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Overview

 Random Sampling

* Monte Carlo Principle

* Monte Carlo Markov Chain
* Metropolis Hasting

* (Gibbs Sampling

* Monte Carlo & Nonparametric Bayesian
models
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Random Sampling

« ) -‘“very large” sample set.
« 7 - probability distribution over €.

Goal: Sample points x(2 at random from
distribution 7.
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The Probability Distribution

Typically, w:Q—R" is an easily-
computed weight function

w(x ) —
Z

(x)=

Z=2._ w(x) is an unknown /

normalization factor
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Example: Permutation of N Distinct Object

@)

« ) -all N! permutations of N distinct objects.

1 - uniform distribution [Vx w(x)=1].

Goal: pick a permutation uniformly at random.
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Why Sampling?

The use of samples allows us to conduct studies
with more manageable data and 1n a timely
manner.

Randomly drawn samples do not have much bias
if they are large enough, but achieving such a
sample may be expensive and time-consuming.

We often need to compute statistics of “typical”
configurations: estimating mean of a stochastic
process or mean energy, ...

Estimating the statistics of a posterior density
function 1n Bayesian inference.
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Inverse Transform Sampling

« Itis easy to sample from a discrete 1D distribution, using the
cumulative distribution function (CDF).

2

\

/II

0

1 k N

cumulative distribution function
F(x)=P(X <x)
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Inverse Transform Sampling

« Itis easy to sample from a discrete 1D distribution, using the
cumulative distribution function (CDF).

1) Generate uniform u
in the range [0,1]

2) Visualize a horizontal
line intersecting bars

3) If index of intersected
bar is j, output new
sample Xx;
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Inverse Transform Sampling

Why 1t works:

cumulative distribution function
F(x)=P(X <x)
inverse cumulative distribution function

Claim: 1t U 1s a uniform random variable on (0,1) then X=F — (U') has distribution function F.
Proof:
P(F~1(U) <x)
= P(min{x: F(x)=U} <x) (defof F~ 1)
= P(U<F(x)) (applied F to both sides)
= F{x) (def of distribution function of U)
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Estimating the Mean of 1(X)

Want to compute E([f(X)] for function f(+).

Standard method for approximating E([/(X)] 1is to
generate many independent sample values of X
and compute sample mean of AX).

Only useful 1n “trivial” cases where X can be
generated directly.

Many practical problems have non-trivial
distribution for X

— E.g., state in nonlinear/non-Gaussian state-
space model, Bayesian inference, ...
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The Monte Carlo principle

p(x): a target density defined over a high-dimensional space
(e.g. the space of all possible configurations of a system under
study)

The idea of Monte Carlo techniques is to draw a set of (11d)
samples {X } fori=1, ..., N, from p(x) in order to
approximate p(x) with the empirical distribution:

N
P~ =3 6(x = x)
N &

Using these samples we can approximate integrals I(f) with
tractable sums that converge (as the number of samples grows)

to I(f):
1) =] F@p@de = 3 f ) ()
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Importance sampling

Not a method for generating samples. It is a method for
estimating expected value of functions f(x).

Target density p(x) 1s known up to a constant
Use a Proposal density that includes the support of p(x)

An empirical estimate of E (f(x)), the expected value of f(x)
under distribution q(x), then can be find.

However, we want Ep(f(x)), which is the expected value of f(x)
under distribution P(x).

When we generate from q(x), values of x where q(x) is greater
than P*(x) are overrepresented, and values where q(x) 1s less
than P*(x) are underreoresented.
P*(x)
/
q(x)
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Importance sampling at a glance

« Target density p(x) is known up to a constant
» Task: compute /(f) =I f(x)p(x)dx
Idea:

« Introduce an arbitrary proposal density that includes the support
of p(x). Then:

1)=]70) p)/glx) gl Y /(")

w(x) 'importance weight'

— Sample from q instead of p
— Weight the samples according to their ‘importance’

It also implies that p(x) 1s approximated by:
p(x)= ﬁ‘, w(x")5(x = x")

Efficiency depends on a ‘good’ choice of q(x).
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Importance sampling at a glance

« Computational efficiency is best if the proposal
distribution looks a lot like the desired distribution
(area between curves 1s small).

* These methods can fail badly when the proposal
distribution has 0 density in a region where the
desired distribution has non-negligeable density.

* For this reason, it 1s said that the proposal
distribution should have heavy tails.
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Rejection Sampling

* Need a proposal density Q(x) [e.g. uniform or Gaussian], and
a constant ¢ such that ¢c(Qx) 1s an upper bound for P*(x).
Example with Q(x) uniform:

generate uniform random samples
upper bound in upper bound volume

cQ(x)

P*(x)

the marginal density of the
x coordinates of the points
is then proportional to P*(x)

accept samples that fa .
below the P*(x) curve Note: this very related to

Monte Carlo integration.
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Rejection Sampling

generally:

1) generate sample x1 from a proposal density Q(x)
2) generate sample u from uniform [0,cQ(X;)]

3) if u <= P*(x,) accept x; ; else reject

/c O 4 reject
cQO(x)
/ P*(x)
O(x)
AN

U accept
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Sequential Monte Carlo

* Sequential Importance Sampling (SIS) and the
closely related algorithm Sampling Importance
Sampling (SIR) are known by various names in
the literature:

— bootstrap filtering
— particle filtering
— Condensation algorithm

— survival of the fittest

* General idea: Importance sampling on time
series data, with samples and weights updated
as each new data term 1s observed. Well-suited

for simulating recursive Bayes.
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Sequential Monte Carlo

* Sequential:
— Real time processing
— Dealing with non-stationarity

— Not having to store the data

* Goal: estimate the distribution of ‘hidden’
trajectories:
— We observe y, at each time ¢. P(X,, | ,), Wwhere
— We have a model:
* Initial distribution: p (xo)
 Dynamic model:  p (z¢|zo:t—1,y1:4-1) fort >1
e Measurement model:  p (y¢|zo:t,y1:4—1) fort > 1
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Sequential Monte Carlo

e Can define a proposal distribution:

Q(§0:t|y1:t) = p(xO:t—l|y1:t—1)Q(§t|xO:t—la yl:t)
* Then the importance weights are:

p(fO:t|y1:t) . p($0:t—1|y1:t) p(5t|ﬂf0:t—1,y1:t)

Wy = e — —
Q(l’o:t|y1:t) p($0:t—1|y1:t—1)C](fl?t|330:t—1>y1:t)

- P(yt|§t)p(5t\$0:t—1,yl:t—l)
qt (T¢|To:t—1, Y1:¢)

« Simplifying the choice for proposal distribution:
Then:  q(Z4|2o.0—1,v1:¢) = P (T¢|20:0—1, Y1:0-1)
wy X p(y|Z,) “fitness’
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Sequential Monte Carlo

Sequential importance sampling step

— For 2 =1,..., N, sample from the transition priors

and set ( : &
Lot = (Mtz f”ozt 1)

— For 2 =1,..., N, evaluate and normalize the importance weights

w$? (y |a:,(5)) ( g)la"Ot 15 Y1:t— 1).

(%)
Qt( |370t 1:y1t)

Selection step

— Multiply/Discard particles {:1:(’) _, with high/low importance

weights wg ) to obtain IV particles {
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Sequential Monte Carlo :
i=1,...,N=10 particles *

‘proposed’

© o o0 o © o000 O o {ii])l,Nl}

(1) () :
Xaweal o ‘weighted’

xN'} ‘re-sampled’

o _ Ot—@ - -~~~ ~

e
N AL

x\"N"} ‘proposed’

AN e e [4 . °
ee @O0 o w weighted
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Three uses of Monte Carlo methods

. For solving problems of probabilistic inference
involved 1n developing computational models

. As a source of hypotheses about how the mind
might solve problems of probabilistic inference

. As a way to explore people’s subjective
probability distributions
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Applications on Monte Carlo Sampling

Computer vision

Speech & audio enhancement
Web statistics estimation
Regression & classification
Bayesian networks

Genetics & molecular biology
Robotics, etc.
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Markov chain Monte Carlo

* Basic idea: construct a Markov chain that will
converge to the target distribution, and draw
samples from that chain.

 Just uses something proportional to the target
distribution (good for Bayesian inference!).

« Can work 1n state spaces of arbitrary (including
unbounded) size (good for nonparametric Bayes).
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Markov chains

—(O— OO
1

Transition matrix
T = P(x*D|x®)

Variables x*) independent of all previous
variables given immediate predecessor xt
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An example: card shuffling

 Each state x) is a permutation of a deck of
cards (there are 52! permutations)

» Transition matrix T indicates how likely one
permutation will become another

* The transition probabilities are determined by
the shuffling procedure
— riffle shuffle
— overhand

— one card
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Convergence of Markov chains
 Why do we shuffle cards?

* Convergence to a uniform distribution takes
only 7 riffle shuffles...

* Other Markov chains will also converge to a
stationary distribution, 1f certain simple
conditions are satisfied (called “ergodicity”)

— e.g. every state can be reached in some number of
steps from every other state
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Modern Monte Carlo methods

* Sampling schemes for distributions with large state
spaces known up to a multiplicative constant

* Two approaches:

— Importance sampling (and particle filters)
— Markov chain Monte Carlo
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Markov chain Monte Carlo

—(O— OO
1

Transition matrix
T = P(xD]x0)

e States of chain are variables of interest

 Transition matrix chosen to give target
distribution as stationary distribution
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The Markov Chain Monte Carlo (MCMC)

* Design a Markov Chain on finite state space:

state space: x"” € {x,,x,,...,x }

Markov property : p(x(i) |x(i_1) ..... xN=T (x(i) |x(i_1))

such that when simulating a trajectory of
states from 1t, 1t will explore the state space
spending more time 1n the most important
regions (1.e. where p(x) 1s large)
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Stationary distribution of a MC

)
2208

—
|

Q_-_ B

....

* Suppose you browse
this for infinitely long
time, no matter where

you started off:
* What 1s the probability
to be at page x..
=>PageRank (Google)

p(x? XV =T [ x"")=T

(u(xNDT)..T = u(x)T" = p(x), s.t. p(x)T = p(x)
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Google vs. MCMC

p(x)T = p(x)
Google: given T, finds p(x)
MCMC: given p(x), finds T

— But 1t also needs a ‘proposal (transition)
probability distribution’ to be specified.

Q: Do all MCs have a stationary distribution?

A: No.
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Conditions for existence of a unique
stationary distribution

Irreducibility

— The transition graph is connected (any state can be
reached)

Aperiodicity

— State trajectories drawn from the transition don’t get
trapped 1nto cycles

MCMC samplers are irreducible and aperiodic
MCs that converge to the target distribution

These 2 conditions are not easy to impose directly
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Reversibility

« Reversibility (also called ‘detailed balance’)
1s a sufficient (but not necessary) condition
for p(x) to be the stationary distribution.

p(zNT (20 V|2®) = p(2C"NT () |20-D).
Summing both sides over 2"~ gives us

p(z) = Z p(z )T (2?20~ 1).
e

e It 1s easier to work with this condition.
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MCMC algorithms

Metropolis-Hastings algorithm
Metropolis algorithm

— Mixtures and blocks

G1bbs sampling

other

Sequential Monte Carlo & Particle Filters
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Metropolis-Hastings algorithm

 Transitions have two parts:
— proposal distribution: g(x(“*D|x®)
— acceptance: take proposals with probability

. P(X(t+1)) q(x(t)|x(t+l))
AOXD)=min( 1,  pxo) oxeIx0) )
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Metropolis-Hastings algorithm

px)
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Metropolis-Hastings algorithm

px)
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Metropolis-Hastings algorithm

px)
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Metropolis-Hastings algorithm

px)

NN

A(xY, x#D)y=0.5

40/44



Metropolis-Hastings algorithm

px)
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Metropolis-Hastings algorithm

px)

ﬁg\

A(®, XDy = |
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Examples of M-H simulations with q a Gaussian
with variance ¢

c=1 o'=100

|
| | Target distribution
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The Metropolis-Hastings and the Metropolis
algorithm as a special case

1. Initialise z(9).
2. Forti=0to N -1

= Sample u ~ u[O,l]'

— Sample z* ~ g(z*|z(¥).

. y * (2) i
— fu< A(z®,z*) = mln{17 plz(ﬁi)))qq(:x*|i;f)))}

.'B(i_'-l) — ;17*

else
1) — ()

The Metropolis algorithm assumes a symmetric random walk proposal
q(z*|2V) = g(z¥|z*) and, hence, the acceptance ratio simplifies to

; sk
A(:I;(z),q;*) = min{l, ;((;(z))) }

Obs. The target distribution p(x) in only needed up to

. 44/44
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G1bbs sampling
Gibbs sampling is a computationally convenient
Bayesian inference algorithm that 1s a special
case of the Metropolis—Hastings algorithm.
* Component-wise proposal q:

saa®) [ pEile®) et =2
10 Otll(,I‘WlS(
Where the notation means:
plaes e ) —eplaler i sl 1P %)

* In this case, the acceptance probability 1s
Az z*) =1
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Gibbs Sampling

Particular choice of proposal distribution

For variables x =x,, x,, ..., X,
Draw x,“*D from P(x |x_;)

— +1 +1 +1 A !
X, = x,0, x,00, x4 x, 0 x O

-1

(this 1s called the full conditional distribution)
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G1bbs sampling

(MacKay, 2002)



Gibbs sampling algorithm

1. Initialise zo,1:n-
2. Fori=0to N -1
(i+1)

(i+1)

p(:L' I‘EQ 7Ig)>

p($2|$£+ ) "B‘(‘)z)a

—  Sample z;

—  Sample z,

(i+1)

Sample z} (i+1) (i+1) |, (3)

~p(egley .0 w

i+1) (t+1) L1 2it1)

~ p(zy|T Lo IR 2o |

Sample !
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The promise of particle filters

* People need to be able to update probability

distributions over large hypothesis spaces as more
data become available

 Particle filters provide a way to do this with
limited computing resources:

— maintain a fixed finite number of samples
* Not just for dynamic models:

— can work with a fixed set of hypotheses, although this
requires some further tricks for maintaining diversity
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The magic of MCMC Methods

* Since we only ever need to evaluate the relative
probabilities of two states, we can have huge
state spaces (much of which we rarely reach)

* In fact, our state spaces can be infinite
— common with nonparametric Bayesian models

* But... the guarantees i1t provides are asymptotic

— making algorithms that converge 1n practical
amounts of time 1s a significant challenge
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The magic of MCMC Methods

Target Target
distribution distribution

v A 4

Standard Markov Chain

Monte Carlo Monte Carlo

s 0
v v

Independent draws Correlated draws
from target from target
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The magic of MCMC Methods

* What are the implications of the lack of
independence in MCMC methods?

* The accuracy of a standard MC simulation
depends on the sample size: the larger the
sample size 1s, the better the approximation.

* In the case of an MCMUC simulation, we need to
use the concept of effective sample size:
dependent observations are equivalent to a
smaller number of independent observations.
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The magic of MCMC Methods

What are the implications of the lack of independence
in MCMC methods?

The higher the correlation between adjacent
observations, the smaller the effective sample size, and
the less accurate the MCMC approximation i1s.

For example, 1000 dependent observations could be
equivalent to 100 independent observations. In this

case, we say that the effective sample size 1s equal to
100.

This 1s why 1n an MCMC simulation, most of the
efforts are devoted to reducing the correlation as much
as possible. 53144
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« Associated demos & further papers:

« Nando de Freitas’ MCMC papers & sw
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http://www.robots.ox.ac.uk/~misard/condensation.html
http://www.cs.ubc.ca/~nando/software.html

Next Weeks:
| hope you enjoyed this course!

Have a good Final Exam!
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