.2.1 )  

where p i s  given by 

( 10.2.2) _ { �X2 if Ix l  � k 
p(x) - klx l - �k2 if Ix l  � k. 

The function p(x) acts like x2 for Ix l  � k and like Ix l  for Ixi > k. Moreover, since �k2 = 
kl kl - � k2 , the function is continuous (see Exercise 10.28) . In fact p is differentiable. 
The constant k, which can also be called a tuning parameter, controls the mix, with 
small values of k yielding a more "median-like" estimator. 
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k 0 
Estima.te -.21 

ROBUSTNESS 

Ta.ble 10.2 .1 .  Huber estimators 

1 2 3 4 
.03 -.04 .29 .41 

5 6 8 10 
.52 .87 .97 1 .33 
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Example 10.2.5 (Huber estimator) The estimator defined as the minimizer of 
(10.2. 1 )  and ( 10.2.2) is called a Huber estimator . To see how the estimator works, 
and how the choice of k matters, consider the following data set consisting of eight 
standard normal deviates and three "outliers" : 

x -1 .28, - .96, -,46, - .44, -.26, - :21 ,  -.063, .39, 3, 6 ,  9 

For these data the mean is 1 .33 and the median is - .21 .  As k varies, we get the 
range of Huber estimates given in Table 10.2. 1 .  We see that as k increases, the Huber 

. estimate varies between the median and the mean, so we interpret increasing k as 
decreasing robustness to outliers. I I 

The estimator minimizing ( 10.2.2) is a special case of the estimators studied by 
Huber. For a general function p, we call the estimator minimizing I:i P(Xi - 0)  an 
M-estimator, a name that is to remind us that these are maximum-likelihood-type 
estimators. Note that if we choose p to be the negative log likelihood -l(Olx) , then 
the M-estimator is the usual MLE. But with more flexibility in choosing the function 
to be minimized, estimators with different properties can be derived. 

Since minimization of a function is typically done by solving for the zeros of the 
derivative (when we can take a derivative) , defining "p = pI, we see that an M-estimator 
is the solution to 

n 
(10.2.3) L "p (Xj 0) O. 

i=l 

Characterizing an estimator as the root of an equation is particularly useful for getting 
properties of the estimator, for arguments like those used for likelihood estimators 
can be extended. In particular, look at Section 10.1 .2,  especially the proof of Theorem 
10. 1 .12.  We assume that the function p(x) is symmetric, and its derivative "p(x) is 
monotone increasing (which ensures that the root of ( 10.2.3) is the unique minimum) .  
Then, as in the proof of Theorem 10.1 .12,  we write a Taylor expansion for "p as 

n n 
L "p(Xi - 00) + (0 00) L "pI (Xi - 00) + " ' , 
i=l i=l 

where 00 is the true value, and we ignore the higher-order terms. Let OM be the 
solution to ( 10.2.3) and substitute this for 0 to obtain 

n n 
o L "p(Xi - 00) + (OM - 00) L "p'(Xi 00) + " ' , 

i=l i=l 
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where the left-hand side is 0 because 8M is the solution. Now, again analogous to the 
proof of Theorem 10.1 . 12, we rearrange terms, divide through by ../ii, and ignore the 
remainder terms to get 

Tn L:�1 'IjJ(Xi - (0) 
1 "n I • 
11 L..,i=l 'IjJ (Xi Bo) 

Now we assume tha.t 80 satisfies Eoo'IjJ(X - (0) = 0 (which is usually taken as the 
definition of (0) . It follows that 

in distribution, and the Law of Large Numbers yields 

( 10.2.5) 

in probability. Putting this all together we have 

( 10.2.6) 

Example 10.2.6 (Limit distribution of the Huber estimator) If XI ,  . . .  , Xn 
are iid from a pdf f(x-B), where f is symmetric around 0, then for p given by ( 10.2.2) 
we have 

( 10.2.7) 

and thus 

{ X if Ix l  � k 
'IjJ(x) = k if x > k 

-k if x < -k 

lO+k 
Eo'lj;(X 0) (x - O)f(x - 0) dx 9-k 

( 10.2.8) k 10-k f(x - B) dx + k (:>e f(x - B) dx 
-00 JO+k 

= 1: yf(y) dy k 1: fey) dy + k 100 
fey) dy 0, 

where we substitute y = x - B. The integrals add to 0 by the symmetry of J. Thus, 
the Huber estimator has the correct mean (see Exercise 10.25) .  

To calculate the variance we need the expected value of 'IjJ'. While 'lj; is not differen-
tiable, beyond the points of nondifferentiability (x ±k) 'IjJ' will be O. Thus, we only 
need deal with the expectation for Ix l  � k, and we have 
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19+k Eo1/J'(X 6) = f(x 
9-k 

0) dx 

lO+k 
(x - 0)2 f (x 

O-k 

ROBUSTNESS 

Po( IX I � k) , 

6) dx + k2 t)() f(x JO+k 

= rk 
x2 f(x) dx + 2k2 roo 

f(x) dx. J-k Jk 
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rO-k 
6) dx + k2 

J-oo 
f(x 6) dx 

Thus we can conclude that the Huber estimator is asymptotically normal with mean 
() and asymptotic variance 

J�k X2 f(x) dx + 2k2 Po( IX I > k) 
[Po ( IX I � k)J2 

As we did in Example 10.2.4, we now examine the ARE of the Huber estimator for 
a variety of distributions. 

Example 10.2.7 (ARE of the Huber estimator) As the Huber estimator is, in 
.a sense, a mean/median compromise, we'll look at its relative efficiency with respect 
to both of these estimators. 

Huber estimator asymptotic relati.ve efficiencies, k = 1 .5  

VS. mean 
vs. median 

Normal 
.96 

1 .51 

Logistic 
1 .08 
1.31 

Double exponential 
1 .37 
.68 

The Huber estimator behaves similarly to the mean for the normal and logistic dis
tributions and is an improvement on the median. For the double exponential it is an 
improvement over the mean but not as good as the median. Recall that the mean is 
the MLE for the normal, and the median is the MLE for the double exponential (so 
AREs < 1 are expected) .  The Huber estimator has performance similar to the MLEs 
for these distributions but also seems to maintain reasonable performance in other 
cases. " 

We see that an M-estimator is a compromise between robustness and efficiency. We 
now look a bit more closely at what we may be giving up, in terms of efficiency, to 
gain robustness. 

Let us look more closely at the asymptotic variance in ( 10.2.6). The denominator 
of the variance contains the term Eoo 1/J' (X (0) ,  which we can write as 

Eo1/J'(X 6) = f 1/J' (x - 6)f(x - 6) dx -f [:6 1/J(x - 6)] f(x 6) dx. 

Now we use the differentiation product rule to get 

:6 f 1/J(x-6)f(x-6) dx = f [to1/J(X 0)] f(x-O) dx+ f 1/J(x-O) [tof(X 6)] dx. 
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The left hand side is 0 because Ee1j;{x - 0) 0, so we have 

-J [d� 1j;(x - 0)] f(x 0) dx J 1j; (x - 0) [:0 f(x - 0)] dx 
Section 10.3 

J 1j;(x - 0) [d� log f(x - 0)] f(x 0) dx, 

where we use the fact that �g (y)jg(y) = ty log g(y).  This last expression can be 
written Ee [1j; (X - O)I'(8 IX)] ,  where l(OIX) is the log likelihood, yielding the identity 

Eo'ljl'(X 0) -Eo [!1j;(X 0)] Eo ['ljI(X - O)l'(OIX)] 

(which, when we choose 'Ij! I', yields the (we hope) familiar equation -Ee [l"(OIX)] = 
Eel' (OIX)2 ;  see Lemma 7.3.1 1 ) .  

I t  is now a simple matter to compare the asymptotic variance of an M-estimator 
to that of the MLE. Recall that the asymptotic variance of the MLE, 0, is given by 
1jEol'(8IX)2, so we have 

( 10.2.9) 

by virtue of the Cauchy-Swartz Inequality. Thus, an M-estimator is always less ef
ficient than the MLE, and matches its efficiency only if 'ljI is proportional to l' (see 
Exercise 10.29) .  

In this section we did not try to classify all types of robust estimators, but rather we 
were content with some examples. There are many good books that treat robustness in 
detail; the interested reader might try Staudte and Sheather (1990) or Hettmansperger 
and McKean ( 1998). 

10.3 Hypothesis Testing 

As in Section 10.1 ,  this section describes a few methods for deriving some tests in 
complicated problems. We are thinking of problems in which no optimal test, as 
defined in earlier sections, exists (for example, no UMP unbiased test exists) or is 
known. In such situations, the derivation of any reasonable test might be of use. In 
two subsections, we will discuss large-sample properties of likelihood ratio tests and 
other approximate large-sample tests. 

10.3. 1 Asymptotic Distribution of LRTs 
One of the most useful methods for complicated models is the likelihood ratio method 
of test construction because it gives an explicit definition of the test statistic, 

sup L(Olx) 
'\(x) = s:�L(Olx) ' 

e 
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and an explicit form for the rejection region, {x : ). (x) $ c}. After the data X = 
X are observed, the likelihood function, L(Olx) , is a completely defined function of 
the variable O. Even if the two suprema of L(Olx), over the sets eo and e, cannot 
be analytically obtained, they can usually be computed numerically. Thus, the test 
statistic ). (x) can be obtained for the observed data point even if no convenient 
formula defining ).(x) is available. 

To define a level a test, the constant c must be chosen so that 

( 10.3. 1) sup P8 ()'(X) $ c) :::; a. 8Eao 
If we cannot derive a simple formula for ). (x) , it might seem that it is hopeless to 
derive the sampIing distribution of )'(X) and thus know how to pick c to ensure 
( 10.3.1 ) .  However, if we appeal to asymptotics, we can get an approximate answer. 

Analogous to Theorem 10 .1 . 12, we have the following result. 

Theorem 10.3.1 (Asymptotic distribution of the LRT--simple Ho) For test
ing Ho : 0 = 00 versus Hl : 0 # 0o , suppose Xl > " " Xn are iid l(x IO) . {) is the MLE 
010, and l(xIO) satisfies the regularity conditions in Miscellanea 10. 6.2. Then under 
Ho , as n -+ 00, 

-2 10g ).(X) -+ xf in distribution, 
where xi is a X2 random variable with 1 degree of freedom. 
Proof: First expand 10g L (0Ix) = I(Olx) in a Taylor series around 0, giving 

l (O lx) 
, 2 • A (0 0) 

0) + l" «() lx) + . . .  
2! 

. 

Now substitute the expansion for l (Oo lx) in -2 Iog ). (x) = -21(00 Ix) + 2l(Olx) , and 
get 

«() 0)2 
-2 log ). (x) � A '  -l" (O lx) 

where we use the fact that l' (Olx) O. Since the denominator is the observed in
formation in (O) and �in(O) -+ I«()o )  it follows from Theorem 10. 1 . 12 and Slutsky's 
Theorem (Theorem 5.5.17) that -2 10g ). (X) -+ xi. 0 

Example 10.3.2 (Poisson LRT) For testing Ho : ). = ).0 versus Hl : ). # ).0 
based on observing Xl > . .  " Xn iid Poisson().) , we have 

-2 log ). (x) -2 log . , ° = 2n [C).o - �) - � log().o/ �)] , (e-nAO ).EXi ) 
e-nA).Exi 

where � = 'Exi/n is the MLE of ).. Applying Theorem 10.3. 1 , we would reject Ho at 
level a if -2 log ).(x) > xi 0< '  , 
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Figure 10.3. 1 .  HiBtogram of 10, 000 values of -2 log >.(x) along with the pdf of a xi. >'0 = 5 
and n = 25 

To get some idea of the accuracy of the asymptotics, here is a small simulation of 
the test statistic. For },o = 5 and n 25, Figure 10.3. 1 shows a histogram of 10, 000 
values of -2 Iog },(x) along with the pdf of a xi. The match seems to be reasonable. 
Moreover, a comparison of the simulated (exact) and xi (approximate) cutoff points 
in the following table shows that the cutoffs are remarkably similar. 

Simulated (exact) and approximate percentiles of the PoiBson LRT statistic 

Percentile 
Simulated 

.80 
1 . 630 
1 .642 

.90 
2.726 
2.706 

.95 
3.744 
3.841 

.99 
6.304 
6.635 I I  

Theorem 10.3.1 can be extended to the cases where the null hypothesis concerns 
a vector of parameters. The following generalization, which we state without proof, 
allows us to ensure (10.3 . 1 )  is true, at least for large samples. A complete discussion 
of this topic may be found in Stuart, Ord, and Arnold (1999, Chapter 22) . 

Theorem 10.3.3 Let Xl " ' "  Xn be a random sample from a pdf or pmf f (x IB) . 
Under the regularity conditions in Miscellanea 10.6.2, if () E 80, then the distribution 
of the statistic -2 log }'(X) converges to a chi squared distribution as the sample size 
n --. 00. The degrees of freedom of the limiting distribution is the difference between 
the number of free parameters specified by () E 80 and the number of free parameters 
specified by () E 8. 

Rejection of Ho : 0 E 80 for small values of }'(X) is equivalent to rejection for large 
values of -2 Iog },(X). Thus, 

Ho is rejected if and only if 2 Iog },(X) ;:::: X;,Q ' 

where II is ' the degrees of freedom specified in Theorem 10.3.3. The Type I Error 
probability will be approximately 0: if () E 80 and the sample size is large. In this 
way, (10.3.1) will be approximately satisfied for large sample sizes and an asymptotic 
size 0: test has been defined. Note that the theorem will actually imply only that 

lim Pe(reject Ho) = 0: for each () E 80 , 
n-oo 
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not that the sUPeE60 Pe(rejectHo) converges to a. This is usually the case for asymp
totic size a tests. 
The computation of the degrees of freedom for the test statistic is usually straight

forward. Most often, 8 can be represented as a subset of q-dimensional Euclidian 
space that contains an open subset in 1RQ, and 80 can be represented as a subset of 
p-dimensional Euclidian space that contains an open subset in 1RP, where P < q. Then 
q - p I/ is the degrees of freedom for the test statistic. 

Example 10.3.4 (Multinomial LRT) Let fJ (PhP2, P3 ,P4, P5) , where the PjS 
are nonnegative and sum to 1 . Suppose XI , . . .  , Xn are iid discrete random variables 
and Pe(Xi j) = Pj , j = 1 , . . .  , 5. Thus the prof of Xi is f(j lfJ) Pj and the 
likelihood function is 

n 
L(fJ lx) II f(Xi IB) = pf

l
p�2p�3p�4p�5 , 

i=1 
where Yj number of Xl , • . .  , Xn equal to j. Consider testing 

Ho : PI = P2 = P3 and P4 = P5 versus HI : Ho is not true. 
The full parameter space, 8, is really a four-dimensional set . Since P5 I -PI -P2 -
P3 P4 , there are only four free parameters. The parameter set is defined by 

4 
I>j � 1 and Pj '::::: 0, j = 1 , . . .  , 4, 
j=1 

a subset of 1R4 containing an open subset of 1R4 . Thus q 4. There is only one free 
parameter in the set specified by Ho because, once PI ,  0 � PI � � ,  is fixed, P2 P3 
must equal PI and P4 = P5 must equal l-iv, .  Thus P 1 , and the degrees of freedom 
is 1/ = 4 1 = 3. 
To calculate A(x) , the MLE of 0 under both 80 and 8 must be determined. By 

setting 
a � logL(B\x) 0 for each of j = 1, . . .  , 4, 

UPj 

and using the facts that P5 1 - Pl P2 - P3 - P4 and Y5 = n - Yl Y2 - Y3 Y4 , 
we can verify that the MLE of Pj under 8 is 'PJ = Yj /n. Under Ho, the likelihood 
function reduces to 

( 1 
3p 

) Y
4+Y5 

L«(} lx) = pr+Y2+Y3 
2 

1 

Again, the usual method of setting the derivative equal to 0 shows that the MLE of 
PI under Ho is tho (Yl + Y2 + Y3) /(3n) . Then PIO = P20 = P30 and P40 = P50 = 
( 1 3plO)/2. Substituting these values and the Pj values into L(Olx) and combining 
terms with the same exponent yield 

A(x) ( Yl + Y2 + Y3 ) Y
l ( Yl + Y2 + Y3 ) Y2 (YI + Y2 + Y3 ) Y3 (Y4 + Y5 ) Y4 ( Y4 + Y5 ) Y

5 
3Yl 3Y2 3Y3 2Y4 2Y5 
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Thus the test statistic is 

( 10.3.2) 
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5 
-2 log >.(x) = 2 L Yi log ( Yi ) , 

i=l ml 
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where ml = m2 = m3 (Yl +Y2 +Y3)/3 and m4 = ms = (Y4 +Ys )/2. The asymptotic 
size 0; test rejects Ho if -2 log >.(x) :::: xL:> . This example is one of a large clasa 
of testing problems for which the asymptotic theory of the likelihood ratio test is 
extensively used. I I  

10. 3.2  Other Large-Sample Tests 
Another common method of constructing a large-sample test statistic is based on 
an estimator that has an asymptotic normal distribution. Suppo..'le we wish to test 
a hypothesis about a real-valued parameter B, and Wn W(X1 , • . •  , Xn) is a point 
estimator of 0, based on a sample of size n, that has been derived by some method. 
For example, Wn might be the MLE of B. An approximate test, based on a normal 
approximation, can be justified in the following way. If a� denotes the variance of 
Wn and if we can use some form of the Central Limit Theorem to show that, as 
n -+ 00, (Wn B)/an converges in distribution to a standard normal random variable, 
then (Wn - O)/an can be compared to a n(O, 1 ) distribution. We therefore have the 
basis for an approximate test. 

There are, of course, many details to be verified in the argument of the previous 
paragraph, but this idea does have application in many situations. For example, if 
Wn is an MLE, Theorem 10.1 . 12 can be used to validate the above arguments. Note 
that the distribution of Wn and, perhaps, the value of an depend on the value of O. 
The convergence, therefore, more formally says that for each fixed value of B E 9, 
if we use the corresponding distribution for Wn and the corresponding value for an, 
(Wn -B)/an converges to a standard normal. If, for each n, an is a calculable constant 
(which may depend on B but not any other unknown parameters) ,  then a test based 
on (Wn - B)/an might be derived. 

In some instances, an also depends on unknown parameters. In such a case, we look 
for an estimate Sn of an with the property that ani Sn converges in probability to 1 .  
Then, using Slutsky's Theorem (as in Example 5.5. 18) we can deduce that (Wn -B)/ Sn 
also converges in distribution to a standard normal distribution. A large-sample test 
may be based on this fact. 

Suppose we wish to test the two-sided hypothesis Ho : B = 00 versus HI : () =f 00' 
An approximate test can be based on the statistic Zn (Wn - ()O)/Sn and would 
reject Ho if and only if Zn < -Za/2 or Zn > Za/2 ' If Ho is true, then () = 00 and Zn 
converges in distribution to Z r>.J n(O, 1 ) .  Thus, the Type I Error probability, 

POo (Zn < -Za/2 or Zn > Za:/2) -+ P(Z < -Za/2 or Z > Za/2) = 0;, 
and this is an asymptotically size 0; test. 

Now consider an alternative parameter value B =f Bo . We can write 

( )  Zn = Wn - 00 Wn - 0 0 00 10.3.3 Sn Sn + -S;:-. 
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No matter what the value of B, the term (Wn - B)/Sn -> n(O, 1 ) .  Typically, it is also 
the case that (Tn -> 0 as n 00. (Recall, (Tn = Var Wn, and estimators typically 
become more precise as n 00.) Thus, Sn will converge in probability to 0 and the 
term (B - Bo) /Sn will converge to +00 or -00 in probability, depending on whether 
(B - Bo) is positive or negative. Thus, Zn will converge to +00 or -00 in probability 
and 

Po (reject Ho) = PO(Zn < -za/2 or Zn > Za/2) -> 1 as n -> 00. 

In this way, a test with asymptotic size a and asymptotic power 1 can be constructed. 
If we wish to test the one-sided hypothesis Ho : B � Bo versus HI : B > Bo , a similar 

test might be constructed. Again, the test statistic Zn = (W n Bo) / Sn would be used 
and the test would reject Ho if and only if Zn > ZO; ' Using reasoning similar to the 
above, we could conclude that the power function of this test converges to 0, a, or 1 
according as B < ()o, B = ()o, or B > Bo. Thus this test too has reasonable asymptotic 
power properties. 

In general, a Wald test is a test based on a statistic of the form 

Zn = Wn Bo 

where ()o is a hypothesized value of the parameter B, Wn is an estimator of B, and Sn 
is a standard error for Wn, an estimate of the standard deviation of Wn. If Wn is the 
MLE of (), then, as discussed in Section 10.1 .3, 1/  JIn(Wn)  i s  a reasonable standard 
error for Wn· Alternatively, 1 /  J in(Wn) , where 

is the observed information number, is often used (see ( 10.1 .7)) .  

Example 10.3.5 (Large-sample binomial tests) Let Xl , . .  " Xn be a random 
sample from a Bernoulli(p) population. Consider testing Ho : P � Po versus HI : 
P > Po, where 0 < Po < 1 is a specified value. The MLE of p, based on a sample 
of size n, is Pn = I:�I Xi/no Since Pn is just a sample mean, the Central Limit 
Theorem applies and states that for any p, 0 < p < 1, (Pn P)/(Tn converges to a 
standard normal random variable. Here (Tn = Jp(1  - p)/n , a value that depends on 
the unknown parameter p. A reasonable estimate of (Tn is Sn = JPn( 1 - Pn)/n, and 
it can be shown (see Exercise 5.32) that (Tn/ Sn converges in probability to 1 .  Thus, 
for any p, 0 < p < 1 ,  

Pn p ( ) -> n O, 1 . 

VPn(l;:pn) 
The Wald test statistic Zn is defined by replacing p by Po, and the large-sample Wald 
test rejects Ho if Zn > ZQ ' As an alternative estimate of (Tn, it is easily checked that 
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1/ln(ftn) = Pn(l - Pn)/n. So, the same statistic Zn obtains if we use the information 
number to derive a standard error for Pn . 

If there was interest in testing the two-sided hypothesis Ho : P Po versus Hl : 
p #- Po , where 0 < Po < 1 is a specified value, the above strategy is again applicable. 
However, in this case, there is an alternative approximate test. By the Central Limit 
Theorem, for any p, 0 < p < 1 , 

P - p  n 
-+ n(O, 1 ) .  

yp(1 - p)/n 

Therefore, if the null hypothesis is true, the statistic 

( 10.3.4) z' n 
fin Po 

'" n (O, 1 ) y'po( 1 - po)/n 
(approximately) .  

The approximate level ex test rejects Ho if I Z� \  > ZQ/2. 
In cases where both tests are applicable, for example, when testing Ho : p = Po, it is 

not clear which test is to be preferred. The power functions (actual, not approximate) 
cross one another, so each test is more powerful in a certain portion of the parameter 
space. (Ghosh 1979) gives some insights into this problem. A related binomial contro
versy, that of the two-sample problem, is discussed by Robbins 1977 and Eberhardt 
and Fligner 1977. Two different test statistics for this problem are given in Exercise 
10.31 . ) 

Of course, any comparison of power functions is confounded by the fact that these 
are approximate tests and do not necessarily maintain level a. The use of a continuity 
correction (see Example 3.3.2) can help in this problem. In many cases, approximate 
procedures that use the continuity correction turn out to be conservative; that is, 
they maintain their nominal ex level (see Example 10.4.6) .  I I  

Equation ( 10.3.4) is a special case o f  another useful large-sample test, the score 
test. The score statistic is defined to be 

8 8 
S(O) = 

80 
log j(X\O) = 

80
Iog L(O\X). 

From (7.3.8) we know that, for all 0,  Eo S(O) O. In particular, if we are testing 
Ho : 0 = 00 and if Ho is true, then S(Oo) has mean O. Furthermore, from (7.3.10), 

the information number is the variance of the score statistic. The test statistic for the 
score test is 

Zs = S(00) /V1n (00 ) . 

If Ho is true, Zs has mean 0 and variance 1 . From Theorem 10. 1 . 12 it follows that Zs 
converges to a standard normal random variable if Ho is true. Thus, the approximate 
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level 0' score test rejects Ho if IZs l > Za!2.  If Ho is composite, then 00 , an estimate 
of () assuming Ho is true, replaces ()o in Zs . If 00 is the restricted MLE, the restricted 
maximization might be accomplished using Lagrange multipliers. Thus, the score test 
is sometimes called the Lagrange multiplier test. 

Example 10.3.6 (Binomial score test) Consider again the Bernoulli model from 
Example 10.3.5, and consider testing Ho : p = Po versus HI : p =I Po. Straightforward 
calculations yield 

Hence, the score statistic is 

the same as ( 10 .3 .4) . 

Zs = S(Po) = 'fin Po 
, V1n(Po) vpo(1 - po)/n 

I I  

One last class of approximate tests to be considered are robust tests (see Miscellanea 
10.6.6). From Section 10.2, we saw that if XI , . . .  , Xn are iid from a location family 
and OM is an M-estimator, then 

(10.3.5) 

where Vareo (OM) = [::::j��-=-�j)�2 is the asymptotic variance. Thus, we can construct 
a "generalized" score statistic, 

or a generalized Wald statistic, 

where va;oo (fJ M) can be any consistent estimator. For example, we could use a boot
strap estimate of standard error, or simply substitute an estimator into ( 10.2.6) and 
use 

(10.3.6) 

The choice of variance estimate can be important; see Boos ( 1992) or Carroll, Ruppert, 
and Stefanski ( 1995, Appendix A.3) for guidance. 
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Example 10.3.7 (Tests based on the Huber estimator) If Xl , . . . , Xn are iid 
from a pdf I(x - 0), where I is symmetric around 0, then for the Huber M-estimator 
using the p function in (10.2.2) and the t/J function ( 10.2.7) , we have an asymptotic 
variance 

( 10.3.7) 
J�k x2 I(x)dx + k2 Po( IX I > k) 

[Po( IX I � k)]2 
Therefore, based on the asymptotic normality of the M-estimator, we can (for 

example) test Ho : 0 00 VS. HI : () t= 00 at level a: by rejecting Ho if IZGs l > za!2 . 
To be a bit more practical, we will look at the approximate tests that use an estimated 
standard error. We will use the statistic ZGW, but we will base our variance estimate 
on ( 10.3.7) , that is 

V;;2(eM) 

( 10.3.8) 

Also, we added a "naive" test, ZN, that uses a simple variance estimate 

( 10.3.9) 

How do these tests fare? Analytical evaluation is difficult, but the small simulation 
in Table 10.3.1 shows that the Za/2 cutoffs are generally too small (neglecting to 
account for variation in the variance estimates) , as the actual size is typically greater 
than the nominal size. However, there is consistency across a range of distributions, 
with the double exponential being the best case. (This last occurrence is not totally 
surprising, as tbe Huber estimator enjoys an optimality property against distributions 
with exponential tails; see Huber 1981, Chapter 4 . )  I I  

10.4 Interval Estimation 

As we have done in the previous two sections, we now explore some approximate and 
asymptotic versions of confidence sets. Our purpose is, as before, to illustrate some 
methods that will be of use in more complicated situations, methods that will get 
some answer. The answers obtained here are almost certainly not the best but are 
certainly not the worst. In many cases, however, they are the best that we can do. 

We start, as previously, with approximations based on MLEs. 

10.4. 1  Approximate Maximum Likelihood Intervals 
From the discussion in Section 10.1 .2,  and using Theorem 10.1 .12,  we have a general 
method to get an asymptotic distribution for a MLE. Hence, we have a general method 
to construct a confidence interval. 
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Table 10.3.1 .  Power, at specified parameter valu.es, of nominal a = . 1  tests based on ZGW 
and ZN, for a sample of size n 15 (10, 000 simulations) 

Underlying pdf 

Normal ts Logistic Double exponential 
ZGW ZN ZGW ZN ZGW ZN ZGW ZN 

(Jo .16 .16 . 14 . 13 .15 . 15 . 1 1  .09 
(Jo + .250- .27 .29 .29 .27 . 27 .27 .31 .26 
(Jo + .50' .58 .60 .65 .63 .59 .60 .70 .64 
(Jo + .750- .85 .87 .89 .89 .85 .87 .92 .90 
00 + 10' .96 .97 .98 .97 .96 .97 .98 .98 
(Jo + 20' 1 .  1 .  1 .  1 .  1 .  1 . 1. 1. 

If Xl , . . .  , Xn are iid f(xIO) and iJ is the MLE of 0, then from ( 10. 1 .7) the variance 
of a function h( 8) can be approximated by . 

Va;(h(B) IO) � .. )h'(O)J2 l o-o . 
- �  log L(0Ix) 19=9 

Now, for a fixed but arbitrary value of 0, we are interested in the asymptotic distri
bution of 

h(B) - h(O) 
VVa;(h(O) 10) 

It follows from Theorem 10. 1 . 12 and Slutsky's Theorem (Theorem 5.5.17) (see Exer
cise 10.33) that 

h(B) - h(O) (0 ) -+ n  , 1 , JVa;(h(B) 10) 
giving the approximate confidence interval 

h(O) - ZO:/2 VVa;(h(O) 10) $; h(O) $; h(B) + zO:/2 VVa;(h(B) 10) . 
Example 10.4.1 (Continuation of Example 10.1.14) We have a random sample 
Xl , . . . , Xn from a Bernoulli(p) population. We saw that we could estimate the odds 
ratio p / (1 -p) by its MLE PI ( 1  - p) and that this estimate has approximate variance 

Va; C � p) � n(1 � p)3 ' 
We therefore can construct the approximate confidence interval 

1 p - ZO/2JVa; C � p) $; I P  p $; I � P + ZO/2JVa; C � p) ' I I  
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A more restrictive form of the likelihood approximation, but one that, when appli

cable, gives better intervals, is based on the score statistic (see Section 10.3.2). The 
random quantity 

( 10.4.1 )  Q(XIB) = 
10 10gL(BIX) 

J -Eo (/;I log L(BIX)) 

has a n(O, 1) distribution asymptotically as n -+ 00. Thus, the set 

(10.4.2) 

is an approximate 1 - Q confidence set. Notice that, applying results from Section 
7.3.2, we have 

and 

(10.4.3) 

Eo(Q(XIB)) = 
Ee (/o log L(BIX)) 

= 0 J -Eo (� log L( BIX)) 

Varo (Q(XIB)) = 
Vare (� log L(BIX)) 

= 1, -Ee (� 10gL(BIX)) 

and so this approximation exactly matches the first two moments of a nCO, 1) random 
variable. Wilks (1938) proved that these intervals have an asymptotic optimality 
property; they are, asymptotically, the shortest in a certain class of intervals. 

Of course, these intervals are not totally general and may not always be applicable 
to a function h(B). We must be able to express (10.4.2) as a function of h(B). 

Example 10.4.2 (Binomial score interval) Again using a binomial example, if 
Y E�=l Xi, where each Xi is an independent Bernoulli(p) random variable, we 
have 

Q(Ylp) 
log L(p IY) 

� n-1I 
_ p T=P J P(l�P) 

p - p 
Jp(l - p)Jn ' 

where p = yin. From ( 10.4.2), an approximate 1 - Q' confidence interval is given by 

(10.4.4) {P : p p ::; ZQ/2 } ' vlp(l - p)ln 
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this is the interval that results from inverting the score statistic (see Example 10.3.6). 
Ib calculate this interval we need to solve a quadratic in Pi see Example 10.4.6 for 
details. I I 

In Section 10.3 we derived another likelihood test based on the fact that -2 log A(X) 
bas an asymptotic chi squared distribution. This suggests that if Xl , . . .  , X", are iid 
l(xIO) and {) is the MLE of 0, then the set 

(10.4.5) {O :  -2 log (L(�IX») < v2 } L(Olx) - 1\.1,,," 

.iB an approximate 1 - a confidence interval. This is indeed the case and gives us yet 
another approximate likelihood interval. 

Of course, (10.4.5) is just the highest likelihood region (9.2.7) that we originally 
derived by inverting the LRT statistic. However, we now have an automatic way of 
attaching an approximate confidence level. 

Example 10.4.3 (Binomial LRT interval) For Y = E�l Xi, where each Xi is 
an independent Bernoulli(p) random variable, we have the approximate 1 - a confi
dence set 

{p : -2 log (�
y
�� -�r-Y ) � xL} . 

pY _ P n-y , 

This confidence set, along with the intervals based on the score and Wald tests, are 
compared in Example 10.4.7. I I  

10.4.£ Other Large-Sample Intervals 

Most approximate confidence intervals are based on either finding approximate (or 
asymptotic) pivots or inverting approximate level a test statistics. If we have any 
statistics W and V and a parameter () such that, as n ---+ 00, 

W () -V- --> nCO, 1 ) ,  

then we can form the approximate confidence interval for () given by 

W Za/2V � () � W + Za/2V, 

which is essentially a Wald-type interval. Direct application of the Central Limit The
orem, together with Slutsky's Theorem, will usually give an approximate confidence 
interval. (Note that the approximate maximum likelihood intervals of the previous 
section all reflect this strategy.) 

Example 10.4.4 (Approximate interval) If Xl , . . . , Xn are iid with mean J.t and 
variance (12 , then, from the Central Limit Theorem, 

X - J.t  a/.Jii � n(O, I ) .  
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Table 10.4. 1 .  Confidence coefficient for the pivotal interval (10.4.6), n = 15, based on 10,000 
simulations 

Underlying pdf 

Nominal level Normal ts Logistic Double Exponential 
1 - a = .90 
1 a = .95 

.879 

.931 
.864 
.924 

.880 

.931 
.876 
.933 

Moreover, from Slutsky's Theorem, if S2 -t 0-2 in probability, then 

X - jJ. Sj.,jii -t n(O, 1 ) ,  

giving the approximate 1 a confidence interval 

(10.4.6) 

To see how good the approximation is, we present a small simulation to calculate 
the exact coverage probability of the approximate interval for a variety of pdfs. Note 
that, since the interval is pivotal, the coverage probability does not depend on the 
parameter value; it is constant and hence is the confidence coefficient. We see from 
Table 10.4.1 that even for a sample size as small as n = 15, the pivotal confidence 
interval does a reasonable job, but dearly does not achieve the nominal confidence 
coefficient. This is, no doubt, due to the optimism of using the Zcr/2 cutoff, which does 
not account for the variability in S. As the sample size increases, the approximation 
will improve. I I  

In the above example, we could get an approximate confidence interval without 
specifying the form of the sampling distribution. We should be able to do better 
when we do specify the form. 

Example 10.4.5 (Approximate Poisson interval) 
Poisson(A), then we know that 

x - A S/.fii -t n(O, l) .  

However, this is true even if we did not sample from a Poisson population. Using the 
Poisson assumption, we know that Var(X) A EX and X is a good estimator 
of A (see Example 7.3.12).  Thus, using the Poisson assumption, we could also get an 
approximate confidence interval from the fact that 

X - A rvT:: -t n(O, 1 ) ,  
v Xjn 

which is the interval that results from inverting the Wald test. We can use the Poisson 
assumption in another way. Since Var(X) = A, it follows that 

X - A 
� -t n(O, 1 ) ,  

v Ajn 
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resulting in the interval corresponding to the score test, which is also the likelihood 
interval of ( 10.4.2) and is best according to Wilks ( 1938) (see Exercise lOAD) . I I 

Generally speaking, a reasonable rule of thumb is to use as few estimates and as 
many parameters as possible in an approximation. This is sensible for a very simple 
reason. Parameters are fixed and do not introduce any added variability into an 
approximation, while each statistic brings more variability along with it. 

Example 10.4.6 (More on the binomial score interval) For a random sample 
Xb " . , Xn from a Bernoulli(p) population, we saw in Example 10.3.5 that, as n -> 00, 
both 

p - p 
and p - p 

Jp(1 - p)/n Jp(1  - p}/n 

converge in distribution to a standard normal random variable, where P L xi/no 
In Example 10.3.5 we saw that we could base tests on either approximation, with the 
former being the Wald test and the latter the score test. We also know that we can 
use either approximation to form a confidence interval for p. However, the score test 
approximation (with fewer statistics and more parameter values) will give the interval 
(10.4.4) from Example 10.4.2, which is the asymptotically optimal one; that is, 

is the better approximate interval. 
It is not immediately clear what this interval looks like, but we can explicitly solve 

for the set of values. If we square both sides and rearrange terms, we are looking for 
the set of values of p that satisfy 

{p :  (p p)2 $ z�//(l 
n 
P) } . 

This inequality is a quadratic in p, which can be put in a more familiar form through 
some further rearrangement: 

Since the coefficient of p2 in the quadratic is positive, the quadratic opens upward 
and, thus, the inequality is satisfied if p lies between the two roots of the quadratic. 
These two roots are 

(10.4.7) 
2p + z�/2/n ± j(2P + z!/2/n)2 - 4p2 (1 + z�/2/n) 

2(1 + z!/2/n} 

and the roots define the endpoints of the confidence interval for p. Although the 
expressions for the roots are somewhat nasty, the interval is, in fact, a very good 
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S tion 10.4 

Figure 10.4 . 1 .  Intc1'l.'als for a binomial proportion from th LRT proc,-,dUT (soli.d linc,,) , th e 
score proadurE (long dashe-), and the 11lod�fied Wald procedure (shoTt dashes ! 

interval for p. The interval ran be further improved , however, by using a cuntinuity 
correction (see Example 3 . 3 . 2 ) . To do this, WP wOl l ld solve two separate quudrati :; 
(see Exercise 1 0 ,45) , 

_ n < _, 

I f> + +- --
p

i )p(1 - - p )/n _. -0/'2 , 

I - 1 I p - ,,- - p _ n  < �c,ro . I )p( l  - p)/n - -

( larger root = upper interval endpuint) 

(smaller root = lower i nterval endpoint) 

At th endpoints there are obvious modifications .  If L .r;  = 0 ,  then t he lower interval 
ndpoint is taken to be 0,  while,  if I >" = II ,  then the UpP( '[ interval endpoi nt is 

taken to be l .  See Blyth ( 1 986) for some good approximations. I I 

'vVp now have seen three intervals for a binomial proportion: those ba.<;ed on the 
vVald and score stat. istics and t he LRT interval of Examplp 10. ! . 3 .  Typically til 
Walcl interval i s  least preferred,  but i t  would be i nterest ing to compare all three. 

Example 10 .4 .7 (Comparison of binomial intervals) For Y = I:��1 X·i , Xl ' 
. . " Xn i i d  from a Bernoull i(p) population, the \Valel i nterval is 

( 10 .4 .8)  
- )/)( 1 - p) . .  p - Za/2 . � p 'S p n 

the .-;eore interval (with continu ity correction ) is de cribed i n  Example 1 0 . 4 . 6 ,  and 
the approximate LRT is given in Example 1 0 . 4 . 3 .  To compare them , we look at an 
example. 

For n = 1 2 ,  FigUl'e 1 0 . 4 . 1  show::; the real ized intervals for the three procedures. 
The LRT procedure produces the shortest i nterval s ,  ann the sCOre procedure th 
longest .  For this picture we have made two modifications to the \Vald int.erval . First.  
at y = 0 the unmodified interval is ( 0 , 0) , so we have chi\ ngcd the upper endpoi nt to 
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Figure 10.'1 . 2 .  Coverage probabilitils for nominal .9  confidence p rocedure i for a binomial 

proportion: th LRT proceduT ' (thin solid hncs. shaded grey), the scor- prow!!! ,..' (dash es), 

and th modified Wald proc dure (thick solid lines) 

1 - (0./2) 1/11 , with a simi lar modification to t he lower i nt rval at y 7l. Also, there 

are some instances where the endpoint:;; of the Wald interval 00 outside 10, 1 ] ; these 

have bepn t runcated . 

In Fi -;ure 10 .4 .2 we see that the longer length of the score i ntt�l'val is reflected in its. 
higher coverage probability. Indef'd ,  t.he score interva l is the only one (of t he thref') 
tha.t maintains a coverage probab i li ty above . 9 ,  an d hence is t. he onlv interval with 
confidence coefI1cient .9 .  The LRT and Wald intervals appear to be t.ou shor t ,  and 
their coveraoe probabilities are too far below .9 for them to be acceptable. Of cours ) 
their performance w i ll improve with illcreasing fl. 

So i t  appears that tl1P continuity corrected score interval , althou�h longer, is the 

interva.l of choice for smal l  'Il (but see Exercise 10 .44 for i:lnother option) .  Thp LRT 
and vVald proced ures produce i ntervals that are j ust too slJort for small n, witb the 
WaJd interval also suffering from endpoi nt maladies.  I I 

As we did in  Section 10 .3 . 2 ,  we brieRy look at. i nt Tvab based on robust estilllators. 

Example 10 .4 .8  (Intervals based on the Huber estimator) In a devplopment 

simi lar to EX::Impje 10 . 3 . 7, vve um form asymptotic confidence intervals ba ed on the 
Hubpr M-estimator .  If Xl ) . . .  , X" are iid from i\ pdf f(x _. e l ,  where f is symmetriC' 
around 0 ,  we have the approxilllate interval for B, 

where Var(Bt \( ) is given by ( 10 . 3 . 7 ) .  Now we rep lace Var(iJ", ) by the est i m a tes ( 10 . 3 . 1:; )  
and ( 10 . 3 . 9 )  to get \\"ald-type intervals. To evaluate t he,;!;" i ntervals , we produce a 

ta,ble similar to T;-lble lOA. 1 .  It is interesting that ,  wi th the exception of t he double 

xpollent iaj dbtribution , the int.ervals i l l  Tetble 10 .4 .2  fare worse than those ill Table 
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Table 10.4.2. Confidence coefficients for nominal 1 - Q 
AI-estimator, n = based on 10,000 simulations 

.9 intervals based on Huber's 

Nominal level 
Variance estimate ( 10.3.8) 
Variance estimate (10.3,9) 

Normal 
,844 
.837 

Underlying pdf 

ts Logistic 
.856 .855 
.867 .855 

Double exponential 
.889 
.910 

10.4. 1 ,  which are based on the usual mean and variance. vVe do not have a good 
explanation for this, except to once again blame it on the overoptimism of the Zo:/2 
cutoff. I I  

Thus far, all of the approximations mentioned have been based on letting n --+ 
00. However, there are other situations where we might use approximate intervals. 
In Example 9.2 .17 we needed approximations as the parameter went to infinity. In 
another situation, in Example 2.3.13 we saw that for certain parameter configurations, 
the Poisson distribution can be used to approximate the binomiaL This suggests 
that, if such a parameter configuration is believed to be likely, then an approximate 
binomial interval can be based on the Poisson distribution. In that spirit we illustrate 
the following somewhat unusual case. 

Example 10.4.9 (Negative binomial interval) Let Xl , ' "  , Xn be iid negative 
binomial(r, p) . We assume that r is known and we are interested in a confidence 
interval for p. Using the fact that Y = L Xi "" negative binomial(nr, p) , we can 
form intervals in a number of ways. Using a variation of the binomial-F distribution 
relationship, we can form an exact confidence interval (see Exercise 9.22) or we can 
use a normal approximation (see Exercise 10,41) .  There is another approximation 
that does not rely on large n, but rather small p. 

In Exercise 2.38 it is established that, as p --+ 0, 

2pY --+ X�nr in distribution. 

So, for small p, 2pY is a pivot! Using this fact, we can construct a pivotal 1 a 
confidence interval, valid for small p: 

: 2nr, 1 -o:/2 < < 2nr,a/2 . { X2 X2 } p 2y - p - 2y 

Details are in Exercise 10,47. 

10.5 Exercises _______________________ _ 

10.1 A random sample Xl, . . .  , Xn is drawn from a population with pdf 

1 
f(x l(;l) = '2 ( 1  + (;Ix) , -1 < x < 1, -1 < (;I < 1 .  

Find a consistent estimator of f) and show that i t  i s  consistent. 



lfCtion 10.5 EXERCISES 505 

10.2 Prove Theorem 10.1.5. 
10.3 A random sample Xl , . . .  , Xn is drawn from a population that is nCO, 0), where 0 >  0. 

(a) Show that the MLE of 0, tJ,  is a root of the quadratic equation (]2 + 0 - W = 0, 
where W ( l/n) xl, and determine which root equals the MLE. 

(b) Find the approximate variance of {j using the techniques of Section 10. 1 .3. 

10.4 A variation of the model in Exercise 7.19 is to let the random variables Y1 , • • .  , Y" 
satisfy 

1, . . . , n, 

where X1 , . . . , X" are independent n(j.t, r2) random variables, lOl , • • •  , lO" are iid 
n(0, 0-2) ,  and the Xs and lOS are independent. Exact variance calculations become 
quite difficult, so we might resort to approximations. In terms of j.t, r2 , and 0-2, find 
approximate means and variances for 
(a) E XiY; / E X;'  
(b) E Y;/ E X;. 
(c) E(Y;/X;)/n. 

10.5 For the situation of Example 10. 1 .8 show that for Tn .,fii/ )(,,: 
(a) Var (Tn ) = 00. 

(b) If j.t oF 0 and we delete the interval ( -6, 6) from the sample space, then Var (Tn)  < 
00. 

(c)  If  j.t oF 0, the probability content of the interval (-6, 6) approaches O .  
10.6 For the situation of Example 10. 1 . 10 show that 

(a) EY" 0 and Var(Yn )  = pn + (1 - Pn)o-� . 
(b) P(Yn < a) -+ P(Z < a), and hence Yn -+ nCO, 1 )  (recall that pn -+ 1, O-n -+ 00, 

and ( 1  - Pn)o-� ....... 00). 

10.7 In the proof of Theorem 10. 1.6 it  was shown that the MLE 9 is an asymptotically 
efficient estimator of O. Show that if reO) is a continuous function of 0, then reO) is 
a consistent and asymptotically efficient estimator of reO). 

lO.8 Finish the proof of Theorem 10.1 .6 by establishing the two convergence results in 
( 10. 1 .6). 

(a) Show that 

where Wi frl��9) has mean 0 and variance 1(00). Now use the Central Limit 
Theorem to establish the convergence to n[O , I(Bo) ] .  

(b)  Show that 

and that the mean of the first piece is 1(00) and the mean of the second piece is 
O. Apply the WLLN. 
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10.9 Suppose that Xl , . . .  , X", are iid Poisson().). Find the best unbiased estimator of 
(a) , the probability that X O. 
(b) ).e->., the probability that X = 1. 
(c) For the best unbiased estimators of parts (a) and (b) ,  calculate the asymptotic 

relative efficiency with respect to the MLE. Which estimators do you prefer? 
Why? 

(d) A preliminary test of a possible carcinogenic compound can be performed by 
measuring the mutation rate of microorganisms exposed to the compound. An 
experimenter places the compound in 15 petri dishes and records the follOwing 
number of mutant colonies: 

10, 7, 8, 13,  8, 9, 5, 7, 6, 8, 3, 6, 6, 3, 5. 

Estimate e-.\,  the probability that no mutant colonies emerge, and ).e-.\, the 
probability that one mutant colony will emerge. Calculate both the best unbiased 
estimator and the MLE. 

10.10 Continue the calculations of Example 10.1 .15,  where the properties of the estimator 
of p(1  p) were examined. 
(a) Show that, if p ::f  1/2, the MLE 1'1(1 - 1'1) is asymptotically efficient. 
(b) If p 1/2, use Theorem 5.5.26 to find a limiting distribution of 1'1{1 1'1) . 
(c) Calculate the exact expression for Var[p( 1  - p)] . Is the reason for the failure of 

the approximations any clearer? 
10.11  This problem will look at some details and extensions of the calculation in Example 

10.1 .18. 
(a) Reproduce Figure 10.1 .1 ,  calculating the ARE for known f3. (You can follow the 

calculations in Example A.a.7, or do your own programming.) 
(b) Verify that the ARE(X, A) comparison is the same whether f3 is known or un

known. 
(c) For estimation of f3 with known J,J., show that the method of moment estimate 

and MLEs are the same. (It may be easier to use the (a, f3) parameterization.) 
(d) For estimation of f3 with unknown J,J., the method of moment estimate and MLEs 

are not the same. Compare these estimates using asymptotic relative efficiency, 
and produce a figure like Figure 10. 1 . 1 ,  where the different curves correspond to 
different values of J,J.. 

10.12 Verify that the superefficient estimator dn of Miscellanea 10.6.1 is asymptotically 
normal with variance v(O) = 1 when 0 ::f a and v(O) = a2 when () = O. (See Lehmann 
and Casella 1998, Section 6.2, for more on superefficient estimators.) 

10.13 Refer to Example 10. 1.19. 
(a) Verify that the bootstrap mean and variance of the sample 2 , 4, 9, 12  are 6.75 and 

3.94, respectively. 
(b) Verify that 6.75 is the mean of the original sample. 
(c) Verify that, when we divide by n instead of n 1 ,  the bootstrap variance of the 

mean, and the usual estimate of the variance of the mean are the same. 
(d) Show how to calculate the bootstrap mean and standard error using the (4+:-l) = 

35 distinct possible resamples. 
(e) Establish parts (b) and (c) for a general sample Xl , X2, . . .  , X", . 

10.14 In each of the following situations we will look at the parametric and nonparametric 
bootstrap. Compare the estimates, and discuss advantages and disadvantages of the 
methods. 
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(a.) Referring to Example 10. 1 .22, estimate the variance of 82 using a. nonparametric 
bootstrap. 

(b) In Example 5.6.6 we essentially did a parametric bootstrap of the distribution 
of 82 from a Poisson sample. Use the nonparametric bootstrap to provide an 
alternative histogram of the distribution. 

(c) In Example 10. 1 . 18  we looked at the problem of estimating a gamma mean. 
Suppose that we have a random sample 

0.28, 0.98, 1 .36, 1 .38, 2.4, 7.42 

from a gamma( 0, j3) distribution. Estimate the mean and variance of the distri
bution using maximum likelihood and bootstrapping. 

10.15 Use the Law of Large Numbers to show that VarB (6) of ( 10. 1 . 1 1 )  converges to Var· (6) 
of (10.1 . 10) as B -> 00. 

10.16 For the situation of Example 10.1.21, if we observed that p = 1 /2, we might use a 
variance estimate from Theorem 5.5.26. Show that this variance estimate would be 
equal to 2 [Var(pW . 
(a) If we observe p = 11/24, verify that this variance estimate is .00007. 
(b) Using simulation, calculate the "exact variance" of p(l p) when n =:= 24 and 

p = 1 1/24. Verify that it is equal to .00529. 
(c) Why do you think the Delta Method is so bad in this case? Might the second

order Delta Method do any better? What about the bootstrap estimate? 
10.17 Efron ( 1982) analyzes data on law school admission, with the object being to examine 

the correlation between the LSAT (Law School Admission Test) score and the first
year GPA (grade point average) . For each of 15 law schools, we have the pair of data 
points (average LSAT, average GPA) : 

(576, 3.39) 
(580, 3.07) 
(653, 3. 12) 

(635, 3.30) 
(555, 3.00) 
(575, 2.74) 

(558, 2.81) 
(661 , 3.43) 
(545, 2.76) 

(578, 3.03) 
(651, 3.36) 
(572, 2.88) 

(666, 3.44) 
(605, 3.13) 
(594, 2.96) 

(a) Calculate the correlation coefficient between LSAT score and GPA. 
(b) Use the non parametric bootstrap to estimate the standard deviation of the cor

relation coefficient. Use B = 1000 resamples, and also plot them in a histogram. 
(c) Use the parametric bootstrap to estimate the standard deviation of the correla

tion coefficient. Assume that (LSAT, GRE) has a bivariate normal distribution, 
and estimate the five parameters. Then generate 1000 samples of 15 pairs from 
this bivariate normal distribution. 

(d) If (X, Y) are bivariate normal with correlation coefficient p and sample correla
tion r, then the Delta Method can be used to show that 

Use this fact to estimate the standard deviation of r. How does it compare to 
the bootstrap estimates? Draw an approximate pdf of r. 

(e) Fisher's z-transformation is a variance-stabili.zing transformation for the correla
tion coefficient (see Exercise 1 1.4) . If (X, Y) are bivariate normal with correlation 
coefficient {} and sample correlation r, then 

1 [ ( I + r ) ( I + P) ] 2' log 1T - log 1P 
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is approximately normal. Use this fact to draw an approximate pdf of r. 
(Establishing the normality result in part (q)d involves some tedious matrix 
calculations; see Lehmann and Casella 1998, Example 6.5). The z-transformation 
of part (q)e yields faster convergence to normality that the Delta Method of part 
(q)d. Diaconis and Holmes 1994 do an exhaustive bootstrap for this problem, 
enumerating all 77, 558, 760 correlation coefficients.) 

10.18 For the situation of Exercise 10.2 .1 ,  that is, if X! , X2 , . . .  , X" are iid, where Xi '" 
n(p,, (]'2) with probability 1 - 6 and Xi """ f(x) with probability 6, where f(x) is any 
density with mean () and variance 72 , show that 

Var(X) = (1 _ 0) (]'2 + 6 72 
+ 

0 (1 - 6)(0 11-)2 
n n n 

Also deduce that contamination with a Cauchy pdf will always result in an infinite 
variance. (Hint: Write this mixture model as a hierarchical modeL Let Y 0 with 
probability 1 - 6 and Y 1 with probability 6. Then Var(Xi) = E[Var(Xi) IYj + 
Var(E[Xi IY]).) 

10.19 Another way in which underlying assumptions can be violated is if there is correlation 
in the sampling, which can seriously affect the properties of the sample mean. Suppose 
we introduce correlation in the case discussed in Exercise 10.2.1 ;  that is, we observe 
Xl " ' "  X", where Xi "" n(O, (]'2 ) ,  but the XiS are no longer independent. 

(a) For the equicorrelated case, that is, Corr(X" Xj ) = p for i t= j, show that 

so Var(X) f+ 0 as n ......, 00. 

- (]'2 n - 1 2 Var(X) = - + --per , n n 

(b) If the XiS are observed through time (or distance), it is sometimes assumed that 
the correlation decreases with time (or distance) , with one specific model being 
Corr(X" Xj) = pl'-j l . Show that in this case 

_ (]'2 2(]'2 P ( 1 p" ) 
Var(X) = - + - -- n + -- , n n2 1 P 1 - P 

so Var(X) ......, 0 as n ......, 00. (See Miscellanea 5.8.2 for another effect of correlation.) 
(c) The correlation structure in part (b) arises in an autoregressive AR(l) model, 

where we assume that X'+l pXi + Oi, with 6, iid n (O, 1). If Ipi < 1 and we 
define (]'2 = 1/ (1  p2), show that Corr(Xl , Xi )  = pi-I .  

10.20 Refer to Definition 10.2.2 about breakdown values. 

(a) If Tn = Xn, the sample mean, show that b = O. 
(b) If  Tn :::::: M", the sample median, show that b = .5. 

An estimator that "splits the difference" between the mean and the median in 
terms of sensitivity is the o:-trimmed mean, 0 < 0: < �, defined as follows. X�, 
the o:-trimmed mean, is computed by deleting the o:n smallest observations and 
the o:n largest observations, and taking the arithmetic mean of the remaining 
observations. 

(c) If Tn X: , the o:-trimmed mean of the sample, 0 < 0: < � ,  show that 0 < b < � .  
10.21 The breakdown performance of the mean and the median continues with their scale 

estimate counterparts. For a sample Xl , . . .  I X,,:  
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(a) Show that the breakdown value of the sample variance 82 = E(Xi _ X)2 len- I) 
is o. 

(b) A robust alternative is the median absolute deviation, or MAD, the median of 
IXl MI . IX2 - MI • . .  · •  IXn MI ,  where M is the sample median. Show that this 
estimator has a breakdown value of 50%. 

10.22 This exercise will look at some of the details of Example 10.2.3. 

(a) Verify that, if n is odd, then 

(b) Verify that Pn. -+ P = F(J.L) = 1/2 and 

(n + 1 )/2 - npn. -+ -2aF'(J.L) = -2af(J.L). VnPn( 1 - Pn) 

(Hint: Establish that (n+l).,9r,-npn is the limit form of a derivative.) 
(c) Explain how to go from the statement that 

to the conclusion that ..;n(Mn - J.L) is asymptotically normal with mean ° and 
variance 1/[2f(J.L )]2 . 

(Note that the CLT would directly apply only if Pn did not depend on n. As it does, 
more work needs to be done to rigorously conclude limiting normality. When the 
work is done, the result is as expected.) 

10.23 In this exercise we will further explore the ARE of the median to the mean, 
ARE(Mn, X).  

(a) Verify the three AREs given in  Example 10.2.4. 
(b) Show that ARE(Mn, X) is unaffected by scale changes. That is, it doesn't matter 

whether the underlying pdf is f(x) or ( l/u)f(x/u) .  
(c)  Calculate ARE(Mn,  X) when the underlying distribution is  Student's t with v 

degrees of freedom, for v 3, 5, 10, 25, 50, 00. What can you conclude about the 
ARE and the tails of the distribution? 

(d) Calculate ARE(Mn , X) when the underlying pdf is the Thkey model 

x '" { nCO, 1) with probability 1 6 
nCO, (2) with probability 6. 

Calculate the ARE for a range of 8 and u. What can you conclude about the 
relative performance of the mean and the median? 

10.24 Assuming that Go satisfies Eoo,p(X - Go) = 0, show that ( 10.2.4) and (10.2.5) imply 
( 10.2.6) . 

10.25 If f(x) is a pdf symmetric around 0 and p is a symmetric function, show that J ,p(x 
G)f(x G) dx 0, where ,p p. Show that this then implies that if Xl , . .  " Xn are 
lid from f(x - 8) and OM is the minimizer of L. P(Xi - 8) , then OM is asymptotically 
normal with mean equal to the true value of 8. 
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10.26 Here we look at some details in the calculations in Example 10.2.6. 
(a) Verify the expressions for E�lP/(X 0) and Ee[lP(X - oW, and hence verify the 

formula for the variance of OM .  
(b) When calculating the expected value of 11" ,  we noted that 11' was not differentiable, 

but we could work with the differentiable portion. Another approach is to realize 
that the expected value of 11' is differentiable, and that in ( 10.2.5) we could write 

1 n d - L lP'(x; - (0) -> dOE()olP(X - e) 1 . 
n ;=1 8=80 

Show that this is the same limit as in ( 10.2.5) .  
10.27 Consider the situation of Example 10.6.2. 

(a) Verify that IF(X, x) = x - It. 
(b) For the median we have T(P) = m if P(X :5 m) = 1/2 or m =:; P-1 (1/2). If 

X '" Pf" show that 

P(X < a) _ { (1 - 6)F(a) if x > a 
- - (1 6)F(a) + 6 otherwise 

and thus 

(c) Show that 

� [p- 1 (2(1 � 6) ) F-1 (D] -> 2f�m) ' 

and complete the argument to calculate I F(M, x). 

(Hint: Write a6 = p-1 (
2(l�6)) ' and argue that the limit is a6j6=0. This latter 

quantity can be calculated using implicit differentiation and the fact that ( 1  -
6)- 1  = 2F(af,) .) 

10.28 Show that if p is defined by ( 10.2.2), then both p and p' are continuous. 
10.29 From ( 10.2.9) we know that an M-estimator can never be more efficient than a max

imum likelihood estimator. However, we also know when it can be as efficient. 
(a) Show that ( 10.2.9) is an equality if we choose lP(x - e) d/(ejx) , where l is the 

log likelihood and c is a constant. 
(b) For each of the following distributions, verify that the corresponding 11' functions 

give asymptotically efficient M-estimators. 

(i) Normal: f(x) e-z2 /2 /( V2-ff),  lP(x) x 
(ii) Logistic: f(x) = e-:r /(1  + e-", )2, lP(x) = tanh(x), where tanh(x) is the 

hyperbolic tangent 
(iii) Cauchy: f(x) [w( 1  + X2jt1 ,  lP(x) = 2x/(1 + x2) 
(iv) Least informative distribution: 

x 
_ { ce-;r;11/2 jxj :5 c  f(  ) - Ce-c\x \+c2/2 Ixl > c 

with lP(x) = max{ -c, min(c, x)} and C and c are constants. 
(See Huber 1981, Section 3.5, for more details.) 
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10.30 For M-estimators there is a connection between the T/J function and the breakdown 
value. The details are rather involved (Huber 1981 ,  Section 3.2) but they can be 
summarized as follows: If T/J is a bounded function, then the breakdown value of the 
associated M-estimator is given by 

• 1/ . { T/J(-OO) T/J(OO) } b = 
1 + 1/ ' where 1/ = mm - T/J(oo) ' - T/J(-oo) . 

(a) Calculate the breakdown value of the efficient M-estimators of Exercise 10.29. 
Which ones are both efficient and robust? 

(b) Ca.lculate the breakdown value of these other M-estimators 
(i) The Huber estimator given by (10.2. 1 )  

(ii) Thkey's biweight: T/J(x) x(c2 - x2) for Ixl $ c and 0 otherwise, where c is 
a constant 

(iii) Andrew's sine wave: T/J(x) = csin(x/c) for Ix l  $ C1r and 0 otherwise 
(c) Evaluate the AREs of the estimators in part (b) with respect to the MLE when 

the underlying distribution is (i) normal and (ii) double exponential. 
10.31 Binomia.l data gathered from more than one population are often presented in a 

contingency table. For the case of two populations, the table might look like this: 

Population 
1 2 Tota.l 

Successes � 8 = 81 + 82 
Failures � F = FI + H 

Tota.l nl n2 n ni + n2 
where Population 1 is binomia.l(nl ,pJ ) ,  with 81 successes and F1 failures, and Pop
ulation 2 is binomia.l(n:l ,P2) ,  with 82 successes and F2 failures. A hypothesis that is 
usua.lly of interest is 

Ho : PI P2 versus 

(a) Show that a test can be based on the statistic 

T =  (/Jl pd (;1 + ;J (p(l - p» ' 
where PI 8I/n1 , P2 = 82/n2 , and p = (81 + 82 )/(nl + n2) '  Also, show that as 
n l ,  n2 -+ 00, the distribution of T approaches X�. (This is a special case of a test 
known as a chi squared test of independence.) 

(b) Another way of measuring departure from Ho is by calculating an expected fre
quency table. This table is constructed by conditioning on the marginal totals 
and filling in the table according to Ho : PI = P2 , that is, 

Expected frequencies 
1 2 Total 

Successes 
nI8 n28 8 81 + 82 nl + n2 nl + n2 

Failures 
nlF n2F F =  F1 + F2 n l  + n2 nl + n2 

Total n l  n2 n nl + n2 
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Using the expected frequency table, a statistic T* is computed by going through 
the cells of the tables and computing 

T* = � (observed - expected)2 

L... expected 

( 81 - n���2 r (F2 ,,7::2 r = nl S + . . .  + -'---n-2""P'---<--

" 1 +"2 

Show, algebraically, that T· = T and hence that TO is asymptotically chi squared. 
( c) Another statistic that could be used to test equality of PI and P2 is 

Show that, under Ho, TO. is asymptotically n(O, 1 ) ,  and hence its square is asymp
totically xi. Furthermore, show that (T· o )2 =I TO . 

(d) Under what circumstances is one statistic preferable to the other? 
(e) A famous medical experiment was conducted by Joseph Lister in the late 18005. 

Mortality associated with surgery was quite high, and Lister conjectured that 
the use of a disinfectant, carbolic acid, would help. Over a period of several years 
Lister performed 75 amputations with and without using carbolic acid. The data 
are given here: 

Carbolic acid used? 
Yes No 

Patient lived? 
Yes 34 19  , 
No 6 16 I 

Use these data to test whether the use of carbolic acid is associated with patient 
mortality. 

10.32 (a) Let (Xl , . . .  , X,,) '" multinomial(m, PI ,  " . , p,,) .  Consider testing Ho : PI P2 
versus HI : PI =I P2 . A test that is often used, called McNemar's Test, rejects Ho 
if 

Show that this test statistic has the form (as in Exercise 10.31) 

� (observed expected? 
L... expected ' 

1 

where the XiS are the observed cell frequencies and the expected cell frequencies 
are the MLEs of mph under the assumption that PI = P2 .  

(b) McNemar's Test i s  often used in the following type of problem. Subjects are asked 
if they agree or disagree with a statement. Then they read some information 
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about the statement and are asked again if they agree or disagree. The numbers 
of responses in each category are summarized in a 2 x 2 table like this: 

After 

Before 

Agree 

I 

A�
3

ee 

I 

Dm 
x

x

a�
4 

ee 

I Disagree �===X=l===:_ ======�_ 
The hypothesis Ho : PI P2 states that the proportion of people who change 
from agree to disagree is the same as the proportion of people who change from 
disagree to agree. Another hypothesis that might be tested is that the proportion 
of those who initially agree and then change is the same as the proportion of 
those who initially disagree and then change. Express this hypothesis in terms of 
conditional probabilities and show that it is different from the above Ho. (This 
hypothesis can be tested with a X2 test like those in Exercise 10.31 . )  

10.33 Fill in  the gap in Theorem 10.3. 1 .  Use Theorem 10. 1 . 12 and Slutsky's Theorem (The-
orem 5.5. 17) to show that (8 - 8)/ J _llf(8Ix) ---. nCO, 1 ) ,  and therefore -2 log )'(X) ---. xf. 

10.34 For testing Ho : P = po versus HI : p t= Po, suppose we observe Xl , . . . . Xn Ed 
Bernoulli(p) . 
(a) Derive an expression for -2 log >.(x), where >.(x) is the LRT statistic. 
(b) As in Example 10.3.2, simulate the distribution of -2 log >.(x) and compare it to 

the X2 approximation. 
10.35 Let Xl , . . .  , X", be a random sample from a n(/-t, 0-2) popUlation. 

(a) If /-t is unknown and 0-2 is known, show that Z vIn(X - /-to)/o- is a Wald 
statistic for testing Ho : /-t /-to .  

Cb)  If  0-2 i s  unknown and /-t is  known, find a Wald statistic for testing Ho : (1 = (10. 

10.36 Let X1 , . . .  , Xn be a random sample from a gamma(a, .B) population. Assume a is 
known and (3 is unknown. Consider testing Ho : (3 = (30 . 

(a) What is the MLE of (3? 
(b) Derive a Wald statistic for testing Ho, using the MLE in both the numerator and 

denominator of the statistic. 
(c) -Repeat part (b) but using the sample standard deviation in the standard error. 

10.37 Let Xl , . . .  , X", be a random sample from a n(/-t, (12) population. 
(a) If /-t is unknown and (12 is known, show that Z = vIn(X -/-to)/u is a score statistic 

for testing Ho : /-t = /-to· 
(b) If 0-2 is unknown and J.I. is known, find a score statistic for testing Ho : u = (10 . 

10.38 Let Xl, . . .  , X n be a random sample from a gamma( a, .B) popUlation. Assume a is 
known and /3 is unknown. Consider testing Ho : (3 /30. Derive a score statistic for 
testing Ho. 

10.39 Expand the comparisons made in Example 10.3.7. 
(a) Another test based on Huber's M-estimator would be one that used a variance 

estimate, based on ( 10.3.6). Examine the performance of such a test statistic, 
and comment on its desirability (or lack of) as an alternative to either ( 10.3.8) 
or ( 10.3.9) . 

(b) Another test based on Huber's M-estimator would be one that used a variance 
from a bootstrap calculation. Examine the performance of such a test statistic. 
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(c) A robust competitor to OM is the median. Examine the performance of tests of 
a location parameter based on the median. 

10.40 In Example 1004.5 we saw that the Poisson assumption, together with the Central 
Limit Theorem, could be used to form an approximate interval based on the fact that 

X - A  /\T::. -+ n (O, 1) .  
v >'ln 

Show that this approximation is optimal according to Wilks (1938). That is, show 
that 

� log L(AIX) 

-E,\ (.Jl'!... log L(>'IX)) (},\2 

10.41 Let X 1 , . . .  , Xn be iid negative binomial ( r, p) . We want to construct some approxi� 
mate confidence intervals for the negative binomial parameters. 

(a) Calculate Wilks' approximation (10.4.3) and show how to form confidence inter� 
vais with this expression. 

(b) Find an approximate 1 - 0: confidence interval for the mean of the negative 
binomial distribution. Show how to incorporate the continuity correction into 
your interval. 

(c) The aphid data of Exercise 9.23 can also be modeled using the negative binomial 
distribution. Construct an approximate 90% confidence interval for the aphid 
data using the results of part (b). Compare the interval to the Poisson-based 
intervals of Exercise 9.23. 

10.42 Show that (1004.5) is equivalent to the highest likelihood region (9.2.7) in that for 
any fixed 0: level, they will produce the same confidence set. 

10.43 In Example 1004.7, two modifications were made to the Wald intervaL 

(a) At y = 0 the upper interval endpoint was changed to 1 - (0:/2)1/''. and at y = n 
the lower interval endpoint was changed to (0:/2) 1/n. Justify the choice of these 
endpoints. (Hint: see Section 9.2.3.) 

(b) The second modification was to truncate all intervals to be within [O, 1.J. Show 
that this change, together with the one in part (a) , results in an improvement 
over the original Wald interval. 

10.44 Agresti and Coull ( 1998) "strongly recommend" the score interval for a binomial 
parameter but are concerned that a formula such as (1004.7) might be a bit formidable 
for an elementary course in statistics. To produce a reasonable binomial interval 
with an easier formula, they suggest the following modification to the Wald interval: 
Add 2 successes and 2 failures; then use the original Wald formula (1004.8). That 
is, use p = (y + 2)/(n + 4) instead of p = yIn. Using both length and coverage 
proba.bility, compare this interval to the binomial score interval. Do you agree that 
it is a reasonable alternative to the score interval? 
(Samuels and Lu 1992 suggest another modification to the Wald interval based on 
sample sizes. Agresti and Caffo 2000 extend these improved approximate intervals to 
the two sample problem.) 

10.45 Solve for the endpoints of the a.pproximate binomial confidence interval, with conti
nuity correction, given in Example 10.4.6. Show that this interval is wider than the 
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corresponding interval without continuity correction, and that the continuity cor
rected interval has a uniformly higher coverage probability. (In fact, the coverage 
probability of the uncorrected interval does not maintain 1 - C£j it dips below this 
level for some parameter values. The corrected interval does maintain a coverage 
probability greater than 1 - c£ for all parameter values.) 

10.46 Expand the comparisons made in Example lO.4.B. 
(a) Produce a table similar to Table 10.4.2 that examines the robustness of intervals 

for a location parameter based on the median. (Intervals based on the mean are 
done in Table 1004. 1 . )  

(b) Another interval based on Huber's M-estimator would be one that used a variance 
from a bootstrap calculation. Examine the robustness of such an interval. 

10.47 Let Xl , . . .  , Xn be iid negative binomial(r,p) .  
( a) Complete the details of Example 10.4.9; that is, show that for small p, the interval { . :dnr. l-o/2 < < Xinr,o/2 } 

p . 2 2:>  - p - 2 E x 

is an approximate 1 c£ confidence interval. 
(b) Show how to choose the endpoints in order to obtain a minimum length 1 - c£ 

interval. 
10.48 For the case of Fieller's confidence set (see Miscellanea 9.5.3), that is, given a random 

sample (Xl, Yl ) , . . .  , (Xn, Yn) from a bivariate normal distribution with parameters 
(JLx , JLY , uk , U� ) p), find an approximate confidence interval for () = JLY /JLx . Use the 
approximate moment calculations in Example 5.5.27 and apply the Central Limit 
Theorem. 

10.6 Miscellanea ___________________ _ 

10. 6. 1  Superefficiency 
Although the Cramer-Rao Lower Bound of Theorem 7.3.9 is a bona fide lower 
bound on the variance, the lower bound of Definition 10.1 . 1 1  and Theorem 10.1 .6, 
which refers to the asymptotic variance, can be violated. An example of an esti
mator that beats the bound of Definition 10.1 . 1 1 was given by Hodges (see LeCam 
1953) . 
If Xl ! " " Xn are iid n(O, 1) ,  the Cramer-Roo Lower Bound for unbiased estimators 
of e is v (O) = l/n. The estimator 

satisfies 

if IX I � 1/n1/4 
if IX I < 1/n1/4 

v'ii(dn - O)-n[O, v(O)] ,  
in distribution, where v (O) = 1 when 0 -=J 0 and v(O) = a2 when 0 O .  If a < 1 ,  
inequality (7.2.5) is therefore violated at e = o. 
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Although estimators such as dn, called superefficient, can be constructed in some 
generality, they are more of a theoretical oddity than a practical concern. This is 
because the values of 0 for which the variance goes below the bound are a set of 
Lebesgue measure O. However, the existence of superefficient estimators serves to 
remind us to always be careful in our examination of assumptions for establishing 
properties of estimators (and to be careful in general!) .  

10.6. 2  Suitable Regularity Conditions 
The phrase "under suitable regularity conditions" is a somewhat abused phrase, 
as with enough assumptions we can probably prove whatever we want. However, 
"regularity conditions" are typically very technical, rather boring, and usually sat
isfied in most reasonable problems. But they are a necessary evil, so we should deal 
with them. To be complete, we present a set of regularity conditions that suffice to 
rigorously establish Theorems 10.1.6 and 10. 1 .12. These are not the most general 
conditions but are sufficiently general for many applications (with a notable excep
tion being if the MLE is on the boundary of the parameter space). Be forewarned, 
the following is not for the fainthearted and can be skipped without sacrificing 
much in the way of understanding. 
These conditions mainly relate to differentiability of the density and the ability to 
interchange differentiation and integration (as in the conditions for Theorem 7.3.9). 
For more details and generality, see Stuart, Ord, and Arnold ( 1999, Chapter 18), 
Ferguson ( 1996, Part 4), or Lehmann and Casella (1998, Section 6.3) . 
The following four assumptions are sufficient to prove Theorem 10.1 .6, consistency 
of MLEs: 

(AI) We observe Xl , " " Xn, where Xi rv f(xIO) are iid. 
(A2) The parameter is identifiable; that is, if 0 =f- 0', then f(x!O) =f- f(xIO') . 
(A3) The densities f(xIO) have common support, and f(xIO) is differentiable in O. 
(A4) The parameter space 0 contains an open set w of which the true parameter 

value 00 is an interior point. 

The next two assumptions, together with (Al)-(A4) are sufficient to prove Theorem 
10.1 . 12, asymptotic normality and efficiency of MLEs. 

(A5) For every x E X, the density f(x IO) is three times differentiable with re
spect to 0, the third derivative is continuous in 0, and J f(xIO) dx can be 
differentiated three times under the integral sign. 

(A6) For any 00 E O, there exists a positive number c and a function M(x) (both 
of which may depend on (0) such that 

1::a lOg f(xIO) 1 � M(x) for all x E X, Oo - c < O < Oo + c, 

with Eoo [M(X )J < 00 . 
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10.6.9 More on the Bootstmp 

Theory 
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The theory behind the bootstrap is quite sophisticated, being based on Edge
worth expansions. These are expansions (in the spirit of Taylor series expan
sions) of distribution functions around a normal distribution. As an example, 
for Xl, . . .  , Xn iid with density f with mean and variance J.L and (72, an Edge
worth expansion of the cdf of .;n(!-�) is (Hall 1992, Equation 2. 17) 

P (v'n(: J.L) )  [ -1 2 
v 

� W = w(w) + ¢(w) 6v'nK(W 1) + Rn] 
where nRn is bounded, W and ¢ are, respectively, the distribution and density 
function of a standard normal and K E(XI - J.L)3 is the skewness. The first 
term in the expansion is the "usual" normal approximation, and as we add more 
terms, the expansion becomes more accurate. 
The amazing thing about the bootstrap is that in some cases it automatically 
gets the second term in the expansion correct (hence achieving "second-order" 
accuracy) . This does not happen in all cases, but one case in which it does occur 
is in bootstrapping a pivotal quantity. The Edgeworth theory of bootstrap is 
given a thorough treatment by Hall ( 1992) ;  see also Shao and 'fu ( 1995). 
Pmctice 
We have used the bootstrap only to calculate standard errors, but it has many 
other uses, with perhaps the most popular being the construction of confidence 
intervals. There are also many variations of the bootstrap developed for different 
situations. In particular, dealing with dependent data is somewhat delicate. For 
an introduction to the many uses of the bootstrap and much more, see Efron 
and Tibshirani (1993). 
Limitations 
Although the bootstrap is perhaps the single most important development in 
statistical methodology in recent times, it is not without its limitations and 
detractors. Outside of the cases of iid sampling and pivotal quantities, the boot
strap is less automatic but still can be extremely useful. For an interesting 
treatment of these issues, see LePage and Billard (1992) or Young ( 1994). 

10.6.4 Influence Functions 
A measure of catastrophic occurrences that does consider distributional properties 
is the influence junction, which also measures the effect of an aberrant observation. 
The influence function has an interpretation as a derivative, which also turns out 
to have some interesting consequences. 
The influence function of a statistic is actually calculated using its population 
counterpart. For example, the influence function of the sample mean is calculated 
using the population mean, as it seeks to measure the influence of perturbing the 
population. Similarly, the influence function of the sample median is calculated 
using the population median. To treat this idea in a consistent manner, it makes 
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sense to think of an estimator as a function that operates on the cdf F or its sample 
counterpart, the empirical cdf (Definition 1 .5 .1) Fn. Such functions, that actually 
have other functions as arguments are known as functionals. 
Note that for a sample Xl , X2, .  " , Xn, knowledge of the sample is equivalent to 
knowledge of the empirical cdf Fn, as Fn has a jump of size lIn at each Xi. Thus, 
a statistic T = T(X1 , X2, • • •  , Xn) can equivalently be written T(Fn} . In doing so, 
we can then denote its population counterpart as T(F) . 

Definition 10.6.1 For a sample Xl , X2 , • • •  , Xn from a population with cdf F, 
the influence function of a statistic T T(Fn )  at a point x is 

where X I'V F6 if 

IF(T, x) = lim -6
1 [T(F6) - T(FJ] , 6-.0 

X I'V { F with probability 1 - 8 
x with probability 8, 

that is, F6 is a mixture of F and a point x. 

Example 10.6.2 (Influence functions of the mean and median) Suppose 
that we have a population with continuous cdf F and pdf f. Let p. denote the 
population mean and X the sample mean, and let T(.) be the functional that 
calculates the mean of a population. Thus T(Fn) = X, T(F) = p., and 

T(Fo )  (1 8)p. + 8x, 
so I F( X, x) = x - p., and as x gets larger, its influence on X becomes increasingly 
large. 
For the median M, we have (see Exercise 10.27) 

{ 2Am) IF(M, x) = 
I - 2f(m) 

if x > m 
otherwise. 

So, in contrast to the mean, the median has a bounded influence function. I I  

Why is a bounded influence function important? To answer that, we look at the 
influence function of an M-estimator, of which the mean and median are special 
cases. 
Let 8M be the M-estimator that is the solution to Li '¢I(Xi 0) = 0, where 
XI , . . .  , Xn are iid with cdf F. In Section 10.2.2 we saw that 8M will be a consistent 
estimator of the value 00 that satisfies Eoo '¢I(X (0) = O. The influence function 
of OM is 

'¢I(x - (0) t/J(x - (0) 
- J t/J'(t - Oo)f(t) dt 

= 
-Eo(t/J'(X - (0» ' 
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Now if we recall ( 10.2.6), we see that the expected square of the influence function 
gives the asYUlPtotic variance of OM, that is, 

in distribution. Thus, the influence function is directly related to the asymptotic 
variance. 

10. 6. 5  Bootstrap Intervals 
In Section 10.1 .4 we saw the bootstrap to be a simple, general technique for ob
taining a standard error of any statistic. In calculating these standard errors, we 
actually construct a distribution of a statistic, the bootstrap distribution. Then, a 
natural question arises. Is there a simple, general method of using the bootstrap 
distribution to make a confidence statement? The bootstrap can indeed be used 
to construct very good confidence intervals but, alas, the simplicity of application 
that it enjoys in calculating standard errors does not carry over into confidence 
intervals. 

Methods based on using percentiles of the bootstrap distribution, or on boot
strapping a t-statistic (pivot) ,  would seem to have potential for being generally 
applicable. However, Efron and Tibshirani (1993, Section 13.4) note that "neither 
of these intervals works well in general." Hall (1992, Chapter 3) prefers the t
statistic method and points out that bootstrapping a pivot is a superior technique 
in general. 

Percentile and percentile-t intervals are only the tip of a vast development of boot
strap confidence intervals, many of which are excellent performers. However, we 
cannot summarize these procedures in one simple recipe; different problems will 
require different techniques. 

10. 6. 6 Robust Intervals 
Although we went into some detail about robustness of point estimators in Section 
10.2, aside from Examples 10.3.7 and 10.4.8, we did not give much detail about 
robust tests and confidence intervals. This is not a comment on the importance of 
the subject but has more to do with space. 

When we examined point estimators for robustness properties, the main concerns 
had to do with performance under deviations (both small and large) from the 
underlying assumptions. The same concerns are carried over to tests and intervals, 
with the expectation that robust point estimators will lead to robust tests and 
intervals. In particular, we would want robust tests to maintain power and robust 
intervals to maintain coverage over a range of deviations from the underlying model. 
That this is the case is indicated by the fact (see Staudte and Sheather 1990, Section 
5.3.3) that the power function of a test can be related to the influence function 
of the point estimate on which it is based. Of course, this immediately implies 
that coverage properties of a related interval estimate can also be related to the 
influence function. 
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A nice introduction to robllBt tests, through estimating equations and score tests, 
is given by Boos (1992) . T-Q-e books by Staudte and Sheather (19�) and Hettman
sperger and McKean (1998) are also excellent sources, as is the now-classic book 
by Huber ( 1981) .  



Chapter 1 1  

Analysis of Variance and Regression 

"I've wasted time enough, " said Lestrade rising. "I believe in hard work and not 
in sitting by the fire spinning fine theories. "  

11.1 Introduction 

Inspector Lestrade 
The Adventure of the Noble Bachelor 

Up until now, we have modeled a random variable with a pdf or pmf that depended 
on parameters to be estimated. In many situations, some of which follow, a random 
variable can be modeled not only with unknown parameters but also with known (and 
sometimes controllable) covariates. This chapter describes the methodologies of anal
ysis of variance (ANOVA) and regression analysis. They are based on an underlying 
assumption of a linear relationship and form a large core of the statistical methods 
that are used in practice. 

The analysis of variance (commonly referred to as the ANOVA) is one of the most 
widely used statistical techniques. A basic idea of the AN OVA , that of partitioning 
variation, is a fundamental idea of experimental statistics. The ANOVA belies its 
name in that it is not concerned with analyzing variances but rather with analyzing 
variation in means. 

We will study a common type of ANOVA, the oneway ANOVA. For a thorough 
treatment of the different facets of ANOVA designs, there is the classic text by 
Cochran and Cox (1957) or the more modern, but still somewhat classic, treatments 
by Dean and Voss (1999) and Kuehl (2000) .  The text by Neter, Wasserman, and 
Whitmore (1993) provides a guide to overall strategies in experimental statistics. 

The technique of regression, in particular linear regression, probably wins the prize 
as the most popular statistical tool. There are all forms of regression: linear, nonlinear, 
simple, multiple, parametric, non parametric, etc. In this chapter we will look at the 
simplest case, linear regression with one predictor variable. (This is usually called 
simple linear regression, as opposed to multiple linear regression, which deals with 
many predictor variables.) 

A major purpose of regression is to explore the dependence of one variable on 
others. In simple linear regression, the mean of a random variable, Y, is modeled 
as a function of another observable variable, x, by the relationship E Y = Q + /3x. 
In general, the function that gives EY as a function of x is called the population 
regression function. 
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Good over i �e�.�nces for tegt�ion models are Christensen (1996) and Draper 
and Smith (1998�� �&r;.efical treatment is given in Stuart, Ord, and Arnold 

:....... ' J I4 ;"�:.'-"" (1999, Chapter 27 ..... � 

11 .2 Oneway Analysis of Variance 

In its simplest form, the ANOVA is a method of estimating the means of several 
populations, populations often assumed to be normally distributed. The heart of the 
ANOVA, however, lies in the topic of statistical design. How can we get the most in
formation on the most populations with the fewest observations? The ANOVA design 
question is not our major concern, however; we will be concerned with inference, that 
is, with estimation and testing, in the ANOVA. 

Classic ANOVA had testing as its main goal-in particular, testing what is known 
as "the ANOVA null hypothesis." But more recently, especially in the light of greater 
computing power, experimenters have realized that testing one hypothesis (a some
what ludicrous one at that, as we shall see) does not make for good experimental 
inference. Thus, although we will derive the test of the ANOVA null, it is far from 
the most important part of an analysis of variance. More important is estimation, 
both point and interval. In particular, inference based on contrasts (to be defined) is 
of major importance. 

In the oneway analysis of variance (also known as the oneway classification) we 
assume that data, ¥ij, are observed according to a model 

(1 1.2.1 )  ¥ij = (h + fij ' i = I, . . . , k, j 1 ,  . . .  , ni '  

where the Bi are unknown parameters and the fij are error random variables. 

Example 1 1.2.1 (Oneway ANOVA) Schematically, the data, Yij , from a oneway 
ANOVA will look like this: 

Treatments 
1 2 3 k 

Yn Y21 Y31  Yk1 
Y12 Y22 Y32 Yk2 

Yk3 

Y3na 
Y1nl 

Note that we do not assume that there are equal numbers of observations in each 
treatment group. 

As an example, consider the following experiment performed to assess the relative 
effects of three toxins and a control on the liver of a certain species of trout . The data 
are the amounts of deterioration (in standard units) of the liver in each sacrificed fish. 
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Toxin 1 Toxin 2 Toxin 3 Control 
28 33 18 11  
23 36 21 14 
14 34 20 1 1  
27  29 22 16 

31 24 
34 I I  

Without loss of generality we can assume that EEij = 0, since if not, we can rescale 
the Eij and absorb the leftover mean into (Ji . Thus it follows that 

so the (JiS are the means of the Yijs. The (}.s are usually referred to as treatment means, 
since the index often corresponds to different treatments or to levels of a particular 
treatment, such as dosage levels of a particular drug. 

There is an alternative model to ( 11 .2. 1) ,  sometimes called the overparameterized 
model, which can be written as 

(11 .2.2) 

where, again, EEij = O. It follows from this model that 

In this formulation we think of IL as a grand mean, that is, the common mean level of 
the treatments. The parameters 'Ti then denote the unique effect due to treatment i, 
the deviation from the mean level that is caused by the treatment. However, we cannot 
estimate both 'Ti and J1. separately, because there are problems with identifiability. 

Definition 1 1.2.2 A parameter () for a family of distributions {f{xI8) : () E e} 
is identifiable if distinct values of () correspond to distinct pdfs or pmfs. That is, if 
() =I (}I, then l(xl(}) is not the same function of x as l(xl(JI ) .  

Identifiability is  a property of the model, not of an estimator or estimation pro
cedure. However, if the model is not identifiable, then there is difficulty in doing 
inference. For example, if l(xl(}) = l(xl(}') ,  then observations from both distributions 
look exactly the same and we would have no way of knowing whether the true value 
of the parameter was () or (}I . In particular, both () and ()' would give the likelihood 
function the same value. 

Realize that problems with identifiability can usually be solved by redefining the 
model. One reason that we have not encountered identifiability problems before is 
that our models have not only made intuitive sense but also' were identifiable (for 
example, modeling a normal population in terms of its mean and variance) .  Here, 
however, we have a model, ( 11 .2.2) ,  that makes intuitive sense but is not identifiable. 
In Chapter 12 we will see a parameterization of the bivariate normal distribution that 
models a situation well but is not identifiable. 
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In the parameterization of (11 .2.2), there are k + 1 parameters, (J,L, '11 , • . •  , Tic) ,  but 
only k means, EYij , i 1 ,  . . . , k. Without any further restriction on the parameters, 
more than one set of values for (J,L, '11 , . • •  , 7"/c)  will lead to the same distribution. It 
is common in this model to add the restriction that 1:7:=1 Ti 0, which effectively 
reduces the number of parameters to k and makes the model identifiable. The re
striction also has the effect of giving the TiS an interpretation as deviations from an 
overall mean level. (See Exercise 1 1 .5 . ) 

For the oneway ANOVA the model ( 1 1 .2 .1) ,  the cell means model, which has a more 
straightforward interpretation, is the one that we prefer to use. In more complicated 
ANOVAs, however, there is sometimes an interpretive adva�tage in model ( 11 .2.2). 

1 1 .2. 1  Model and Distribution Assumptions 
Under model ( 11 .2 . 1 ) ,  a minimum assumption that is needed before any estimation 
can be done is that Et'ij = ° and Var t'ij < 00 for all i, j .  Under these assumptions, we 
can do some estimation of the (JiS (as in Exercise 7.41 ) .  However, to do any confidence 
interval estimation or testing, we need distributional assumptions. Here are the classic 
AN OVA assumptions. 

Oneway ANOVA assumptions 

Random variables Yij are observed according to the model 

where 

(i) Et'ij 0, Vart'ij = at < 00, for all i ,j .  COV(t'ij , t'i'j' ) 0 for all i , ii, j ,  and j' 
unless i i' and j j' . 

(ii) The t'ij are independent and normally distributed (normal errors) .  
(iii) at = a2 for all i (equality of variance, also known as homoscedasticity) . 

Without assumption (ii) we could do only point estimation and possibly look for 
estimators that minimize variance within a class, but we could not do interval esti
mation or testing. If we assume some distribution other than normal, intervals and 
tests can be quite difficult (but still possible) to derive. Of course, with reasonable 
sample sizes and populations that are not too asymmetric, we have the Central Limit 
Theorem (eLT) to rely on. 

The equality of variance assumption is also quite important. Interestingly, its im
portance is linked to the normality assumption. In general, if it is suspected that the 
data badly violate the ANOVA assumptions, a first course of attack is usually to try 
to transform the data nonlinearly. This is done as an attempt to more closely satisfy 
the ANOVA assumptions, a generally easier alternative than finding another model 
for the untransformed data. A number of common transformations can be found in 
Snedecor and Cochran ( 1989); also see Exercises 1 1 . 1  and 1 1.2. (Other research on 
transformations has been concerned with the Box-Cox family of power transforma
tions. See Exercise 1 1 .3 . )  
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The classic paper of Box (1954) shows that the robustness of the ANOVA to the 
assumption of normality depends on how equal the variances are (equal being better) .  
The problem of  estimating means when variances are unequal, known as the Behrens
Fisher problem, has a rich statistical history which can be traced back to Fisher (1935, 
1939) . A full account of the Behrens-Fisher problem can be found in Stuart, Ord, 
and Arnold (1999) .  

For the remainder of this chapter we will do what is done in most of the experimental 
situations and we will assume that the three classic assumptions hold. If the data are 
such that transformations and the CLT are needed, we assume that such measures 
have been taken. 

1 1 .2. 2  The Classic ANOVA Hypothesis 
The classic ANOVA test is a test of the null hypothesis 

a hypothesis that, in many cases, is silly, uninteresting, and not true. An experimenter 
would not usually believe that the different treatments have exactly the same mean. 
More reasonably, an experiment is done to find out which treatments are better (for 
example, have a higher mean), and the real interest in the ANOVA is not in testing 
but in estimation. (There are some specialized situations where there is interest in 
the ANOVA null in its own right. )  Most situations are like the following. 

Example 1 1.2.3 (The ANOVA hypothesis) The ANOVA evolved as a method 
of analyzing agricultural experiments. For example, in a study of the effect of various 
fertilizers On the zinc content of spinach plants (Yij ) , five treatments are investigated. 
Each treatment consists of a mixture of fertilizer material (magnesium, potassium, 
and zinc) and the data look like the layout of Example 11 .2 . 1 .  The five treatments, 
in pounds per acre, are 

Treatment Magnesium Potassium Zinc 
1 0 0 0 
2 0 200 0 
3 50 200 0 
4 200 200 0 
5 0 200 15 

The classic ANOVA null hypothesis is really of no interest since the experimenter is 
sure that the different fertilizer mixtures have some different effects. The interest is 
in quantifying these effects. I I 

We will spend some time with the ANOVA null but mostly use it as a means to 
an end. Recall the connection between testing and interval estimation established in 
Chapter 9. By using this connection, we can derive confidence regions by deriving, 
then inverting, appropriate tests (an easier route here) . 
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The alternative to the ANOVA null is simply that the means are not all equal; that 
is, we test 
( 1 1 .2.3) Ho : fh B2 = . . . = Bk versus HI : (Ji #- Bj , for some i , j. 
Equivalently, we can specify HI as HI : not Ho. Realize that if Ho is rejected, we can 
conclude only that there is some difference in the Bis, but we can make no inference 
as to where this difference might be. (Note that if HI is accepted, we are not saying 
that all of the Bis are different, merely that at least two are.) 

One problem with the ANOVA hypotheses, a problem shared by many multivariate 
hypotheses, is that the interpretation of the hypotheses is not easy. What would be 
more useful, rather than concluding just that some Bis are different, is a statistical 
description of the (JiS. Such a description can be obtained by breaking down the 
ANOVA hypotheses into smaller, more easily describable pieces. 

We have already encountered methods for breaking down complicated hypotheses 
into smaller, more easily understood pieces-the union-intersection and intersection
union methods of Chapter 8. For the ANOVA, the union-intersection method is best 
suited, as the ANOVA null is the intersection of more easily understood univariate 
hypotheses, hypotheses expressed in terms of contrasts. Furthermore, in the cases we 
will consider, the resulting tests based on the union--intersection method are identical 
to LRTs (see Exercise 11 . 13) .  Hence, they enjoy all the properties of likelihood tests. 

Definition 11.2.4 Let t = ( tl , . . .  , tk) be a set of variables, either parameters or 
statistics, and let a (aI ,  . . .  , ak ) be known constants. The function 

( 1 1. 2.4) 
k 

L aiti 
i=l 

is called a linear combination of the tiS. If, furthermore, E ai = 0, it is called a 
contrast. 

Contrasts are important because they can be used to compare treatment means. 
For example, if we have means BI, . . . , Bk and constants a ( 1 ,  -1 ,  0, . . .  , O), then 

k 
L aiBi = Bl - B2 
i=l 

is a contrast that compares Bl to B2• (See Exercise 1 1 . 10 for more about contrasts.) 
The power of the union-intersection approach is increased understanding. The in

dividual null hypotheses, of which the ANOVA null hypothesis is the intersection, are 
quite easy to visualize. 

Theorem 11.2.5 Let B (Bl , . . . , Bk) be arbitrary parameters. Then 
k 

Bl B2 = . . .  = Bk ¢:? L aiBi = 0 for all a E A, 
i=1 

where A is the set of constants satisfying A {a (at .  . . . , ak) : E ai O}i that is, 
all contrasts must satisfy E aiBi = O. 
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Proof: IT {h = . . . (Jk = (J, then 
k k k 

521 

'L ai(Ji = L ai(J = (J L a. = 0, (because a satisfies E ai = 0) 
i= 1 i= I  i=I 

proving one implication (=}). To prove the other implication, consider the set of 
a. E A given by 

al = ( 1 , - 1 , 0, . . . , 0) ,  a2 = (0, 1 , -1 , 0, . . . , 0) ,  . . . , ak- I = (0, . . .  , 0, 1, - 1) .  

(The set (31 , 32, . . . , ak-d spans the elements of A .  That is, any a E A can be written 
as a linear combination of (ab a2 , " " ak- I ) .) Forming contrasts with these a.s, we 
get that 

. . . , 

which, taken together, imply that (JI = . . . = (Jk, proving the theorem. o 

It immediately follows from Theorem 1 1 .2 .5 that the ANOVA null can be expressed 
as a hypothesis about contrasts. That is, the null hypothesis is true if and only if the 
hypothesis 

k Ie 
Ho : L ai(Ji = 0 for all (ab " " ak ) such that L ai = 0 

i=1 i=1 
is true. Moreover, if Ho is false, we now know that there must be at least one nonzero 
contrast. That is, the ANOVA alternative, HI : not all (JiS equal, is equivalent to the 
alternative 

k k 
HI : L ai(Ji # O  for some (al , . . . , ak) such that L ai = O. 

i= 1 i= 1 
Thus, we have gained in that the use of contrasts leaves us with hypotheses that 
are a little easier to understand and perhaps are a little easier to interpret. The real 
gain, however, is that the use of contrasts now allows us to think and operate in a 
univariate manner. 

11 .2. 3  Inferences Regarding Linear Combinations of Means 

Linear combinations, in particular contrasts, play an extremely important role in 
the analysis of variance. Through understanding and analyzing the contrasts, we can 
make meaningful inferences about the (JiS. In the previous section we showed that the 
ANOVA null is really a statement about contrasts. In fact, most interesting inferences 
in an ANOVA can be expressed as contrasts or sets of contrasts. We start simply with 
inference about a single linear combination. 

Working under the oneway ANOVA assumptions, we have that 
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Therefore, 

A note on notation: It is a .common convention that if a subscript is replaced by a 
. (dot) , it means that subscript has been summed over. Thus, ¥t. = Lj�l ¥tj and 
Yj = L:=l ¥tj . The addition of a "bar" indicates that a mean is taken, as in :Pi, 
above. If both subscripts are summed over and the overall mean (called the grand 
mean) is calculated, we will break this rule to keep notation a little simpler and write 

= k n· k Y = (l/N)Li=l Lj�l ¥tj , where N = Li=l ni ·  
For any constants a = (al , . . .  , ak) , L:=laiYi. i s  also normal (see Exercise 1 1.8) 

with 

and furthermore 

and 

=�=========a_iB_i '" nCO, 1 ) .  

Although this i s  nice, we are usually in the situation of  wanting to make inferences 
about the Bis without knowledge of a. Therefore, we want to replace a with an 
estimate. In each population, if we denote the sample variance by Sf, that is, 

1 nj S; = -- "(¥tj n ' - l � t j=l 
- 2 ¥t. ) , i = 1 , . . .  , k, 

then Sf is an estimate of a2 and (ni 1)St/a2 '" X�i- l ' Furthermore, under the 
ANOVA assumptions, since each St estimates the same a2, we can improve the esti
mators by combining them. We thus use the pooled estimator of a2, S;, given by 

( 11 .2.5) 1 k 1 k ni 
_ k L(ni - l)S; = N _ k L L(¥tj 

i=l i=l j=l 
- 2 ¥t. )  . 

Note that N k L(ni - 1 ) .  Since the Sts are independent, Lemma 5 .3.2 shows 
that (N k)S;/a2 '" X'1v-k ' Also, S; is independent of each :Pi, (see Exercise 1 1.6) 
and thus 

( 1 1 .2.6) 

Student 's t with N - k degrees of freedom. 
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To test 
Ie 

Ho : L aiO. = 0 
.=1 

versus 

at level 0:, we would reject Ho if 

( 11 .2 .7) 
Ie -

E'-l aiYi. 
.j S� E�=l a; In, 

Ie 
HI :  :L'>iOi f 0 

.=1 

> tN-k,a/2 ' 

629 

(Exercise 1 1 .9 shows some other tests involving linear combinations. )  Furthermore, 
( 11 .2.6) defines a pivot that can be inverted to give an interval estimator of E aiOi . 
With probability 1 - 0:, 

( 1 1 .2.8) 

k 

L a.Yi. - tN-k,aj2 
i=l 

k 
� L aiYi. + tN-k,a/2 

i=1 

Example 11.2.6 (ANOVA contrasts) Special values of a will give particular 
tests or confidence intervals. For example, to compare treatments 1 and 2, take a = 
( 1 ,  - 1 , 0, . . .  , 0) .  Then, using ( 1 1 .2.6), to test Ho : (h = O2 versus HI : (it f ()2 , we 
would reject H 0 if 

Note, the difference between this test and the two-sample t test (see Exercise 8.41) 
is that here information from treatments 3, . . .  , k, as well as treatments 1 and 2,  is 
used to estimate 0'2 . 

Alternatively, to compare treatment 1 to the average of treatments 2 and 3 (for 
example, treatment 1 might be a control, 2 and 3 might be experimental treatments, 
and we are looking for some overall effect) ,  we would take a ( 1 , - � , - � , 0, . . .  , 0) 
and reject Ho : ()l � (B2 + ()3 ) if 

Using either ( 1 1 .2.6) or ( 1 1 .2.8), we have a way of testing or estimating any linear 
combination in the ANOVA. By judiciously choosing our linear combination we can 
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learn much about the treatment means. For example, if we look at the contrasts 
(ir - ()2,  ()2 ()3 , and ()l - ()3 , we can learn something about the ordering of the (JiS. 
(Of course, we have to be careful of the overall a level when doing a number of tests 
or intervals, but we can use the Bonferroni Inequality. See Example 1 1 .2.9.) 

We also must use some care in drawing formal conclusions from combinations of 
contrasts. Consider the hypotheses 

Ho : (h versus 

and 

versus 

If we reject both null hypotheses, we can conclude that ()3 is greater than both (Jl and 
()2,  although we can draw no formal conclusion about the ordering of ()2 and ()1 from 
these two tests. (See Exercise 11 . 10.) I I  

Now we will use these univariate results about linear combinations and the rela
tionship between the ANOVA null hypothesis and contrasts given in Theorem 1 1 .2.5 
to derive a test of the ANOVA null hypothesis. 

1 1 . 2.4 The ANOVA F Test 
In the previous section we saw how to deal with single linear combinations and, in 
particular, contrasts in the ANOVA. Also; in Section 1 1 .2, we saw that the ANOVA 
null hypothesis is equivalent to a hypothesis about contrasts. In this section we will 
use this equivalence, together with the union-intersection methodology of Chapter 8, 
to derive a test of the ANOVA hypothesis. 

From Theorem 1 1 .2.5, the ANOVA hypothesis test can be written 
k 

Ho : L ai()i = 0 for all a E A 
i=l 

versus 
k 

HI :  Lai()i =I 0 for some a E A, 
i=l 

where A {a = (at , . . .  , ak) : L�=lai = a}. To see this more clearly as a union
intersection test, define, for each a, the set 

Then we have 

k 
ea = {() ((h , . . . , ()k) : Lai()i = O}. 

i=l 

for all a E A -<=> ()  E n ea, 
aEA 

showing that the ANOVA null can be written as an intersection. 
Now, recalling the union-intersection methodology from Section 8.2.3, we would 

reject Ho : () E naEAea (and, hence, the ANOVA nUll) if we can reject 

versus 
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for a.ny a. We test Ho. with the t statistic of ( 1 1 .2.6), 

(11 .2.9) 
",k - ",k L..i�l aiYi. - L..i�l ai(Ji Ta = ==t======::::::::::�==":""-:" vi St I:�=l at Ini 

We then reject Ho. if Ta > k for some constant k. From the union-intersection 
methodology, it follows that if we could reject for any a, we could reject for the a 
that maximizes Ta. Thus, the union-intersection test of the ANOVA null is to reject 
Ho if SUPa Ta > k, where k is chosen so that PHo (suPa Ta > k) <l'. 

Calculation of SUPa Ta is not straightforward, although with a little care it is not 
difficult. The calculation is that of a constrained maximum, similar to problems pre
viously encountered (see, for example, Exercise 7.41 , where a constrained minimum 
is calculated). We will attack the problem in a manner similar to what we have done 
previously and use the Cauchy-Schwarz Inequality. (Alternatively, a method such 
as Lagra.nge multipliers could be used, but then we would have to use second-order 
conditions to verify that a maximum has been. found. )  

• Most o f  the technical maximization arguments will b e  given i n  the following lemma 
and the lemma will then be applied to obtain the supremum of Ta. The lemma is 
just a statement about constrained maxima of quadratic functions. The proof of the 
lemma may be skipped by the fainthearted. 

Lemma 1 1.2.7 Let (Vl , . . .  , Vk) be constants and let (Cl , , , , , Ck) be positive con
stants. Then, for A = {a = (al > . . .  , ak) :  I: ai = O},  

( 1 1 .2.10) 

where Vc = I: qVil I: Ci · The maximum is attained at any a of the form ai K q (Vi 
tic) , where K is a nonzero constant. 

Proof: Define B = {b = (b1 , . . .  , bk) : I: bi = 0 and I: bUq I } .  For any a E A, 
define b = (b1 , • • •  , bk) by 

and note that b E  B. For any a E A, 

(I::=1 aiVi) 2 

I::=1 at ICi 

We will find an upper bound on (I: biVi) 2 for b E B, and then we will show that the 
maximizing a given in the lemma achieves the upper bound. 

Since we are dealing with the sum of products, the Cauchy-Schwarz Inequality 
(see Section 4.7) is a natural thing to try, but we have to be careful to build in the 
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constraints involving the CiS. We can do this in the following way. Define C = E Ci 
and write 

This is the square of a covariance for a probability measure defined by the ratios 
Ci/C. Formally, if we define random variables B and V by 

P B = - ,  V = Vi = - ,  ( bi ) � 
Ci C 

i 1 ,  . . . , k , 

then EB = E(bdci,)(cdC) = E bdC = O.  Thus, 

{t. (�) (Vi )  (�) r� (EBV)' 
= (Cov(B, V))2 

::; (Var B) (Var V) 

(EB = 0) 
(Cauchy-Schwarz Inequality) 

Using the fact that E b� / � 1 and canceling common terms, we obtain 

( 1 1 .2 . 1 1 )  

Finally, we see that i f  ai = KCi (Vi - vc) for any nonzero constant K, then a E A and 

bi, = KCi(Vi - Vc) = Ci (Vi - Vc) . 
VE�=l (K Ci(Vi - vc) )2 jCi VE:""l Ci (Vi, - vc)2 

E:""l �(Vi - vc)2 -
VE�l Ci(Vi - vc)2 

k 

I: � (Vi - vc )2, 
i=l 

and the inequality in ( 1 1 .2. 1 1 ) is an equality. Thus, the upper bound is attained and 
the function is maximized at such an a. 0 
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Returning to Ta of ( 11 .2.9) , we see that maximizing Ta is equivalent to maximizing T;. We have 

(1:7=1 aiYi. 1::=1 a/Ji) 2 T; = -'-----:-k-----"- = 
(1:7=1 aJji) 2 

k 
S: 2: aUni S;2:aUni 

i=l i=;l 

Noting that 5; has no effect on the maximization, we can apply Lemma 1 1 .2.7 to the 
above expression to get the following theorem. 

Theorem 11.2.8 For Ta defined in expression (11 .2.9), 

(1 1.2.12) 2 1:;=1 ni (("Yi. - Y) (Oi - 8) f 
sup Ta = 52 a: 1:0.. =0 p 

where Y = 1: niYi'/ 1: ni and 0 = 1: niOd E ni .  Furthermore, under the ANOVA 
assumptions, 

(1 1 .2 . 13) sup T; '" (k 1)Fk-1 ,N-k,  
a: 1: 0.,=0 

that is, SUPa:Eo.,=O T;/(k - 1 )  has an F distribution with k - 1 and N - k degrees of 
freedom. (Recall that N = 1: nd 
Proof: To prove C1 1 .2 .12) ,  use Lemma 1 1 .2.7 and identify Vi with Ui and Ci with ni . 
The result is immediate. 

To prove ( 1 1 .2.13), we must show that the numerator and denominator of ( 1 1 .2 . 12)  
are independent chi squared random variables, each divided by its degrees of freedom. 
From the ANOVA assumptions two things follow. The numerator and denominator 
are independent and S; '" o-2X'iv_k/ (N - k) .  A little work must be done to show that 

1 k _ 2 
""2 2: ni (C¥i. Y) - (OJ - 0)) '" X�-l ' 
0- i=l 

This can be done, however, and is left as an exercise. (See Exercise 1 1.7.) 0 

If Ho : 01 = O2 = . . . = Ok is true, Oi = 8 for all i = I, . . .  1 k and the 0i - 8 tenns 
drop out of ( 1 1 .2 .12) .  Thus, for an a level test of the ANOVA hypotheses 

we reject Ho if 

( 1 1 .2 . 14) 

versus 

1::=1 ni (CYi. _ Y) ) 2 
---�S�2--� > (k - 1)Fk-1 ,N-k,Q ' 

p 
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This rejection region is usually written as 

. . 2.:7"'1 ni ( }If. - y)f /(k - 1)  
reject Ho If F = 

S2 > Fk-I ,N-k,a , p 
and the test statistic F is called the ANOVA F statistic. 

11 .2. 5  Simultaneous Estimation of Contrasts 

Section 11.2 

We have already seen how to estimate and test a single contrast in the ANOVA; the 
t statistic and interval are given in (1 1 .2.6) and ( 1 1 .2.8) . However, in the ANOVA we 
are often in the position of wanting to make more than one inference and we know 
that the simultaneous inference from many a level tests is not necessarily at level a. 
In the context of the ANOVA this problem has already been mentioned. 

Example 11.2.9 (Pairwise differences) Many times there is interest in pairwise 
differences of means. Thus, if an ANOVA has means (h , . . .  , (h" there may be interest 
in interval estimates of (}1 ()2 , ()2 ()3, ()3 - ()4 , etc. With the Bonferroni Inequality, 
we can build a simultaneous inference statement . Define 

Then P(Cij ) = I -a  for each Cij , but, for example, P(CI2 and C23) < I -a. However, 
this last inference is the kind that we want to make in the ANOVA. 

Recall the Bonferroni Inequality, given in expression ( 1 .2.10), which states that for 
any sets AI , " " An, 

In this case we want to bound p(ni,jCij) ,  the probability that all of the pairwise 
intervals cover their respective differences. 

If we want to make a simultaneous 1 - a statement about the coverage of m 
confidence sets, then, from the Bonferroni Inequality, we can construct each confidence 
set to be of level 'Y, where 'Y satisfies 

or, equivalently, 

m 
1 a L 'Y - (m 1 ) ,  

i=l 

a 'Y = I - . m 
A slight generalization is also possible in that it is not necessary to require each 
individual inference at the same level. We can construct each confidence set to be of 
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!level 'Yi, where 'Yi satisfies 

ONBWAY ANALYSIS OF VARIANCE 

m 
1 - a = L 'Yi - (m - 1) .  

i=l 

In an ANOVA with k treatments, simultaneous inference on all k(k - 1 )/2 pairwise 
differences can be made with confidence 1 - a if each t interval has confidence 1 
2a/ [k(k 1)] .  I I  

An alternative and quite elegant approach to simultaneous inference is given by 
Scheffe (1959). Scheffe's procedure, sometimes called the S method, allows for simul
taneous confidence intervals (or tests) on all contrasts. (Exercise 1 1 .14 shows that 
Scheffe's method can also be used to set up simultaneous intervals for any linear 
combination, not just for contrasts. )  The procedure allows us to set a confidence co
efficient that will be valid for all contrast intervals simultaneously, not just a specified 
group. The Scheffe procedure would be preferred if a large number of contrasts are to 
be examined. If the number of contrasts is small, the Bonferroni bound will almost 
certainly be smaller. (See the Miscellanea section for a discussion of other types of 
multiple comparison procedures.) 

The proof that the Scheffe procedure has simultaneous 1 - a coverage on all con
trasts follows easily from the union-intersection nature of the ANOVA test. 

Theorem 11.2.10 Under the ANOVA assumptions, if M = ,J(k - 1)Fk-1,N-k,c., 
then the probability is 1 a that 

k 2 
M S2", ai 

PL.. n ·  i= l  t 

k 
� LaiYi. + M 

i=l 

simultaneously for all a E A =  {a (aI , . . . , ak ) : l: ai a} . 

k 2 
S2 '" ai 
P L.. n ·  i=l t 

Proof: The simultaneous probability statement requires M to satisfy 

or, equivalently, 

S; L 
ai. for all a E A 

k 2 ) 
i=l n, 

peT; � M2 for all a E A) = 1 a, 

where Ta is defined in ( 11 .2.9). However, since 

peT; � M2 for all a E A) = P ( sup T; � M2
) 

, 
a:l: a.=O 

1 

Theorem 1 1.2.8 shows that choosing M2 = (k - l)Fk-l .N -k,a satisfies the probability 
requirement. 0 
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One of the real strengths of the Scheffe procedure is that it allows legitimate "data 
snooping." That is, in classic statistics it is taboo to test hypotheses that have been 
suggested by the data, since this can bias the results and, hence, invalidate the in
ference. (We normB:.lly would not test Ho : (h = 02 just because we noticed that "Vl. 
was different from Y2. '  See Exercise 1 1 . 18.) However, with Scheffe's procedure such a 
strategy is legitimate. The intervals or tests are valid for all contrasts. Whether they 
have been suggested by the data makes no difference. They already have been taken 
care of by the Scheffe procedure. 

Of course, we must pay for all of the inferential power offered by the Scheffe proce
dure. The payment is in the form of the lengths of the intervals. In order to guarantee 
the simultaneous confidence level, the intervals may be quite long. For example, it 
can be shown (see Exercise 1 1 . 15) that if we compare the t and F distributions, for 
any 11, 0:, and k, the cutoff points satisfy 

tv,a/2 � V(k - I)Fk-1 ,v,a , 

and so the Scheffe intervals are always wider, sometimes much wider, than the single
contrast intervals (another argument in favor of the doctrine that nothing substitutes 
for careful planning and preparation in experimentation) .  The interval length phe
nomenon carries over to testing. It also follows from the above inequality that Scheffe 
tests are less powerful than t tests. 

1 1.2. 6  Partitioning Sums of Squares 

The ANOVA provides a useful way of thinking about the way in which different 
treatments affect a measured variable--the idea of allocating variation to different 
sources. The basic idea of allocating variation can be summarized in the following 
identity. 

Theorem 1 1.2.11  For any numbers Yij , i = 1 ,  . . .  , k, and j 1 ,  . . .  , ni, 
k n, k k ni 

( 1 1 .2. 15) L L(Yij - y)2 = L ni(ik y)2 + L L(Yij iJd2 , 
i=l 

where iJi· = �i Lj Yij and y = Li niiJt-! Li ni ' 

i=l j=l 

Proof: The proof is quite simple and relies only on the fact that, when we are dealing 
with means, the cross-term often disappears. Write 

k ni k nj 

L L(Yij - y)2 = L L ((Yij - iJd + (iJi. 1/) )2 , 
i=l j=1 i=1 j=1 

expand the right-hand side, and regroup terms. (See Exercise 11 .21.) o 

The sums in ( 1 1 .2.15) are called sums of squares and are thought of as measuring 
variation in the data ascribable to different sources. (They are sometimes called cor
rected sums of squares, where the word corrected refers to the fact that a mean has 
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been subtracted.) In particular, tbe terms in the oneway ANOVA model, 

"Vij = Of. + Eij ,  
are in one-to-one correspondence with the terms in ( 1 1 .2 .15) .  Equation ( 1 1 .2.15) shows 
how to allocate variation to the treatments (variation between treatments) and to 
random error (variation within treatments) . The left-hand side of ( 1 1.2. 15) measures 
variation without regard to categorization by treatments, while the two terms on the 
right-hand side measure variation due only to treatments and variation due only to 
random error, respectively. The fact that these sources of variation satisfy the above 
identity shows that the variation in the data, measured by sums of squares, is additive 
in the same way as the ANOVA model. 

One reason it is easier to deal with sums of squares is that, under normality, cor
rected sums of squares are chi squared random variables and we have already seen 
that independent chi squareds can be added to get new chi squareds. 

Under the ANOVA assumptions, in particular if "Vij I'v nUti' (J"2 ) ,  it is easy to show 
that 

( 1 1 .2 . 16) 
1 k n ,  

(J"2L L("Vij 
i=1 j=1 

- 2 2 "Vi. ) rv XN-k' 

because for each i = 1 ,  . . .  , k, a\ L:j�l ("Vij - Vi. )2 '" X�i-l !  all independent, and, 
for independent chi squared random variables, L:�=IX�.-I '" X�-k ' Furthermore, if 
Of. = (}j for every i, j, then 

( 11 .2.17) = 2 2 Y) '" Xk- l and 1 k n, _ 
� �  - 2 2 2" � �("Vij - Y) f'V XN-l ' (J" i=1 j=l 

Thus, under Ho : (}l = . . . = Ok , the sum of squares partitioning of ( 1 1 .2.15) is a parti
tioning of chi squared random variables. When scaled, the left-hand side is distributed 
as a x1,r-t >  and the right-hand side is the sum of two independent random variables 
distributed, respectively, as xLI and X1,r-k ' Note that the X2 partitioning is true only 
if the terms on the right-hand side of ( 11 .2.15) are independent, which follows in this 
case from the normality in the ANOVA assumptions. The partitioning of X2s does 
hold in a slightly more general context, and a characterization of this is sometimes 
referred to as Cochran's Theorem. (See Searle 1971 and also the Miscellanea section.) 

In general, it is possible to partition a sum of squares into sums of squares of 
uncorrelated contrasts, each with 1 degree of freedom. If the sum of squares has 1/ 
degrees of freedom and is X�, it is possible to partition it into 1/ independent terms, 
each of which is X�. 

The quantity (L: G.1 Vi. )2 I(L: a; Ini) is called the contrast sum of squares for a treat
ment contrast L: aiVi . .  In a oneway ANOVA it is always possible to find sets of con-(I) ( I) (I) ) 1 - 1 k 1 . fy stants a al , . . . , ak ' - , • • • , - , to satts 
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Table 1 1.2. 1 .  ANOVA table for onewalL classit!cation 
Source of Degrees of Sum of Mean F 
variation freedom squares square statistiC 

Between SSB = MSB = F - MSB 
treatment k 1 Eni (:i/i Y)2 SSB/(k 1) 

- MBW 
groups 

Within SSW = MSW = 
treatment N k E E(Yij Yi- )2 SSW/eN k)  
groups 

Total N 1 SST = 
E E(Yij - y)2 

and 
(I) (I' ) 

( 1 1 .2 .18) E�=l a; :,; = 0 for all I # l'. 

Thus, the individual contrast sums of squares are all uncorrelated and hence indepen
dent under normality (Lemma 5.3.3). When suitably normalized, the left-hand side of 
( 1 1 .2.18) is distributed as a xLi and the right-hand side is k - 1  X�s. (Such contrasts 
are called orthogonal contrasts. See Exercises 1 1 . 10 and 1 1 . 1 1 . )  

It is common to summarize the results of an ANOVA F test in a standard form, 
called an ANOVA table, shown in Table 1 1 .2.1 .  The table also gives a number of 
useful, intermediate statistics. The headings should be self-explanatory. 

Example 11 .2.12 (Continuation of Example 11.2.1) The ANOVA table for 
the fish toxin data is 

Source of Degrees of Sum of Mean F 
variation freedom squares square statistic 

Treatments 3 995.90 331.97 26.09 

Within 15 190.83 12.72 

Total 18 1 , 186.73 

The F statistic of 26.09 is highly significant, showing that there is strong evidence 
the toxins produce different effects. I I  

It follows from equation ( 1 1 .2 .15) that the sum of squares column "adds"-that is, 
SSB + SSW = SST. Similarly, the degrees of freedom column adds. The mean square 
column, however, does not, as these are means rather than sums. 
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The ANOVA table contains no new statistics; it merely gives an orderly form for 
calculation and presentation. The F statistic is exactly the same as derived before 
and, moreover, MSW is the usual pooled, unbiased estimator of 0-2, S; of ( 1 1 .2.5) 
(see Exercise 1 1 .22). 

11.3 Simple Linear Regression 

In the analysis ofvariance we looked at how one factor (variable) influenced the means 
of a response variable. We now turn to simple linear regression, where we try to better 
understand the functional dependence of one variable on another. In particular, in 
simple linear regression we have a relationship of the form 

( 11 .3. 1 )  

where Ii is  a random variable and Xi is another observable variable. The quantities a 
and {3, the intercept and slope of the regression, are assumed to be fixed and unknown 
parameters and €i is, necessarily, a random variable. It is also common to suppose 
tha.t E€i := 0 (otherwise we could just rescale the excess into a), so that, from ( 1 1.3. 1 ) ,  
we have 

( 1 1 .3.2) 

In general, the function that gives EY as a function of X is called the population 
regression function. Equation ( 1 1 .3.2) defines the population regression function for 
simple linear regression. 

One main purpose of regression is to predict Ii from knowledge of Xi using a 
relationship like ( 1 1 .3.2) . In common usage this is often interpreted as saying that Ii 
depends on Xi ' It is common to refer to Ii as the dependent variable and to refer to Xi as 
the independent variable. This terminology is confusing, however, since this use of the 
word independent is different from our previous usage. (The XiS are not necessarily 
random variables, so they cannot be statistically "independent" according to our 
usual meaning.) We will not use this confusing terminology but will use alternative, 
more descriptive terminology, referring to Ii as the response variable and to Xi as the 
predictor variable. 

Actually, to keep straight the fact that our inferences about the relationship between 
Ii and Xi assume knowledge of Xi, we could write ( 1 1 .3.2) as 

( 1 1 .3.3) 

We will tend to use ( 1 1 .3.3) to reinforce the conditional aspect of any inferences. 
Recall that in Chapter 4 we encountered the word regression in connection with 

conditional expectations (see Exercise 4.13) . There, the regression of Y on X was 
defined as E(Y lx) , the conditional expectation of Y .given X = x. More generally, the 
word regression is used in statistics to signify a relationship between variables. When 
we refer to regression that is linear, we can mean that the conditional expectation of 
Y given X X is a linear function of x. Note that , in equation ( 1 1 .3.3), it does not 
matter whether Xi is fixed and known or it is a realization of the observable random 
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variable Xi . In either case, equation ( 1 1 .3.3) has the same interpretation. This will 
not be the case in Section 1 1.3.4, however, when we will be concerned with inference 
using the joint distribution of Xi and Y; .  

The term linear regression refers to  a specification that i s  linear in the parameters. 
Thus, the specifications E(Yilxi) = a+,Bxt and E(log Yi\Xi)  a+,B(l/xi) both specify 
linear regressions. The first specifies a linear relationship between Y; and xl , and the 
second between log Y; and l/xi . In contrast, the specification E(Yi \Xi) a + ,B2Xi 
does not specify a linear regression. 

The term regression has an interesting history, dating back to the work of Sir Francis 
Galton in the 1800s. (See Freedman et al. 1991 for more details or Stigler 1986 for an 
in-depth historical treatment .)  Galton investigated the relationship between heights 
of fathers and heights of sons. He found, not surprisingly, that tall fathers tend to 
have tall sons and short fathers tend to have short sons. However, he also found that 
very tall fathers tend to have shorter sons and very short fathers tend to have taller 
sons. (Think about it�it makes sense.) Galton called this phenomenon regression 
toward the mean (employing the usual meaning of regression, "to go back" ) ,  and from 
this usage we get the present use of the word regression. 

Example 1 1 .3.1 (Predicting grape crops) A more modern use of regression is 
to predict crop yields of grapes. In July, the grape vines produce clusters of berries, 
and a count of these clusters can be used to predict the final crop yield at harvest 
time. Typical data are like the following, which give the cluster counts and yields 
(tons/acre) for a number of years. 

Year Yield (Y) Cluster count (x) 

1971 5.6 1 16 .37 
1973 3.2 82.77 
1974 4.5 1 10.68 
1975 4.2 97.50 
1976 5.2 1 15.88 
1977 2.7 80. 19 
1978 4.8 125.24 
1979 4.9 1 16.15 
1980 4 .7 1 17.36 
1981 4 . 1  93.31 
1982 4.4 107.46 
1983 5.4 122.30 

The data from 1972 are missing because the crop was destroyed by a hurricane. A 
plot of these data would show that there is a strong linear relationship. I I  

When we write an equation like ( 1 1 .3.3) we are implicitly making the assumption 
that the regression of Y on X is linear. That is, the conditional expectation of Y, 
given that X = x, is a linear function of x. This assumption may not be justified, 
because there may be no underlying theory to support a linear relationship. However, 
since a linear relationship is so convenient to work with, we might want to assume 
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that the regression of Y on X can be adequately approximated by a linear function. 
Thus, we really do not expect ( 1 1.3.3) to hold, but instead we hope that 

( 1 1 .3 .4) 

is a reasonable approximation. If we start from the (rather strong) assumption that 
the pair (Xi , }Ii) has a bivariate normal distribution, it immediately follows that the 
regression of Y on X is linear. In this case, the conditional expectation E(Ylx} is 
linear in the parameters (see Definition 4.5.10 and the subsequent discussion) . 

There is one final distinction to be made. When we do a regression analysis, that 
is, when we investigate the relationship between a predictor and a response variable, 
there are two steps to the analysis. The first step is a totally data-oriented one, in 
which we attempt only to summarize the observed data. (This step is always done, 
since we almost always calculate sample means and variances or some other summary 
statistic. However, this part of the analysis now tends to get more complicated.) It is 
important to keep in mind that this "data fitting" step is not a matter of statistical 
inference. Since we are interested only in the data at hand, we do not have to make 
any assumptions about parameters. 

The second step in the regression analysis is the statistical one, in which we at
tempt to infer conclusions about the relationship in the population, that is, about the 
population regression function. To do this, we need to make assumptions about the 
population. In particular, if we want to make inferences about the slope and intercept 
of a population linear relationship, we need to assume that there are parameters that 
correspond to these quantities. 

In a simple linear regression problem, we observe data consisting of n pairs of ob
servations, (Xl , yd, . . . , (xn , Yn) .  In this section, we will consider a number of different 
models for these data. The different models will entail different assumptions about 
whether X or y or both are observed values of random variables X or Y. 

In each model we will be interested in investigating a linear relationship between 
X and y. The n data points will not fall exactly on a straight line, but we will be 
interested in summarizing the sample information by fitting a line to the observed 
data points. We will find that many different approaches lead us to the same line. 

Based on the data (Xl , yd, . . .  , (xn' Yn) ,  define the following quantities. The sample 
means are 

{11 .3.5) 

The sums of squares are 

( 11 .3.6) 

1 n 
X - L Xi and ii n i= 1 

1 n 
- L Yi . n i=1  

n 
x)2 and Syy = L(Yi _ jj)2, 

i=1 
and the sum of cross-products is 

( 1 1 .3.7) 
n 

Sxy = L(xi - X) (Yi j)) . 
i=1 
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Figure 1 1.3. 1 .  Data from Table 1 1 .9. 1: Vertical distances that are measured by RSS 

Then the most common estimates of (}' and f3 in ( 1 1 .3.4) , which we will subsequently 
justify under various models, are denoted by a and b, respectively, and are given by 

( 1 1 .3.8) b = SXIl and a fj - bx. Sxx 

11 .3. 1  Least Squares: A Mathematical Solution 

Our first derivation of estimates for (}' and f3 makes no statistical assumptions about 
the observations (Xi ,  Yi) '  Simply consider (Xl > Yl ) ,  . . .  , (xn, Yn) as n pairs of numbers 
plotted in a scatterplot as in Figure 1 1.3. 1 .  (The 24 data points pictured in Figure 
1 1.3.1  are listed in Table 1 1 .3 .1 . )  Think of drawing through this cloud of points a 
straight line that comes "as close as possible" to all the points. 

Table 1 1 .3. 1 .  Data pictured in Figure 11.9. 1  

x x x x 

3.74 3.22 0.20 2.81 1 .22 1 .23 1 .76 4 .12 
3.66 4.87 2.50 3.71 1 .00 3.13 0.51 3.16 
0.78 0.12 3.50 3 . 11  1 .29 4.05 2 . 17  4.40 
2.40 2.31 1.35 0.90 0.95 2.28 1 .99 1 . 18 
2 . 18 4.25 2.36 4.39 1 .05 3.60 1 .53 2.54 
1 .93 3 .13 4.36 2.92 5.39 2.60 4.89 

x = 22.82 = 43.62 15.48 
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For any line Y = c + dx, the residual sum of squares (RSS) is defined to be 
n 

RSS = L(Yi - (c + dXi) )2 . 

The RSS measures the vertical distance from each data point to the line c + dx and 
then sums the squares of these distances. (Two such distances are shown in Figure 
11 .3.1 .)  The least squares estimates of a and f3 are defined to be those values a and b 
such that the line a + bx minimizes RSS. That is, the least squares estimates, a and 
b, satisfy 

n n 
min L (Yi - (c + dxi) ) 2  = L(Yi - (a + bXi) )2 . c,d i=1 i=1 

This function of two variahles, 0 and d, can be minimized in the following way. For 
any fixed value of d, the value of 0 that gives the minimum value can be found by 
writing 

n n 

L(Yi - (c + dXi) )2 2 )(Yi dXi) 0)2 • 
• =1 i=1 

From Theorem 5.2.4, the minimizing value of c is 
1 

n 
(1 1 .3.9) 0 - L(Y, - dXi) = y - dx. 

n i=1 
Thus, for a given value of d, the minimum value of RSS is 

n 

L« Yi dXi) 
i=1 

n 
(jj dx) )2 = L«Yi y) d(Xi x))2 = 81111 2d8xy + d28xx•  

i=1 
The value of d that gives the overall minimum value of RSS is obtained by setting 
the derivative of this quadratic function of d equal to O. The minimizing value is 

(11 .3. 10) 

This value is, indeed, a minimum since the coefficient of d2 is positive. Thus, by 
(11 .3.9) and ( 11 .3. lO) , a and b from (1 1 .3.8) are the values of c and d that minimize 
the residual sum of squares. 

The RSS is only one of many reasonable ways of measuring the distance from the 
line c + dx to the data points. For example, rather than using vertical distances we 
could use horizontal distarlces. This is equivalent to graphing the y variable on the 
horizontal axis arld the x variable on the vertical axis and using vertical distances as 
we did above. Using the above results (interchanging the roles of x and Y) , we find 
the least squares line is x = a' + b' y, where 

b' = �X1l arld a' = X - b'y. 
IIIi 

Reexpressing the line so that Y is a function of x, we obtain fi = - (a' jb') + (ljb')x. 
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Usually the line obtained by considering horizontal distances is different from the 
line obtained by considering vertical distances. From the values in Table 11 .3 .1 ,  the 
regression of y on x (vertical distances) is y = 1 .86 + .68x. The regression of x on 
y (horizontal distances) is y = -2.31 + 2.82x. In Figure 12.2.2, these two lines are 
shown (along with a third line discussed in Section 12.2) . If these two lines were the 
same, then the slopes would be the same and b/( l/b') would equal 1 .  But, in fact, 
b/(I/b') :s;; 1 with equality only in special cases. Note that 

_b_ = bb' = (Sxy)2 . 1/b' SxxSyy 

Using the version of HOlder's Inequality in (4.7.9) with p = q 2 , ai = Xi X, and 
bi = Yi 11, we see that (SXy)2 :s;; SxxSyy and, hence, the ratio is less than 1 .  

I f  X is the predictor variable, y i s  the response variable, and we think of predicting 
Y from x, then the vertical distance measured in RSS is reasonable. It measures the 
distance from Yi to the predicted value of Yi, Yi C + dXi . But if we do not make this 
distinction between x and y, then it is unsettling that another reasonable criterion, 
horizontal distance, gives a different line. 

The least squares method should be considered only as a method of "fitting a. 
line" to a set of data, not as a method of statistical inference. We have no basis 
for constructing confidence intervals or testing hypotheses because, in this section, 
we have not used any statistical model for the data. When we think of a and b 
in the context of this section, it might be better to call them least squares solutions 
rather than least squares estimates because they are the solutions of the mathematical 
problem of minimizing the RSS rather than estimates derived from a statistical model. 
But, as we shall see, these least squares solutions have optimality properties in certain 
statistical models. 

1 1 .9.2  Best Linear Unbiased Estimators: A Statistical Solution 
In this section we show that the estimates a and b from ( 1 1 .3.8) are optimal in the 
class of linear unbiased estimates under a fairly general statistical model. The model 
is described as follows. Assume that the values Xl , . . .  , Xn are known, fixed values. 
(Think of them as values the experimenter has chosen and set in a laboratory exper
iment. )  The values YI , . . . , Yn are observed values of uncorrelated random variables 
Y1 , . • .  , Yn. The linear relationship assumed between the xs and the ys is 

( 1 1 .3.1 1 )  

where we also assume that 

( 1 1 .3.12) 

Eli Q; + (3Xi, i 1 ,  . . .  , n , 

There i s  no subscript in (72 because we are assuming that all the lis have the same 
(unknown) variance. These assumptions about the first two moments of the lis are the 
only assumptions we need to make to proceed with the derivation in this subsection. 
For example, we do not need to specify a probability distribution for the Y1 , · · . ,  Yn.  
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The model in ( 1 1 .3 .11 )  and ( 1 1 .3.12) can also be expressed in this way. We assume 
that 

( 1 1 .3 .13)  

where €l l "  . , €n are uncorrelated random variables with 

( 11 .3 .14) 

The €1 , . . •  , En are called the random errors. Since Vi depends only on fi and the fiS 
are uncorrelated, the ¥is are uncorrelated. Also, from ( 1 1 .3. 13) and ( 1 1 .3 .14) , the 
expressions for EVi and Var Yi in ( 11 .3.1 1 )  and ( 1 1 .3 .12) are easily verified. 

To derive estimators for the parameters a and /3, we restrict attention to the class 
of linear estimators. An estimator is a linear estimator if it is of the form 

(11 .3 .15) 

where d1, . • •  , dn are known, fixed constants. (Exercise 7.39 concerns linear estima
tors of a population mean.) Among the class of linear estimators, we further restrict 
attention to unbiased estimators. This restricts the values of d1 , • • •  , dn that can be 
used. 

An unbiased estimator of the slope /3 must satisfy 
n 

E 2: diYi = /3, 
i;1 

regardless of the true value of the parameters a and /3. This implies that 
n n n 

/3 = E 2: diYi = 2: diE¥i = 2: di (a + /3Xi) 
i;l i;l i=l 

This equality is true for all a and /3 if and only if 

( 1 1 .3.16) 
n 

o and 2: diXi 
i=l 

1 .  

Thus, d1 , . . .  , dn must satisfy ( 1 1 .3. 16) in  order for the estimator to be an unbiased 
estimator of /3. 

In Chapter 7 we called an unbiased estimator "best" if it had the smallest variance 
among all unbiased estimators. Similarly, an estimator is the best linear unbiased 
estimator (BLUE) if it is the linear unbiased estimator with the smallest variance. 
We will now show that the choice of di (Xi x)/Sxx that defines the estimator 
b SzY / Sxx is the best choice in that it results in the linear unbiased estimator of /3 
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with the smallest variance. (The diS must be known, fixed constants but the XiS are 
known, fixed constants, so this choice of diS is legitimate.) 
A note on notation: The notation Sxy stresses the fact that Sxy is a random vari
able that is a function of the random variables YI , . . .  , Yn. Sxy also depends on the 
nonrandom quantities XI , . . .  , Xn . 

Because YI , • • •  , Yn are uncorrelated with equal variance a2 , the variance of any 
linear estimator is given by 

n n n n 
Var L di� = L d;Var� = L d;a2 = a2 L d; . 

i=1 i=1 i=1 i=1 
The BLUE of /3 is, therefore, defined by constants db ' "  , dn that satisfy ( 1 1 .3.16) 
and have the minimum value of 2:�1 d;. (The presence of a2 has no effect on the 
minimization over linear estimators since it appears as a multiple of the variance of 
every linear estimator. )  

The minimizing values of the constants d1 , • • •  , dn can now be found by using 
Lemma 1 1 .2 .7. To apply the lemma to our minimization problem, make the following 
correspondences, where the left-hand sides are notation from Lemma 1 1.2.7 and the 
right-hand sides are our current notation. Let 

which implies Vc x. If di is of the form 

( 1 1 .3.17) 

then, by Lemma 1 1 .2.7, d1 , • • •  , dn maximize 

( 1 1 .3.18) (2::':-1 diXi)2 
L�ldt 

among all d1 , • • •  , dn that satisfy 2: di = O. Furthermore, since 

if diS of the form ( 1 1 .3. 17) also satisfy ( 11 .3 .16), they certainly maximize ( 1 1 .3.18) 
among all d} , . . .  , dn that satisfy ( 11.3. 16). (Since the set over which the maximum is 
taken is smaller, the maximum cannot be larger.) Now, using ( 1 1 .3.17), we have 

n n 
L dtXi = L K(Xi - X)Xi = KSxx . 
i=l i=} 

The second constraint in ( 1 1 .3. 16) is satisfied if K 
defined by 

-81 • Therefore, with d1, • • •  , dn "''' 

( 1 1 .3. 19) (Xi - x) ,; dt = 
S " 1 ,  . . . , n, 

xx 
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" 
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Figure 1 1.3.2. Geometric description of the BLUE 

both constraints of ( 1 1 .3.16) are satisfied and this set of diS produces the maximum. 
Finally, note that for all db ' . . , dn that satisfy (1 1 .3. 16) , 

CL:�ldiXi)2 1 
L:�l dt = L:�=l dt '  

Thus, for d l , • • .  , dn that satisfy ( 1 1 .3 .16) , maximization of ( 11 .3 . 18) is equivalent 
to minimization of L: dt . Hence, we can conclude that the diS defined in (11 .3 .19) 
give the minimum value of L: dt among all diS that satisfy ( 1 1 .3.16), and the linear 
unbiased estimator defined by these diS, namely, 

is the BLUE of fJ. 
A geometric description of this construction of the BLUE of fJ is given in Figure 

1 1 .3.2, where we take n = 3. The figure shows three-dimensional space with coor
dinates d. , d2 , and d3 . The two planes represent the vectors (db d2 , d3) that satisfy 
the two linear constraints in ( 11 .3 .16), and the line where the two planes intersect 
consists of the vectors (db d2, d3) that satisfy both equalities. For any point on the 
line, L:�=l dt is the square of the distance from the point to the origin O. The vector 
(db d2 , d3) that defines the BLUE is the point on the line that is closest to O. The 
sphere in the figure is the smallest sphere that intersects the line, and the point of 
intersection is the point (db d2 , d3) that defines the BLUE of fJ. This, we have shown, 
is the point with di (Xi X)/Sxx. 

The variance of b is 

( 1 1 .3.20) ",n ( x)2 . L..i=l Xi 

Since Xl ,  . • .  , Xn are values chosen by the experimenter, they can be chosen to make 
Sxx large and the variance of the estimator smalL That is, the experimenter can design 



548 ANALYSIS OF VARIANCE AND REGRESSION Section 11.8 

the experiment to make the estimator more precise. Suppose that all the Xl ,  • . .  , X" 
must be chosen in an interval fe, fl . Then, if n is even, the choice of Xl > • • •  , Xn that 
makes Sz:x as large as possible is to take half of the XiS equal to e and half equal 
to f (see Exercise 1 1.26) . This would be the best design in that it would give the 
most precise estimate of the slope /3 if the experimenter were certain that the model 
described by ( 1 1.3. 1 1 )  and ( 11 .3.12) was correct. In practice, however, this design is 
seldom used because an experimenter is hardly ever certain of the model. This two
point design gives information about the value of E(Ylx) at only two values, x ::::: e 
and X = f. If the population regression function E(Ylx) , which gives the mean of Y 
as a function of x, is nonlinear, it could never be detected from data obtained using 
the "optimal" two-point design. 

We have shown that b is the BLUE of /3. A similar analysis will show that a is the 
BLUE of the intercept Q. The constants dl , . . .  , dn that define a linear estimator of 
Q must satisfy 

( 1 1 .3 .21) 
n 

I: di = 1 and 
i=l 

n 
I: diXi = O. 
i=l 

The details of this derivation are left as Exercise 11 .27. The fact that least squares es
timators are BLUEs holds in other linear models also. This general result is called the 
Gauss-Markov Theorem (see Christensen 1996; Lehmann and Casella 1998, Section 
3.4, or the more general treatment in Harville 1981 ) .  

1 1.3. 3  Models and Distribution Assumptions 

In this section, we will introduce two more models for paired data (Xl , yd ,  . . .  , (xn' Yn) 
that are called simple linear regression models. 

To obtain the least squares estimates in Section 11 .3. 1 ,  we used no statistical model. 
We simply solved a mathematical minimization problem. Thus, we could not derive 
any statistical properties about the estimators obtained by this method because there 
were no probability models to work with. There are not really any parameters for 
which we could construct hypothesis tests or confidence intervals. 

In Section 11 .3.2 we made some statistical assumptions about the data. Specifically, 
we made assumptions about the first two moments, the mean, variance, and covariance 
of the data. These are all statistical assumptions related to probability models for 
the data, and we derived statistical properties for the estimators. The properties of 
unbiasedness and minimum variance, which we proved for the estimators a and b of 
the parameters Q and /3, are statistical properties. 

To obtain these properties we did not have to specify a complete probability model 
for the data, only assumptions about the first two moments. We were able to obtain a 
general optimality property under these minimal assumptions, but the optimality was 
only in a restricted class of estimators-linear unbiased estimators. We were not able 
to derive exact tests and confidence intervals under this model because the model does 
not specify enough about the probability distribution of the data. We now present 
two statistical models that completely specify the probabilistic structure of the data. 
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Conditional normal model 

The conditional normal model is the most common simple linear regression model and 
the most straightforward to analyze. The observed data are the n pairs, (Xl , YI ) , . . .  , 
(Xn. y .. J .  The values of the predictor variable, Xl ,  . . .  , Xn . are considered t o  be known, 
fixed constants. As in Section 1 1 .3 .2, think of them as being chosen and set by the 
experimenter. The values of the response variable, YI ,  . . . , Yn , are observed values of 
random variables, Yl l ·  . •  , Yn. The random variables YI , . . .  , Yn are assumed to be 
independent . Furthermore, the distribution of the ¥is is normal, specifically, 

(11 .3.22) 

Thus the population regression function is a l inear function of X, that is, E(Ylx) = 
a + /3x, and all the ¥is have the same variance, (12 . The conditional normal model 
can be expressed similar to ( 1 1 .3. 13) and ( 1 1 .3 .14) , namely, 

( 1 1 .3.23) 

where tl , . . •  , tn are iid nCO, (12 ) random variables. 
The conditional normal model is a special case of the model considered in Sec

tion 11 .3.2. The population regression function, E(Ylx) = a + /3x , and the variance, 
Var Y = (12 , are as in that model. The uncorrelatedness of Yl l . . .  , Yn (or, equiva
lently, €l , . • .  , en )  has been strengthened to independence. And, of course, rather than 
just the first two moments of the distribution of Yi ,  . . .  , Yn, the exact form of the 
probability distribution is now specified. 

The joint pdf of Yl , • . .  , Yn is the product of the marginal pdfs because of the 
independence. It is given by 

n 
= II !(Yi la, /3, (12) 

i= 1  

( 11 .3.24) 

It is this joint probability distribution that will be used to develop the statistical 
procedures in Sections 1 1 .3 .4 and 1 1 .3.5. For example, the expression in ( 1 1 .3.24) will 
be used to find MLEs of a, /3, and (12. 

Bivariate normal model 

In all the previous models we have discussed, the values of the predictor variable, 
Xl , . . •  , Xn ,  have been fixed, known constants. But sometimes these values are actually 
observed values of random variables, Xl , ' "  , Xn.  In Galton's example in Section 1 1 .3, 
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Xl , . . .  , Xll were observed heights of fathers. But the experimenter certainly did not 
choose these heights before collecting the data. Thus it is necessary to consider models 
in which the predictor variable, as well as the response variable, is random. One such 
model that is fairly simple is the bivariate normal model. A more complex model is 
discussed in Section 12.2. 

In the bivariate normal model the data (XI ,  YI ) , . . . , (Xn, Yn ) are observed values 
of the bivariate random vectors (Xl > Yi ) ,  . . .  , (Xn' Yn) .  The random vectors are in
dependent and the joint distribution of (Xi, Yi) is assumed to be bivariate normal. 
Specifically, it is assumed that 

(Xi , Yi) fV bivariate normal(/tx, /ty , 01 , a}, p). 

The joint pdf and various properties of a bivariate normal distribution are given 
in Definition 4.5.10 and the subsequent discussion. The joint pdf of all the data 
(XI , Y1 ) ,  . . .  , (Xll' Yn) is the product of these bivariate pdfs. 

In a simple linear regression analysis, we are still thinking of X as the predictor 
variable and Y as the response variable. That is, we are most interested in predicting 
the value of Y having observed the value of x. This naturally leads to basing inference 
on the conditional distribution of Y given X = x. For a bivariate normal model, 
the conditional distribution of Y given X = X is normal. The population regression 
function is now a true conditional expectation, as the notation suggests, and is 

( 1 1 .3.25) 

The bivariate normal model implies that the population regression is a linear function 
of x. We need not assume this as in the previous models. Here E(Y lx) = a + {lx, 
where {3 p� and 0: = Ily - P ay "x. Also, as in the conditional normal model, the ax � ax � 
conditional variance of the response variable Y does not depend on x, 
( 1 1 .3.26) 

For the bivariate normal model, the linear regression analysis is almost always 
carried out using the conditional distribution of (Y1 ,  . . .  , Yn) given Xl = Xl , ' "  , Xn = 
Xn, rather than the unconditional distribution of (Xl . Yi ), . . . , (Xn , Yn) .  But then we 
are in the same situation as the conditional normal model described above. The fact 
that Xl , . . .  , Xn are observed values of random variables is immaterial if we condition 
on these values and, in general, in simple linear regression we do not use the fact 
of bivariate normality except to define the conditional distribution. (Indeed, for the 
most part, the marginal distribution of X is of no consequence whatsoever. In linear 
regression it is the conditional distribution that matters. )  Inference based on point 
estimators, intervals, or tests is the same for the two models. See Brown ( 1990b) for 
an alternative view. 

1 1.3.4 Estimation and Testing with Normal Errors 
In this and the next subsections we develop inference procedures under the conditional 
normal model, the regression model defined by ( 1 1 .3 .22) or ( 1 1 .3 .23) . 
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First, we find the maximum likelihood estimates of the three parameters, 0', {3, 
and (72 .  Using the joint pdf in (11 .3.24), we see that the log likelihood function is 

2 1 
n ) n I 2 E�l (Yi - 0: - f3Xi )2 

log L(O', {3, (7 x, y) = - '2 log(21r '2 og(7 -
2(72 

. 

For any fixed value of (72 , log L is maximized as a function of a and {3 by those values, 
&- and /3, that minimize 

n 

L (Yi 0' f3Xi )2 . 
i=l 

But this function is just the RSS from Section 1 1.3.1 ! There we found that the mini
mizing values are 

• S A 
{3 = b = -=:!L and 0: = a = fj - bx = fj - {3x. Sxx 

Thus, the least squares estimators of a and {3 are also the MLEs of a and {3. The 
values 0: and /3 are the maximizing values for any fixed value of (72. Now, substituting 
in the log likelihood, to find the MLE of (72 we need to maximize 

n 
-- log(21r) 2 

This maximization is similar to finding the MLE of (72 in ordinary normal sampling 
(see Example 7.2 . 11 ) ,  and we leave the details to Exercise 1 1 .28. The MLE of (72, 
under the conditional normal model, is 

1 n 
- L(Yi n i=l 

the RSS, evaluated at the least squares line, divided by the sample size. Henceforth, 
when we refer to RSS we mean the RSS evaluated at the least squares line. 

In Section 1 1 .3.2, we showed that 0: and /3 were linear unbiased estimators of 0: and 
f3. However, {;r2 is not an unbiased estimator of (72 . For the calculation of E&2 and in 
many subsequent calculations, the following lemma will be useful. 

Lemma 11.3.2 Let Y1 , • . •  , Yn be uncorrelated random variables with Varli = (72 
for all i = 1 ,  . . . , n. Let Cl , . • .  , en  and d1 , • • •  , dn be two sets of constants. Then 

Proof: This type of result has been encountered before. It is similar to Lemma 5 .3.3 
and Exercise 1 1 . 1 1. However, here we do not need either normality or independence 
of Y1 , . . .  , Yn . 0 
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We next find the bias in a2 • From ( 1 1 .3.23) we have 

t:i = Yi - 0' {3xi . 

We define the residuals from the regression to be 

( 11 .3.27) 
and thus 

.!.RSS. n 

It can be calculated (see Exercise 1 1 .29) that 

E€i 0, 

and a lengthy calculation (also in Exercise 1 1 .29) gives 

( 1 1 .3.28) 

Thus, 

(n - 2 1 ( 1 � 2 2 -- + - - L.....t Xj + Xi - 2 (Xi n S:z;:z; n .  1 ]'= 

n - 2 2 --a .  n 

(l:: XiX = � (I: Xi)2) 

(l:: x; � (l:: Xi)2 = 8xx) 

The MLE 0'2 is a biased estimator of a2 . The more commonly used estimator of (12 , 
which is unbiased, is 

( 1 1 .3.29) 1 n 
- "(Yi n - 2 L.....t 

i=l 
To develop estimation and testing procedures, based on these estimators, we need 

to know their sampling distributions. These are summarized in the following theorem. 
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Ifheorem 11.3.3  Under the conditional normal regression model (1J. 9. 22), the sam
pling distributions oj the estimators &-, /3, and 82 are 

with 

&- '" n (a, �2 txt) , n x:r i=l 

2 -A -(J' X Cov( &, (3) = -8-' xx 
Furthermore, (&-, /3) and 82 are independent and 

(n - 2)82 2 0"2 '" Xn-2' 

Proof: We first show that & and /3 have the indicated normal distributions. The 
estimators & and 13 are both linear functions of the independent normal random 
variables Y1 ,  • . .  , Yn• Thus, by Corollary 4.6.10, they both have normal distributions. 
Specifically, in Section 11 .3.2, we showed that 13 2:�=1 diYi, where the di are given 
in ( 11 .3 .19) ,  and we also showed that 

A • 0"2 
E{3 = {3 and Var{3 = -8 . xx 

The estimator & = Y - /3x can be expressed as &- = 2::':1 CiYi,  where 

1 (Xi - x)x 
Ci = - - j n Sxx 

and thus it is straightforward to verify that 
n 

E& L CiEYi 
i=1 

n 
Var& = (J'2 L C; 

i=l 

a, 

showing that &- and 13 have the specified distributions. Also, Cov(&-, j3) is easily cal
culated using Lemma 1 1 .3.2. Details are left to Exercise 11 .30. 

We next show that & and 13 are independent of 82, a fact that will follow from 
Lemma 1 1.3.2 and Lemma 5.3.3. From the definition of fi in ( 1 1 .3.27) , we can write 

( 11 .3.30) 

where 

n 
fi = L [Oij - (Cj + djXi)] Yi, 

c. ,; = { 0
1 if i = j 

U .J if i f. j , 

j=1 

1 (Xj - x)x 
Cj = - - , n 8xx 
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Since & L CiYi and fJ = E d;Yi, application of Lemma 1 1 .3.2 together with some 
algebra will show that 

COV(€i' &) = COV(€i' fJ) = 0, i = 1 ,  . . .  , n. 

Details are left to Exercise 1 1.31. Thus, it follows from Lemma 5.3.3 that, under 
normal sampling, S2 = L €� / (n - 2) is independent of & and fJ. 

To prove that (n - 2)82/a2 'V X;-2' we write (n - 2)82 as the sum of n 2 
independent random variables, each of which has a XI distribution. That is, we find 
constants aij , i = 1 ,  . . . , n and j = 1 ,  . . . , n 2 ,  that satisfy 

( 1 1 .3.31) 

where 
n 

L aij = 0, j = 1, . . . , n - 2, 
;=1 

and 

The details are somewhat involved because of the general nature of the XiS. We omit 
details. 0 

The RSS from the linear regression contains information about the worth of a 
polynomial fit of a higher order, over and above a linear fit. Since, in this model, we 
assume that the population regression is linear, the variation in this higher-order fit 
is just random variation. Robson ( 1959) gives a general recursion formula for finding 
coefficients for such higher-order polynomial fits, a formula that can be adapted to 
explicitly find the aijS of ( 1 1 .3.31) .  Alternatively, Cochran's Theorem (see Miscellanea 
1 1 .5 .1) can be used to establish that L €Ua2 '" X�-2' 

Inferences regarding the two parameters a and {3 are usually based on the following 
two Student's t distributions. Their derivations follow immediately from the normal 
and X2 distributions and the independence in Theorem 1 1 .3.3. We have 

( 11 .3.32) 

and 

( 1 1 .3.33) 

& a 

SJ(L�=l x�)/(n8xx) 
'V tn-2 

� {3 
S/.;B;; '" tn-2 . 

The joint distribution of these two t statistics is called a bivariate Student 's t dis
tribution. This distribution is derived in a manner analogous to the univariate case. 
We use the fact that the joint distribution of & and � is bivariate normal and the 
same variance estimate S is used in both univariate t statistics. This joint distribution 
would be used if we wanted to do simultaneous inference regarding O! and {3. However, 
we shall deal only with the inferences regarding one parameter at a time. 

Usually there is more interest in (:3 than in a. The parameter a is the expected 
value of Y at x = 0, E(Y lx = 0) .  Depending on the problem, this may or may not 
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be an interesting quantity. In particular, the value x = 0 ma.y not be a reasonable 
value for the predictor variable. However, /3 is the rate of change of E(Y lx) as a 
{unction of x. That is, f3 is the amount that E(Ylx) changes if x is changed by one 
unit. Thus, this parameter relates to the entire range of x values and contains the 
information about whatever linear relationship exists between Y and x. (See Exercise 
1 1.33.) Furthermore, the value f3 = 0 is of particular interest. 

If f3 = 0, then E(Yix) = a + f3x = a and Y ,....., n(a , 0-2 ) , which does not depend on 
x. In a well-thought-out experiment leading to a regression analysis we do not expect 
this to be the case, but we would be interested in knowing this if it were true. 

The test that f3 = 0 is quite similar to the ANOYA test that all treatments are 
equaL In the ANOYA the null hypothesis states that the treatments are unrelated to 
the response in any way, while in linear regression the null hypothesis f3 0 states 
that the treatments (x) are unrelated to the response in a linear way. 

To test 
( 11 .3.34) Ho : f3 = 0 versus 
using ( 11 .3.33) , we reject Ho at level a if 

or, equivalently, if 
I � - O  I S/.jSxx 

> tn-2,Dtj2 

�
2 

( 11 .3.35) 
S2/Sxx 

> F1,n-2,cx. 

Recalling the formula for � and that RSS= E f�, we have 
�2 S�y/ Sxx Regression sum of squares 

S2/Sxx RSS/(n - 2) Residual sum of squares/df 
This last formula is summarized in the regression ANO VA table, which is like the 

ANOYA tables encountered in Section 1 1 .2 . For simple linear regression, the table, 
resulting in the test given in ( 11 .3.35), is given in Table 1 1 .3.2. Note that the table 
involves only a hypothesis about (3. The parameter a and the estimate & play the 
same role here as the grand mean did in Section 1 1 .2 . They merely serve to locate 
the overall level of the data and are "corrected" for in the sums of squares. 

Example 11 .3.4 (Continuation of Example 11.3.1) The regression ANOYA 
for the grape crop yield data follows. 

ANOVA table for grape data 
Source of Degrees of Sum of Mean F 
variation freedom squares square statistic 
Regression 1 6.66 6.66 50.23 
Residual 10 1 .33 . 133 
Total 1 1  7.99 

This shows a highly significant slope of the regression line. I I  
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Source of 
variation 

Regression 
(slope) 

Residual 

Total 

ANALYSIS OF VARIANCE AND REGRESSION 

Table 11 .3.2. ANOVA table for simple linear regression 

Degrees of Sum of Mean F 
freedom squares square statistic 

1 Reg. SS = MS(Reg) = 
S;1I1Sxx Reg. SS 

n - 2  RSS E A2 MS(Resid) = 
fi RSS/ (n - 2) 

n - 1  SST = 
E (Yi y)2 

Section 11.3 

We draw one final parallel with the analysis of variance. It may not be obvious 
from Table 1 1 .3.2, but the partitioning of the sum of squares of the ANOVA has an 
analogue in regression. We have 

. Total sum of squares Regression sum of squares + Residual sum of squares 

( 1 1 .3 .36) 
n n 

L:)Yi y)2 = L(Yi 
i=l i=l 

n 
y)2 + L(Yi - yd2, 

i= l  

where fli = &+/3Xi ' Notice the similarity of these sums of squares to those i n  ANOVA. 
The total sum of squares is, of course, the same. The RSS measures deviation of the 
fitted line from the observed values, and the regression sum of squares, analogous to 
the ANOVA treatment sum of squares, measures the deviation of predicted values 
( "treatment means" ) from the grand mean. Also, as in the ANOVA, the sum of 
squares identity is valid because of the disappearance of the cross-term (see Exercise 
1 1.34). The total and residual sums of squares in ( 11 .3.36) are clearly the same as 
in Table 1 1.3.2. But the regression sum of squares looks different. However, they are 
equal (see Exercise 1 1 .34); that is, 

n 
L(Yi - y)2 
i=l 

The expression 8:1I18xx is  easier to use for computing and provides the link with the 
t test. But E�l (fli - j))2 is the more easily interpreted expression. 

A statistic that is used to quantify how well the fitted line describes the data is the 
coefficient of determination. It is defined as the ratio of the regression sum of squares 
to the total sum of squares. It is usually referred to as r2 and can be written in the 
various forms 

2 Regression sum of squares r = --��----�--�---
Total sum of squares 

The coefficient of determination measures the proportion of the total variation in 
Y!' . . . , Yn (measured by S1IY) that is explained by the fitted line (measured by the 
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regression sum of squares) .  From ( 11.3.36), 0 ::; r2 ::; 1 .  If YI , . . .  , Yn all fall exactly 
on the fitted line, then Yi = '01. for all i and r2 = 1. If YI , . . . I Yn. are not close to the 
fitted line, then the residual sum of squares will be large and r2 will be near O. The 
coefficient of determination can also be (perhaps more straightforwardly) derived as 
the square of the sample correlation coefficient of the n pairs (Yl , X l ) ,  . . .  , (Yn , Xn) or 
of the n pairs (YI I ih ) , · · ·  I (Yn. ,'On.) · 

Expression ( 1 1 .3.33) can be used to construct a 100(1 a)% confidence interval for 
P given by 

( 11 .3.37) 

Also, a level a test of Ho : P Po versus HI : P -I- Po rejects Ho if 

� {3o 
I 

( 1 1.3.38) 
Sf ,jSxx 

> tn-2,a/2 . 

As mentioned above, it is common to test Ho : {3 0 versus HI : {3 -I- 0 to determine 
if there is some linear relationship between the predictor and response variables. 
However, the above test is more general, since any value of f30 can be specified. The 
regression ANOVA, which is locked into a "recipe," can test only Ho : {3 O. 

11 .9. 5  Estimation and Prediction at a Specified X = Xo 
Associated with a specified value of the predictor variable, say X = xo, there is a 
population of Y values. In fact, according to the conditional normal model, a random 
observation from this population is Y '" n(a+ pXo, (72) . After observing the regression 
data (Xl . yd , . . .  , (xn' Yn) and estimating the parameters a, p, and (72, perhaps the 
experimenter is going to set x :::=; Xo and obtain a new observation, call it Yo. There 
might be interest in estimating the mean of the population from which this observation 
will be drawn, or even predicting what this observation will be. We will now discuss 
these types of inferences. 

We assume that (Xl , Yd, . . .  , (xn' Yn) satisfy the conditional normal regression 
model, and based on these n observations we have the estimates &, �, and S2. Let 
Xo be a specified value of the predictor variable. First, consider estimating the mean 
of the Y population associated with xo, that is, E(Ylxo ) = a + {3xo. The obvi
ous choice for our point estimator is 0- + �xo. This is an unbiased estimator since 
E(& + �xo) EO- + (E�)xo = a + j3xo. Using the moments given in Theorem 1 1.3.3, 
we can also calculate 

Var (o- + �xo) Var 0- + (Var �)xa + 2xo Cov(o-, �) 

= � t x2 + (7
2xg _ 2(72Xox 

nSxx i=I ' Sxx 

2xox + X�) (±x) 
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(reCOmbine) 
terms 

Finally, since 0: and � are both linear functions of Yl > . . .  , Yn, so is 0: + �xo. Thus 
0: + �xo has a normal distribution, specifically, 

( 1 1 .3.39) . '  ( ( 1 (xo X)2 ) ) o + fJxo '" n 0 + fJxo, (J'2 ;;: + 8xx • 

By Theorem 11 .3.3, (o:, �) and 82 are independent. Thus 82 is also independent of 
0: + /Jxo (Theorem 4.6.12) and 

0: + /Jxo - (0 + fJxo) "" tn-2 . 
8 11. + (XO -x)2 V n Sr� 

This pivot can be inverted to give the 100(1 0)% confidence interval for a + fJxo ,  

( 1 1 .3.40) 

The length of the confidence interval for a+ fJxo depends on the values of Xl ,  . . .  , Xn 
through the value of (xo - x)2 / 8xx • It is clear that the length of the interval is shorter 
if Xo is near x and minimized at Xo x. Thus, in designing the experiment, the 
experimenter should choose the values Xl , . . .  , Xn so that the value xo, at which the 
mean is to be estimated, is at or near x.  It is only reasonable that we can estimate 
more precisely near the center of the data we observed. 

A type of inference we have not discussed until now is prediction of an, as yet, 
unobserved random variable Y, a type of inference that is of interest in a regression 
setting. For example, suppose that x is a college applicant's measure of high school 
performance. A college admissions officer might want to use x to predict Y I the stu
dent's grade point average after one year of college. Clearly, Y has not been ohserved 
yet since the student has not even been admitted! The college has data on former 
students, (Xl , YI ) ,  . . .  , (Xn, Yn) ,  giving their high school performances and one-year 
GPAs. These data might be used to predict the new student's GPA. 

Definition 11 .3.5 A 100(1 - a)% prediction interval for an unobserved random 
variable Y based on the ohserved data X is a random interval [L(X), U(X)] with the 
property that 

Pe(L(X) � y � U(X)) � 1 - a 

for all values of the parameter (). 
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Note the similarity in the definitions of a prediction interval and a confidence in
terval. The difference is that a prediction interval is an interval on a random variable, 
rather than a parameter. Intuitively, since a random variable is more variable than 
a parameter (which is constant) ,  we expect a prediction interval to be wider than a 
confidence interval of the same level. In the special case of linear regression, we see 
that this is the case. 

We assume that the new observation Yo to be taken at x = Xo has a n( a + {3xo, 0"2 ) 
distribution, independent of the previous data, (Xl ,  YI ) " ' "  (Xn, Yn) .  The estimators 
&, �! and S2 are calculated from the previous data and, thus, Yo is independent of 
&, �, and S2 . Using ( 1 1 .3.39), we find that Yo (& + �xo) has a normal distribution 
with mean E(Yo - (& + fixe »� a + {3xo (a + fho) = 0 and variance 

Var (Yo - (& + �xo» Var Yo + Var (& + fixe) 2 2 ( 1 (xo X)2 ) 
0" + 0" - +  S . 

n xx 

Using the independence of S2 and Yo - (& + �xo) ,  we see that 

which can be rearranged in the usual way to obtain the 100(1  - a)% prediction 
interval, 

( 11 .3.41 ) 

Since the endpoints of this interval depend only on the observed data, ( 1 1 .3.41) defines 
a prediction interval for the new observation Yo. 

11 .3. 6  Simultaneous Estimation and Confidence Bands 

In the previous section we looked at prediction at a single value Xo. In some circum
stances, however, there may be interest in prediction at many xos. For example, in the 
previously mentioned grade point average prediction problem, an admissions officer 
probably has interest in predicting the grade point average of many applicants, which 
naturally leads to prediction at many XoS. 

The problem encountered is the (by now) familiar problem of simultaneous infer
ence. That is, how do we control the overall confidence level for the simultaneous 
inference? In the previous section, we saw that a 1 a confidence interval for the 
mean of the Y population associated with Xo, that is, E(Ylxo) = a + {3xo, is given by 
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Now suppose that we want to make an inference about the Y population mean at a 
number of Xo values. For example, we might want intervals for E(Ylxoi ) ,  i = 1, . . .  , m. 
We know that if we set up m intervals as above, each at level 1 0:, the overall 
inference will not be at the 1 0: level. 

A simple and reasonably good solution is to use the Bonferroni Inequality, as used 
in Example 11 .2.9. Using the inequality, we can state that the probability is at least 
1 0: that 

( 1 1 .3.42) 

� + (XOi - x)2 
n Sxx 

simultaneously for i = 1 ,  . . .  , m. (See Exercise 1 1 .39.) 
We can take simultaneous inference in regression one step further. Realize that our 

assumption about the population regression line implies that the equation E(Ylx) = 
0: + f3x holds for all Xi hence, we should be able to make inferences at all x. Thus, we 
want to make a statement like ( 1 1 .3.42), but we want it to hold for all x. As might be 
expected, as he did for the ANOVA, Scheffe derived a solution for this problem. We 
summarize the result for the case of simple linear regression in the following theorem. 

Theorem 1 1.3.6 Under the conditional normal regression model (1 1 .9. 22), the prob
ability is at least 1 - 0: that 

( 1 1 .3.43) 

simultaneously for all x, where Ma. = ..j2F2•n-2 .a. ' 

Proof: If we rearrange terms, it should be clear that the conclusion of the theorem 
is true if we can find a constant Ma. that satisfies 

( ( (0: + px) - (0: + f3x) ) 2 
) 

P 

[ 
_ 2 ]  � M� for all x 1 - 0: 

S2 1 + (x-x) 
n 8"" 

or, equivalently, 
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a. 

The parameterization given in Exercise 11 .32, which results in independent estimators 
for a and f3, makes the above maximization easier. Write 

6: + 8x = y + 8(x - x) ,  

a + f3x J.Ly + f3(x - x) ,  (J-ty E Y = a + f3x) 
and, for notational convenience, define t = x x. We then have 

( 6: + 8x) - (a + f3x)r ( (Y J.Ly) + (8 - f3)t) 2 
82 [1 + (X-if)2 ] = -'---

82----.[C-1-+-t2 -;-]----!.'---
n S.,,, n � 

and we want to find MQ to satisfy 

Note that 82 plays no role in the maximization, merely being a constant. Applying 
the result of Exercise 1 1 .40, a direct application of calculus, we obtain 

((Y - J.Ly) + (8 - (3)t) 2 n(Y _ J.Ly)2 + 8xx(8 - (3)2 max = ----'--�-:.....:..--:::=____==-'-----'-....:- :....-t 82 [1 + t2 ] 82 n � 

( 11 .3.44) 

(Y -j.LY )2 + (.8-13)2 
(72 In (72/ S""" 82/0'2 

From Theorem 11 .3 .3 and Exercise 1 1 .32, we see that this last expression is the 
quotient of independent chi squared random variables, the denominator being divided 
by its degrees of freedom. The numerator is the sum of two independent random 
variables, each of which has a X� distribution. Thus the numerator is distributed as 
X� , the distribution of the quotient is 

and 

( ((Y - J.Ly) + (8 - (3)t) 2 

) 
P max < M� 

t 82 [1 + L] -n S:r;� 
if MOo = J2F2,n-2 , proving the theorem. 

= 1 - a  

o 
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s 

4 

3 

2 
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--- Two 90'1 Bonferroni intervals at � = 1 , 3  
--- 90 %  I interva1 lt x � 3.S 

----- 90% Scheffe bands 

Figure 1 1 .3.3. Scheffe bands, t interval (at x = 3.5), and Bonferroni intervals (at x = 1 and 
x = 3) for data in Table 11 .9. 1  

Since ( 1 1 .3.43) is true for all x ,  it actually gives a confidence band on the entire 
population regression line. That is, as a confidence interval covers a single-valued 
parameter, a confidence band covers an entire line with a band. An example of the 
Scheffe band is given in Figure 1 1 .3.3, along with two Bonferroni intervals and a single 
t interval. Notice that, although it is not the case in Figure 1 1 .3.3, it is possible for the 
Bonferroni intervals to be wider than the Scheffe bands, even though the Bonferroni 
inference (necessarily) pertains to fewer intervals. This will be the case whenever 

tn-2,Qf(2m) > 2F2,n-2,Q , 

where m is defined as in ( 1 1 .3.42). The inequality will always be satisfied for large 
enough m, so there will always be a point where it pays to switch from Bonferroni to 
Scheffe, even if there is interest in only a finite number of xs. This "phenomenon," 
that we seem to get something for nothing, occurs because the Bonferroni Inequality 
is an all-purpose bound while the Scheffe band is an exact solution for the problem 
at hand. (The actual coverage probability for the Bonferroni intervals is higher than 
I - a.) There are many variations on the Scheffe band. Some variations have different 
shapes and some guarantee coverage for only a particular interval of x values. See the 
Miscellanea section for a discussion of these alternative bands. 

In theory, the proof of Theorem 1 1 .3.6, with suitable modifications, can result 
in simultaneous prediction intervals. (In fact, the maximization of the function in 
Exercise 11 .40 gives the result almost immediately.) The problem, however, is that 
the resulting statistic does not have a particularly nice distribution. 

Finally, we note a problem about using procedures like the Scheffe band to make 
inferences at x values that are outside the range of the observed xs. Such procedures 
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are based on the assumption that we know the population regression function is 
linear for all x. Although it may be reasonable to assume the regression function is 
linear over the range of xs observed, extrapolation to xs outside the observed range is 
usually unwise. (Since there are no data outside the observed range, we cannot check 
whether the regression becomes nonlinear.) This caveat also applies to the procedures 
in Section 1 1 .3.5. 

11.4 Exercises -----------------------
11.1 An ANOVA variance-stabilizing transformation stabilizes variances in the following 

approximate way. Let Y have mean 8 and variance v(8). 
(a) Use arguments as in Section 10.1 .3 to show that a one-term Taylor series approx

imation of the variance of g(y) is given by Var (g(Y») = Ltog(8)]2V(8) .  
(b) Show that the approximate variance of g· (Y) is independent o f  8 ,  where g. (y) 

f[1/ VV(Y)]dY. 
11.2 Verify that the following transformations are approximately variance-stabilizing in 

the sense of Exercise 1 1. 1 .  
(a) Y tv Poisson, g. (y) = v'Y 
(b) Y tv binomial ( n, p) , g* (y) sin - 1 ( v'Y/n) 
(c) Y has variance v(O) K(P for some constant K,g· (y) = log(y). 
(Conditions for the existence of variance-stabilizing transformations go back at least 
to Curtiss 1943, with refinements given by Bar-Lev and Enis 1988, 1990.) 

11.3 The Box-Cox family of power transformations (Box and Cox 1964) is defined by 

g� (y) = { (yA _ 1)/..\ i f ..\  # 0 
log y if "\ 0, 

where ..\ is a free parameter. 
(a) Show that, for each y, gi (y) is continuous in ..\. In particular, show that 

lim (yA - 1)/>. = log y . 
.1.-0 

(b) Find the function v (8) ,  the approximate variance of Y, that gA(y) stabilizes. 
(Note that v(8) will most likely also depend on >..) 

Analysis of transformed data in general and the Box-Cox power transformation in 
particular has been the topic of some controversy in the statistical literature. See 
Bickel and Doksum (1981) ,  Box and Cox ( 1982), and Hinkley and Runger (1984) . 

11.4 A most famous (and useful) variance-stabilizing transformation is Fisher's 
z-transformation, which we have already encountered in Exercise 10 .17. Here we will 

- look at a few more details. Suppose that (X, Y) are bivariate normal with correlation 
coefficient 0 and sample correlation r. 
(a) Starting from Exercise 10.17, part (d), use the Delta Method to show that 

1 [ ( 1 + r )  ( 1 + 0) ]  - log -- - log --2 1 - r 1 - 0 

is approximately normal with mean 0 and variance lin. 
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(b) Fisher actually used a somewhat more accurate expansion (Stuart and Ord 1987, 
Section 16.33) and established that the quantity in part (a) is approximately 
normal with 

mean 2(n - 1)  d . 1 4 (l an varIance = -- + 
-::7( --=1""'):-::'2 • n - l 2 n 

Show that for small (! and moderate n, we can approximate this mean and 
variance by 0 and l/(n - 3), which is the most popular form of Fisher's z
transformation. 

11 .5  Suppose that random variables Yij are observed according to the overparameter
ized oneway ANOVA model in ( 11 .2.2). Show that, without some restriction on the 
parameters, this model is not identifiable by exhibiting two distinct collections of 
parameters that lead to exactly the same distribution of the Yijs. 

1 1.6 Under the oneway ANOVA assumptions: 
(a) Show that the set of statistics (Yh Y2. ,  . . . , Yk. ,  S�) is sufficient for (fh , B2 , . . .  , 

Bk , (2) .  
(b) Show that S� N�k E:=I (ni - I )S; is independent of each Y;. , i  1, . . . , k . 

(See Lemma 5.3.3). 
(c) If 0'2 is known, explain how the ANOVA data are equivalent to their canonical 

version in Miscellanea 1 1 .5.6. 

11.7 Complete the proof of Theorem 1 1 .2.8 by showing that 

Ie :2 L':n; ( Y;. - Y) (B. 6»)2 "" xLI '  
i= I 

(Hint: Define Vi = Y;. Bi , i 1, . . . , k. Show that V. are independent n(Q, u2/n.) .  
Then adapt the induction argument of Lemma 5 .3 .2  to show that E n1(Vi - V)2  /(f2 rv 

xLI , where U = E ntVI/ E n; . )  
11 .8 Show that under the oneway ANOVA assumptions, for any set of  constants 8 = 

(al , . . .  , ak ) ,  the quantity E aiY;. is normally distributed with mean E atB, and 
variance (f2 E aUni. (See Corollary 4.6.10.) 

1 1 .9 Using an argument similar to that which led to the t test in ( 1 1 . 2.7), show how to 
construct a t test for 
(a) Ho : E ai(}. 6 versus HI : E aiB. '" 6. 
(b) H 0 :  E ai(}. 50 6 versus HI : E a;(}i > {j, where {j is a specified constant. 

11 .10  Suppose we have a oneway ANOVA with five treatments. Denote the treatment means 
by BI , . . .  , (}s , where (}1 is a control and B2 , . . .  , (}s are alternative new treatments, and 
assume that an equal number of observations per treatment is taken. Consider the 
four contrasts E ai(}. defined by 

81 = (1 -! -!  -!  -!) , 4 '  4 '  4 '  4 ' 

82 (o, I , -� , -� , -D , 
aa =  (0, 0, 1 , -� , -�) , 

84 (0, 0, 0, 1 , -1 ) .  
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(a) Argue that the results of the four t tests using these contrasts can lead to con
clusions about the ordering of (h , . . . , Os. What conclusions might be made? 

(b) Show that any two contrasts E ail;. formed from the four 8iS in part (a) are 
uncorrelated. (Recall that these are called orthogonal contrasts.) 

(c) For the fertilizer experiment of Example 1 1 .2.3, the following contrasts were 
planned: 

81 (-1 , 1 , 0, 0, 0) ,  

82 == (0, -1 , � , 4 , 0) , 

83 = (0, 0, 1, -1 , 0) , 

B4 = (0, -1 , 0, 0, 1 , ) . 

Show that these contrasts are not orthogonal. Interpret these contrasts in the 
context of the fertilizer experiment, and argue that they are a sensible set of 
contrasts. 

11 .11 For any sets of constants 8 (a 1 , . . •  , ak) and b = (bl ' . . .  , b,, ) ,  show that under the 
oneway ANOVA assumptions, 

" - ,, - 2" a,b. Cov(� ... ai Y;. , L.}i Y;.) = a L...t -. 
n, 

Hence, in the oneway ANOVA, contrasts are uncorrelated (orthogonal) if E aibi/ni 
= 0. 

11.12 Suppose that we have a oneway ANOVA with equal numbers of observations on each 
treatment, that is, n, = n, i = 1 ,  . . .  , k. In this case the F test can be considered an 
average t test. 

(a) Show that a t test of Ho : (J, = (J,I versus HI : OJ ¥ Oil can be based on the 
statistic 

(b) Show that 

- - 2 
t2 _ (Y;. - Y,I . )  
'i' - S� (2/n) 

1 � :2 
k(k 1) � tUI = F, 

'.t 

where F is the usual ANOVA F statistic. (Hint: See Exercise 5.8(a) . )  ( Com
municated by George McCabe, who learned it from John Thkey.) 

11.13 Under the oneway ANOVA assumptions, show that the likelihood ratio test of Ho : 
(J1 = O2 = . . , = Ok is given by the F test of ( 11 .2.14). 

1 1.14 The Scheffe simultaneous interval procedure actually works for all linear combi
nations, not just contrasts. Show that under the oneway ANOVA assumptions, if 
M = VkFk,N-k,Ot (note the change in the numerator degrees of freedom) ,  then the 
probability is 1 - Q: that 

k 
L aiY;. - M  
;=1 

k 2 k k 
S�L:: $ Lai(Ji $ La,l;. + M  

;=1 i=1 ;=1 
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simultaneously for all a = (al , . . .  , ak ). It is probably easiest to proceed by first estab.
lishing, in the spirit of Lemma 1 1 .2.7, that if VI , • • •  , VA: are constants and Cl , • • •  , CA: 
are positive constants, then 

The proof of Theorem 1 1 .2.10 can then be adapted to establish the result. 
1l.15 (a) Show that for the t and F distributions, for any lI, Q, and k, 

t",aj2 � J(k - 1)Fk-l,v.a . 

(Recall the relationship between the t and the F. This inequality is a consequence 
of the fact that the distributions kFk . ., are stochastically increasing in k for fixed 
l/ but is actually a weaker statement. See Exercise 5 .19.) 

(b) Explain how the above inequality shows that the simultaneous Scheffe intervals 
are always wider than the single-contrast intervals. 

(c) Show that it also follows from the above inequality that Scheffe tests are less 
powerful than t tests. 

11.16 In Theorem 1 1.2.5 we saw that the ANOVA null is equivalent to all contrasts being O. 
We can also write the AN OVA null as the intersection over another set of hypotheses. 
(a) Show that the hypotheses 

versus Hl :  8; t= 8j for some i,J 

and the hypotheses 

Ho : 8; - 8j = 0 for all i , j  

are equivalent. 

versus 

(b) Express Ho and Hl of the ANOVA test as unions and intersections of the sets 

Describe how these expressions can be used to construct another (different) 
union-intersection test of the ANOVA null hypothesis. (See Miscellanea 1 1.5.2.) 

1l.17 A multiple comparison procedure called the Protected LSD (Protected Least Signifi
cant Difference) is performed as follows. If the ANOVA F test rejects Ho at level Q, 
then for each pair of means (h and 8;1 , declare the means different if 

�r======== > tn/2,N-k' 

Note that each t test is done at the same Q level as the ANOVA F test. Here we are 
using an experimentwise Q level, where 

. . ( at least one false 
expenmentwlse Q = P . f d' '" assertIOn 0 lilerence 

all the means) 
. 

are equal 
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(a) Prove that no matter how many means are in the experiment, simultaneous 
inference from the Protected LSD is made at level Q. 

(b) The ordinary (or unprotecteti) LSD simply does the individual t tests, at level Q ,  
no matter what the outcome of the ANOVA F test. Show that the ordinary LSD 
can have an experimentwise error rate greater than Q. (The unprotected LSD 
does maintain a cQmparisonwiae error rate of a. ) 

(c) Perform the LSD procedure on the fish toxin data of Example 1 1.2. 1 .  What are 
the conclusions? 

11 .18 Demonstrate that "data snooping," that is, testing hypotheses that are suggested by 
the data, is generally not a good practice. 
(a) Show that, for any random variable Y and constants a and b with a > b and 

P(Y > b) < 1, P(Y > alY > b) > P(Y > a). 
(b) Apply the inequality in part (a) to the size of a data-suggested hypothesis test 

by letting Y be a test statistic and a be a cutoff point. 

11.19 Let Xi '" gamma(>.; , 1 ) independently for i = 1 ,  . . .  , n. Define Y; = XHr! (I:;=1 Xi) ' 
1, . . . , n - 1 ,  and Y,.. = I::l X •.  

(a) Find the joint and marginal distributions of y;, i 1, . . .  , n. 

(b) Connect your results to any distributions that are commonly employed in the 
ANOVA. 

1 1.20 Assume the oneway ANOVA null hypothesis is true. 
(a) Show that I: ni (Y;. Y) 2 / (k - 1 ) gives an unbiased estimate of (J'2 . 
(b) Show how to use the method of Example 5.3.5 to derive the ANOVA F test. 

1 1.21 (a) Illustrate the partitioning of the sums of squares in the ANOVA by calculating 
the complete ANOVA table for the following data. To determine diet quality, 
male weanling rats were fed diets with various protein levels. Each of 15 rats 
was randomly assigned to one of three diets, and their weight gain in grams was 
recorded. 

Diet protein level ---
Low Medium High 
3.89 8.54 20.39 
3.87 9.32 24.22 
3.26 8.76 30.91 
2.70 9.30 22.78 
3.82 10.45 26.33 

. (b) Analytically verify the partitioning of the ANOVA sums of squares by completing 
the proof of Theorem 1 1 .2. 1L  

(c) Illustrate the relationship between the t and F statistics, given in Exercise 
l L1 2(b) , using the data of part (a). 

1 1.22 Calculate the expected values of MSB and MSW given in the oneway ANOVA table. 
(Such expectations are formally known as expected mean squares and can be used to 
help identify F tests in complicated ANOVAs. An algorithm exists for calculating 
expected mean squares. See, for example, Kirk 1982 for details about the algorithm.) 
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1 1.23 Use the model in Miscellanea 11 .5.3. 

(a) Show that the mean and variance of Xj are EYij J1. + 7i and Var Xj 0'1 + 0'2. 
(b) If E a; = 0, show that the unconditional variance of E aSi. is Var <Ea; Yi.) :: 

� (0'2 + O'�) (1 - p) E a� , where p = intraclass correlation. 

1 1.24 The form of the Stein estimator of Miscellanea 1 1.5.6 can be justified somewhat by 
an empirical Bayes argument given in Efron and Morris (1972) ,  which can be quite 
useful in data analysis. Such an argument may have been known by Stein ( 1956) , 
although he makes no mention of it. Let Xi '" n(O" 1) ,  i = 1 , . . .  , p, and 0;, be iid 
n(0, 72). 
(a) Show that the XiS, marginally, are lid n CO, 72 + 1 ) ,  and, hence, E Xl/(72 + 1 )  '" X�. 
(b) Using the marginal distribution, show that E(1- « p-2)/EP=1 xJ) 72/(72+1)  

if p :::: 3. Thus, the Stein estimator of  Miscellanea 11 .5.6 is an empirical Bayes 
version of the Bayes estimator 6i(X) = [72/(72 + 1)]X,. 

(c) Show that the argument fails if p < 3 by showing that E(I/Y) = 00 if Y "" X� 
with p < 3. 

1 1.25 In Section 1 1 .3. 1 ,  we found the least squares estimators of 0: and fJ by a two-stage 
minimization. This minimization can also be done using partial derivatives. 

(a) Compute &��S and &�;S and set them equal to O. Show that the resulting two 
equations can be written as 

(These equations are called the normal equations for this minimization problem. )  
(b) Show that c = a and d b are the solutions t o  the normal equations. 
(c) Check the second partial derivative condition to verify that the point c = a and 

d = b is indeed the minimum of RSS. 

1 1.26 Suppose n is an even number. The values of the predictor variable, Xl , • . •  , Xn , all 
must be chosen to be in the interval fe, fl . Show that the choice that maximizes Su: 
is for half of the Xi equal to e and the other half equal to f. (This was the choice 
mentioned in Section 1 1 .3.2 that minimizes Var b.) 

11.27 Observations (Xi , X), i 1, . . .  , n, follow the model X = 0:+ fJx; + fi , where E f, 0, 
Var f; (T2, and COV(f;, fj) 0 if i =I j. Find the best linear unbiased estimator of 
0:. 

1 1.28 Show that in the conditional normal model for simple linear regression, the MLE of 
(T2 is given by 

n 
&2 .; L(Y; - &: /3x;)2 . 

;=1 

11.29 Consider the residuals fl , . . .  , fn defined in Section 1 1 .3.4 by E; Y, - 0: - /3x; . 

(a) Show that EE; = O. 
(b) Verify that 

Var E; = Var X + Var 0: + x�Var /3 - 2Cov(X, &:) - 2x;Cov(X,  /3) + 2x,Cov(&:, /3). 
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(c) Use Lemma 11 .3.2 to show that 

Cov(Y;, &) 

and use these to verify (11 .3.28). 

A 2 X, X and Cov(Yi, P) = (] -S-- ' 
"'''' 

569 

11.30 Fill in the details about the distribution of & left out of the proof of Theorem 11 .3.3. 
(a) Show that the estimator & = jj - r3x can be expressed as & E�l CiYi , where 

(b) Verify that 

(c) Verify that 

1 Co = n 

Cov(&, r3) 

11.31 Verify the claim in Theorem 1 1.3.3, that €; is uncorrelated with & and r3. (Show that 
€; = E ejIj , where the ejS are given by (11 .3.30) . Then, using the facts that we can 
write & = E CjIj and r3 = E djIj ,  verify that E ejcj = E ejdj = 0 and apply 
Lemma 1 1.3.2.) 

11.32 Observations (Xi, Yd, i = 1, . . .  , n, are made according to the model 

where Xl , • • •  , Xn are fixed constants and 10 1 , • • •  , IOn are iid n(O, 0'2 ) . The model is then 
reparameterized as 

Y; = 0/ + P' (x. - x) + fi· 
Let & and r3 denote the MLEs of a and p, respectively, and &' and fj' denote the 
MLEs of a' and p', respectively. 

-, -(a) Show that {:l {:l. 
(b) Show that &' i- & . In fact, show that &' = Y. Find the distribution of &'.  -, (c) Show that &' and {:l are uncorrelated and, hence, independent under normality. 

11.33 Observations (Xi, Y;),  i = 1, . . .  , n, are made from a bivariate normal population with 
parameters (Mx , MY , O'� , u} , p), and the model Y; = 0' +  {:lx; + €j is going to be fit. 
(a) Argue that the hypothesis Ho : {:l = 0 is true if and only if the hypothesis 

Ho : p = 0 is true. (See (11.3.25).) 
(b) Show algebraically that 

S/..;s;;, .In - 2� , 
1 - r  

where r is the sample correlation coefficient, the MLE of p. 
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(c) Show how to test Ho : p = 0, given only r2 and n, using Student's t with n - 2 

degrees of freedom (see ( 1 1 .3 .33) ) .  (Fisher derived an approximate confidence 
interval for p, using a variance-stabilizing transforma.tion. See Exercise 11.4.) 

1 1.34 (a) Illustrate the partitioning of the sum of squares for simple linear regression by 
calculating the regression ANOVA table for the following data. Parents are often 
interested in predicting the eventual heights of their children. The following is 
a portion of the data taken from a study that might have been suggested by 
Galton's analysis. 

Height (inches) 
at age 2 (x) 39 30 32 34 35 36 36 30 

Height (inches) 
as an adult (y) 

71 63 63 67 68 68 70 64 

(b) Analytically establish the partitioning of the sum of squares for simple linear 
regression by verifying ( 1 1 .3.36) . 

(c) Prove that the two expressions for the regression sum of squares are, in fact, 
equal; that is, show that 

(d) Show that the coefficient of determination, r2 , given by 

2 L�l (iii y)2  
r == " L;=1 (Yi y)2 

can be derived as the square of the sample correlation coefficient either of the n 
pairs (YI , XJ ) , . . .  , (Yn ,  x .. ) or of the n pairs (YI , fiI ) ,  . . · ,  (Yn, Yn )' 

11 .35 Observations Y1 , • . .  , Yn are described by the relationship Yi == Bxt + Ei, where 
Xl , . . •  , X" are fixed constants and f l ,  . . . , En are iid nCO, {T2 ) .  

(a) Find the least squares estimator of B .  
(b) Find the MLE of B. 
(c) Find the best unbiased estimator of 8. 

1 1.36 Observations Yi, . . . , Yn are made according to the model Yi = a + (3Xi + Ei, where 
Xl , . . •  , Xn are fixed constants and tl , . . . , En are iid nCO, {T2) .  Let 0: and /3 denote 
MLEs of a and (3. 
(a) Assume that Xl ,  . • .  , Xn are observed values of iid random variables Xl , " . , Xn 

with distribution n(fLx, {Ti ) .  Prove that when we take expectations over the joint 
distribution of X and Y, we still get EO: = a and E/3 (3. 

(b) The phenomenon of part (a) does not carry over to the covariance. Calculate the 
unconditional covariance of 0: and /3 (using the joint distribution of X and Y). 

11 .37 We observe random variables YI , . . .  , Yn that are mutually independent, each with 
a normal distribution with variance {T2 . Furthermore, EYi = (3x;, where (3 is an 
unknown parameter and X l ,  . . •  , Xn are fixed constants not all equal to O. 

(a) Find the MLE of (3. Compute its mean and variance. 
(b) Compute the Cramer-Rao Lower Bound for the variance of an unbiased estimator 

of (3. 
(c) Find a best unbiased estimator of (3. 
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(d) If you could place the values Xl ,  . • .  , Xn anywhere within a given nondegenerate 
closed interval [A, B) , where would you place these values? Justify your answer. 

(e) For a given positive value r, the maximum probability estimator of {3 with respect 
to r is the value of D that maximizes the integral 

{D+r 
J D-r f (Yl , . . .  , Yn I (3)d{3, 

where f(Yl ,  . . . , Yn l(3) is the joint pdf of Yb , . .  , Yn • Find this estimator. 
1 1.38 An ecologist takes data (Xi , Yi ), i = 1, . . . , n, where Xi is the size of an area and Yi is 

the number of moss plants in the area. We model the data by Yi '" Poisson(Oxi) ,  Yis 
independent. 
(a) Show that the least squares estimator of 9 is l::>iYi/ E xr Show that this 

estimator has variance O E xU(Ex� )2 .  Also, compute its bias. 
(b) Show that the MLE of (J is E Yi / E Xi and has variance (J / E Xi. Compute its 

bias. 
(c) Find a best unbiased estimator of (J and show that its variance attains the 

Cramer-Roo Lower Bound. 
11.39 Verify that the simultaneous confidence intervals in ( 1 1 .3.42) have the clalmed cov

erage probability. 
1 1 .40 (a) Prove that if a, b, c, and d are constants, with c >  0 and d > 0, then 

(b) Use part (a) to verify equation ( 11 .3.44) and hence fill in the gap in Theorem 
11 .3.6. 

(c) Use part (a) to find a Scheffe...type simultaneous band using the prediction in
tervals of ( 1 1.3.41) .  That is, rewriting the prediction intervals as was done in 
Theorem 1 1 .3.6, show that 

(d) The distribution of the maximum is not easy to write down, but we could ap
proximate it. Approximate the statistic by using moment matching, as done in 
Example 7.2.3. 

1 1.41 In the discussion in Example 12.4.2, note that there was one observation from the 
potoroo data that had a missing value. Suppose that on the 24th animal it was 
observed that 02 = 16.3. 
(a) Write down the observed data and expected complete data log likelihood func-

tions. 
(b) Describe the E step and the M step of an EM algorithm to find the MLEs. 
(c) Find the MLEs using all 24 observations. 
(d) Actually, the 02 reading on the 24th animal was not observed, but rather the 

CO2 was observed to be 4.2 (and the 02 was missing) .  Set up the EM algorithm 
in this case and find the MLEs. (This is a much harder problem, as you now have 
to take expectations over the xs. This means you have to formulate the regression 
problem using the bivariate normal distribution. )  
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11 .5 Miscellanea _____________________ _ 

1 1 . 5. 1  Cochran's Theorem 
Sums of squares of normal random variables, when properly scaled and centered, 
are distributed as chi squared random variables. This type of result is first due to 
Cochran ( 1934) . Cochran's Theorem gives necessary and sufficient conditions on 
the scaling required for squared and summed iid normal random variables to be 
distributed as a chi squared random variable. The conditions are not difficult, but 
they are best stated in terms of properties of matrices and will not be treated here. 
It is an immediate consequence of Cochran's Theorem that in the oneway ANOVA, 
the X2 random variables partition as discussed in Section 1 1 .2.6. Furthermore, 
another consequence is that in the Randomized Complete Blocks ANOVA (see 
Miscellanea 1 1.5.3), the mean squares all have chi squared distributions. 

Cochran's Theorem has been generalized to the extent that necessary and sufficient 
conditions are known for the distribution of squared normals (not necessarily iid) 
to be chi squared. See Stuart and Ord (1987, Chapter 15) for details. 

1 1 . 5.2  Multiple Comparisons 
We have seen two ways of doing simultaneous inference in this chapter: the Scheffe 
procedure and use of the Bonferroni Inequality. There is a plethora of other si
multaneous inference procedures. Most are concerned with inference on pairwise 
comparisons, that is, differences between means. These procedures can be applied 
to estimate treatment means in the oneway ANOVA. 

A method due to Thkey (see Miller 1981) , sometimes known as the Q method, 
applies a Scheffe-type maximization argument but over only pairwise differences, 
not all contrasts. The Q distribution is the distribution of 

Q = max t,j 
(ft. - fj.)  - (fh OJ ) 

JS; (� + �) 
where ni  n for all i .  (Hayter 1984 has shown that i f  ni #- nj and the n above is 
replaced by the harmonic mean nh, where 1/nh = ! ( (I/ni) + ( llnj )) , the resulting 
procedure is conservative.) The Q method is an improvement over Scheffe's S 
method in that if there is interest only in pairwise differences, the Q method is 
more powerful (shorter intervals) .  This is easy to see because, by definition, the Q 
maximization will produce a smaller maximum than the S method. 

Other types of mUltiple comparison procedures that deal with pairwise differences 
are more powerful than the S method. Some procedures are the LSD (Least Sig
nificant Difference) Procedure, Protected LSD, Duncan's Procedure, and Student
Neumann-Keuls' Procedure. These last two are multiple range procedures. The 
cutoff point to which comparisons are made changes between comparisons. 

One difficulty in fully understanding multiple comparison procedures is that the 
definition of Type I Error is not inviolate. Some of these procedures haVE! changed 
the definition of Type I Error for multiple comparisons, so exactly what is meant 
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by "Q level" is not always clear. Some of the types of error rates considered are 
called experimentwise error rate, comparisonwise error rate, and familywise error 
rate. Miller ( 1981 )  and Hsu (1996) are good references for this topic. A humorous 
but illuminating treatment of this subject is given in Carmer and Walker (1982) . 

1 1. 5.:J Randomized Complete Block Designs 
Section 11 .2 was concerned with a oneway classification of the data; that is, there 
was only one categorization (treatment) in the experiment. In general, the ANOVA 
allows for many types of categorization, with one of the most commonly used 
ANOVAs being the Randomized Complete Block (RCB) ANOVA. 

A block (or blocking factor) is categorization that is in an experiment for the ex
press purpose of removing variation. In contrast to a treatment, there is usually no 
interest in finding block differences. The practice of blocking originated in agricul
tJlre, where experimenters took advantage of similar growing conditions to control 
experimental variances. To model this, the actual blocks in the experiment were 
considered to be a random sample from a large population of blocks (which makes 
them a random factor) .  

RCB ANOVA assumptions 

Random variables }'ij are observed according to the model 

where: 

Xij !b = J.L + Ti + bj + fij , i = I , . . .  , k, j = I, . . .  , r, 

(i) The random variables fij rv iid n(O, (J2 ) for i 
(normal errors with equal variances) . 

1, . . .  , k and j 1, . . .  , r 

(ii) The random variables B1 , • • .  , Bn whose realized (but unobserved) values are 
the blocks bI , . . .  , br ,  are iid n(O, (J1 ) and are independent of (;ij for all i ,j .  

The mean and variance of  Xij are 

E Yij = J.L + Ti and Var Xij (J1 + (J2 . 

Moreover, although the }'ijS are uncorrelated conditionally, there is correlation in 
the blocks unconditionally. The correlation between Xij and }'it j in block j, with 
i # i', is 

a quantity called the intraclass correlation. Thus, the model implies not only that 
there is correlation in the blocks but also that there is positive correlation. This 
is a consequence of the additive model and the assumption that the fS and Bs are 
independent (see Exercise 1 1.23) . Even though the }'ijS are not independent, the 
intraciass correlation structure still results in an analysis of variance where ratios 
of mean squares have the F distribution (see Miscellanea 11 .5. 1 ) .  
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1 1 . 5.4 Other Types of Analyses of Variance 
The two types of ANOVAs that we have considered, oneway ANOVAs and RCB 
ANOVAs, are the simplest types. For example, an extension of a complete block 
design is an incomplete block design. Sometimes there are physical constraints 
that prohibit putting all treatments in each block and an incomplete block design 
is needed. Deciding how to arrange the treatments in such a design is both difficult 
and critical. Of course, as the design gets more complicated, so does the analysis. 

Study of the subject of statistical design, which is concerned with getting the most 
information from the fewest observations, leads to more complicated and more 
efficient ANOVAs in many situations. ANOVAs based on designs such as fractional 
factorials, Latin squares, and balanced incomplete blocks can be efficient methods 
of gathering much information about a phenomenon. Good overall references for 
this subject are Cochran and Cox ( 1957) , Dean and Voss (1999) , and Kuehl (2000). 

11 .5.5 Shapes of Confidence Bands 
Confidence bands come in many shapes, not just the hyperbolic shape defined by 
the Scheffe band. For example, Gafarian (1964) showed how to construct a straight
line band over a finite interval. Gafarian-type bands allow statements of the form 

P( Q + /3x de. '5 0; + (3x '5 6- + /3x + da for all x E [a, bJ) = 1 0;. 

Gafarian gave tables of do.. A finite-width band must, necessarily, apply only to a 
finite range of x .  Any band of level 1 - 0; must have infinite length as Ix l � 00. 
Casella and Strawderman (1980), among others, showed how to construct Scheff6-
type bands over finite intervals, thereby reducing width while maintaining the same 
confidence as the infinite Scheffe band. Naiman (1983) compared performance of 
straight-line and Scheffe bands over finite intervals. Under his criterion, one of 
average width, the Scheffe band is superior. In some cases, an experimenter might 
be more comfortable with the interpretation of a straight-line band, however. 

Shapes other than straight-line and hyperbolic are possible. Piegorsch (1985) in
vestigated and characterized the shapes that are admissible in the sense that their 
probability statements cannot be improved upon. He obtained "growth conditions" 
that must be satisfied by an admissible band. Naiman (1983, 1984, 1987) and 
Naiman and Wynn (1992, 1997) have developed this theory to a very high level, 
establishing useful inequalities and geometric identities to further improve infer
ences. 

1 1 .5. 6 Stein's Paradox 
One part of the analysis of variance is concerned with the simultaneous estimation 
of a collection of normal means. Developments in this particular problem, starting 
with Stein (1956) ,  have had a profound effect on both the theory and applications 
of point estimation. 

A canonical version of the analysis of variance is to observe X = (X} , . . .  , Xp) ,  
independent normal random variables with Xi rv n(Oi ' 1 ) ,  i 1 ,  . . . , p, with the 
objective being the estimation of 0 (01 " • •  , Op) .  Our usual estimate of Oi would 
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be Xi, but Stein (1956) established the surprising result that, if p ;::= 3, the estimator 
of Oi given by 

is a better estimator of Oi in the sense that 
p p 

LEo (Xi - Oi )2 ;::= L Eo (8f(X) Oi) 2 . 
£=1 £=1 

That is, the summed mean squared of Stein's estimator is always smaller, and 
usually strictly smaller, than that of X. 
Notice that the estimators are being compared using the sum of the component
wise mean squared errors, and each 8f can be a function of the entire vector 
(Xl > . , .  , Xp) . Thus, all of the data can be used in estimating each me"lJl. Since the 
XiS are independent, we might think that restricting 8f to be just a function of 
Xi would be enough. However, by summing the mean squared errors, we tie the 
components together. 
In the oneway ANOVA we observe 

i = I , . . . , k, independent, 

where the 'Pi . s  are the cell means. The Stein estimator takes the form 

i = 1, . . .  , k. 

This Stein-type estimator can further be improved by choosing a meaningful place 
toward which to shrink (the above estimator shrinks toward 0) . One such estimator, 
due to Lindley (1962) ,  shrinks toward the grand mean of the observations. It is 
given by 

2 ) + (k - 3)o- - = Yo - y 
L nj (Yj. - 9')2 ( ,. ) , i 1, . . . , k. 

Other choices of a shrinkage target might be even more appropriate. Discussion of 
this, including methods for improving on confidence statements, such as the Scheffe 
S method, is given in Casella and Hwang ( 1987) . Morris ( 1983) also discusses 
applications of these types of estimators. 
There have been many theoretical developments using Stein-type estimators, not 
only in point estimation but also in confidence set estimation, where it has been 
shown that recentering at a Stein estimator can result in increased coverage proba
bility and reduced size. There is also a strong connection between Stein estimators 
and empirical Bayes estimators (see Miscellanea 7.5.6) , first uncovered in a series 
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of papers by Efron and Morris (1972, 1973, 1975) , where the components of 9 are 
tied together using a common prior distribution. An introduction to the theory 
and some applications of Stein estimators is given in Lehmann and Casella (1998 ,  
Chapter 5) .  



Chapter 12 

Regression Models 

"So startling would his results appear to the uninitiated that until they learned 
the processes by which he had arrived at them they might well consider him as 
a necromancer. " 

12.1 Introduction 

Dr. Watson, speaking about Sherlock Holmes 
A Study in Scarlet 

Chapter 1 1  was concerned with what could be called "classic linear models." Both 
the ANOVA and simple linear regression are based on an underlying linear model 
with normal errors. In this chapter we look at some extensions of this model that 
have proven to be useful in practical problems. 

In Section 12.2, the linear model is extended to models with errors in the predictor, 
which is called regression with errors in variables (EIV) . In this model the predictor 
variable X now becomes a random variable like the response variable Y. Estimation 
in this model encounters many unforeseen difficulties and can be very different from 
the simple linear regression modeL 

The linear model is further generalized in Section 12.3, where we look at logistic 
regression. Here, the response variable is discrete, a Bernoulli variable. The Bernoulli 
mean is a bounded function, and a linear model on a bounded function can run into 
problems (especially at the boundaries) . Because of this we transform the mean to 
an unbounded parameter (using the logit transformation) and model the transformed 
parameter as a linear function of the predictor variable. When a linear model is put 
on a function of a response mean, it becomes a generalized linear model. 

Lastly, in Section 12.4, we look at robustness in the setting of linear regression. In 
contrast to the other sections in this chapter where we change the model, now we 
change the fitting criterion. The development parallels that of Section 10.2.2, where 
we looked at robust point estimates. That is, we replace the least squares criterion 
with one based on a p-function that results in estimates that are less sensitive to 
underlying observations (but retain some efficiency) . 

12.2 Regression with Errors in Variables 

Regression with errors in variables (EIV) , also known as the measurement error 
model, is so fundamentally different from the simple linear regression of Section 11 .3 
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that it is -� ably best thoqIM� of as a completely different topic. It is presented as a 
generaliza n�.the uS�1e�ssion model mainly for traditional reasons. However 
the problem �Il:t�i"�this model are very different. 

' 

The models o�n are generalizations of simple linear regression in that we 
will work with models of the form 

( 12.2 .1) 

but now we do not assume that the xs are known. Instead, we C8Jl. measure a r8Jl.dom 
variable whose me8Jl. is Xi ' (In keeping with our notational conventions, we will speak 
of measuring a random variable Xi whose mean is not Xi but �i ') 

The intention here is to illustrate different approaches to the EIV model, showing 
some of the standard solutions and the (sometimes) unexpected difficulties that arise. 
For a more thorough introduction to this problem, there are the review article by 
GIeser ( 1991) ;  books by Fuller (1987) and Carroll, Ruppert, and Stefanski (1995); 
and a volume edited by Brown 8Jl.d Fuller (1991) .  Kendall 8Jl.d Stuart ( 1979, Chapter 
29) also treat this topic in some detail. 

In the general EIV model we assume that we observe pairs (Xi, Yi ) sampled from 
r8Jl.dom variables (Xi , JIi) whose means satisfy the linear relationship 

( 12.2.2) EJIi Q + ,8(EXi ) .  

I f  we define 

EJIi = 1]i and EXi �i, 
then the relationship (12.2.2) becomes 

( 12.2.3) 1], Q + ,8�i ' 
a linear relationship between the me8Jl.S of the random variables. 

The variables �i and 1]i are sometimes called latent variables, a term that refers 
to quantities that cannot be directly measured. Latent variables may be not only 
impossible to measure directly but impossible to measure at all. For example, the 
IQ of a person is impossible to measure. We can measure a score on an IQ test, but 
we can never measure the variable IQ. Relationships between IQ and other variables, 
however, are often hypothesized. 

The model specified in (12 .2.2) really makes no distinction between X and Y. If 
we are interested in a regression, however, there should be a reason for choosing Y as 
the response and X as the predictor. Keeping this specification in mind, of regressing 
Y on X, we define the errors in variables model or measurement error model as this. 
Observe independent pairs (Xi , JIi),  i = 1, . . .  , n, according to 

( 12.2.4) 

JIi = Q + ,8�i + fi , fi """ nCO, a�) , 
Xi = �i + {)i , hi '" nCO, an · 

Note that the assumption of normality, although common, is not necessary. Other 
distributions can be used. In fact , some of the problems encountered with this model 
are caused by the normality assumption. (See, for example, Solari 1969.) 
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Example 12.2.1 (Estimating atmospheric pressure) The ElV regression model 
arises fairly naturally in situations where the x variable is observed along with the 
y variable (rather than being controlled) . For example, in the 1800s the Scottish 
physicist J. D. Forbes tried to use measurements on the boiling temperature of water 
to estimate altitude above sea level. To do this, he simultaneously measured boiling 
temperature and atmospheric pressure (from which altitude can be obtained) .  Since 
barometers were quite fragile in the 1800s, it would be useful to estimate pressure, or 
more precisely log(pressure) , from temperature. The data observed at nine locales are 

Boiling point (OF) 
194.5 
197.9 
199.4 
200.9 
201.4 
203.6 
209.5 
210.7 
212.2 

log(pressure) (log(Hg)) 
1.3179 
1 .3502 
1 .3646 
1 .3782 
1 .3806 
1 .4004 
1 .4547 
1 .4630 
1 .4780 

and an ElV model is reasonable for this situation. 

A number of special cases of the model ( 12.2.4) have already been seen. If 6i = 0, 
then the model becomes simple linear regression (since there is now no measurement 
error, we can directly observe the eiS) . If a: = 0, then we have 

'Vi '" n('lJi ,  a;) , i = 1 ,  . . . , n, 

Xi '" n(ei , a�) , i = 1 ,  . . . , n, 

where, possibly, a� ::/= a; , a version of the Behrens-Fisher problem. 

12. 2. 1 Functional and Structural Relationships 

There are two different types of relationship that can be specified in the ElV model: 
one that specifies a functional linear relationship and one describing a structural 
linear relationship. The different relationship specifications can lead to different esti
mators with different properties. As said by Moran ( 1971) , "This is not very happy 
terminology, but we will stick to it because the distinction is essential . . . .  " Some in
terpretations of this terminology are given in the Miscellanea section. For now we 
merely present the two models. 
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Linear functional relationship model 
This is the model as presented in ( 12.2.4) where we have random variables Xi and 
Yi, with EXi ei, EYi = 1]il and we assume the functional relationship 

We observe pairs (Xi, Yi) , i = 1 , . . .  , n, according to 

( 12.2.5) 

Yi = a + /3�i + fi, fi rv n CO, a;) , 
Xi ei + bj ,  bi rv n CO, al) , 

where the eiS are fixed, unknown parameters and the fiS and biS are independent . The 
parameters of main interest are a and /3, and inference on these parameters is made 
using the joint distribution of « XI , Yd , . . .  , (Xn, Yn) ) ,  conditional on 6,  . . .  , �n' 

Linear structural relationship model 
This model can be thought of as an extension of the functional relationship model, 
extended through the following hierarchy. As in the functional relationship model, 
we have random variables Xi and Yi,  with EXi �i '  E Yi  1]; , and we assume the 
functional relationship 1]i = a+/3ei. But now we assume that the parameters 6 , · ·  . , en 
are themselves a random sample from a common population. Thus, conditional on 
6 , ·  . . , en , we observe pairs (Xi, Yi) ,  i = 1 ,  . . .  , n, according to 

( 12.2.6) 

and also 

Yi = a + /3ei + ti, ti rv nCO, a; ) , 
Xi = ei + Oi ,  bi rv nCO, a�) , 

As before, the tiS and OiS are independent and they are also independent of the eiS. 
As in the functional relationship model, the parameters of main interest are a and 
/3. Here, however, the inference on these parameters is made using the joint distribu
tion of « Xl , Yd, . · · , (Xn' Yn) ) ,  unconditional on 6 ,  . . · , en '  (That is, 6 , . · .  , en are 
integrated out according to the distribution in ( 12.2.6) . )  

The two models are quite similar in that statistical properties of estimators in one 
model (for example, consistency) often carry over into the other modeL More pre
cisely, estimators that are consistent in the functional model are also consistent in 
the structural model (Nussbaum 1976 or GIeser 1983) .  This makes sense, as the func
tional model is a "conditional version" of the structural model. Estimators that are 
consistent in the functional model must be so for all values of the eiS so are necessarily 
consistent in the structural model, which averages over the eiS. The converse impli
cation is false. However, there is a useful implication that goes from the structural to 
the functional relationship model. If a parameter is not identifiable in the structural 
model, it is also not identifiable in the functional model. (See Definition 1 1 .2.2.) 
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As we shall see, the models share similar problems and, in certain situations, similar 
likelihood solutions. It is probably easier to do statistical theory in the structural 
model, while the functional model often seems to be the more reasonable model for 
many situations. Thus, the underlying similarities come in handy. 

As already mentioned, one of the major differences in the models is in the infer
ences about 0: and {3, the parameters that describe the regression relationship. This 
difference is of utmost importance and cannot be stressed too often. In the functional 
relationship model, this inference is made conditional on 6 ,  . . .  , {n , using the joint 
distribution of X and Y conditional on {I , '  . .  , {n . On the other hand, in the struc
tural relationship model, this inference is made unconditional on {l l . . .  , {n , using the 
marginal distribution of X and Y with 6 ,  . . .  , {n integrated out. 

12. 2. 2  A Least Squares Solution 
As in Section 1 1 .3.1 ,  we forget statistics for a while and try to find the "best" line 
through the observed points (Xi , Yi ) ,  i = 1, . . .  , n. Previously, when it was assumed 
that the xs were measured without error, it made sense to consider minimization 
of vertical distances. This distance measure implicitly assumes that the X value is . 
correct and results in ordinary least squares. Here, however, there is no reason to 
consider vertical distances, since the xs now have error associated with them. In fact ,  
statistically speaking, ordinary least squares has some problems in EIV models (see 
the Miscellanea section) .  

One way to take account of the fact that the xl'; also have error i n  their measurement 
is to perform orthogonal least squares, that is, to find the line that minimizes orthog
onal (perpendicular to the line) distances rather than vertical distances (see Figure 
12.2.1 ) .  This distance measure does not favor the x variable, as does ordinary least 
squares, but rather treats both variables equitably. It is also known as the method of 
total least squares. From Figure 12.2.1 ,  for a particular data point (X/, y' ) , the point 

. on a line y = a + bx that is closest when we measure distance orthogonally is given 
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by (see Exercise 12 . 1 ) 

(12.2.7) � ,  x by' + x' - ab 
1 + b2 
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and _, b 
( ' , ) Y a + 1 + b2 by + X  - ab .  

Now assume that we have data (Xi, Yi) , i = 1 , . . . , n. The squared distance between 
an observed point (Xi, Yi) and the closest point on the line Y = a + bx is (Xi Xi? + 
(Yi - Yi? , where Xi and Y.;. are defined by (12.2 .7) . The total least squares problem is 
to minimize, over all a and b, the quantity 

n 
L ((Xi - Xi) 2 + (Yi - Yi)2) . 
i=l 

It is straightforward to establish that we have 

( 12 .2.8) 

n 
L ( Xi Xi)2 + (Yi - 1Ii)2) 
i=1 

For fixed b, the term in front of the sum is a constant. Thus, the minimizing choice 
of a in the sum is a fi - bx, just as in ( 1 1 .3.9) . If we substitute back into ( 12 .2.8) , 
the total least squares solution is the one that minimizes, over all b, 

( 12.2.9) 

As in ( 1 1 .3.6) and ( 1 1 .3.6) , we define the sums of squares and cross-products by 

n n 
. (12.2.10) -)2 X , L(Yi -) 2 Y , Sxy = L(X" 

i=1 i=1 

Expanding the square and summing show that ( 12.2.9) becomes 

Standard calculus methods will give the minimum (see Exercise 12 .2) , and we find 
the orthogonal least squares line given by Y = a + bx, with 

( 12 .2 . 11 ) 
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As might be expected, this line is different from the least squares line. In fact, as 
we shall see, this line always lies between the ordinary regression of y on x and the 
ordinary regression of x on y. This is illustrated in Figure 12.2.2, where the data in 
Table 11 .3.1 were used to calculate the orthogonal least squares line ii = -.49+ 1 .88x. 

In simple linear regression we saw that, under normality, the ordinary least squares 
solutions for a and f3 were the same as the MLEs. Here, the orthogonal least squares 
solution is the MLE only in a special case, when we make certain assumptions about 
the parameters. 

The difficulties to be encountered with likelihood estimation once again illustrate 
the differences between a mathematical solution and a statistical solution. We ob
tained a mathematical least squares solution to the line fitting problem without much 
difficulty. This will not happen with the likelihood solution. 

12.2.3 Maximum Likelihood Estimation 

We first consider the maximum likelihood solution of the functional linear relationship 
model, the situation for the structural relationship model being similar and, in some 
respects, easier. With the normality assumption, the functional relationship model 
can be expressed as 
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where the XiS and Yis are independent. Given observations (x, y) 
(xn , Yn) ) ,  the likelihood function is 

Section 12.2 

The problem with this likelihood function is that it does not have a finite maximum. 
To see this, take the parameter configuration {i Xi and then let O'E -> O. The value 
of the function goes to infinity, showing that there is no maximum likelihood solution. 
In fact, Solari (1969) has shown that if the equations defining the first derivative of 
L are set equal to 0 and solved, the result is a saddle point, not a maximum. Notice 
that as long as we have total control over the parameters, we can always force the 
likelihood function to infinity. In particular, we can always take a variance to 0, while 
keeping the exponential term bounded. 

We will make the common assumption, which not only is reasonable but also alle
viates many problems, that O'g = )..O'� , where A > 0 is fixed and known. (See Kendall 
and Stuart 1979, Chapter 29, for a discussion of other assumptions on the variances.) 
This assumption is one of the least restrictive, saying that we know only the ratio of 
the variances, not the individual values. Moreover, the resulting model is relatively 
well behaved. 

Under this assumption, we can write the likelihood function as 

(12.2 .13) 

which we can now maximize. We will perform the maximization in stages, making 
sure that, at each step, we have a maximum before proceeding to the next step. By 
examining the function (12.2.13), we can determine a reasonable order of maximiza
tion. 

First, for each value of 0, /3, and O'l , to maximize L with respect to 6 ,  . . . , {n we 
minimize L�1 ((Xi - {i)2 + ).. (Yi (0 + /3{i) )2 ) . (See Exercise 12.3 for details. )  For 
each i ,  we have a quadratic in ei and the minimum is attained at 

On substituting back we get 
n 

L ((Xi - en2 + )..(Yi - (0 + /3{; ) )2) 
;=1 
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The likelihood function now becomes 

max L(o:, ,8, �I , . . . , �n , O"� I (x, y)) 
(l , . . .  ,(n 

( 12.2. 14) = (2!)n (:;�: exp { - 2�� [ 1 +\,82 t (Yi - (0: + ,8XJ)2] } . 

Now, we can maximize with respect to 0: and ,8, but a little work will show that we 
have already done this in the orthogonal least squares solution! Yes, there is somewhat 
of a correspondence between orthogonal least squares and maximum likelihood in the 
EIV model and we are about to exploit it. Define 

(12 .2 .15) 
The exponent of (12.2. 14) becomes 

which is identical to the expression in the orthogonal least squares problem. From 
(12.2 . 1 1 )  we know the minimizing values of 0:. and ,8.,  and using ( 12.2.15) we obtain 
our MLEs for the slope and intercept: 

( 12.2.16) 

It is clear from the formula that, at A 1, the MLEs agree with the orthogonal least 
squares solutions. This makes sense. The orthogonal least squares solution treated 
x and Y as having the same magnitude of error and this translates into a variance 
ratio of 1 .  Carrying this argument further, we can relate this solution to ordinary 
least squares or maximum likelihood when the xs are assumed to be fixed. If the xs 
are fixed, their variance is 0 and hence A O. The maximum likelihood solution for 
general A does reduce to ordinary least squares in this case. This relationship, among 
others, is explored in Exercise 12.4. 

Putting (12 .2 .16) together with ( 12.2 .14) , we now have almost completely maxi
mized the likelihood. We have 

( 12.2.17) 

Now. maximizing L with respect to a; is very similar to finding the MLE of a2 
in ordinary normal sampling (see Example 7.2 . 1 1 ) ,  the major difference being the 
exponent of n, rather than n/2, on a; . The details are left to Exercise 12.5. The 
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resulting MLE for aE is 

(12 .2 .18) 
, 2 1 A � ( , , ) 2 
0"6 = 2n 1 + AjP t:t Yi - (0 + (3Xi) . 

From the properties of MLEs, it follows that the MLE of a; is given by &; = &l / A 
and ei = & + fiXi' Although the eiS are not usually of interest, they can sometimes 
be useful if prediction is desired. Also, the eiS are useful in examining the adequacy 
of the fit (see Fuller 1987) . 

It is interesting to note that although & and fi are consistent estimators, al is not. 
More precisely, as n -+ 00, 

but 

& -+ 0 in probability, 
fi -+ (3 in probability, 

&g -+ 4ag in probability. 

General results on consistency in EIV functional relationship models have been ob
tained by GIeser ( 1981) .  

We now turn to the linear structural relationship modeL Recall that here we assume 
that we observe pairs (Xi , Yi),  i = 1 ,  . . .  , n, according to 

Yi rY n(o + (3�i ' a;) ,  
Xi '" n(�i ' an, 
�i '" n(�, a�) ,  

where the �iS are independent and, given the �iS, the XiS and Yi s  are independent. As 
mentioned before, inference about 0 and (3 will be made from the marginal distribution 
of Xi and Ii, that is, the distribution obtained by integrating out ei . If we integrate 
out �i' we obtain the marginal distribution of (Xi ,  Yi) (see Exercise 12.6): 

( 12.2 .19) (Xi , Yi) rY bivariate normal(�, 0 + (3�, ag + a�, a; + (32al, (3at) .  

Notice the similarity of  the correlation structure to that of  the ReB ANOVA (see Mis
cellanea 11 .5.3) . There, conditional on blocks, the observations were uncorrelated, but 
unconditionally, there was correlation (the intraclass correlation). Here, the functional 
relationship model, which is conditional on the eiS, has uncorrelated observations, but 
the structural relationship model, where we infer unconditional on the eiS, has cor
related observations. The �iS are playing a role similar to blocks and the correlation 
that appears here is similar to the intraclass correlation. (In fact, it is identical to the 
intraclass correlation if (3 = 1 and al = a;.) 

To proceed with likelihood estimation in this case, given observations (x, y)  = 
( Xl , yd, . . . , (xn' Yn) ) ,  the likelihood function is that of a bivariate normal, as was 
encountered in Exercise 7.18. There, it was seen that the likelihood estimators in 
the bivariate normal could be found by equating sample quantities to population 
quantities. Hence, to find the MLEs of 0, (3, �, a; , a� , and at , we solve 
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(12.2.20) 
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jj & + Pl., 
X = i., 

.!.Syy a; + p2ai, 
n 
I s · 2 · 2 

- xx = (J'6 + (J'{ , n 
1 ' . 2 -SXIl = {3(J'{ . n 
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Note that we have five equations, but there are six unknowns, so the system is in
determinate. That is, the system of equations does not have a unique solution and 
there is no unique value of the parameter vector (0:, ,8, �, (J';, (J'�, (J'�) that maximizes 
the likelihood. 

Before we go on, realize that the variances of Xi and Yi here are different from the 
variances in the functional relationship model. There we were working conditional on 
6, . . . , �n , and here we are working marginally with respect to the �iS. So, for example, 
in the functional relationship model we write Var Xi (J'� (where it is understood 
that this variance is conditional on {l , . . .  , �n) ' while in the structural model we write 
Var Xi (J'� + (J'� (where it is understood that this variance is unconditional on 
{l . . . . ' �n) ' This should not be a source of confusion. 

A solution to the equations in ( 12.2.20) implies a restriction on 13, a restriction that 
we have already encountered in the functional relationship case (see Exercise 12.4) .  
From the above equations involving the variances and covariance, it is straightforward 
to deduce that 

which together imply that 

a� � 0 only if Sxx � jSxll' 
a; � 0 only if SYIl � pSX1l1 

(The bounds on /J are established in Exercise 12.9.) 
We now address the identifiability problem in the structural relationship case, a 

problem that can be expected since, in (12 .2. 19) we have more parameters than are 
needed to specify the distribution. To make the structural linear relationship model 
identifiable, we must make an assumption that reduces the number of parameters 
to five. It fortunately happens that the assumption about variances made for the 
functional relationship solves the identifiability problem here. Thus, we assume that 
(J'� )..(J';, where ).. is known. This reduces the number of unknown parameters to five 
and .makes the model identifiable. (See Exercise 12.8.) More restrictive assumptions, 
such as assuming that (J'� is known, may lead to MLEs of variances that have the 
value O. Kendall and Stuart ( 1979, Chapter 29) have a full discussion of this. 
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Once we assume that O'� = )..0'; , the maximum likelihood estimates for it and /:J 
in this model are the same as in the functional relationship model and are given by 
(12.2 .16) .  The variance estimates are different, however, and are given by 

- 2  1 (8 8:r:1I) 0'6 = n xx - /:J ' 
- 2  1 . 2  0'0 • 

( 12.2.21 ) O'E T = ;;(81/11 - /38xy) , 

. 2 _ 1 8xy O'� - --.-. n /3 

(Exercise 12 .10 shows this and also explores the relationship between variance esti
mates here and in the functional model.) Note that, in contrast to what happened 
in the functional relationship model, these estimators are all consistent in the linear 
structural relationship model (When O'g )..0':) .  

12.2.4 Confidence Sets 
As might be expected, the construction of confidence sets in the EIV model is a 
difficult task. A complete treatment of the subject needs machinery that we have 
not developed. In particular, we will concentrate here only on confidence sets for the 
slope, /3. 

As a first attack, we could use the approximate likelihood method of Section 10.4.1 
to construct approximate confidence intervals. In practice this is probably what is 
most often done and is not totally unreasonable. However, these approximate intervals 
cannot maintain a nominal 1 - a confidence level. In fact, results of GIeser and Hwang 
(1987) yield the rather unsettling result that any interval estimator of the slope whose 
length is always finite will have confidence coefficient equal to O! 

For definiteness, in the remainder of this section we will assume that we are in the 
structural relationship case of the EIV model. The confidence set results presented 
are valid in both the structural and functional cases and, in particular, the formulas 
remain the same. We continue to assume that O'g = )..0';, where ).. is known. 

GIeser and Hwang (1987) identify the parameter 
0'2 � 
0'2 6 

as determining the amount of information potentially available in the data to de
termine the slope /3. They show that, as T2 -t 0, the coverage probability of any 
finite-length confidence interval on /3 must also go to O. To see why this is plausible, 
note that r2 = 0 implies that the {is do not vary and it would be impossible to fit a 
unique straight line. 

An approximate confidence interval for /3 can be constructed by using the fact that 
the estimator 
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is a consistent estimator of u�, the true variance of /:J . Hence, using the CLT together 
with Slutsky's Theorem (see Section 5.5), we can show that the interval 

is an approximate 1 - 0: confidence interval for /3. However, since it has finite length, 
it cannot maintain 1 - 0: coverage for all parameter values. 

GIeser (1987) considers a modification of this interval and reports the infimum of 
its coverage probabilities as a function of 72• Gleser's modification, CG(/:J) , is 

(12.2 .22) 

Again using the CLT together with Slutsky's Theorem, we can show that this is an 
approximate 1 - 0: confidence interval for /3. Since this interval also has finite length, 
it also cannot maintain 1 0: coverage for all parameter values. GIeser does some 
finite-sample numerical calculations and gives bounds on the infima of the coverage 
probabilities as a function of 72• For reasonable values of n (� 1O), the coverage 
probability of a nominal 90% interval will be at least 80% if 72 � .25. As 72 or n 
increases, this performance improves. 

In contrast to CG(/:J) of ( 12.2.22) , which has finite length but no guaranteed coverage 
probability, we now look at an exact confidence set that, as it must, has infinite length. 
The set, known as the Creasy-Williams confidence set, is due to Creasy ( 1956) and 
Williams (1959) and is based on the fact (see Exercise 12.1 1 )  that if u� = >..u;, then 

Define T>. (/3) to be the sample correlation coefficient between /3XYi + Xi and Yi - /3Xi , 
that is, 

(12.2.23) 

),,£7=1 « /3>"Yi + Xi ) - (/3>"y + x) )2 L�1 « Yi - /3xd - (y - /3X))2 

f3>"Syy + (1 - /32 >")Srxy - f3Szx 

Since f3>..Yi + Xi and Yi - f3Xi are bivariate normal with correlation 0, it follows (see 
Exercise 1 1 .33) that 

-In - 2 T>. (/3) -t==:::::;;=;� f'V t 2 \1"1 - T� (13) 
n-

for any value of /3. Thus, we have identified a pivotal quantity and we conclude that 
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Figure 12.2.3. F statistic defining Creasy-Williams confidence set, A 1 

{ (n - 2)r� UJ) } f3 :  1 r� (f3) ::; F1,n-2,n 

is a 1 a confidence set for f3 (see Exercise 12. 1 1 ) .  
Although this confidence set is a 1 - a: set, it suffers from defects similar to  those 

of Fieller's intervals. The function describing the set ( 12.2.24) has two minima, where 
the function is O. The confidence set can consist of two finite disjoint intervals, one 
finite and two infinite disjoint intervals, or the entire real line. For example, the graph 
of the F statistic function for the data in Table 1 1 .3 . 1  with >. = 1 is in Figure 12.2.3. 
The confidence set is all the f3s where the function is less than or equal to F1,22,n ' 
For a: .05 and F1 ,22,.05 4.30, the confidence set is [-1 . 13, -.14J U [.89, 7.38] . For 
a: .01 and F1,22,.Ol = 7.95, the confidence set is (-00, -18. 18] U[-1 .68, .06]U [ .60, (0). 

Furthermore, for every value of f3, -r>.(f3) = r>. ( -1/(>.f3)) (see Exercise 12.12) so 
that if f3 is in the confidence set , so is -1/(>.f3) . Using this confidence set, we cannot 
distinguish f3 from -11 (>.f3) and this confidence set always contains both positive and 
negative values. We can never determine the sign of the slope from this confidence 
set! 

The confidence set given in ( 12.2.24) is not exactly the one discussed by Creasy 
(1956) but rather a modification. She was actually interested in estimating tj), the 
angle that f3 makes with the x-axis, that is, f3 tan( ¢) , and confidence sets there 
have fewer problems. Estimation of ¢ is perhaps more natural in EIV models (see, 
for example, Anderson 1976) ,  but we seem to be more inclined to estimate a: and f3. 

Most of the other standard statistical analyses that can be done in the ordinary 
linear regression case have analogues in EIV models. For example, we can test hy-
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potheses about {i or estimate values of E¥t. More about these topics can be found in 
Fuller ( 1987) or Kendall and Stuart ( 1979, Chapter 29) . 

12.3 Logistic Regression 

The conditional normal model of Section 11 .3.3 is an example of a generalized linear 
model (GLM). A GLM describes a relationship between the mean of a response vari
a.ble Y and an independent variable x. But the relationship may be more complicated 
than the E Yi = a + {iXi of (1 1 .3.2) . Many different models can be expressed as GLMs. 
In this section, we will concentrate on a specific GLM, the logistic regression model.  

12.9. 1 The Model 
A GLM consists of three components: the random component, the systematic com
ponent, and the link function. 

(1)  The response variables Y1 , • • •  , Yn are the random component. They are assumed 
to be independent random variables, each with a distribution from a specified 
exponential family. The Yis are not identically distributed, but they each have a 
distribution from the same family: binomial, Poisson, normal, etc. 

(2) The systematic component is the model. It is the function of the predictor variable 
Xi, linear in the parameters, that is related to the mean of Yi.  So the systematic 
component could be a + {ix, or a + {i/x" for example. We will consider only 
a + {ix, here. 

(3) Finally, the link function g(J1.) links the two components by asserting that g(J1.d = 
a + {iXi, where J1.i = E Yi .  

The conditional normal regression model o f  Section 1 1 .3.3 i s  an example of a GLM. 
In that model, the responses Yis all have normal distributions. Of course, the normal 
family is an exponential family, which is the random component. The form of the 
regression function is a + {iXi in this model, which is the systematic component. 
Finally, the relationship J1.i = E Yi = a + {ix, is assumed. This meanS the link function 
is g(J1.) = J1.. This simple link fUnction is called the identity link. 

Another very useful GLM is the logistic regression model. In this model, the re
sponses Y1 , • • •  , Yn are independent and Yi "" Bernoulli(7ri ) .  (The Bernoulli family is 
an exponential family.) Recall, E Yi = 7ri P(Yi 1 ) .  In this model, 7ri is assumed 
to be related to Xi by 

(12.3. 1 )  log ( 1 :
i7ri ) = a + {ix,. 

The left-hand side is the log of the odds of success for ¥t. The model assumes this 
log-odds (or logit) is a linear function of the predictor x. The Bernoulli pmf can be 
written in exponential family form as 
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The term log(7r,/( 1  - 1T) is the natural parameter of this exponential family, and in 
(12.3.1) the link function g(1T) log(1T/( 1 - 1T) )  is used. When the natural parameter 
is used in this way, it is called the canonical link. 

Equation (12.3. 1 )  can be rewritten as 

eo:+fJx, 1T i = -=-1-+--:-::;--

or, more generally, 

(12.3.2) 1T(X) 

We see that 0 < 1T(X) < 1 ,  which seems appropriate because 1T (X) is a probability. 
But, if it is possible that 1T(X) = 0 or 1 for some x, then this model is not appropriate. 
If we examine 1T(X) more closely, its derivative can be written 

( 12.3.3) d 1T(x) = ,81T(x) ( 1  1T(X) ) .  dx 
As the term 1T(x) ( 1  1T(X)) is always positive, the derivative of 1T(X) is positive, 0,  or 
negative according as ,8 is positive, 0, or negative. If ,8 is positive, 1T(X) is a strictly 
increasing function of X; if ,8 is negative, 1T(X) is a strictly decreasing function of Xi if 
,8 0, 1T (x) = eO: / (1 + eO:) for all x. As in simple linear regression, if ,8 = 0, there is no 
relationship between 1T and x. Also, in a logistic regression model, 1T( -0:/,8) 1/2. A 
logistic regression function exhibits this kind of symmetry; for any c, 1T( ( -a/,B) + c) = 
1 - 1T« -a/,8) c) . 

The parameters a and ,8 have meanings similar to those in simple linear regression. 
Setting x 0 in ( 12.3 .1 )  yields that a is the log-odds of success at x = 0. Evaluating 
(12.3. 1 )  at x and x + 1 yields, for any x, 

I ( 1T(X + 1 )  ) I ( 1T(X) ) og - og 1 - 1T(X + 1 )  I - 1T(x) a + ,8(x + 1)  - a ,8(x) = ,8. 

Thus, f3 is the change in the log-odds of success corresponding to a one-unit increase 
in x. In simple linear regression, f3 is the change in the mean of Y corresponding to 
a one-unit increase in x. Exponentiating both sides of this equality yields 

( 12.3.4) fJ 1T(X + 1 )/( 1  - 1T(X + 1 ) )  e = . 1T(x)/( 1  - 1T(X)) 

The right-hand side is the odds ratio comparing the odds of success at X+ 1 to the odds 
of success at x. (Recall that in Examples 5.5.19 and 5.5.22 we looked at estimating 
odds.) In a logistic regression model this ratio is constant as a function of x. Finally, 

( 12.3.5) 1T(X + 1 )  
1 - 1T(X  + 1)  

that is, efJ is  the multiplicative change in the odds of success corresponding to a 
one-unit increase in x .  
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Equation (12.3.2) suggests other ways of modeling the Bernoulli success probability 
1I"(x) as a function of the predictor variable x. Recall that F(w) = e'W 1(1  + e'W) is the 
cdf of a 10gistic(O, l )  distribution. In (12.3.2) we have assumed 1I"(x) = F(a + f3x) .  
We can define other models for 1I"(x) by using other continuous cdfs. If F(w) is the 
standard normal cdf, the model is called probit regression (see Exercise 12.17). If a 
Gumbel cdf is used, the link function is called the log-log link. 

12. 8.£ Estimation 
In linear regression, where we use a model such as Yi = a + f3Xi + ei , the technique of 
least squares was an option for calculating estimates of a and 13. This is no longer the 
case here. In the model ( 12.3 .1 )  with Yi rv Bernoulli(1I"i) .  we no longer have a direct 
connection between Yi and a + f3Xi (which is why we need a link function) . Thus, 
least squares is no longer an option. 

The estimation method that is most commonly used is maximum likelihood. In 
the general model we have Yi '" Bernoulli(1I"i ) ,  where 1I"(x) F(o. + f3x). If we let 
Fi = F(a + f3Xj) ,  then the likelihood function is 

n 
L(a, f3ly) = II 7r(xi)Yi (l - 7r(Xi ) ) l-Yi 

i=1 

with log likelihood 

n 
II FiYi ( l  - Fi) l-Yi 
i=1 

log L(o., f3ly) t { IOg(l - Fi) + Yi log C �i
FJ } .  

We obtain the likelihood equations by differentiating the log likelihood with respect 
to 0. and 13. Let d F(w)ldw few), the pdf corresponding to F(w), and let h = 
f(o. + f3Xi ) .  Then 

and 

( 12.3.6) 

Hence, 

(12.3.7) 

8 1og( 1  - Fi) fi ---
80. 1 Fi 

- log --8 ( Fi ) 
80. 1 - Fi 

8 n 
a log L( a, f3ly) = I)Yi 0. i=l 

A similar calculation yields 

( 12.3.8) 
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For logistic regression, with F(w) eW /(1  + eW) , fd[Fi(I F,)] = 1 , and ( 12.3.7) 
and ( 12.3.8) are somewhat simpler. 

The MLEs are obtained by setting ( 12.3.7) and ( 12.3.8) equal to a and solving for 
a and 13. These are nonlinear equations in a and 13 and must be solved numerically. 
(This will be discussed later. )  For logistic and probit regression, the log likelihood is 
strictly concave. Hence, if the likelihood equations have a solution, it is unique and 
it is the MLE. However, for some extreme data the likelihood equations do not have 
a solution. The maximum of the likelihood occurs in some limit as the parameters go 
to ±oo. See Exercise 12. 16 for an example. This is because the logistic model assumes 
0 < 7r(x) < 1 ,  but, for certain data sets, the maximum of the logistic likelihood occurs 
in a limit with 7r(x) = a or 1 .  The probability of obtaining such data converges to 0 
if the logistic model is true. 

Example 12.3.1 (Challenger data) A by now infamous data set is that of space 
shuttle O-ring failures, which have been linked to temperature. The data in Table 
12.3.1 give the temperatures at takeoff and whether or not an a-ring failed. 

Solving (12.3.6) and ( 12.3.7) using F(a + j3Xi) = eM!3xi /(1 + eQ+!3xi )  yields MLEs 
d: 15.043 and /J = -.232. Figure 12.3.1 shows the fitted curve along with the data. 

The space shuttle Challenger exploded during takeoff, killing the seven astronauts 
aboard. The explosion was the result of an a-ring failure, believed to be caused by 
the unusually cold weather (310 F) at the time of launch. The MLE of the probability 
of a-ring failure at 310 is .9996. (See Dalal, Fowlkes, and Hoadley 1989 for the full 
story.) 

Table 12.3 .1 .  Temperature at flight time (' F) and failure of O-rings (1 = failure, 0 = success) 

Flight no. 14 9 23 10 1 5 13 15 4 3 8 1 7  
Failure 1 1 1 1 0 0 0 0 0 0 0 0 
Temp. 53 57 58 63 66 67 67 67 68 69 70 70 

Flight no. 2 1 1  6 7 16 21 19 22 12 20 18 
Failure 1 1 0 0 0 1 0 0 0 0 0 
Temp. 70 70 72 73 75 75 76 76 78 79 81 

We have, thus far, assumed that at each value of Xi , we observe the result of only one 
Bernoulli triaL Although this often the case, there are many situations in which there 
are multiple Bernoulli observations at each value of x. We now revisit the likelihood 
solution in this more general case. 

Suppose there are J different values of the predictor X in the data set Xl ,  . . .  , XJ. 
Let nj denote the number of Bernoulli observations at Xj , and let Yj* denote the 
number of successes in these nj observations. Thus, Yj* '" binomial(nj , 7r(Xj » . Then 
the likelihood is 

J J 
L(a, j3 ly· ) = IT 7r(Xi)Yj ( 1 - 7r(Xi)tj -Y; = IT F/; ( 1  

j=l j=l 
y)nj-Y; J ' 
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Figure 12.3.1. The data of Table 12.3. 1 along with the fitted logistic curve 

and the likelihood equations are 

J 
0 =  2)Yj - njFj) p. ( 1

f� p. ) j=1 J J 
J 

o = Z)yj - njFj )  po  (/� F/lj . 
j=1 J :1  

1S91S 

As we have estimated the parameters of the logistic regression using maximum 
likelihood, we can next get approximate variances using MLE asymptotics. However, 
we have to proceed in a more general way. In Section 10.1 .3 we saw how to approximate 
the variance of the MLE using the information number. We use the same strategy 
here, but as there are two parameters, there is an information matrix given by the 
2 x 2 matrix 

For logistic regression, the information matrix is given by 

( 12.3.10) [(a, p) 
( 2:,;=1 njFj (1 Fj) 2:,;=1 xjnjFj(1 - Fj) ) 

2:,f=l xjnjFj (l - Fj) 2:,;=1 x;njFj ( l Fj ) , 

and the variances of the MLEs 6: and /J are usually approximated using this matrix. 
Note that the elements of [(a, p) do not depend on Yt ,  . . . , Yj. Thus, the observed 
information is the same as the information in this case. 

In Section 10. 1 .3, we used the approximation (10 .1 .7) , namely, Var(h(O) 18) � 
[h'(O)J2 / [(8) ,  where 1(·) was the information number. Here, we cannot do exactly 
the same with the information matrix, but rather we need to get the inverse of the 
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matrix and use the inverse elements to approximate the variance. Recall that the 
inverse of a 2 x 2 matrix is given by 

1 ( d -b ) 
ad - be -e a . 

To obtain the approximate variances, the MLEs are used to estimate the parameters 
in the matrix ( 12.3.10) ,  and the estimates of the variances, [se(a)J2 and [se(.8)J 2 ,  are 
the diagonal elements of the inverse of J(a, .8). (The notation se(a) stands for standard 

error of (a) .) 

Example 12.3.2 (Challenger data continued) The estimated information ma
trix of the estimates from the Challenger data is given by 

J(a, .8) = 
2:;=1 xjF)(l - Fj) ) = ( 3. 15 
....., � x2P. ( 1  - P')') 214.75 L.;J=1 J J J 

( 54.44 -.80 ) . - .80 .012 

2 14.75 ) 
1 4728.5 ' 

The likelihood asymptotics tell use that, for example, /3 ± ZCi/2se(.8) is, for large 
samples, an approximate 100(1 - ex)% confidence interval for (3. So for the Challenger 
data we have a 95% confidence interval of 

(3 E -.232 ± 1 .96 x J.012 :::0} -,447 � (3 � -.017, 

supporting tbe conclusion that (3 < O. 

It is, perhaps, most common in this model to test the hypothesis Ho : (3 = 0, 
because, as in simple linear regression, this hypothesis states there is no relationship 
between the predictor and response variables. The Wald test statistic, Z .8/se(.8), 
has approximately a standard normal distribution if Ho is true and the sample size 
is large. Thus, Ho can be rejected if IZI ;::: ZCi/2 ' Alternatively, Ho can be tested with 
the log LRT statistic 

-2 Iog ;\(y*) 2 [log L(a, /3ly* ) L(ao, Oly* )] '  

where ao i s  the MLE of ex assuming (3 = O .  With standard binomial arguments 
(see Exercise 12.20) , it can be shown that ao = 2:�=1 Ydn = 2:;=1 uj / 2:;=1 nj . 
Therefore, under Ho, -2 10g ;\ has an approximate xi distribution, and we can reject 
Ho at level ex if -2 log ;\ ;::: XtCi ' 

We have introduced only the simplest logistic regression and generalized linear 
models. Much more can be found in standard texts such as Agresti ( 1990) . 
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12.4 Robust Regression 

As in Section 10.2, we now want to take a look at the performance of our procedures 
if the underlying model is not the correct one, and we will take a look at some robust 
alternatives to least squares estimation, starting with a comparison analogous to the 
mean/median comparison. 

Recall that, when observing Xl , X2 , . . . , Xn , we can define the mean and the median 
as minimizers of the following quantities: 

median: m�n {t IXi - ml} . 
t=l 

For simple linear regression, observing (Yl , xd, (Y2, X2 ) ,  . . .  , (Yn, Xn) ,  we know that 
least squares regression estimates satisfy 

least squares: min {t [Yi - (a + bXd12 } , a.b i=1 

and we analogously define least absolute deviation (LAD) regression estimates by 

least absolute deviation: min {t lUi - (a + bXi) /} ' a,b 1=1 

(The LAD estimates may not be unique. See Exercise 12.25. ) 
Thus, we see that the least squares estimators are the regression analogues of the 

sample mean. This should make us wonder about their robustness performance (as 
listed in items (1 )-(3) of Section 10.2) .  

Example 12.4.1 (Robustness of least squares estimates) If we observe (UI ,  xI ) ,  
(Y2 , X2 ) , . . .  , (Yn. xn ) ,  where 

and the ei are uncorrelated with E ei 0 and Var ei = 0-2 , we know that the least 
squares estimator b with variance 0-2/ E(Xi X)2 is the BLUE of (3, satisfying ( 1 )  of 
Section 10.2. 

To investigate how b performs for small deviations, we assume that 

V ( . ) _ { 0-2 with probability 1 - 6 ar e. - 72 with probability 6. 

Writing b = E diYi , where di = (Xi - x)/ E(Xi - x)2, we now have 

� 2 ( 1  6)0-2 + 6r2 Var(b) = L.., di Var(ci )  = En ( . -)2 ' 
i= 1  1=1 Xt X 

This shows that, as with the sample mean, for small perturbations b performs pretty 
well. (But we could, of course, blow things up by contaminating with a Cauchy pdf, 
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Table 12.4.1 .  Values of CO2 and � in the pouches of 23 potoroos (McPherson 1990) 

Animal 1 2 3 4 5 6 7 8 
% 02 20 19.6 19.6 19.4 18.4 19 19 18.3 

% CO2 1 1.2 1 . 1  1,4 2.3 1.7 1 .7 2.4 

Animal 9 10 1 1  1 2  13 14 15 16 
% 02 18.2 18.6 19.2 18.2 18.7 18.5 18 17,4 

% CO2 2.1 2.1 1.2 2.3 1 .9 2.4 2.6 2.9 

Animal 17 18 19 20 2 1  22 23 
% 02 16.5 17.2 17.3 17.8 1 7.3 18.4 16.9 

% 4.0 3.3 3.0 3,4 2.9 1.9 3.9 

for example.) The behavior of the least squares intercept a is similar (see Exercise 
12.22 ) .  See also Exercise 1 2. 23 to see how bias contamination affects things. I I 

We next look at the effect of a "catastrophic" observation and compare least squares 
to its median-analogous alternative, least absolute deviation regression. 

Example 12.4.2 (Catastrophic observations) McPherson ( 1990) describes an 
experiment in which the levels of carbon dioxide (C02) and oxygen (02) were mea
sured in the pouches of 24 potoroos (a marsupial) .  Interest is  in the regression of CO2 
on O2,  where the experimenter expects a slope of -1 .  The data for 23 animals (one 
had missing values) are given in Table 12.4.1 .  For the original data, the least squares 
and LAD lines are quite close: 

least squares: y = 18.67 .89x, 
least absolute deviation: y 18.59 - .89x. 

However, an aberrant observation can upset least squares. When entering the data 
the O2 value of 18 on Animal 15 was incorrectly entered as 10 (we really did this) .  
For this new (incorrect) data set we have 

least squares: y = 6.41 - .23x, 
least absolute deviation: y = 15.95 - .75x, 

showing that the aberrant observation had much less of an effect on LAD. See Figure 
1 2.4 .1 for a display of the regression lines. 

These calculations illustrate the resistance of LAD, as opposed to least squares. 
Since we have the mean/median analogy, we can surmise that this behavior is reflected 
in breakdown values, which are 0% for least squares and 50% for LAD. I I 

However, the mean/median analogy continues. Although the LAD estimator is 
robust to catastrophic observations, it loses much in efficiency with respect to the 
least squares estimator (see also Exercise 12.25) . 
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Figure 12.4. 1 .  Least squares, LAD, and M-estimate fits for the data of Table 12.4 .1 ,  for both 
the original data and the data with (18, 2.6) mistyped as ( 10, 2.6) . The LAD and M-estimate 
lines are quite similar, while the least squares line reacts to the changed data. 

Example 12.4.3 (Asymptotic normality of the LAD estimator) We adapt 
the argument leading to (10.2.6) to derive the asymptotic distribution of the LAD 
estimator. Also, to simplify things, we consider only the model 

that is, we set a = O. (This avoids having to deal with a bivariate limiting distribu
tion. ) In the terminology of M-estimators, the LAD estimator is obtained by minimizing 

n 
L P(Yi - {3Xi )  
i=l 

( 12.4.1 ) 

n 

L IYi - {3xd 
i=l 

n 
L(Yi {3xi)I(Yi > {3xi ) (Yi - {3xdI(Yi < {3xd· 
i=l 

We then calculate 1/.1 = p' and solve Li 1/.I(Yi {3xi) = 0 for {3, where 

If i3L is the solution, expand 1/.1 in a Taylor series around {3: 

n n 

L 1/.I(Yi - i3LXi )  = L 1/.I(Yi - {3xd + (i3L 
i=l i=l 

Although the left-hand side of the equation is not equal to 0, we assume that it 
approaches 0 as n - 00 (see Exercise 12.27). Then rearranging we obtain 
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vn(ih _ !3) = 
-Tn 2:�=1 1/J(Yi - !3Xi) 

1 d n A I n FL 2:i=l 1/J(Yi - fhXi) . fJ /jL=/j 

Section 12.4 

First look at the numerator. As E/j ¢(Yi - /3LXi ) = 0 and Var ¢(l'i - /3LXi) = x;, it 
follows that 

(12.4.3) 

where 0'; = limn-+oo � L�l x;. Thrning to the denominator, we must be a bit careful 
as ¢ has points of non differentiability. We therefore first apply the Law of Large 
Numbers before differentiating, and use the approximation 

1 d 11. 1 11. d 
-- L ¢(Yi - !30Xi) � L dE/3[¢ (l'i !30Xi)) n d!3o i=l n i=l !3o 

1 11. d = - L d!3 [XiP/3(Yi > !30Xi ) - XiP/3(Yi < !30Xi)) n i=l 0 (12.4.4) 

If we now evaluate the derivative at !3o = !3, we have 

and putting this together with ( 12.4 .2 )  and (12.4.3) , we have 

(12 .4.5) vn(/3L - !3) -> n (0, 4f(;)20'� ) . 

Finally, for the case of a = 0, the least squares estimator is /3 = 2:�=1 xiYil L�=l x; 
and satisfies 

vn(/3 - ,8) -> n (0, :; ' ) 

so that the asymptotic relative efficiency of /3L to /3 is 
A A 11 O'� 2 ARE(!3L, {3) = 1/(4f(0)20'� )  = 4f(0) , 

whose values are the same as those given in Table 10.2. 1 ,  comparing the median to 
the mean. Thus, for normal errors the ARE of the LAD estimator to least squares 
is only 64%, showing that the LAD estimator gives up a good bit of efficiency with 
respect to least squares. I I  
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So we are in the same situation that we encountered in Section 10.2 .1 .  The LAD 
alternative to least squares seems to lose too much in efficiency if the errors are truly 
normaL The compromise, once again, is an M-estimator. We can construct one by 
minimizing a function analogous to ( 10.2.2) ,  which would be L:i piCa, tl) ,  where 

( 12.4.6) 

where k is a tuning parameter. 

Example 12.4.4 (Regression M-estimator) Using the function ( 12 .4.6) with 
k = 1 .50', we fit the M-estimators of a and {3 for the data of Table 12.4.1 .  The results 
were 

M-estimate for original data: y = 18.5 .89x 
M-estimate for mistyped data: y = 14.67 - .68x, 

where we estimated 0' by .23, the standard deviation of the residuals from the least 
squares fit. 

Thus we see that the M-estimate is somewhat more resistant than the least squares 
line, behaving more like the LAD fit when there are outliers. I I  

As in Section 10.2, we expect the ARE of the M-estimator to be better than that of 
the LAD. This is the case, however, the calculations become very involved (even more 
so than for the LAD) so we will not give the details here. Huber (198 1 ,  Chapter 7) 
gives a detailed treatment of M-estimator asymptotics; see also Portnoy ( 1987) . We 
content ourselves with an evaluation of the M-estimator through a small simulation 
study, reproducing a table like Table 10.2.3. 

Example 12.4.5 (SimUlation of regression AREs) For the model Yi a + 
{3Xi + Ci , i = 1 , 2, . . .  , 5 , we take the XiS to be (-2, -1 , 0, 1 , 2) ,  a = 0, and {3 = 1 .  We 
generate Ci from normals, double exponentials, and logistic distributions and calculate 
the variance of the least squares, LAD, and M-estimator. These are presented in the 
following table. 

Regression M-estimator AREs, k = 1 .5 (based on 10,000 simulations) 

vs. least squares 
VS. LAD 

Normal Logistic Double exponential 
0.98 1 .03 1.07 
1 .39 1.27 1 . 14  

The M-estimator variance is  similar to that of least squares for all three distributions 
and is a uniform improvement over LAD. The dominance of the M-estimator over 
LAD is more striking than that of the Huber estimator over the median (as given in 
Table 10.2.3). I I  
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12.5 Exercises _______________________ _ 

12.1 Verify the expressions in ( 12.2.7). (Hint: Use the Pythagorean Theorem.) 
12.2 Show that the extrema of 

are given by 

b -(S.,., - Syy) ± V(S.,., - SY1I)2 + 4S�y 
2S"1I 

Show that the "+" solution gives the minimum of feb) .  
12.3 In maximizing the likelihood ( 12.2.13), we first minimized, for each value of  0: ,  {3, and 

tr�, the function 
n 

f(�I , . . .  , �n) L (eXi �i)2 + ).. (Yi - (0: + {3�d)2) 
i=1 

with respect to �l '  , .  , , �n . 

(a) Prove that this function is minimized at 

(b) Show that the function 

defines a metric between the points (x ,  y) and (�, 0: + {3�). A metric is a distance 
measure, a function D that measures the distance between two points A and B. 
A metric satisfies the following four properties: 

i. D(A, A)  = O. 
ii. D(A, B) > 0 if A :f. B.  

iii. D(A, B) = D(B, A) (reflexive). 
iv. D(A, B)  � D(A, C) + D(C, B) (triangle inequality) .  

12.4 Consider the MLE of the slope in  the EIV model 

�()..) 
- (Sxx - )"S1IY) + V(Sxx - )..Syy)2 + 4)"S]1I 

2)"Sxy 

where ).. trV tr: is assumed known. 
(a) Show that lim>._o �()..) = SX1l/Sxx, the slope of the ordinary regression of y on 

x. 
(b) Show that lim>._oo �()..) = S'lly/Sxll ' the reciprocal of the slope of the ordinary 

regression of x on y. 
(c) Show that �(>') is, in fact, monotone in ).. and is increasing if SXII > 0 and 

decreasing if SXY < O.  
(d) Show that the orthogonal least squares line ().. = 1) is  always between the lines 

given by the ordinary regressions of Y on x and of x on y. 
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(e) The following data were collected in a study to examine the relationship between 
brain weight and body weight in a number of animal species. 

Species 

Arctic fox 
Owl monkey 
Mountain beaver 
Guinea pig 
Chinchilla 
Ground squirrel 
Tree hyrax 
Big brown bat 

Body weight (kg) 
(x) 

3.385 
.480 

1 .350 
1 .040 
.425 
.101 

2.000 
.023 

Brain weight (g) 
(y) 

44.50 
15.50 
8.10 
5.50 
6.40 
4.00 

12.30 
.30 

Caiculate the MLE of the slope assuming the EIV model. Also, calculate the 
least squares slopes of the regressions of y on x and of x on y, and show how 
these quantities bound the MLE. 

12.5 In the EIV functional relationship model, where >. = o-Vo-; is assumed known, show 
that the MLE of oJ is given by (12.2. 18) . 

12.6 Show that in the linear structural relationship model ( 12.2.6) , if we integrate out �i' 
the marginal distribution of (Xi, Y; ) is given by (12.2. 19) . 

12.7 Consider a linear structural relationship model where we assume that ei has an 
improper distribution, �i rv uniform ( -00, (0) . 
(a) Show that for each i , 

(Completing the square in the exponential makes the integration easy.) 
(b) The result of the integration in part (a) looks like a pdf, and if we consider it a 

pdf of Y conditional on X, then we Seem to have a linear relationship between 
X and Y. Thus, it is sometimes said that this "limiting case" of the structural 
relationship leads to simple linear regression and ordinary least squares. Explain 
why this interpretation of the above function is wrong. 

12.8 Verify the nonidentifiabiIity problems in the structural relationship model in the 
following ways. 

(a) Produce two different sets of parameters that give the same marginal distribution 
to (Xi, Y; ). 

(b) Show that there are at least two distinct parameter vectors that yield the same 
solution to the equations given in ( 12.2.20). 

12.9 In the structural relationship model, the solution to the equations in (12.2.20) implies 
a restriction on /3, the same restriction seen in the functional relationship case (see 
Exercise 12.4). 

(a) Show that in ( 12.2.20), the MLE of d is nonnegative only if 8:"", � (1//3)8"'11' 
Also, the MLE of 0'; is nonnegative only if 81111 � /38"'11 ' 
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(b) Show that the restrictions in part (a) , together with the rest of the equations in 
( 12.2.20) , imply that 

< l al < 81/11 . 
- /J - 18"'11 1 

12.10 (a) Derive the MLEs for (0:, /3, 0'� , 0'� , 0'l> in the structural relationship model by 
solving the equations ( 12.2.20) under the assumption that O'� = >.0';. 

(b) Calculate the MLEs for (0:, /3, u;, O'� , O'i) for the data of Exercise 12.4 by assuming 
the structural relationship model holds and that u� = >.0';. 

(c) Verify the relationship between variance estimates in the functional and struc
tural relationship models. In particular, show that 

Var Xi (structural) 2"Var X; (functional) . 

That is, verify 

(d) Verify the following equality, which is implicit in the MLE variance estimates 
given in ( 12.2.21) .  Show that 

12.11 (a) Show that for random variables X and Y and constants a, b, c, d, 

Cov(aY + bX, cY + dX) = acVar Y + (be + ad)Cov(X, Y) + bdVar X. 

(b) Use the result in part (a) to verify that in the structural relationship model with 
O'i = >.u;, 

Cov(/3XY; + Xi, Y; - /3Xi) 0, 

the identity on which the Creasy-Williams confidence set is based. 
( c ) Use the results of part (b) to show that 

for any value of /3, where T).. (m is given in ( 12.2.23) . Also, show that the confi
dence set defined in (12 .2.24) has constant coverage probability equal to 1 - 0:. 

12.12 Verify the following facts about /J (the MLE of /3 when we assume O'i >'0':) ,  r).. (/3) 
of ( 12.2.23) , and GA (/J) , the Creasy-Williams confidence set of ( 12.2.24). 
(a) /J and -l/(>./J) are the two roots of the quadratic equation defining the zeros of 

the first derivative of the likelihood function ( 12.2.14). 
(b) rA(/3) = -r).. (- I/(>'/3» for every /3. 
(c) If /3 E GA (/J), then -1/(>.{3) E G).. (/J) .  

12.13 There is an interesting connection between the Creasy-Williams confidence set of 
( 12.2.24) and the interval Ga(/J ) of ( 12.2.22) . 
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(a) Show that 

• 
_ 
{ 

. «(3 �)2 } CG«(3) - (3 . a-�lCn _ 2) � Fl .n-2.<> , 

where � is the MLE of (3 and a-� is the previously defined consistent estimator 
of O"�. 

(b) Show that the Creasy-Williams set can be written in the form 

Hence CG (�) can be derived by replacing the term in square brackets with 1, its 
probability limit. (In deriving this representation, the fact that � and -1/ (>..�) 
are roots of the numerator of r>- «(3) is of great help. In particular, the fact that 

r�«(3) 
1 r� «(3) 

is straightforward to establish. )  

)..2 8;11«(3 �)2 «(3 + ( 1/ >..�» 2 
( 1  + >..(32)2(8x:,,81111 - 8ill)  

12.14 Graph the logistic regression function 7r(x) from ( 12.3.2) for these three cases: 0 := 

(3 = 1 ,  0 (3 = 2, and 0 = (3 3. 
12.15 For the logistic regression function in ( 12.3.2), verify these relationships. 

(a) 7r(-0/(3) 1/2 
(b) 7r« -o/(3) + c) 1 - 7r« -0/(3) - c) for any c 
(c) (12.3.3) for d 7r(x)/dx 
(d) ( 12.3.4) about the odds ratio 
(e) (12.3.5) about the multiplicative change in odds 
(f) ( 12.3.6) and (12.3.8) regarding the likelihood equations for a Bernoulli GLM 
(g) For logistic regression, h/(Fi ( 1  - Ft) 1 in (12.3.7) and (12.3.8) 

12.16 Consider this logistic regression data. Only two values, x == 0 and 1 ,  are observed. 
For x = 0 there are 10 successes in 10 trials. For x = 1 there are 5 successes in 10 
trials. Show that the logistic regression MLEs & and � do not exist for these data by 
verifying the following. 

(a) The MLEs for 7r(0) and 7r(I),  not restricted by ( 12.3.2) , are given by *(0) = 1 
and *(1) = .5. 

(b) The overall maximum of the likelihood function given by the estimates in part 
(a) can not be achieved at any finite values of the logistic regression parameters 
o and (3, but can be achieved in the limit as (3 -t -00 and 0 = -(3. 

12.11 In pro bit regression, the link function is the standard normal cdf �(x) = P(Z � x) , 
where Z '" n(0, 1 ) .  Thus, in this model we observe (Yl , Xt } , (Y2 , X2 ) ,  . . .  , (Yn , Xn) ,  
where Y; '" Bernoulli(7r; } and 7r; = �(o + (3Xi) . 

(a) Write out the likelihood function and show how to solve for the MLEs of 0 and (3. 
(b) Fit the probit model to the data of Table 12.3. 1 .  Comment on any differences 

from the logistic fit. 
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12.18 Brown and Rothery (1993, Chapter 4) discuss a generalization of the linear logistic 
model to the quadratic model 

log ( 1 
:i1TJ 

= Or + ,BXi + 'i'x;. 

(a) Write out the likelihood function and show how to solve for the MLEs of Or, ,B, 
and 'i" 

(b) Using the log LRT, show how to test the hypothesis Ho : 'i' = 0, that is, that the 
model is really linear logistic. 

(c) Fit the quadratic logistic model to the data in the table on survival of spar
rowhawks of different ages. 

Age 
No. of birds 

No. 

1 2 
77 149 
35 89 

3 4 5 6 7 
182 118 78 46 27 
130 79 52 28 14 

8 9 
10 4 
3 1 

(d) Decide whether the better model for the sparrowhawks is linear or quadratic, 
that is, test Ho : 'i' = O. 

12.19 For the logistic regression model: 

(a) Show that (Ef=l Y·, Ef=l Y·Xj) is a sufficient statistic for (a, ,B) . 
(b) Verify the formula for the logistic regression information matrix in ( 12.3. 10) . 

12.20 Consider a logistic regression model and assume ,B = O.  
(a) If 0 < E�l Yi < n, show that the MLE of '1l"(x) (which does not depend on x in 

this case) is i E�=l yi/n. 
(b) If 0 < E�=l Yi < n, show that the MLE ofa is ao log ( E�=l Yi)/(n - E�l Yi») . 
(c) Show that if E�=l Yi = 0 or n, ao does not exist, but the LRT statistic for testing 

Ho : ,B = 0 is still well defined. 
12.21 Let Y '" binomial(n, 1T) , and led Yin denote the MLE of'1l". Let W = log (i/(l - i » 

denote the sample logit, the MLE of log ('1l"/(1 7r» . Use the Delta Method to show 
that 1/(ni(1  - i» is a reasonable estimate of Var W. 

12.22 In Example 12.4.1 we examined how small perturbations affected the least squares 
estimate of slope. Perform the analogous calculation and assess the robustness (to 
small perturbations) of the least squares estimate of intercept. 

12.23 In Example 12.4.1 ,  in contrast to Example 10.2 . 1 ,  when we introduced the contami
nated distribution for e;, we did not introduce a bias. Show that if we had, it would 
not have mattered. That is, if we assume 

(E ei, Varei) 

then: 

{ (0, (12) with probability 1 - 6 
(f.L, 7"2) with probability 6, 

(a) the least squares estimator b would still be an unbiased estimator of ,B. 
(b) the least squares estimator a has expectation a + 6f.L, so the model may just as 

well be assumed to be Yi. a + 6f.L + ,BXi + ei . 
12.24 For the model Yi. = ,Bx, + e" show that the LAD estimator is given by t(k "+l), where 

ti Yi/Xi, t( 1 )  :5 . . .  :5 t(n) and, if XCi) is the x value paired with t(i) ,  k· satisfies 

E7�1 Ix(i) 1 :5 E�=k"+l lx(i) 1 and E7:t Iz(;) 1 > E�k.+2 Ix(i) l .  
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12.25 A problem with the LAD regression line is that it is not always uniquely defined. 

(a) Show that, for a data set with three observations, (Xl , f/l ) ,  (Xl , Y2) ,  and (X3, Y3) 
(note the first two xs are the same), any line that goes through (X3 , Y3) and lies 
between {Xl , VI ) and (XI , 1I2 )  is a least absolute deviation line. 

(b) For three individuals, measurements are taken on heart rate (x, in beats per 
minute) and oxygen consumption (V, in ml/kg) . The (x, y) pairs are ( 127, 14.4), 
( 127, 11 .9), and ( 136, 17.9) . Calculate the slope and intercept of the least squares 
line and the range of the least absolute deviation lines. 

There seems to be some disagreement over the value of the least absolute deviation 
line. It is certainly more robust than least squares but can be very difficult to compute 
(but see Portnoy and Koenker 1997 for an efficient computing algorithm). It also 
seems that Ellis (1998) questions its robustness, and in a discussion Portnoy and 
Mizera ( 1998) question Ellis. 

Exercises 12.26-12.28 will look at some of the details of Example 12.4.3. 

12.26 (a) Throughout Example 12.4.3 we assumed that � E:=l x; � 0'; < 00. Show that 
this condition is satisfied by (i) Xi 1 (the case of the ordinary median) and (ii) 
Ix; 1 � 1 (the case of bounded ;;d . 

(b) Show that, under the conditions on Xi in part (a) , � E::"1 'I/J(Vi fjLXi) � 0 in 
probability. 

12.27 (a) Verify that Tn E:=l 'I/J(Y; - fjXi) � n (0, 0';) .  
(b) Verify that 1. En_l d{:J

d E{:J ['I/J(Y; ,Box,)] /  2f(0) 1. E�-1 x;, and, with part n 1- 0 (:JQ={:J n t-

(a), conclude that v'n(fjL fJ) � n (0, 4!(O�2u� ) '  
12.28 Show that the least squares estimator is given by fj = E:=1 XiV;!  E:1 x; , and 

v'n(fj fJ) � n(O, 1/0';) .  
12.29 Using a Taylor series argument as in  Example 12.4.3, derive the asymptotic distribu

tion of the median in iid sampling. 

12.30 For the data of Table 12.4. 1 ,  use the parametric bootstrap to assess the standard 
error from the LAD and M-estimator fit . In particular: 

(a) Fit the line Y a + fJx to get estimates ti and fj. 
(b) Calculate the residual mean squared error &2 n�2 E�=l [Yi (ti + .BXiW' 
(c) Generate new residuals from nCO, &2) and re-estimate a and fJ. 
(d) Do part (c) B times and calculate the standard devia.tion of ti and .B. 
(e) Repeat parts (a)-(d) using both the double exponential and Laplace distributions 

for the errors. Compare your answers to the normal. 

12.31 For the data of Table 12.4 . 1 ,  we could also use the nonparametric bootstrap to assess 
the standard error from the LAD and M-estimator fit. 

(a) Fit the line y = a + fJx to get estimates ti and /3. 
(b) Generate new residuals by resampling from the fitted residuals and re-estimate 

a and fJ. 
(c) Do part (c) B times and calculate the standard deviation of ti and /3. 
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12.6 Miscellanea _____________________ _ 

12. 6. 1 The Meaning of Functional and Structural 

The names functional and structural are, in themselves, a prime source of confusion 
in the EIV modeL Kendall and Stuart (1979, Chapter 29) give a detailed discus
sion of these concepts, distinguishing among relationships between mathematical 
(nonrandom) variables and relationships between random variables. One way to 
see the relationship is to write the models in a hierarchy in which the structural 
relationship model is obtained by putting a distribution on the parameters of the 
functional model: 

Functional 
relationship 

model 

{ E(Yi !�i )  _ 0: + (3�i + fi 
E(Xt !�d - �i + Oi 

Structural 
relationship 

model 

The difference in the words may be understood through the following distinction, 
not a universally accepted one. In the subject of calculus, for example, we often see 
the equation y f(x) , an equation that describes a functional relationship, that 
is, a relationship that is assumed to exist between variables. Thus, from the idea 
that a functional relationship is an assumed relationship between two variables, 
the equation TJi 0: + (Jf.i , where TJi = E(Yi !f.i) ,  is a functional (hypothesized) 
relationship in either the functional or structural relationship model. 
On the other hand, a structural relationship is a relationship that arise.9 from the 
hypothesized structure of the problem. Thus, in the structural relationship model, 
the relationship TJ = EYi 0: + {3� = 0: + (3EXi can be deduced from the structure 
of the model; hence it is a structural relationship. 
To make these ideas clearer, consider the case of simple linear regression where we 
assume that there is no error in the xs. The equation E(Yi lxi) = 0: + (3Xi is a func
tional relationship, a relationship that is hypothesized to exist between E(Yi lxi) 
and Xi. We can, however, also do simple linear regression under the assumption 
that the pair (Xi , Yi)  has a bivariate normal distribution and we operate condi
tional on the XiS. In this case, the relationship E(Yi IXi) = 0: + {JXi follows from the 
structure of the hypothesized model and hence is a structural relationship. 
Notice that, with these meanings, the distinction in terminology becomes a mat
ter of taste. In any model we can deduce structural relationships from functional 
relationships, and vice versa. The important distinction is whether the nuisance 
parameters, the �iS, are integrated out before inference is done. 

12.6.2 Consistency of Ordinary Least Squares in EIV Models 

In general it is not a good idea to use the ordinary least squares estimator to 
estimate the slope in EIV regression. This is because the estimator is inconsistent. 
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Suppose that we assume a linear structural relationship ( 12.2.6) . We have 

/1 = l::�=1 ';i - X)(Yi Y) 

I:(Xi - X)2 
i=l 

609 

Cov(X, Y) -. ---'-_"""":" 
VarX (as n -. 00, using the WLLN) 

{3a� 
aE + at ' (from (12.2.19 ) )  

showing that /1 cannot be  consistent. The same type of  result can be  obtained in  
the functional relationship case. 
The behavior of /1 in EIV models is treated in Cochran (1968) .  Carroll, Gallo, and 
GIeser (1985) and GIeser, Carroll, and Gallo (1987) investigated conditions under 
which functions of the ordinary least squares estimator are consistent. 

12.6.3  Instrumental Variables in EIV Models 
The concept of instrumental variables goes back at least to Wald ( 1940),  who 
constructed a consistent estimator of the slope with their help. To see what an 
instrumental variable is, write the EIV model in the form 

and do some algebra to get 

Yi = Q + {3�i + Ei ,  
Xi = �i + Oi l 

An instrumental variable, Zi, is a random variable that predicts Xi well but is 
uncorrelated with Vi Ej - {30i - If such a variable can be identified, it can be 
used to improve predictions. In particular, it can be used to construct a consistent 
estimator of {3. 
Wald ( 1940) showed that , under fairly general conditions, the estimator 

is a consistent estimator of {3 in identifiable models, where the subscripts refer to 
two groupings of the data. A variable Zi , which takes on only two values to define 
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the grouping, is an instrumental variable. See Moran ( 1971) for a discussion of 
Wald's estimator. 
Although instrumental variables can be of great help, there can be some problems 
associated with their use. For example, Feldstein ( 1974) showed instances where 
the use of instrumental variables can be detrimentaL Moran (1971) discussed the 
difficulty of verifying the conditions needed to ensure consistency of a simple es
timator like �w. Fuller ( 1987) provided an in-depth discussion of instrumental 
variables. A model proposed by Berkson ( 1950) exploited a correlation structure 
similar to that used with instrumental variables. 

12. 6.4 Logistic Likelihood Equations 
In a logistic regression model, the likelihood equations are nonlinear in the pa
rameters, and they must be solved numerically. The most commonly used method 
for solving these equations is the Newton-Raphson method. This method begins 
with an initial guess (a( 1) ,  �( l » )  for the value of the MLEs. Then the log likelihood 
is approximated with a quadratic function, its second-order Taylor series about 
the point (a( 1 ) , �(l ) ) . The next guess for the values of the MLEs, (&(2) , �(2» ) ,  is 
the maximum of this quadratic function. Now another quadratic approximation 
is used, this one centered at (a(2) , �(2» ) ,  and its maximum is the next guess for 
the values of the MLEs. The Taylor series approximations involve the first and 
second derivatives of the log likelihood. These are evaluated at the current guess 
(a(t ) ,  �(t» ) .  These are the same second derivatives that appear in the information 
matrix in (12.3 . 10) . Thus, a byproduct of this method of solving the likelihood 
equations is estimates of the variances and covariance of a and �. The convergence 
of the guesses (&(t) , �(t » )  to the MLEs (a, �) is usually rapid for logistic regression 
models. It often takes only a few iterations to obtain satisfactory approximations. 
The Newton-Raphson method is also called itemtively reweighted least squares. At 
each stage, the next guess for (a, �) can be expressed as the solution of a least 
squares problem. But, this is a least squares problem in which the different terms 
in the sum of squares function are given different weights. In this case the weights 
are njFp) (l - FP» ) ,  where FP) = F(a(t) + �(t)Xj )  and F is the logistic cdf. This is 
the inverse of an approximation to the variance of the jth sample Iogit (see Exercise 
12.21 ) .  The weights are recalculated at each stage, because the current guesses for 
the MLEs are used. That leads to the name "iteratively reweighted." Thus, the 
Newton-Raphson method is approximately the result of using the sample logits as 
the data and performing a weighted least squares to estimate the parameters. 

12.6.5  More on Robust Regression 
Robust alternatives to least squares have been an object of study for many years, 
and there is a vast body of literature addressing a variety of problems. In Section 
12.4 we saw only a brief introduction to robust regression, but some of the advan
tages and difficulties should be apparent. There are many good books that treat 
robust regression in detail, including Hettmansperger and McKean ( 1996) ,  Staudte 
and Sheather (1990) , and Huber (1981) .  Some other topics that have received a 
lot of attention are discussed below. 
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Trimming and transforming 
The work of Carroll, Ruppert, and co-authors has addressed many facets of 
robust regression. Ruppert and Carroll ( 1979) is a careful treatment of the 
asymptotics of trimming (the trimmed mean is discussed in Exercise 10.20 ) ,  
while Carroll and Ruppert (1985) examine alternatives to least squares when the 
errors are not identical. Later work looked at the advantages of transformations 
in regression (Carroll and Ruppert 1985, 1988) .  
Other robust alternatives 
We looked at only the LAD estimator and one M-estimator. There are, of course, 
many other choices of robust estimators. One popular alternative is the least 
median of squares (LMS) estimator of Rousseeuw (1984); see also Rousseeuw 
and Leroy 1987}. There are also R-estimators, rank-based regression estimators 
(see the review paper by Draper 1988) .  More recently, there has been work on 
data depth (Liu 1990, Liu and Singh 1992) with applications to regression in 
finding the deepest line (Rousseeuw and Hubert 1999) .  
Computing 
From a practical view, computation of robust estimates can be quite challenging, 
as we are often faced with a difficult minimization problem. The review paper by 
Portnoy and Koenker (1997) is concerned with computation of LAD estimates. 
Hawkins (1993, 1994, 1995) has a number of algorithms for computing LMS and 
related estimates. 





APPENDIX 

Computer Algebra 

Computer algebra systems allow for symbolic manipulation of expressions. They can 
be particularly helpful when we are faced with tedious, rote calculations (such as 
taking the second derivative of a ratio) . In this appendix we i llustrate the use of such 
a system in various problems. Although use of a computer algebra system is in no 
way necessary to understand and use statistics, it not only can relieve some of the 
tedium but also can lead us to new insights and more applicable answers. 

Realize that there are many computer algebra systems, and there are numerous 
calculations with which they can be helpful (sums, integrals, simulations, etc.). The 
purpose of this appendix is not to teach the use of these systems or to display all 
their possible uses, but rather to illustrate some of the possibilities. 

We illustrate our calculations using the package Mathematica®. There are other 
packages, such as Maple®, that could also be used for these calculations. 

Chapter 1 
Example A.O.1 (Unordered sampling) We illustrate Mathematica code for enu
merating the unordered outcomes from sampling with replacement from {2, 4, 9, 12} , 
as described in Example 1 .2.20. After enumerating the outcomes and calculating the 
multinomial weights, the outcomes and weights are sorted. Note that to produce the 
histogram of Figure 1 .2.2 requires a bit more work. For example, there are two dis
tinct outcomes that have average value 8, so to produce a picture like Figure 1.2.2, 
the outcomes {8, 1 �8 }  and {8, 634 }  need t o  be combined into {8, 1�8 } ' 

Enumeration such as this gets very time consuming if the set has more than 7 
numbers, which results in Ci) = 27,132 unordered outcomes. 
(1) The "DiscreteM ath"  package contains functions for counting permutations and 

combinations. 
In [1]  : = Needs [ IIDiscreteMath I Combinatorica I II ] 

(2) We let x = collection of numbers. The number of distinct samples is Numberof
Compositions [n,m] = (n+:-l) .  
In [2] : =  x ={2 , 4 , 9 , 1 2} ; 
n=Length [x] ; 
ncomp=NumberOfCompositions [n , n] 

Out [4] = 35 
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(3) We enumerate the samples (w) , calculate the average of each of the sampLes (avg) , 
and calculate the weights for each value (wt) . The weight is the multinomial co
efficient that corresponds to the configuration. 

In [5] : =  w = Compositions [n , n] ; 
wt = n ! / (Apply [Times . Factorial I� w,  l] *n�n) ; 
avg = w . x/n ; 
Sort [Transpose [{avg . wt}] ] 

Out[8] = {2, 1/256}, {5/2, 1/64} ,  {3, 3/128} ,  { 7/2, 1/64} , { 15/4, 1/64} ,  
{4, 1/256} , { 1 7/4, 3/64}, {9/2, 1/64} , { 19/4, 3/64}, { 5, 3/64}, 
{21/4 , 1/64}, { 1 1/2, 3/128} , { 1 1/2, 3/64} , {6, 1/64} , {6, 3/64} , 
{25/4, 3/64}, { 13/2 , 3/128} ,  { 27/4, 3/32} , {7, 3/128} ,  {29/4, 1 /64}, 
{29/4, 3/64} , { 15/2, 3/64} , {31/4, 1/64}, {8, 3/128} , {8, 3/64} , 
{ 17/2, 3/64}, {35/4, 3/64}, {9, 1/256}, {37/4, 3/64} , { 19/2, 1/  64} , 
{39/4, 1/64}, { 10, 1/64} ,  {21/2 , 3/128} ,  {45/4, 1/64}, { 12 ,  1/256} I I 

Chapter 2 

Example A.O.2 (Univariate transformation) Exercise 2. 1 (a) is a standard uni
variate change of variable. Such calculations are usually easy for a computer algebra 
program. 

(1 ) Enter f (x) and solve for the transformed variable. 

In [l] : =f [x_] : =  42* (x�5) * ( 1 - x) 
sol = Solve [y == x-3 .  x] 

Out[2] { {x- > yl/3} , {x- > _(_1) 1/3y l/3 }, {x- > _ ( _1 )2/3y2/3} }  

(2) Calculate the Jacobean. 

In [3] : =  D [x/ . sol [ [l] ] . y] 

1 
Out[3] = 

3y2/3 

(3) Calculate the density of the transformed variable. 

In [4] : = f [xl . sol [ [1]  ] ] * 0 [xl . sol [ [ 1] ]  • y] 

Out [4] -14(1 _ yl/3)y 

Chapter 4 

Example A.O.3 (Bivariate transformations) We illustrate some bivariate trans
formations. It is also possible, with similar code, to do multivariate transformations. 
In the first calculation we illustrate Example 4.3.4 to obtain the distribution of the 
sum of normal variables. Then we do Example 4.3.3, which does a bivariate transfor
mation of a product of beta densities and then marginalizes. 
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(I) Sum of normal variables. OutU] is the joint distribution, and Outf5] is the 
marginal. 

In [i] : =f [x_ , y_] : = (1/ (2*Pi» *EA (-xA2/2) *EA (-yA2/2) 
So : =Solve [{u==x+y , v==x-y} , {x , y}] 
g : =f [x/ . So ,y/ . So] *Abs [Det [Outer [D , First [{x , y}/ . So] . {u , v}] ] ]  
Simplify [g] 

{ - � - � } 
Out[4] = e 471' 

In [5] : =  Integrate [g . {v . a , Infinity}] 

OutlSI � {��} 
(2) Product of beta variables. (The package "ContinuousDistributions" contains pdfs 

and cdfs of many standard distributions.) Outfl0] is the joint density of the prod
uct of the beta variables, and Out{l1] is the density of u. The If statement is 
read If(test , true, false) ,  so if the test is true, the middle value is taken. In most 
situations the test will be true, and the marginal density is the given beta density. 

In [6] : =  Needs [ " Statistics ' ContinuousDistributions ' '' ]  

Clear [f ,  g.  u,  v,  x,  y,  a,  b,  c] 

f [x_ , y_] : =  PDF [BetaDistribution [a , b] , x] 
*PDF [BetaDistribution [a + b ,  cl , yJ 

So : =  Solve [{u == x*y , v == x} , {x , y}J 

g [u_ , v_J = f [x / .  So , y / .  So] 
*Abs [Det [Outer [D , First [{x , y} / .  Sol , {u , v}] ] ]  

Integrat e [g [u ,  v] , {v , a , i}] 

{ (I - �)-1+C(1 _ V)-l+b(�) -l+a.+bV-1+a. } 
Out [10] Abs[v]Beta[a, b]Beta[a + b, c] 

Out[U] = { If(Re[b1 > O&&Re [b + c] < 1&&Im[u] = =  O&&u > O&&u < 1 ) ,  

1 (( 1  U)-l+b+c (-
u

1 ) b+C (-u)Cu-1+a.+bGamma[b]Gamma[1 b c1) 
Gamma[l - c] 

v v dv 
11 (1 - �)-1+C(I _  V)- l+b (� )-1+a.+bv-1+1l } 

o Abs[v]Beta[a, b]Beta[a + b, c] I I 
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Example A.O.4 (Normal probability) The calculation asked for in Exercise 
4.14(a) can be easily handled. We first do a direct calculation, and Mathematica 
easily does the integral numerically but doesn' t  find the closed form expression. Note 
that the answer is given in terms of the erf function, defined by 

) 2 t' _t2 erf(z = .,fii 10 e dt. 

If we re-express the probability in terms of a chi squared random variable, then the 
closed-form expression is found. 
(1 )  To evaluate the integral we set up the integrand and the limits of integration. 

In [1]  ; =  Needs [ " Stat istics ! ContinuousDi stributions t il ] 

Clear [f , g .  x ,  y] 

f [x_ . y_] = PDF [NormalDistribut ion [O , l ] . x] 
*PDF [NormalDistribution [O , 1] , y] 

g [x_] = Sqrt [l - x�2] 
2 2 

e-�-lIi 
Out[3] = 211" 

(2) We now evaluate the double integral and get the Erf function. The command N[%] 
numerically evaluates the previous line. 
In [5] : =  Integrate [f [x , y] , {x, -1 , 1 } , {y , -g [x] , g [x] }] 

N [%] 

Out[5] 
J�l e-4Erf (�) dx 

J2/K 
Out [6] = 0.393469 

(3) We of course know that X2 + y2 is a chi squared random variable with 2 degrees 
of freedom. If we use that fact we get a closed-form answer. 
In [7] : = Clear [f , t] 
f [t_] = PDF [ChiSquareDistribution [2] , t] ; 
Integrate [f [t] , {t , 0 ,  1}] 
N [%J 

Out [10] � (2 - ]e) 
Out[ll] = 0.393469 

Chapter 5 

I I  

Example A.O.5 (Density of a sum) The calculation done in Example 5.2.10, 
which illustrates Theorem 5.2.9, is quite an involved one. We illustrate such a calcu
lation in three cases: normal, Cauchy, and Student 's t . 
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There are two points to note. 
t 

( 1 )  To correctly interpret the answers, some knowledge of complex analysis may be 
needed. For the normal case, the answer is reported conditional on the value of 
the real part of the (possibly complex-valued) variable z. In the Cauchy example, 
it is important to know that 12 = -1, so we have 

2 2 
7l"(-21 + z) (2I + z) 

- 7l"(4 + Z2) " 

(2) When we add Student's t variables, it seems that if the sum of the degrees of 
freedom is even, then a closed-form expression exists. If not, then the integration 
must be done numerically. (This is an empirical observation that we discovered 
by playing around with computer algebra systems.) 

We also note that later versions of computer algebra programs may avoid the 
complex numbers here. However, they will pop up in other calculations, so it is best 
to be prepared to deal with them. 
( 1 )  The density of the sum of two normals 

In [1] : = Clear [f , x .  y ,  z] 

f [x_] = Exp [ ( -x-2/2] / (2 Pi) ; 
Integrate [f [y] * f ez - y] . {y , -Infinity , Infinity}] 

[ 
e-4  JOO E-�-! (_y+%)2 1 

Out[3] = If Re[z] < o, �, -00 27l" 
dy 

(2) The density of the sum of two Cauchys 

In [4] : =  Clear [f , x ,  y ,  z] 
f [x_] = 1/ (Pi * ( 1+x-2» ; 
Integrate [f [y) * f ez - y) , {y , -Infinity , Infinity}] 

2 
Out[6] = 7l"( -21 + z) (21 + z) 

(3) The density of the sum of two t 's with 5 degrees of freedom 

In [7] ; =  Needs ["Stat istics ' ContinuousDistribut ions t it] 
Clear [f , x ,  y .  z] 
f [x_] = PDF [StudentTDistributi on [5 , x] 
Integrate [f [y] * f ez - y] . {y . -Infinity . Infinity}) 

Out[lO] = 400J5(8400 + 120z2 + Z4) 
311"(20 + z2)5 I I 

Example A.O.6 (Fourth moment of sum of uniforms) Exercise 5.51 asks for 
the fourth moment of a sum of 12 uniform random variables. Deriving the density 
is somewhat painful because of its piecewise nature (but also can be done using 
computer algebra) . However, using mgfs simplifies things. 
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(1)  First calculate the mgf of Xl , a uniform random variable, and then of Ei!l Xi. 
where the XiS are independent. 

In [l] : :  M [t_] = Integrate [Exp (t*x] , {x , 0 ,  1}] 
In [2) : =  Msum [t_] = M [t] · 12 

Out[l] = -1 + et 
t 

Out[2] = (-1  ;
2
et ) 12 

(2) Calculate the fourth derivative of the mgf of E!!l Xi - 6. It is too big to print 
out. 

In [3) : =  g [t_] =D [Exp [-6*t] *Msum [t] , {t , 4}] ; 

(3) The value g [O] is the fourth moment; however, just substituting 0 results in division 
by 0, so we have to do this calculation as a limit. 

In [4] : =  g [O] 

Power:infy: Infinite expression ok encountered. 
In [5] : =  Limit [g [t] , t->O] 

29 
Out[5] = 

10  

Chapter 7 

I I  

Example A.O.7 (ARE for a gamma mean) The calculations done in Example 
10.1 .18, which led to Figure 10. 1 . 1 ,  were done in Mathematica. The following code 
will produce one of the ARE graphs. 
( 1 )  The second derivative of the log likelihood is taken symbolically. 

In[l] : =  Needs [ " St atistics t Cont inuousDistributions t II ]  
Clear [m , b ,  x] 
f [x_ , m_ . b_] = PDF [GammaDistribution [m/b , b) , x) : 
loglike2 [m_ , b_ , x_] = D [Log [f [x . m .  b] ) ,  {m , 2}] ; 

(2) The asymptotic variance is calculated by integrating this second derivative with 
respect to the density. 

In [5] : =  var [m_ , b_] : =  1 / (-Integrate [loglike2 [m .  b .  x] *f [x , m ,  b] , 
{x , 0 ,  Infinity}) ) 

(3) The following code sets up the plot. 

In [6] : =  
mu = {1 , 2 ,  3 ,  4 ,  6 ,  8 ,  10} ; 
beta = 5 :  
mlevar = Table [var [mu [ [i] ] , beta] , {i , 1 ,  7}] ; 
momvar = Table [mu [ [i] ] *beta , { i , 1 ,  7}] ; 
ARE = momvar/mlevar 
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Out[lO] = {5.25348, 2.91014, 2.18173, 1 .83958, 1 .52085, 1 .37349, 1 .28987} 

In [ 1 1] : =ListPlot [Transpose [ {mu , ARE}] , PlotJoined -> True , 
PlotRange -> Ha , mu [ [7] ] } ,  {a , 8}} , AxesLabel -> {"Gamma mean" ,

!! 
"ARE"}]  

Chapter 9 

Example A.O.8 (Limit of chi squared mgfs) Calculation of the limiting distri
bution in Exercise 9.30(b) is delicate but is rather straightforward in Mathematica. 
(1 )  First calculate the mgf of a chi squared random variable with n degrees of freedom. 

(Of course, this step is really not necessary.) 

In [ 1] : =  Needs ["Statist ic s ' ContinuousDistribut ions ' tI ]  
f [x_] = PDF [ChiSquareDistribut ion [n] , xJ ; 
Integrate [Exp [t*x] *f [x] . {x , a .  Inf inity}] 

Out[3] = 
2n/2If [Re[nj > O&&Re [tJ < � ,  (�  - t) "/2 Gamma[�J , Jooo e- j +txx-l +i dX] 

Gamma[�l 
(2) As the test condition is satisfied, the mgf of x� is the middle term. Now take the 

2 
limit of the mgf of �n . 
In [4] : M [t_] = ( 1  - 2*t) � (-n/2 ) : 
Limit [Exp [-n*t!Sqrt [2*n] ] *M [t/Sqrt [2*n] ] .  n -> Infinity] 

,2 
Out[5] = e'2 I ! 
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Discrete Distributions 

BernDulli(p) 

pmj P(X = x lp) = pZ( 1 - p) l-z; X 0, 1 ; 0 � P � 1 

mean and 
variance EX = p, Var X p(l - p) 

mgj Mx(t) = ( 1  - p) + pet 

Binomial( n, p) 

pmj P(X = xln,p) = (:)pz(1 - p)n-z; X 0 , 1, 2, . . .  , ni 0 � P � 1 

mean and EX ( ) variance np, Var X = np 1 - P 

mgj Mx (t) = [pet + ( 1  - p)]n 

notes Related to Binomial Theorem (Theorem 3.2.2) .  The multinomial distri
bution (Definition 4.6.2) is a multivariate version of the binomial distri
bution. 

Discrete unifDrm 

pmj P(X = x lN) = -k; x = 1 , 2, . . .  , N; N 1 , 2, . . .  

mean and 
variance EX = Nt , Var X = (N+li�N-l) 

1 ",N it mgj Mx {t) N L...i=l e 

Geometric(p ) 

pmj P(X = xlp) = p{l - p)Z-l ; x = I, 2, . . .  ; O � p � l 

mean and EX = 1 ,  Var X = !;; variance P P 
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mg! 

notes 

f�l�L.�.. ��i: l RIBUTIONS 

�4 ' • 
Mx(t) 1 (l':Pi<! t < - �� p) 
Y X - I  is neg�ij��-i'�ai( I , P) .  The distribution i s  memoryless: 
P(X > siX > t) = �- t). 

Hypergeometric 

pm! P(X = xlN, M, K) = ( t-!)@)-=-'::) ; x = 0, 1 , 2, . . .  , K; 
M (N - K) :$. x :$.  M; N, M, K � 0 

mean and 
variance EX - KM 

- N '  v X - KM (N-M){N-K) ar - N N(N 1) 

notes If K « M and N, the range x 0, 1 , 2 ,  . . .  , K will be appropriate. 

Negative binomial(r, p) 

pm! P(X xlr, p) = (r+�-l)pr (I _ p)X ;  X = 0, 1 , . . . ; O :$.  p :$.  1 

mean and 
variance EX r(l-p) p , Var X 

mgf Mx (t) = C (l p)et r ,  t < - log(I - p) 

notes An alternate form of the pmf is given by P(Y = y lr, p) = (�::::�)pr(I  -
p)y-r, y = r, r + 1 ,  . . . .  The random variable Y = X + r. The negative 
binomial can be derived as a gamma mixture of Poissons. (See Exer
cise 4.34.) 

Poisson()..) 

pm! P(X = xl)..) = e-;/,% ; x = 0, 1 ,  . . .  i O :$. ).. < 00 

mean and 
variance 

mg! 

EX ).. , Var X = ).. 

Mx (t) eA(e'- lJ 
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Continuous Distributions 

Beta(a, fJ) 

pdf f (x la, fJ) = B(� . .B) xO:-l (1 - x)/3- 1 , 0 5  x 5 1, a >  0, fJ > 0 

mean and 
variance EX = Ct�IJ ' 
myf Mx(t) = 1 + Z=�l (I1�:� Ct��:r) � 
notes The constant in the beta pdf can be defined in terms of gamma functions, 

B(a, fJ) = r�(2��). Equation (3.2. 18) gives a general expression for the 
moments. 

Cauchy(O, (7) 

pdf f(xle, (7) -00 < x < 00; -00 < e < 00, a > 0 

mean and do not exist variance 
myf does not exist 
notes Special case of Student's t, when degrees of freedom = 1. Also, if X a.nd 

Y a.re independent nCO, 1 ) ,  XjY is Cauchy. 

Chi squared(p) 

pdf 

mean and 
variance 

f(xlp) = 1 x(p/2)-l e-x/2 . r(p/2)2P/2 , 

EX = p, Var X = 2p 

myf Mx (t) = ( 1�2tr/2 , t < �  

o 5 x < 00; p = 1 , 2, . . .  

notes Special case of the gamma distribution. 

Double exponential(j.L, a)  

pdf f(xlj.L, a) = 2� e- lx-.. I/"' , -00 < x < 00, -00 < j.L < 00, (7 > 0 

mean and EX Var X = 2(72 variance = j.L, 

myf Mx (t) l-r:t)2 , I t  I < � 
notes Also known as the Laplace distribution. 
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Exponential({3) 

pdf f(x l{3) = �e-xf{j , 0 :::; x < 00, {3 > 0 

mean and 
variance 

myf 

EX (3, Var X 

Mx{t)  = l!{jt ' t < 1 (j 
notes Special case of the gamma distribution. Has the' memoryless property. 

Has many special cases: y X1h is Weibull, Y y'2X/{3 is Rayleigh, 

F 

pdf 

mean and 
variance 

moments 

Y = 0: "y loge X /,8) is Gumbel. 

0 :::; x < 00; 

(myf does not exist) n <  � 
notes Related to chi squared CFvl ,v2 = (0-) / (� ) , where the X2S are in

dependent) and t (FI,v = t�) .  

Gamma(o:, ,8) 

pdf 

mean and 
variance 

myf 

f(xlo:, ,8) 

EX 0:,8, Var X 

MxCt) = C!,8tf ,  t < 1 {j 

0 :::; x < 00, 0:, ,8  > 0 

notes Some special cases are exponential (0 = 1) and chi squared (0 = p/2, 
(3 = 2) . If 0: � ,  Y y'X/,8 is Maxwell. Y = l/X has the inverted 
yamma distribution. Can also be related to the Poisson (Example 3.2 .1) .  

LogisticCf-t, ,8) 

pdf 

mean and 
variance 

f (x lf-t, ,8) 

EX Var X 
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mgf Mx(t) = el'tr(l - ,8t)r(l + ,8t) , It I < � 
notes The cdC is given by F(xlJ.L, (3) = l+e-(� ,,)1.8 ' 

pdf 

mean and 
variance 

moments 
(mgf does not exist) 

0 :5  x < 00, -00 < j.t < 00, 

notes Example 2.3.5 gives another distribution with the same moments. 

pdf - 00  < x < 00, 

mean and 
variance 

mgf 

EX = j.t, Var X = 0'2 

notes Sometimes called the Gaussian distribution. 

Pareto( a, (8) 
pdf f(xla, (3) = !I§a:r, a < x < 00, a > 0, (3 > 0 
mean and EX variance 

mgJ does not exist 

t 

(3 > 1 ,  (3 ) 2  

-00 < j.t < 00, 

pdf -00 < x < 00, 1/ = 1 ,  . . .  

mean and 
variance EX 0, 1/ > 1 ,  Var X = v�2 ' 1/ > 2 

moments 
(mgf does not exist) EXn 

Exn 
notes Related to F (Fl,v = t�). 

625 
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UniJorm(a, b) 
pdf f(xJa , b) b�a ' a :5  x :5 b 

mean and 
variance EX - .tl!! - 2 ' VarX 

,/ M ( ) _ eb! _ eBt mgJ x t - (b-a)t 

(b-a)2 

12 

notes If a 0 and b = 1, this is a special case of the beta (0: (3 = 1 ) .  

Weibull( 'Y, (3) 

pdf f(xi'Y, (3) = �x-Y-le-X'" 1f3, 0 :5  x < 00, 'Y > 0, {3 > 0 

mean and 
variance EX = {31hr ( 1 + � ) , 

moments Exn = {3nhr (1 + � ) 
Var X = {32h [r (1 + �) 

notes The mgf exists only for 'Y � 1. Its form is not very useful. A special case 
is exponential ('Y = 1 ) .  
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TABLE OF COMMON DISTRIBUTIONS 

Neptive 
binomial 

(n. p) 
I � "'n( l -p) mi n_ co  � =np po�n ___ ��� _ __ _ 

� = al  l:Xj " �- co 

Hypergeometric 
(M. N, IO 

621 

Relationships among common distributions. Solid lines represent transformations and 
special cases, dashed lines represent limits. Adapted from Loomis (1986). 
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Posterior expected loss (see also Loss 

function), 352 
Power means, 204, 357 
Pratt's Theorem, 447 
Prediction interval, 558 
Prior distribution, 324 

conjugate 
gamma, 359 
Poisson, 359 

Probability density function (pdf) , 35 
bivariate transformation, 158 
conditional, 150, 178 
construction, 36 
even, 79 
joint, 144, 1 77 
marginal, 145, 178 
monotone transformation, 51 
multivariate transformation, 185 
piecewise monotone 

transformation, 53 
properties, 36 
sample, 208 
symmetric, 79 
truncated, 44 
unimodal, 79 

Probability function, 7 
finite set, 7 
induced, 28 
properties, 9 

Probability integral transformation, 54, 247 
confidence interval, 431 
discrete, 77, 434 

Probability mass function (pmf), 34 
conditional, 148, 178 
construction, 36 
joint, 177 

bivariate, 140 
marginal, 143 ,  178 
properties, 36 
sample, 208 

Probability of false coverage, 445 
Problem of the Nile, 365 

Quartile, 227 

Random number generation, 55, 263 
Random sample generating, 245 

Random variable, 27 
absolutely continuous, 37 
censored, 195 
continuous, 33 
discrete, 33 
identically distributed, 33 

moments, 65 
Random vector, 139 

continuous, 144 
discrete, 140 

Randomized complete block design (RCB) 
relation to EIV, 586 

Randomly stopped sum, 196 
Rao-Blackwell Theorem, 342 
Regression, 521 ,  539 

ANOVA table, 555 
bivariate normal, 549 
BLUE of intercept, 548 
BLUE of slope, 547 
coefficient of determination, 556 
conditional expectation, 193, 539 
conditional normal, 549 
confidence band, 562 
confidence interval, 557 
data fitting, 541, 544 
dependent variable, 539 
design, 547 
extrapolation, 563 
independent variable, 539 
inference, 541 
least absolute deviation, 597, 607 
linear, 540, 548 
linear in x, 539 
maximum probability estimator, 571 
MLE, 551 

biased, 551 
sampling distribution, 553 

population, 521, 539 
prediction interval, 558, 559 
predictor variable, 539 
r2, 556 
residuals, 551 
response variable, 539 
sum of squares, 541, 556 
t statistic, 554 
t test, 555, 557 
toward the mean, 540 
zero intercept, 358 

Regularity conditions, 5 16 
Resampling, 478, 479 



Risk function, 349 
Robust 

Tukey model, 509 

Sample, 207 
exponential family, 217 
finite population, 209 
infinite population, 209 
mean, 212 

Cauchy, 216 
expected value, 214 
location-scale, 217 
mgf, 215 
normal, 215, 218 
pdf, 256 
recursion relation, 258 
trimmed, 508 

median, 226 
midrange, 231 
pdf, pmf, 208 
range, 226 
simple random, 210 
standard deviation, 212 
variance, 212 

bias, 267 
expected value, 214 
identity, 257 
normal, 218 
recursion relation, 258 

with replacement, 209 
without replacement, 209 

Sample range 
uniform, 231 

Sample size 
hypothesis test-normal, 385 

Sample space, 1 
Sampling 

with replacement, 478 
Sampling distribution, 211  
Satterthwaite approximation, 314, 

410 
Scale family 

pivotal quantity, 427 
Scheffe's method, 535 

ANOVA, 565 
Score statistic, 494 
Set estimator 

relation to confidence interval, 
419 

Set operations 
associativity, 3 
commutativity, 3 
complementation, 3 
DeMorgan's Laws, 3 
Distributive Law, 3 
identities, 37 
intersection, 2 

countable, 4 
uncountable, 4 

union, 2 
countable, 4 
uncountable, 4 

Sigma algebra, 6 
countable, 6 
generated, 34 
properties, 39 
trivial, 6 
uncountable, 6 

Skewness, 79 
Slutsky's Theorem, 239, 492 
Standard deviation, 59 
Statistic, 2 1 1  
Stein estimation 

ANOVA, 574 
Stein's Lemma, 124 
Stirling's formula, 40, 261 
Stochastic order 

decreasing, 134 
greater, 44, 77 
increasing, 134, 432 

chi squared, 258 
F, 258 

location-scale family, 407 
MLR, 406 
power, 413 

Strong Law of Large Numbers, 268 
Structural inference, 427 
Sufficiency Principle, 272 

formal, 293 
interpretations, 295 

Sufficient statistic, 272 
ANOVA, 564 
Bernoulli, 274 
discrete uniform, 277 
exponential family, 279 
Factorization Theorem, 276 
minimal, 280, 303 

characterization, 281 
necessary, 308 
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Sufficient statistic (continued) 
normal, 281 
uniform, 282, 301 

normal, 274, 277, 279, 280 
Sum of squares 

residual, 543 
Superefficiency, 515 
Support, 50 

t test ( see also Likelihood ratio test 
(LRT) t test), 379 
ANOVA, 528 
approximate, 409 
LRT, 379 

paired, 408 
two-sided, 381 

paired, 408 
regression, 557 
two-sample, 409 
two-sided, 409 
UMP 

unbiased, 408 
union-intersection, 387 

Taylor series, 240, 485 
Taylor'S Theorem, 241 

use in CLT, 237 
Test function, 389 
Test statistic, 374 
Threshold parameter, 1 18 
Total least squares, 581 
Transformation 

Box-Cox, 357 
Box-Muller, 249 
Fisher's Z, 507 
monotone, 50 
probability integral, 247 
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Trimmed mean, 508 
Tuning parameter, 484 

Unbiased estimator, 214, 330 
0 , 344 
best, 334 

binomial, 347 
characterization, 344 
completeness, 347 
Poisson, 338 
sufficiency, 343 
uniform, 346 
unique, 343 

linear, 363 
location, 306 
normal, 331 

standard deviation, 364 
Poisson, 335 
relation to Bayes estimator, 368 
uniform, 339, 345 
variance bound, 340 

Union-intersection test 
ANOVA, 526 

Variance, 59 
asymptotic, 470 
conditional, 151 ,  167 
limiting, 470, 471 
properties, 60 
quadratic function of mean, 96 
sum, 171 , 199, 213 
Taylor a.pproxima.tion, 242 

Venn diagram, 3 

Warden problem, 21 ,  42 
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