Stochastic Processes

Week 08 (Version 2.0) Hypothesis Testing

Hamid R. Rabiee Fall 2023

Introduction to Hypothesis Testing

- A statistical hypothesis test is a method of statistical inference used to determine a possible conclusion from two different, and likely conflicting, hypotheses.
- A hypothesis is an assumption about the population parameter:
 - A parameter is a population mean or proportion.
 - The parameter must be identified before analysis.
- For example a hypothesis could be: The mean GPA of this class is 17.5.

The Null and Alternative Hypothesis

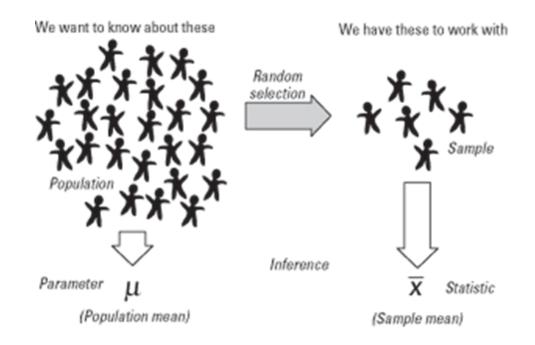
- The Null Hypothesis (H_0) states the assumption (numerical) to be tested.
- e.g. the average number of mobiles in Iranian homes is at least 3 (H₀: µ ≥ 3).
- We begin with the assumption that the null hypothesis is TRUE (Similar to the notion of innocent until proven guilty).
- The Null Hypothesis may or may not be rejected.
- The Alternative Hypothesis (H_1) is the opposite of the null hypothesis.

The Null and Alternative Hypothesis

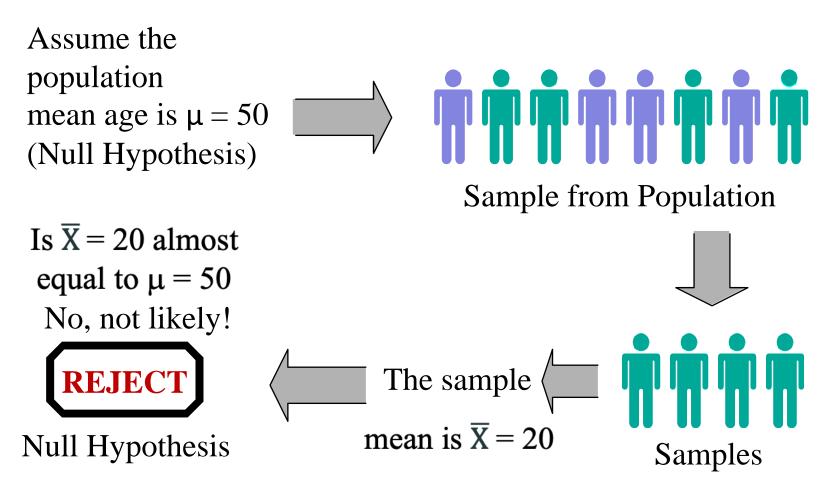
- e.g. the average number of mobiles in Iranian homes is less than 3 (H_1 : $\mu < 3$)
- The Alternative Hypothesis may or may not be accepted.
- Hypothesis testing steps:
 - 1. Define your hypotheses (null, alternative)
 - 2. Specify your null distribution
 - 3. Do an experiment by sampling
 - 4. Calculate the test statistics of what you observed
 - 5. Reject or Accept the null hypothesis

The Null and Alternative Hypothesis

• Recall: Sample data 'represents' the whole population:

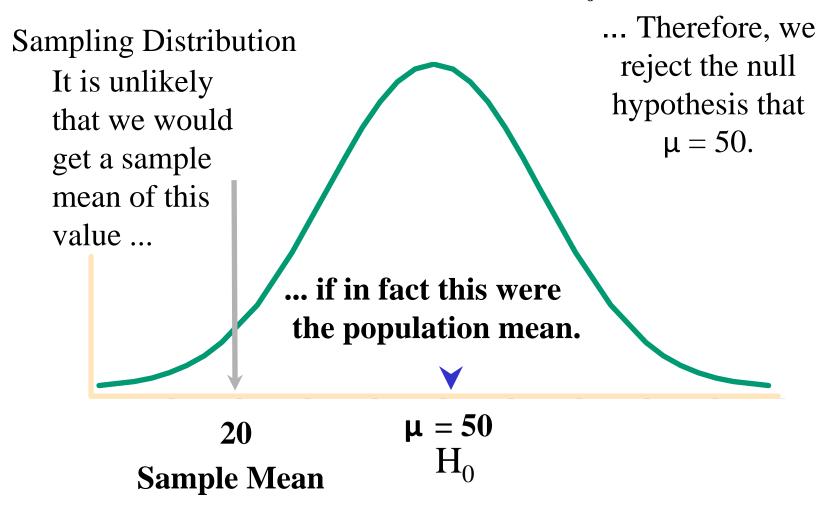


Hypothesis Testing Process by Example



Hypothesis Testing Process

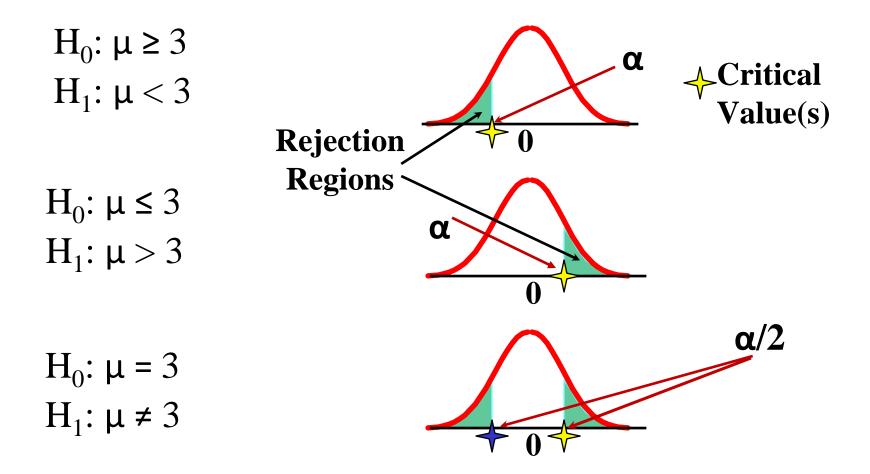
Reason for Rejecting H₀



Level of Significance: α

- Level of significance (α) defines unlikely values of sample statistic if Null Hypothesis is true.
 - It defines the Rejection Region of sampling distribution.
 - Typical values are 0.01, 0.05, 0.10.
 - It provides the Critical Value(s) of the test.

Level of Significance: a



Errors When Making Decisions

- Type I Error
 - Rejecting a true null hypothesis.
 - Has serious consequences.
 - Probability of Type I Error is α,
 (Called level of significance).
- Type II Error
 - Do not reject false null hypothesis.
 - Probability of Type II Error is β .

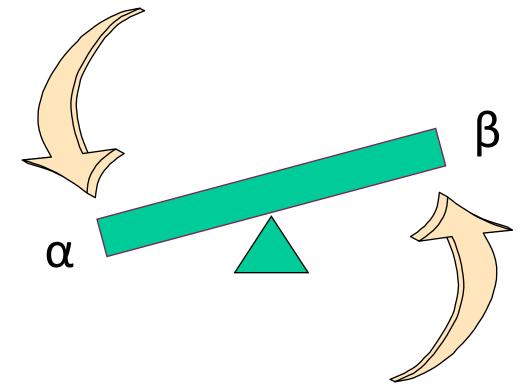
Decisions Possibilities: Court Example

H ₀ : Innocent	
---------------------------	--

Jury Trial			Hypothesis Test		
	Actual Situation			Actual Situation	
Verdict	Innocent	Guilty	Decision	H ₀	H ₀ False
Innocent	Correct	Error	Do Not Reject H ₀	True 1 - α	Type II Error (β)
Guilty	Error	Correct	Reject H ₀	Type I Error (α)	Power (1 - β)

Errors When Making Decisions

- $\alpha \& \beta$ Have an inverse relationship.
- Reducing probability of one error causes the other one going up.



Z-Test Statistics (σ known)

• Convert sample statistic (e.g., \overline{X}) to standardized Z variable:

$$Z=rac{(ar{X}-\mu_{-})}{s}$$

- If the observed data $X_1, ..., X_n$ are i.i.d. with mean μ , and variance σ^2 , then the sample average \overline{X} has mean μ and variance $s^2 = \frac{\sigma^2}{n}$.
- If Z test statistic falls in the critical (rejection) region, Reject H₀; Otherwise do not Reject H₀.

The P-Value Test

- Probability of obtaining a test statistic more extreme (≤ or ≥) than actual sample value given H₀ is true.
- Used to make rejection decision:
 - If p-value $\geq \alpha$, do not Reject H₀
 - If p-value $< \alpha$, reject H₀
- A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

Z-Test Statistics vs P-Value Test

- The Z score is a test of statistical significance that helps you decide whether or not to reject the null hypothesis. The p-value is the probability that you have falsely rejected the null hypothesis.
- Z scores are measures of standard deviation. For example, if a tool returns a Z score of +2.5 it is interpreted as "+2.5 standard deviations away from the mean".
- P-values are probabilities. Both statistics are associated with the standard normal distribution. Very high or a very low (negative) Z scores, associated with very small p-values, are found in the tails of the normal distribution.

Hypothesis Testing: Example

Test the Assumption that the true mean # of mobiles in Iranian homes is at least 3.

- 1. State H_0 : $\mu \ge 3$
- 2. State H_1 $H_1 : \mu < 3$
- 3. Choose α $\alpha = .05$
- 4. Choose n n = 100
- 5. Choose Test:
- Z Test (or p-value)

Hypothesis Testing: Example

Test the Assumption that the true mean # of mobiles in Iranian homes is at least 3.

- 6. Set Up Critical Value(s)
- 7. Collect Data
- 8. Compute Test Statistic
- 9. Make Statistical Decision
- 10. Express Decision

Z= -1.645

100 households surveyed

Computed Test Stat.= -2

Reject Null Hypothesis

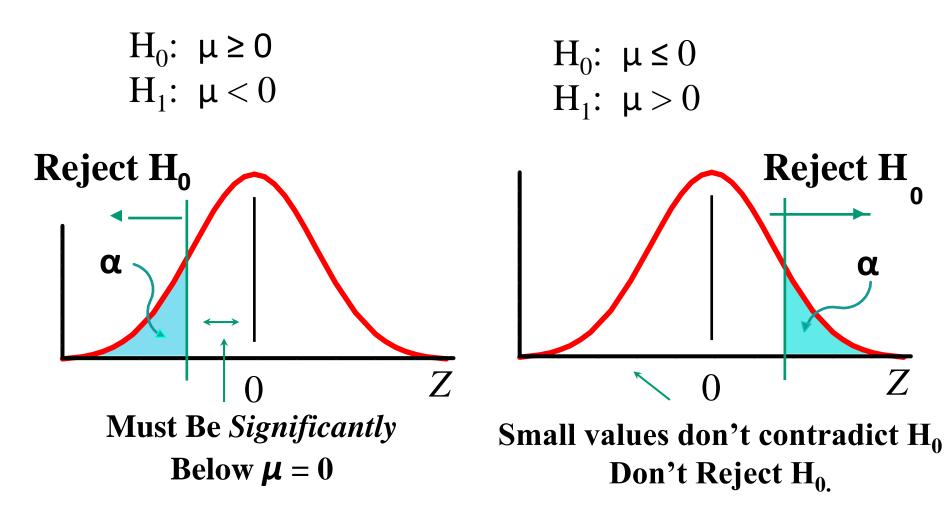
The true mean # mobiles is less than 3 in the Iranian households.

One-Tail Z Test for Mean (σ Known)

- Assumptions:
 - Population is normally distributed
 - If not normal, use large samples (CLT)
 - Null Hypothesis Has \leq or \geq Sign Only
- Z Test Statistic:

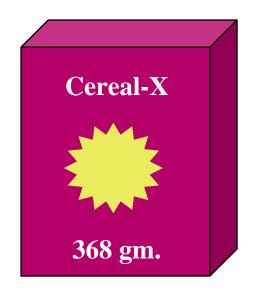
$$Z=rac{(ar{X}-\mu_{-})}{s}$$

Rejection Region



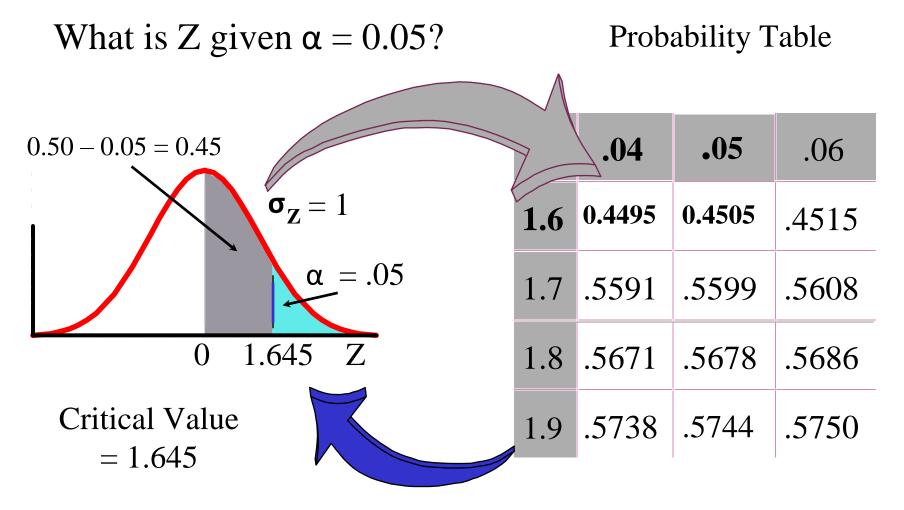
Example: One Tail Test

- Does an average box of cereal contain more than 368 grams of cereal?
- A random sample of 25 boxes showed $\overline{X} = 372.5$ grams.
- The company has specified σ to be 15 grams. Test at the $\alpha = 0.05$ level.



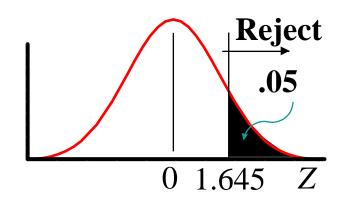
 $H_0: \mu \le 368$ $H_1: \mu > 368$

Finding Critical Values: One Tail



Example Solution: One Tail

- $H_0: \mu \le 368$ $H_1: \mu > 368$
- $\alpha = 0.05$
- n = 25
- Critical Value: 1.645



Test Statistic:

$$Z = \frac{(\bar{X} - \mu)}{s} = 1.5$$

(372.5-368)/(15/5)=1.5 **Decision:**

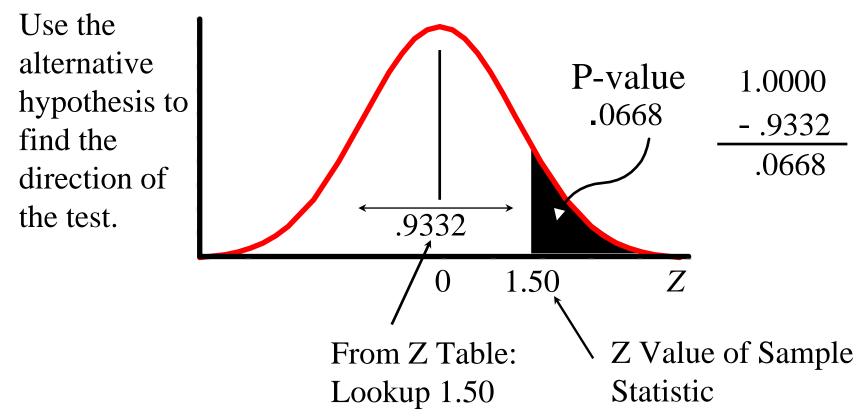
Do Not Reject at $\alpha = .05$

Conclusion:

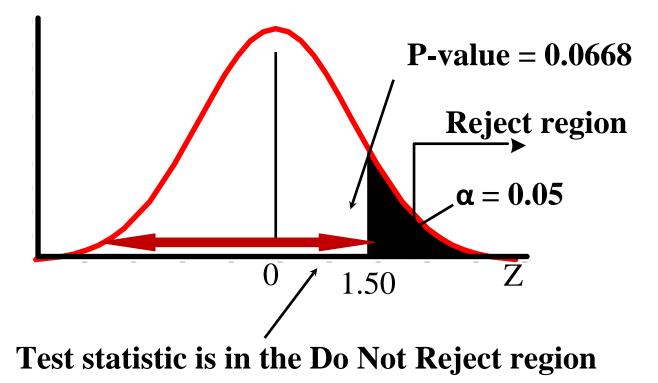
No evidence true mean is more than 368.

P-Value Solution

P-Value is $P(Z \ge 1.50) = 0.0668$

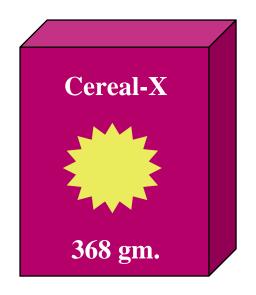


P-Value Solution



Example: Two Tail Test

- Does an average box of cereal contain 368 grams of cereal?
- A random sample of 25 boxes showed $\overline{X} = 372.5$ grams.
- The company has specified σ to be 15 grams. Test at the $\alpha = 0.05$ level.

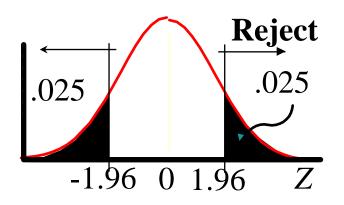


 H_0 : μ = 368 H_1 : μ ≠ 368

Example Solution: Two Tail

- H_0 : μ = 386 H_1 : μ ≠ 386 α = 0.05
 - *n* = 25

Critical Value: ±1.96



Test Statistic:

$$Z = \frac{(\bar{X} - \mu_{-})}{s} = 1.5$$

(372.5-368)/(15/5)=1.5

Decision: Do Not Reject at $\alpha = .05$

Conclusion:

No evidence that true mean is not 368.

Connection to Confidence Intervals

For $\overline{X} = 372.5$, $\sigma = 15$ and n = 25, The 95% Confidence Interval is: 372.5 - (1.96) (15)/(5) to 372.5 + (1.96) (15)/(5)Or $366.62 \le \mu \le 378.38$

If this interval contains the Hypothesized mean (368), we do not reject the null hypothesis. Since it does, do not reject.

t-Test: σ Unknown

- t-tests are used to compare two population means.
- Assumptions:
 - Population is normally distributed
 - If not normal, only slightly skewed & a large sample taken (CLT)
- Use parametric test procedure
- t-test statistic:

$$t=\frac{Z}{s}=\frac{\bar{X}-\mu}{\widehat{\sigma}/\sqrt{n}}$$

Example: A Coin Toss

- You have a coin and you would like to check whether it is fair or not. Let θ be the probability of heads, θ=P(H)
 - You have two hypotheses:
 - H_0 (the null hypothesis): The coin is fair i.e., $\theta = 1/2$.
 - H₁ (the alternative hypothesis): The coin is not fair, $\theta \neq 1/2$.

Example: A Coin Toss

- We need to design a test to either accept H_0 or H_1
- We toss the coin 100 times and record the number of heads.
- Let X be the number of heads that we observe:

X~Binomial(100,θ)

- if H_0 is true, then $\theta = \theta_0 = \frac{1}{2}$
 - we expect the number of heads to be close to
 50
- We suggest the following criteria: If |X-50| is less than or equal to some threshold, we accept H₀.
- On the other hand, if |X-50| is larger than the threshold we reject H_0 .
- Let's call that threshold **t**.

If $|X-50| \le t$, accept H_0 .

If |X-50|>t, accept H₁

- We need to define more parameters, e.g. Error Probability.
- Type I Error: Wrongly reject H_0 when it is true.
- P(Type I Error) = P ($|X-50| > t | H_0$) <= α
 - $\circ \alpha$: level of significance
- Knowing that P is a binomial distribution we can now calculate t.

- $X \sim \text{Binomial}(n, \theta = \frac{1}{2})$
 - Can be estimated by a normal distribution since n is large enough: Y ~ N(0, 1)

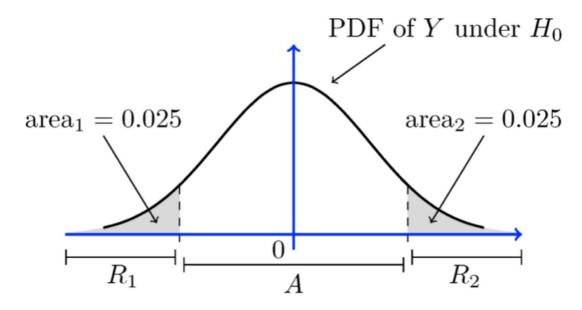
•
$$\mathbf{Y} = \frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}}$$

- $P(|X-50| > t | H_0) = P(|Y| > t/5 | H_0)$
- if c = t/5:
 - $\circ |Y| > c$, accept H_0
 - \circ o.w. accept H₁

- Since $Y = \frac{X-5}{50}$, the conclusion can be rewritten as:
 - \circ if |X 50| \leq 9.8, accept H₀
 - else if |X 50| > 9.8, accept H₁
- if X in $\{41, 42, ..., 59\}$, accept H₀

- $P(|Y| > c) = 1 P(-c \le Y \le c)$
 - Assuming $Y \sim Normal(0, 1)$
- $P(|Y| > c) = 2 2\phi(c) = 0.05$
 - using the z-table: $c = \phi -1(0.975) = 1.96$
- $|Y| \le 1.96$, accept H_0 , o.w. accept H_1
 - Acceptance Region = [-1/96, 1.96]
 - \circ Rejection Region = ?

Visualization: A Coin Toss



A = Acceptance Region $R = R_1 \cup R_2 = \text{Rejection Region}$ $\alpha = P(\text{type I error}) = \text{area}_1 + \text{area}_2 = 0.05$ **Next Week:**

Markov Chains

Have a good day!