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Markov Property

« A discrete process has the Markov property if
given its value at time t, the value at time t+1 Is
Independent of values at times before t.

That Is:
Pr(Xes1 = Xeq1|Xe = X6, Xemqg = Xpoq, 0, X = X9)
= Pr(Xes1 = Xeq1|Xe = %)
Forall t, Xii1, Xp, Xp—1, Xe—g, o\, X1.



Stationary Property

« A Markov Process is called stationary If:
Pr (Xiy1 = u|lX; =v) =Pr(X; =ul|X, =v) forallt.

* The evolution of stationary processes don’t change over
time.

 For defining the complete joint distribution of a
stationary Markov Process it Is sufficient to define
Pr(X; =u|X, =v)and Pr(X, = v) forall uand v.

« We will mainly consider stationary Markov processes
here.



Markov Process Types

« There exist two types of Markov processes based
on domain of X, values:

e Discrete
e Continuous

 Discrete Markov processes are called “Markov
Chains” (MC).



Markov Process Types

Type of Parameter

State Space Discrete Continuous
Discrete-Time Continuous-Time

Discrete Markov Chain Markov Chalin

Continuous Discrete-Time Continuous-Time

Markov Process

Markov Process

* In this course we will focus on stationary MCs.



Example (Coin Tossing Game)

Consider a single player game in which at every
step a biased coin Is tossed and according to the
result, the score will be increased or decreased by
one point.

The game ends If either the score reaches 100
(winning) or -100 (losing).
Score of the player at each step t = 0 is a random

variable and the sequence of scores as the game
progresses forms a random process X, X1, ..., X;.



Example (Coin Tossing Game)

« ltiseasy to verify that X is a stationary Markov chain: At
the end of each step the score solely depends on the current
score s, and the result of tossing the coin (which is
Independent of time and previous tosses).

« Stating this mathematically (for s. € {—100,100}):
PT(Xt+1 — S|Xt — SC'Xt—l = St—1» "'rXO = O)

o 1 Independent of t
P S = Se and sg, ..., S¢_1
0 :otherwise

= Pr(X;41 = slX; = sc) = Pr(X; = s|X, = s¢)
« |If value of p was subject to change in time, the process would

not be stationary (in the formulation we would have p;
Instead of p).



Transition matrix

 According to the Markov property and stationary
property, at each time step the process moves
according to a fixed transition matrix:

P(Xey1 =JjlXe =10) = pyj
 Stochastic matrix: Rows sum up to 1.

Double stochastic matrix: Rows and columns sum
up to 1.



State Graph

« Itis convenient to visualize a stationary Markov Chain
with a transition diagram:

« A node represents a possible value of X, (state). At
each time t, we say the process is in state s If X;=s.

« Each edge represents the probability of going from one
state to another (we omit edges with zero weight).

* We should also specify the vector of initial
probabilities m = (14, ..., ™) Where T; = Pr(X, = i).

« Astationary discrete process could be described as a person
walking randomly on a graph (considering each step to
depend only on the state he/she is currently in). The
resulted path is called a “Random Walk”.
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Example

« The transition diagram of the coin tossing game is:

1 P p
loolobidoROS
1-p 1-p 1p 1-p
* \We modeled winning and losing by states which when we get

Into, we never get out.

* Note that if the process was not stationary we were not able to
visualize it in this way: For example consider the case that p is
changing in time.
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Example 1 (Modeling Weather)

« Example: Assume each day is sunny or rainy. If a day is
rainy, the next day is rainy with probability a (and sunny
with probability 1 — «). If the day Is sunny, the next day is
rainy with probability £ (and sunny with probability 1 —
B).

a 1—a«a

S ={rainy, sunny}, P = [ﬁ 1-8

a 1—«a

B
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Examplem 2 (Modeling Weather)

Suppose that whether or not it rains today depends on previous

weather conditions through the last two days.

Suppose that:

 1f it has rained for the past two days, then it will rain
tomorrow with probability 0.7

 If it rained today but not yesterday, then it will rain tomorrow
with probability 0.5

« If it rained yesterday but not today, then it will rain tomorrow
with probability 0.4

 1f it has not rained in the past two days, then it will rain
tomorrow with probability 0.2.
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Examplem 2 (Modeling Weather)

If we let the state at time n depend only on whether or
not It IS raining at time n, then the preceding model is
not a Markov chain.

We can transform this model into a Markov chain by
saying that the state at any time Is determined by the
weather conditions during both that day and the
previous day:

state O If it rained both today and yesterday,
state 1 If it rained today but not yesterday,

state 2 If it rained yesterday but not today,

state 3 If it did not rain either yesterday or today.
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Example 2 (Modeling Weather)

-. t+1 (p(R)) S So S S; S3
R 07 o[0.7 0 03 0
S1105 0 05 0

S S R 05
1 510 04 0 06

S, R S 04
S
S S S 02 3 L0 02 0 0.8




The Chapman-Kolmogorov Equation

Define the n-step transition pf?) as the probability that

starting from state I, the process stops at state j after n time
steps:

PP = P{um= i | Xop= i}

Then the Chapman-Kolomogorov equation is given by:

m+m) _ oo (M) (M)
ij Zk=0 pik pkj

Corollary 1: P can be calculated by: P = pn

* Corollary 2: If the process starts at time 0 with

distribution  on the states then after n steps the
distribution is mP™.

16



The Chapman-Kolmogorov Equation
P = P(Xpm = j1Xo = )

— Z P(Xp4m = J, X = k|Xy = 1)
k 1

ZP(Xn+m—J|X = k)P (X, = k|Xo = 0)

ZP LP = (PMP)(i)

14



The Chapman-Kolmogorov Equation

e Corollary 1: P can be calculated by: p™ = pn

p2) = p(1+1) — p)p(1) = p.p = p2
pn) = p(n-1+1) — p(n-1)p(1) = pn—1p — pn

PO = (07 0e)

0.61 0.39
(2) = p2 =
P P (0.52 0.48)

PO =P = (057 04a)

18



Example 2 (Modeling Weather)

 |f Monday and Tuesday

are raining, what is the

probability of raining on

Thursday?
0.7
0.5
P2 =P? =
0
| 0

0
0

0.4
0.2

0.3
0.5

0
0

0-
0
0.6

0.8.

So S1 S 0S3

0.7 0 03 0]

0.5 0 05 0

0O 04 0 0.6

0 0.2 0 0.8

049 0.12 0.21 0.18]
0.35 0.2 0.15
0.2 012 0.2

1 0.1 0.16 0.1

Since rain on Thursday Is equivalent to the process being in
either state O or state 1 on Thursday, the desired probability is
given by P?,,+ P%,, = 0.49 + 0.12 = 0.61.

0.3
0.48
0.64
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Absorbing Markov Chain

An absorbing state is one in which the probability that the
process remains In that state once it enters the state is 1
(e, pi = 1).

A Markov chain is absorbing iIf it has at least one absorbing
state, and If from every state it is possible to go to an
absorbing state (not necessarily in one step).

An absorbing Markov chain will eventually enter one of the
absorbing states and never leave it.

Example: The 100 and -100 states in coin tossing game
(Note: After playing long enough, the player will either win
or lose with probability 1. 1

1 p p p P
@EE T @
1-p 1-p 1p

1-p 20



Absorption Theorem

In an absorbing Markov chain the probability that the
process will be absorbed is 1.

Proof: From each non-absorbing state s; it is possible to
reach an absorbing state starting from s;. Therefore there
exists p and m, such that the probability of not absorbing
after m steps is at most p, in 2m steps at most p?, etc.

Since the probability of not being absorbed is
monotonically decreasing, we have:

lim P(not absorbed after n steps) =0

n—>00

21



Classification of States

Accessibility: State j Is said to be accessible from state 1 if
starting in 1 it is possible that the process will ever enter
Statej (Pn)l]> 0.
Communication: Two states 1 and J that are accessible to
each other are said to communicate.
« Every node communicates with itself:

py) =P (Xo =ilXo=1) =1
« Communication is an equivalence relation: It divides

the state space up into a number of separate classes in
which every pair of states communicate.

The Markov chain is said to be irreducible if it has only
one class.

22



Transient and Recurrent states

« Forany state 1 we let f; denote the probability that, starting in
state 1, the process will ever reenter state i:
fi=Pr(An:X,, =i|X, =1)
« State i is said to be recurrent if f; = 1 and transient if f; < 1.

 Theorem 1: State i is recurrent if and only if, starting in state I,
the expected number of time periods that the process is in state |
IS Infinite:

Corollary 1: A transient state will only be visited a finite number

of times.

Proof: E[size({n:X,, = i})|X, = i]

— Z k X Pr(size({n:X,, = i}) = k|X, = i)
k=1

..t 0o X prob(size({n: X,, = i}) = o|X, =i) <
= prob(size({n: X,, = i}) = xo|X, =i) =0

23



Transient and Recurrent states

Theorem 2: State 1 Is recurrent iff
Z?le(Pn)ii = 0.
(Look at the reference book for proof).

Corollary 2: A finite state Markov chain has at
least one recurrent state.

If all states are transient there will be a finite
number of steps that after that the process should
not be In any state (which is a contradiction).

24



Ergodic States

If state 1 IS recurrent, then it iIs said to be positive
recurrent If, starting in I, the expected time until the
process returns to state 1 Is finite.

In a finite-state MC, all recurrent states are positive
recurrent.

State i is said to have period d(i) if (p™);;=0
whenever n is not divisible by d, and d is the largest
Integer with this property.

Equivalently: d = gcd{n:Pr(X,, =i | X, =1i) > 0}
A state with period 1 Is said to be aperiodic.

We call an MC aperiodic if all its states are
aperiodic.



Ergodic States

A state 1 Is said to be ergodic If it is aperiodic and
positive recurrent.

Period, recurrence and positive recurrence are all

class properties. They are shared between states of
a class.

26



Example

Classes: {1},{2,3},{4,5},{6},{7,8}

Recurrent states: 6,7,8
Absorbing states: 6
Ergodic states: 6
Periodic states: 2,3, 7, 8:

Period 2

27



Example

As time goes to infinity, what Is the probability of

being in each class?

Answer:

* The process will be in transient classes
{1},{2,3},{4,5} with probability O.

* Problem is symmetric for entering classes {6} and
{7,8} as their only input edge Is one from 5 with
equal probabilities 0.25, and once It enters them,
there Is no way out.

* Therefore, at infinity probability of being in each
of these two classes Is 0.5.

28



Example

If the process Is absorbed in {7,8} (which could be
considered as an absorbing super state) what will
happen after that?

AnNnswer:
e |t will alternate between 7 and 8 to the end.

Therefore, at time t — oo probability of being in 7
(or 8) will depend on the parity of t. In general
finding the exact behavior of non-ergodic states as
t — oo IS not easy.

29



Steady State

Theorem: For an irreducible ergodic Markov chain lim (P™);;

n—>00

exists and is independent of i. Furthermore, letting:
TL']ik = lim (Pn)l]
n—o>00

Thent* = (x, ... ;)" is unigue nonnegative solution of:

rn* =1"P
d

<Z:nj:l

U=t
- If the ergodicity condition is removed, lim (P™);; does not
n—>00

exist in general, but the given equations yet have a unique
solution ™ = (75, ... 3)*" in which 77 will be equal to the long

run proportion of time that the Markov chain is in state |.

30



Example

Consider the weather model example discussed before. We
want to see how will the weather be when time goes to
Infinity:

a 1—a«a

P=|

g 1-p
my = ang + 1y One of these equations
i =1 —a)ry+ (1 —B)m] isredundant. (why?)
myg+m; =1

(

A

\

Which yields that 7§ = 1+§_a and it} = 1;: .

Exercise: In each of the following cases investigate the
existence of solution and its meaning:

e Da=0and p =1

e 2)a=landp =0

31



Introduction to Hidden
Markov Models



Markov Models

- Set of states: 151551+, Sy}

 Process moves from one state to another generating a
sequence of states : Si;,Sipye-vy Sips---

« Markov chain property: probability of each subsequent state

depends only on what was the previous state:

P(Si | SitsSizy---1Siu1) = P(Sy | Si_1)

 To define a Markov model, the following probabilities have to be
specified: transition probabilities a; = P(s; |s;) and initial
probabilities 7, = P(S;)

33



Example of Markov Model

0.3 0.7

ORRC,

0.2 0.8

e Two states : ‘Rainy’ and ‘Sunny’.

+ Transition probabilities: P(‘Rainy’|‘Rainy’)=0.3,
P(‘Sunny’|‘Rainy’):O.7 , P(‘Rainy’|‘Sunny’):O.2,
P(‘Sunny’|‘Sunny’):0.8

« Initial probabilities: say P(‘Rainy’)=0.4 , P(*Sunny’)=0.6 .

34



Hidden Markov models.

- Set of states:{S;, Spy--+1 Sy}
*Process moves from one state to another generating a
sequence of states : S;;,Si5,.-+y Sy .-

« Markov chain property: probability of each subsequent state
depends only on what was the previous state:

P(Sic | Sizs Sizre- s Si1) = P(Sic [ Six 1)
» States are not visible, but each state randomly generates one of M
observations (or visible states) {V;,V,,...,V\ }

* To define hidden Markov model, the following probabilities
have to be specified: matrix of transition probabilities A=(a;),

a;= P(Si| S;) , matrix of observation probabilities B=(D; (Vi )),
(Ve ) = P(Vi| Si) and a vector of initial probabilities 7T=(7T;),
T = P(S;) . Model is represented by M=(A, B, m).

35



Example of Hidden Markov Model

36



Example of Hidden Markov Model

» Two states : ‘Low’ and ‘High’ atmospheric pressure.
» Two observations : ‘Rainy’ and ‘Sunny’.

+ Transition probabilities: P(‘Low’|‘Low’)=0.3
P(‘High’|'Low’)=0.7 , P(‘Low’|‘High*)=0.2,
P(<High’|*High’)=0.8

» Observation probabilities : P(‘Rainy’|‘Low’)=0.6 ,
P(‘Sunny’|‘Low’)=0.4 , P(“Rainy’|‘High*)=0.4
P(‘Sunny’|*High*)=0.3 .

« Initial probabilities: say P(‘Low’)=0.4, P(‘High*)=0.6 .

37



Calculation of observation sequence probability

 Suppose we want to calculate a probability of a sequence
of observations in our example, {‘Sunny’,”’Rainy’}.

» Consider all possible hidden state sequences:
P({‘Sunny’,’Rainy’} ) = P({‘Sunny’,’Rainy’} ,
{‘Low’,’Low’}) + P({*Sunny’,’Rainy’} , {‘Low’,’High’}) +
P({‘Sunny’,’Rainy’} , {*High’,’Low’}) +
P({‘Sunny’,’Rainy’} , {*High’,’High’})

where first term Is :

P({‘Sunny’,’Rainy’} , {‘"Low’,’Low’})=
P({‘Sunny’,’Rainy’} | {‘Low’,”’Low’}) P({‘Low’,’Low’}) =
P(‘Sunny’|’Low’)P(‘Rainy’|’Low’) P(‘Low’)P(‘Low’|’Low)
=0.4%0.4*0.6*0.4*0.3

38



Malin issues using HMMs :

Evaluation problem. Given the HMM M=(A, B, 1) and the
observation sequence 0=0,0,... Oy, calculate the probability that
model M has generated sequence O .

« Decoding problem. Given the HMM M=(A, B, ) and the
observation sequence 0=0,0,... Oy, calculate the most likely
sequence of hidden states S; that produced this observation sequence

O.

 Learning problem. Given some training observation sequences
0=0,0,... Ok and general structure of HMM (numbers of hidden

and visible states), determine HMM parameters M=(A, B, )
that best fit training data.

O=01. ..Ok denotes a sequence of observations O, &{V4,...,V,}. 3o



Word recognition example(1).

« Typed word recognition, assume all characters are separated.

 Character recognizer outputs probability of the image being
particular character, P(image|character).

a~_05
b —0.03
CI0.005
[ }
[ }
[ }
7 0.31

Hidden state Observation

40



Word recognition example(2).

» Hidden states of HMM = characters.

 Observations = typed images of characters segmented from the
Image V_ . Note that there is an infinite number of
observations

 Observation probabilities = character recognizer scores.

B— (bi (Va)): (P(Va | Si))

*Transition probabilities will be defined differently in two
subsequent models.

41



Word recognition example(3).

o If lexicon is given, we can construct separate HMM models
for each lexicon word.

Amherst

Buffalo

 Here recognition of word image is equivalent to the problem
of evaluating few HMM models.
*This is an application of Evaluation problem.

42



Word recognition example(4).

 \WWe can construct a single HMM for all words.

 Hidden states = all characters in the alphabet.

* Transition probabilities and initial probabilities are calculated
from language model.

 Observations and observation probabilities are as before.

» Here we have to determine the best sequence of hidden states,
the one that most likely produced word image.
* This is an application of Decoding problem.

43



Character recognition with HMM example.

e The structure of hidden states is chosen.

D000

e Observations are feature vectors extracted from vertical slices.

* Probabilistic mapping from hidden state to feature vectors:
1. use mixture of Gaussian models
2. Quantize feature vector space.

44



Evaluation Problem.

«Evaluation problem. Given the HMM M=(A, B, ) and the
observation sequence 0=0,0,... Oy, calculate the probability that
model M has generated sequence O.

« Trying to find probability of observations O=0, 0, ... O« by
means of considering all hidden state sequences (as was done In
example) is impractical:

NK hidden state sequences - exponential complexity.
» Use Forward-Backward HMM algorithms for efficient
calculations.

» Define the forward variable ., (i) as the joint probability of the
partial observation sequence 0, 0, ... Oy and that the hidden state at
timekisS; : o ()= P(0,0,... 0x 0i=Si)

45



Trellis representation of an HMM

0, Ok (0] Ok = Observations
(s ONRC RN CY
DEFHNONTOIRERNC
8 O ONERNO
: DA :
(8 CC IR CY

Time= 1 K k+1 K
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Forward recursion for HMM

« Initialization:
o, (i)=P(0; Q:;=S;) =m b (0,) , 1<=i<=N.

 Forward recursion:
Olyi1 (1)= P(Ol O;... Oxs1, Oke1= Sj) =
2. P(0,0;... 01 O=Si Qui1=S;) =
2. P(0,0,... 0, 0=Si) &; b; (01 ) =
[ o (i) @ ] D (0s1),  1<=j<=N, 1<=k<=K-1.
« Termination:
P(0,0;... 0x) =X, P(0,0;... Ok Ok=Si) = Z; ou(i)

« Complexity :

N2K operations. .



Backward recursion for HMM

* Define the backward variable Bk(i) as the joint probability of the
partial observation sequence Oy Oy+2 ... Ok given that the hidden
state at time k is S; : 3 (i)= P(Oys1 Oxs2 ... Ok |0i=Si)
e Initialization:

B@=1 , 1<=i<=N.
» Backward recursion:

Bk(j): P(Ok+1 Oks2 ... Ok | k= Sj) =
. P01 Okiz .. Ok Oket=Si | Q= S;) =
i D(Ok+2 Okiz ... OKlqk+1: Si) dji bi (Ok+1) -

2 Bra() @5 Di(04s1) ,  1<=j<=N, 1<=k<=K-1.

e Termination:

P(Oloz OK) = Zi P(0102 OK,qlzsi) —

2 P(0.0;... 0k |0:=5) P(Q:=S:) = X B.(i) bi (01) i




Decoding problem

-Decoding problem. Given the HMM M=(A, B, 1) and the
observation sequence 0=0,0,... Oy, calculate the most likely
sequence of hidden states S; that produced this observation sequence.
» We want to find the state sequence Q= (;. . .(x which maximizes

P(Q|0,0,... 0k), or equivalently P(Q , 0,0,... Ox) .
« Brute force consideration of all paths takes exponential time. Use
efficient Viterbi algorithm instead.

« Define variable O,(i) as the maximum probability of producing
observation sequence 0, O, ... O, when moving along any hidden
state sequence (;. .. (k.1 and getting into J,=S; .

O (i) = max P(0;... Qx1, 0k=Si, 0,05... O)

where max is taken over all possible paths {;... (k1.
49



Viterbi algorithm (1)

» General 1dea:
If best path ending in J= S; goes through (i.1= S; then it

should coincide with best path ending in (y.1=S;.
Ok-1 Ok

« O, (i) =max P(Q;... Q1 0= S, 0:0,... O) =
max; [aij bj (Ok) max P(q1 o Qu1= Si; 0,0;... Ok-l) |

» To backtrack best path keep info that predecessor of S; was S;.
50



Viterbi algorithm (2)
* Initialization:
d,(i) = max P(Q.=S;, 0,) =m; b; (0,) , 1<=i<=N.
eForward recursion:
O.(j) =max P(Q:... Q1,0=Sj, 0:0,... O)) =
max; [ @; D; (0x) max P({;... qxa=Si, 010;... Ox1) ] =
max; [ @; 0;(0¢) 0,,()],  1<=j<=N, 2<=k<=K.

*Termination: choose best path ending at time K

max; [ Oy(i) ]
 Backtrack best path.

This algorithm is similar to the forward recursion of evaluation
problem, with 2 replaced by max and additional backtracking.

o1



Learning problem (1)

L_earning problem. Given some training observation sequences
0=0,0,... Ok and general structure of HMM (numbers of

hidden and visible states), determine HMM parameters M=(A,
B, ) that best fit training data, that is maximizes P(O |M) .

 There i1s no algorithm producing optimal parameter values.

« Use Iterative expectation-maximization algorithm to find local
maximum of P(O |M) (Baum-Welch algorithm).

52



Expectation Maximization (EM)

Iteratively finding maximum likelihood using partial
observation.

X: observed data
Z: unobserved data: (latent)
0: Model parameters

P(X|6) =fp(x,2|9)dz _ fp(mz,e)P(zw)dz

53



Expectation Maximization (EM)

E-Step (Expectation)

Q(6|60)) =Expected latent log likelihood of 6

Q(6|6W) = E[L(6; X; Z)]

M-Step (Maximization)

At+D) = argmaxgQ(0]|6®)

54



Learning problem (2)

« If training data has information about sequence of hidden states
(as in word recognition example), then use maximum likelihood
estimation of parameters:

Number of transitions from state S; to state S;

dij= P(Si| Sj) = Number of transitions out of state S;

Number of times observation V, occurs in state S;

D (V) = P(Val 5)7

Number of times in state S;

55



Baum-Welch algorithm

General 1dea:

Expected number of transitions from state Sj to state S;

8;= P(si| ;) =

Expected number of transitions out of state Sj

Expected number of times observation V,, occurs in state S;

D(V)= P(Va| 8)=

Expected number of times in state S;

T — P(Si) = Expected frequency in state S; at time k=1.

56



Baum-Welch algorithm: expectation step(1)

» Define variable €, (i,j) as the probability of being in state S; at
time k and in state S; at time k+1, given the observation
sequence 0;0,... O.

E(i.i)= P(0i=Si , 0xe1= ;| 01 0, .... O)

P(0k= Si , Qk+1=Sj , 01 02 ... O)
P(0105... 0y)

ik(i’j):

P(0k= Si , 01 07... Ok) & D; (0wt ) P(Oks2 - Ok | Oke1= Sj )

P(010; ... O) -

o (i) & D; (0ks1) Prea)
2 Zj o (1) ajj bj (Ok+1) ﬁk+1(j)

57



Baum-Welch algorithm: expectation step(2)

« Define variable Y, (1) as the probability of being in state S; at
time Kk, given the observation sequence 0; 0,... Ok.

V()= P(Q«=Si |0,0;... Ok)

P(0k= Si, 01 03... Ok) oL (i) B

Yi(1)= P(0105... 0) 2. o (i) Bi(i)

58



Baum-Welch algorithm: expectation step(3)

We calculated &,(ij) = P(Q=Si , Qxs1=S; |01 05... Ok)
and  V,(i)= P(Q=Si |0,0,... Ok)

« Expected number of transitions from state S; to state S; =

= Zk ik(i,j)

« Expected number of transitions out of state S; = 2., V()

« Expected number of times observation Vi, occurs in state S; =
=2, V(i) , k is such that O,= Vi
« Expected frequency In state S; at time k=1 : y,(I) .

59



Baum-Welch algorithm: maximization step

2 = Expected number of transitions from state Sj to state S; _ zk &k(l, J)
' Expected number of transitions out of state §; — zk yk(|)
b (V ) __ Expected number of times observation Vi, occurs in state S; __ Zk &k(ld)
i\Vm/) — [ ' ' — I
Expected number of times in state S; Zk,ok: Vi »Yk(l)

T — (Expected frequency in state S; at time k=1) = Y,(i).
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Next Week:
Sampling

Have a good day!
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