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Overview

• Random Sampling
• Monte Carlo Principle
• Monte Carlo Markov Chain
• Metropolis Hasting
• Gibbs Sampling
• Monte Carlo & Nonparametric Bayesian 

models
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Random Sampling

• W - “very large” sample set.
• p - probability distribution over W.

W

Goal: Sample points xÎW at random from 
distribution p.

x
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The Probability Distribution

Typically,

Z
)x(w)x( =p

w:W®R+ is an easily-
computed weight function

Z=Σx w(x) is an unknown 
normalization factor
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Example: Permutation of N Distinct Object

• W - all N! permutations of N distinct objects.
• p - uniform distribution ["x w(x)=1].

W

Goal: pick a permutation uniformly at random. 

…
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Why Sampling? 

• The use of samples allows us to conduct studies 
with more manageable data and in a timely 
manner. 

• Randomly drawn samples do not have much bias 
if they are large enough, but achieving such a 
sample may be expensive and time-consuming.

• We often need to compute statistics of “typical” 
configurations: estimating mean of a stochastic 
process or mean energy, …

• Estimating the statistics of a posterior density 
function in Bayesian inference.
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Inverse Transform Sampling

• It is easy to sample from a discrete 1D distribution, using the 
cumulative distribution function (CDF).
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Inverse Transform Sampling

• It is easy to sample from a discrete 1D distribution, using the 
cumulative distribution function (CDF).
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Inverse Transform Sampling
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Estimating the Mean of f(X)

• Want to compute E([f(X)] for function f(×).
• Standard method for approximating E([f(X)]  is to 

generate many independent sample values of X
and compute sample mean of f(X).

• Only useful in “trivial” cases where X can be 
generated directly.

• Many practical problems have non-trivial 
distribution for X
– E.g., state in nonlinear/non-Gaussian state-

space model, Bayesian inference, …
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The Monte Carlo principle

• p(x): a target density defined over a high-dimensional space 
(e.g. the space of all possible configurations of a system under 
study)

• The idea of Monte Carlo techniques is to draw a set of (iid) 
samples {x(i)} for i = 1, … , N, from p(x) in order to 
approximate p(x) with the empirical distribution:

• Using these samples we can approximate integrals I(f) with 
tractable sums that converge (as the number of samples grows) 
to I(f):
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Importance sampling
• Not a method for generating samples. It is a method for 

estimating expected value of functions f(xi).
• Target density p(x) is known up to a constant
• Use a Proposal density that includes the support of p(x)
• An empirical estimate of Eq(f(x)), the expected value of f(x) 

under distribution q(x), then can be find.
• However, we want EP(f(x)), which is the expected value of f(x) 

under distribution P(x).
• When we generate from q(x), values of x where q(x) is greater 

than P*(x) are overrepresented, and values where q(x) is less 
than P*(x) are underrepresented.
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Importance sampling at a glance
• Target density p(x) is known up to a constant
• Task: compute
Idea:
• Introduce an arbitrary proposal density that includes the support 

of p(x). Then:

– Sample from q instead of p
– Weight the samples according to their ‘importance’

• It also implies that p(x) is approximated by:

Efficiency depends on a ‘good’ choice of q(x).
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Importance sampling at a glance

• Computational efficiency is best if the proposal 
distribution looks a lot like the desired distribution 
(area between curves is small). 

• These methods can fail badly when the proposal 
distribution has 0 density in a region where the 
desired distribution has non-negligeable density. 

• For this reason, it is said that the proposal 
distribution should have heavy tails.
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Rejection Sampling
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• Need a proposal density Q(x) [e.g. uniform or Gaussian], and 
a constant c such that c(Qx) is an upper bound for P*(x).

Example with Q(x) uniform:



Rejection Sampling
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• generally: 
• 1) generate sample xi from a proposal density Q(x) 
• 2) generate sample u from uniform [0,cQ(xi)] 
• 3) if u <= P*(xi) accept xi ; else reject



Sequential Monte Carlo
• Sequential Importance Sampling (SIS) and the 

closely related algorithm Sampling Importance 
Sampling (SIR) are known by various names in 
the literature:
– bootstrap filtering
– particle filtering
– Condensation algorithm
– survival of the fittest 

• General idea: Importance sampling on time 
series data, with samples and weights updated 
as each new data term is observed. Well-suited 
for simulating recursive Bayes.
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Sequential Monte Carlo

• Sequential: 
– Real time processing
– Dealing with non-stationarity
– Not having to store the data

• Goal: estimate the distribution of ‘hidden’ 
trajectories:
– We observe yt at each time t:
– We have a model:

• Initial distribution:
• Dynamic model:
• Measurement model:

where),|( :1:0 tt yxp
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• Can define a proposal distribution:

• Then the importance weights are:

• Simplifying the choice for proposal distribution:
Then:

‘fitness’

Sequential Monte Carlo

19/44



Sequential Monte Carlo
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‘proposed’

‘weighted’

‘re-sampled’

‘proposed’
---------

‘weighted’

!

!

Sequential Monte Carlo
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Three uses of Monte Carlo methods

1. For solving problems of probabilistic inference 
involved in developing computational models

2. As a source of hypotheses about how the mind 
might solve problems of probabilistic inference 

3. As a way to explore people’s subjective 
probability distributions
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Applications on Monte Carlo Sampling

• Computer vision
• Speech & audio enhancement
• Web statistics estimation
• Regression & classification
• Bayesian networks
• Genetics & molecular biology
• Robotics, etc.
• …
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Markov chain Monte Carlo

• Basic idea: construct a Markov chain that will 
converge to the target distribution, and draw 
samples from that chain.

• Just uses something proportional to the target 
distribution (good for Bayesian inference!).

• Can work in state spaces of arbitrary (including 
unbounded) size (good for nonparametric Bayes).
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Variables x(t+1) independent of all previous 
variables given immediate predecessor x(t)

Markov chains

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))
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An example: card shuffling
• Each state x(t) is a permutation of a deck of 

cards (there are 52! permutations)
• Transition matrix T indicates how likely one 

permutation will become another
• The transition probabilities are determined by 

the shuffling procedure
– riffle shuffle
– overhand
– one card
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Convergence of Markov chains
• Why do we shuffle cards?
• Convergence to a uniform distribution takes 

only 7 riffle shuffles…
• Other Markov chains will also converge to a 

stationary distribution, if certain simple 
conditions are satisfied (called “ergodicity”)
– e.g. every state can be reached in some number of 

steps from every other state
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Modern Monte Carlo methods

• Sampling schemes for distributions with large state 
spaces known up to a multiplicative constant

• Two approaches:
– Importance sampling (and particle filters)
– Markov chain Monte Carlo
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Markov chain Monte Carlo

• States of chain are variables of interest
• Transition matrix chosen to give target 

distribution as stationary distribution

x x x x x x x x

Transition matrix
T = P(x(t+1)|x(t))
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The Markov Chain Monte Carlo (MCMC)

• Design a Markov Chain on finite state space:

such that when simulating a trajectory of 
states from it, it will explore the state space 
spending more time in the most important 
regions (i.e. where p(x) is large)
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Stationary distribution of a MC
• Suppose you browse 

this for infinitely long 
time, no matter where 
you started off:

• What is the probability 
to be at page xi.
=>PageRank (Google)
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Google vs. MCMC

• Google: given T, finds p(x)
• MCMC: given p(x), finds T

– But it also needs a ‘proposal (transition) 
probability distribution’ to be specified.

• Q: Do all MCs have a stationary distribution?
• A: No.

)()( xpxp =T
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Conditions for existence of a unique 
stationary distribution

• Irreducibility
– The transition graph is connected (any state can be 

reached)

• Aperiodicity
– State trajectories drawn from the transition don’t get 

trapped into cycles
• MCMC samplers are irreducible and aperiodic 

MCs that converge to the target distribution
• These 2 conditions are not easy to impose directly
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Reversibility

• Reversibility (also called ‘detailed balance’) 
is a sufficient (but not necessary) condition 
for p(x) to be the stationary distribution.

• It is easier to work with this condition.
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MCMC algorithms

• Metropolis-Hastings algorithm

• Metropolis algorithm
– Mixtures and blocks

• Gibbs sampling
• other
• Sequential Monte Carlo & Particle Filters
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Metropolis-Hastings algorithm

• Transitions have two parts:
– proposal distribution: q(x(t+1)|x(t))

– acceptance: take proposals with probability

A(x(t),x(t+1)) = min( 1,                            )
P(x(t+1)) q(x(t)|x(t+1))
P(x(t)) q(x(t+1)|x(t))
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 0.5

p(x)
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Metropolis-Hastings algorithm

p(x)
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Metropolis-Hastings algorithm

A(x(t), x(t+1)) = 1

p(x)

42/44



Examples of M-H simulations with q a Gaussian
with variance s
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The Metropolis-Hastings and the Metropolis 
algorithm as a special case

Obs. The target distribution p(x) in only needed up to 
normalisation. 44/44



Gibbs sampling

• Component-wise proposal q:

Where the notation means:

• In this case, the acceptance probability is                          
=1 

Gibbs sampling is a computationally convenient
Bayesian inference algorithm that is a special
case of the Metropolis–Hastings algorithm.
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Gibbs Sampling

Particular choice of proposal distribution

For variables x = x1, x2, …, xn

Draw xi
(t+1) from P(xi|x-i)

x-i = x1
(t+1), x2

(t+1),…, xi-1
(t+1)

, xi+1
(t)

, …, xn
(t)

(this is called the full conditional distribution)
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Gibbs sampling

(MacKay, 2002)

X1 X2

X1 X2



Gibbs sampling algorithm
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The promise of particle filters
• People need to be able to update probability 

distributions over large hypothesis spaces as more 
data become available

• Particle filters provide a way to do this with 
limited computing resources: 
– maintain a fixed finite number of samples

• Not just for dynamic models:
– can work with a fixed set of hypotheses, although this 

requires some further tricks for maintaining diversity
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The magic of MCMC Methods
• Since we only ever need to evaluate the relative 

probabilities of two states, we can have huge 
state spaces (much of which we rarely reach)

• In fact, our state spaces can be infinite
– common with nonparametric Bayesian models

• But… the guarantees it provides are asymptotic
– making algorithms that converge in practical 

amounts of time is a significant challenge
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The magic of MCMC Methods

51/44



The magic of MCMC Methods
• What are the implications of the lack of 

independence in MCMC methods?
• The accuracy of a standard MC simulation 

depends on the sample size: the larger the 
sample size is, the better the approximation.

• In the case of an MCMC simulation, we need to 
use the concept of effective sample size: 
dependent observations are equivalent to a 
smaller number of independent observations.
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The magic of MCMC Methods
• What are the implications of the lack of independence 

in MCMC methods?
• The higher the correlation between adjacent 

observations, the smaller the effective sample size, and 
the less accurate the MCMC approximation is.

• For example, 1000 dependent observations could be 
equivalent to 100 independent observations. In this 
case, we say that the effective sample size is equal to 
100.

• This is why in an MCMC simulation, most of the 
efforts are devoted to reducing the correlation as much 
as possible. 53/44
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• Associated demos & further papers: 
http://www.robots.ox.ac.uk/~misard/condensation.html.

• Nando de Freitas’ MCMC papers & sw
http://www.cs.ubc.ca/~nando/software.html.
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Next Weeks:

I hope you enjoyed this course!

Have a good Final Exam!
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