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Introduction to Optimal Frequentist Estimator

• In the Frequentist's point of view, an optimal 

estimator is both unbiased and minimum variance.

• How can we obtain an estimator መ𝜃 that is unbiased?

– Given any biased estimator 𝜃b with bias b, then we can 

remove the bias to obtain an unbiased estimator 
𝜃 from 𝜃b, i. e. 𝜃 = 𝜃b – b.

• How can we obtain a minimum variance estimator 
መ𝜃mv from an unbiased estimator?

– We need to obtain a lower bound for an unbiased 

estimator and make sure 𝜃mv achieves that bound.
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Score and Fisher Information 

• The score s(q) is defined as the gradient of the log-

likelihood function with respect to the parameter q.

•  When evaluated at a particular value of the 

parameter vector, the score indicates the sensitivity 

of the log-likelihood function to 

infinitesimal changes to the parameter values.
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𝑠 𝜃 =
𝜕 log 𝐿 𝜃 𝑥

𝜕𝜃
 = 

𝜕 log 𝑓(𝑥|𝜃) 
𝜕𝜃
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Score and Fisher Information 

• The mean of score s(q)

• Although s(q) is a function of q, it also depends on 

the observations X, at which the likelihood function 

is evaluated, and the expected value of the score, 

evaluated at the parameter value q, is zero.
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Score and Fisher Information 

• We can interchange the derivative and integral by 

using Leibniz integral rule:

• If we repeatedly sample from some distribution, and 

repeatedly calculate its score, then the mean value of 

the scores would tend to zero asymptotically.
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Score and Fisher Information 

• The Fisher Information is defined as the variance 

of score. It is a way of measuring the amount 

of information that an observable random 

variable X carries about an unknown parameter θ of 

a distribution that models X. 

• The Fisher information is not a function of a 

particular observation, as the random 

variable X has been averaged out.
8
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Score and Fisher Information 

• If log f(x|θ) is twice differentiable with respect to θ, 

and under certain regularity conditions, the Fisher 

information may also be written as:

• The regularity conditions are as follows:

– The partial derivative of f(X|θ) with respect to θ exists.

– The integral of f(X|θ) can be differentiated under the 

integral sign with respect to θ.

– The support of f(X|θ) does not depend on θ. 
9
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Why the two equations to compute Fisher Information are Equal?

Let                   
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Cramer-Rao Lower Bound

• The Cramer–Rao bound (CRB) expresses a lower 

bound on the variance of unbiased estimators of a 

deterministic (fixed, though unknown) parameter θ, 

stating that the variance of any such estimator is at 

least as high as the inverse of the Fisher information.

• An unbiased estimator which achieves this lower 

bound is said to be efficient.

• Suppose θ is an unknown deterministic parameter 

which is to be estimated from n independent 

observations of x, each from a distribution according 

to some probability density function 𝑓(𝑥|𝜃). 
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Cramer-Rao Lower Bound

• The variance of any unbiased estimator 𝜃 of θ is then 

bounded by the reciprocal of the Fisher information I(θ):

• The efficiency of an unbiased estimator 𝜃 measures how close 

this estimator's variance comes to this lower bound; estimator 

efficiency is defined as:

• The Cramer–Rao lower bound gives:
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Rao-Blackwell Theorem

• The Rao-Blackwell theorem uses sufficiency to characterizes 

the transformation of an arbitrarily estimator into an estimator 

that is optimal by the mean-squared-error (MSE) criterion.

• Recall: 𝑥 and 𝑦 are random variables:

𝐸 𝑋 = 𝐸 𝐸 𝑋|𝑌

𝑣𝑎𝑟 𝑋 = 𝑣𝑎𝑟 𝐸 𝑋|𝑌 + 𝐸 𝑣𝑎𝑟 𝑋|𝑌

Rao-Blackwell Theorem:

Let 𝑤 be unbiased for 𝜃, and let 𝑇 be a sufficient statistic for 𝜃: 

Define 𝜙 𝑇 = 𝐸 𝑤|𝑇 , then:    

𝐸 𝜙 𝑇 = 𝜃

and    𝑣𝑎𝑟 𝜙 𝑇 ≤ 𝑣𝑎𝑟𝜃(𝑤).
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Rao-Blackwell Theorem

Proof:

1  𝜙 𝑇 = Eθ w T  is an estimator because T is sufficient

⟹ conditional dist. of X given T does not depend on θ

and w is a function of X only:

𝐸𝜃 𝜙 𝑇 = 𝐸𝜃 𝐸 𝑤 𝑇 = 𝐸𝜃 𝑤 = 𝜃

2  𝑉𝑎𝑟𝜃 𝑤 = 𝑉𝑎𝑟𝜃 𝐸 𝑤 𝑇 + 𝐸𝜃 𝑉𝑎𝑟 𝑤 𝑇

= 𝑉𝑎𝑟𝜃 𝜙 𝑇 +  𝐸𝜃 𝑉𝑎𝑟 𝑤 𝑇

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

≥ 𝑉𝑎𝑟𝜃 𝜙 𝑇
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UMVUE

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 1

Median 𝑥1, … , 𝑥𝑛  is unbiased.

However, it can’t be UMVUE since it is not sufficient 

statistics (i.e. sufficient statistics is ത𝑋).

Theorem:

If 𝑤 is an UMVUE of 𝜃, then 𝑤 is unique.
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UMVUE

Proof:
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UMVUE

Theorem: 

Let 𝑇 be a complete sufficient statistic for a parameter 𝜃 and 

let 𝜙(𝑇) be any unbiased estimator based only on 𝑇.

Then 𝜙(𝑇) is the unique 𝑈𝑀𝑉𝑈𝐸 for 𝜃.

2 strategies for finding 𝑼𝑴𝑽𝑼𝑬′𝒔:

(1) Let 𝑇 be a complete sufficient statistics for 𝜃, find a 

function of 𝑇, 𝜙(𝑇), such that 𝐸𝜃 𝜙 𝑇 = 𝜃.

(2) Let 𝑇 be a sufficient statistics and 𝑤 be any unbiased 

estimator for 𝜃, compute 𝜙 𝑇 = E(w|T) 
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UMVUE

Example:  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛(𝜃)

  We know ത𝑋 is the 𝑈𝑀𝑉𝑈𝐸 (CRB attained)

  Showed 𝑇 = σ 𝑋𝑖 is a complete suff. Stat. for 𝜃.

  𝐸 𝑇 = 𝑛𝜃 ⟹ 𝜙 𝑇 =
𝑇

𝑛
 

Example: 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 𝛿2

  Showed  𝑇 = 𝑇1, 𝑇2 = (σ 𝑋𝑖 , σ 𝑋𝑖
2) is a complete suff. stat. for 𝑁 𝜇, 𝛿2  

  Consider ത𝑋, 𝑆2 =
𝑇1

𝑛
,

1

𝑛−1
𝑇2 −

𝑇1
2

𝑛
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UMVUE

Example: 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑝(𝜆)

  Interested in estimating 𝜃 = 𝑒−𝜆 = 𝑃𝜆(𝑋 = 0)

  σ 𝑥𝑖  ~𝑝(𝑛, 𝜆)   is a  complete sufficient statistic and:

σ 𝑥𝑖

𝑛
 𝑖𝑠 𝑡ℎ𝑒 𝑈𝑀𝑈𝑉𝐸 𝑓𝑜𝑟𝜆.
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UMVUE
𝐺𝑢𝑒𝑠𝑠 𝑒− ത𝑋

𝑊 𝑋 =  ቊ
1 𝑋 = 0
0 𝑋 > 0

𝐸𝜆 𝑤 = 𝑒−𝜆  → 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝜆 𝑤|𝑇 :

𝜙 𝑡 = 𝐸 𝑤 𝑇 = 𝑡 = 𝑃𝜆 𝑋1 = 0| 

𝑖

𝑛

𝑋𝑖 = 𝑡

=
𝑃𝜆 𝑋1 = 0, σ𝑖

𝑛 𝑋𝑖 = 𝑡

𝑃𝜆 σ𝑖
𝑛 𝑋𝑖 = 𝑡

=
𝑃𝜆 𝑋1 = 0)𝑃𝜆(σ𝑖

𝑛 𝑋𝑖 = 𝑡

𝑃𝜆 σ𝑖
𝑛 𝑋𝑖 = 𝑡

𝑋𝑖~𝑃 𝜆  

𝑖=2

𝑛

𝑋𝑖~𝑃 𝑛 − 1 𝜆  

𝑖=1

𝑛

𝑋𝑖~𝑃(𝑛𝜆)
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UMVUE

⟹ 𝜙 𝑡 =
𝑒−𝜆 𝑒− 𝑛−1 𝜆×

𝑛−1 𝜆 𝑡

𝑡!

𝑒−𝑛𝜆×
𝑛𝜆 𝑡

𝑡!

∴ 𝜙 𝑡 =
𝑛 − 1

𝑛

𝑡

= 1 −
1

𝑛

𝑡

 𝑖𝑠 𝑈𝑀𝑈𝑉𝐸 𝑜𝑓 𝑒−𝜆

𝑊𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒: 𝜙 𝑡 =
𝑛−1

𝑛

𝑡
= 1 −

1

𝑛

𝑛
1

𝑛
σ 𝑥𝑖

𝑎𝑠 𝑛 → ∞, 𝜙 𝑡 → 𝑒− ത𝑋
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Bayes estimation

Bayes estimation

- Frequentists or classical estimation regards the parameter 𝜃 as 

an unknown but fixed.

- Bayes: regards 𝜃 as random variable, with prior distribution 

𝜋(𝜃). 

▪ Observe data 𝑥1, … , 𝑥𝑛

▪ Update the prior into a posterior distribution; 𝜋(𝜃|𝑋). 

▪ 𝜋 𝜃 𝑋 =
𝑓(𝑋,𝜃)

𝑚(𝑋)
=

𝑓 𝑋|𝜃 𝜋 𝜃  

𝑚 𝑋

     𝑚 𝑥 =  𝑓 𝑋|𝜃 𝜋 𝜃 𝑑𝜃 = 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡. 𝑜𝑓 𝑋
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Bayes estimation

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜃 ,  𝜃 ~ 𝛽𝑒𝑡𝑎(𝛼, 𝛽)

                                                                       

  𝜋 𝜃 𝑋  ~𝛽𝑒𝑡𝑎(σ 𝑋𝑖 + 𝛼 , 𝑛 − σ 𝑋𝑖 + 𝛽)
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Bayes estimation

Finding the posterior:

(a) Calculate  𝜋 𝜃 𝑓 𝑋|𝜃

(b) Factor into piece depending on 𝜃 and piece not depending on 

𝜃.

(c) Drop piece not depending on 𝜃, multiply and divide by 

constants.

(d)  𝜋(𝜃|𝑋) is 𝑘(𝑋) times what is left.

        choose 𝑘(𝑋) s.t.     𝜋 𝜃 𝑋  𝑑𝜃 = 1
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Bayes estimation

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 𝛿2 ,  𝛿2 𝑘𝑛𝑜𝑤𝑛

 
𝑓 𝑥 𝜇 = 2Π𝛿2 −

𝑛
2𝑒

−
1

2𝛿2σ 𝑥𝑖−𝜇 2

𝛱(𝜇) = 𝑁 𝜇0, 𝛿0
2

𝜋 𝜇 𝑓 𝑥 𝜇 =
1

2𝜋𝛿2

𝑛
1

2𝜋
𝑒

−
1

2𝑠2  𝑥𝑖−𝜇 2

𝑒
−

1

2𝛿0
2 𝜇−𝜇0

2

𝛼 exp −
1

2𝛿0
2 𝜇 − 𝜇0

2 −
1

2𝛿2
 𝑥𝑖 − 𝑥

‾ 2

−
1

2𝛿2
𝑛(𝑥

‾
− )𝜇 2

= exp −
1

2

𝜇 − 𝜇0
2

𝛿0
2 +

𝑛(𝑥
‾

− )𝜇 2

𝛿2
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Bayes estimation

= exp −
1

2

𝜇 − 𝜇0
2

𝛿0
2 +

𝑛(𝑥
‾

− )𝜇 2

𝛿2

=
−1

2
𝑎𝜇2 − 2𝑏𝜇 =

−1

2
𝑎 𝜇 −

𝑏

𝑎

2

= exp −
1

2

1

𝛿0
2 +

𝑛

𝛿2
𝜇2 − 2𝜇

𝜇0

𝛿0
2 +

𝑛 ‾𝑥

𝛿2
+

𝜇𝛿2

𝛿0
2 +

𝑛 ‾𝑥2

𝛿2

𝑎 =
1

𝛿0
2 +

𝑛

𝛿2

𝑏 =
𝜇𝑐

𝛿0
2 +

𝑛𝑥
‾

𝛿2
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Bayes estimation
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Bayes estimation

Bayes estimator:

(1) Maximum A Posteriori (MAP) Estimator:

In Bayesian statistics, a maximum a posteriori 

probability (MAP) estimate is an estimate of an unknown 

quantity, that equals the mode of the posterior distribution.
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Bayes estimation

Bayes estimator:

(1) Maximum Aposteriori (MAP) Estimator:
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Bayes estimation

(2) Bayes Minimum Loss (Risk) Estimator:

▪ Define a loss function 𝐿(𝜃, 𝜃)

     𝐿 𝜃, 𝜃 = 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝜃 𝑏𝑦 𝜃

▪ Minimize expected loss:

     min 𝛩
𝐿 𝜃, 𝜃 𝜋 𝜃 𝑋  𝑑𝜃           

      then 𝜃 ~ Bayes minimum loss estimator.
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Bayes estimation

(1) 𝐿 𝜃 − መ𝜃 = 𝜃 − መ𝜃
2
   squared error loss

    ֜  𝐸 𝜃 𝑋 = መ𝜃

(2) 𝐿 𝜃 − መ𝜃 = |𝜃 − መ𝜃|     absolute error loss

    ֜ መ𝜃 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓𝜋 𝜃 𝑋

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 𝛿2

Posterior is normal with   mean:

And variance:                          using squared loss criterion.
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Bayes estimation

Note: 

(3) good prior info:

Let 𝛿0
2 → 0 ֜ 𝐸(𝜇 ∣ 𝑥) → 𝜇0

(2) prior information:

Let 𝛿0
2 → ∞

𝜇 ∼ 𝑁 𝜇0, ∞  ֜ 𝐸(𝜇 ∣ 𝑥) ⟶ ‾𝑥

(1) as 𝑛 ⟶ ∞, α → 1
֜ 𝐸(𝜇 ∣ 𝑥) ⟶ ‾𝑥

41
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Conjugate Prior

In Bayesian probability theory, if the posterior 

distribution p(θ | x) is in the same probability distribution 

family as the prior probability distribution p(θ), the prior and 

posterior are then called conjugate distributions, and the 

prior is called a conjugate prior for the likelihood 

function p(x | θ).

Examples:

Conjugate Prior Likelihood Posterior

Beta Bernoulli Beta

Gamma Poisson Gamma

Normal Normal Normal
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Problems with Bayes Estimator

choice of prior:

• subjective

• non informative priors

Prior:     𝜋 𝛾 = 1 ∀𝛾                                           

Posterior:   𝑁( ത𝑋,
𝜎2

𝑛
)

What can we do when we do not have the prior?
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Jeffreys Prior

Jeffreys Prior: is a non-informative (objective) prior 

distribution for a parameter space; its density function is 

proportional to the square root of the determinant of 

the Fisher information matrix:

Example:  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛 𝜃

log 𝑓 𝑋 𝜃 = 𝑥𝑙𝑜𝑔𝜃 + 1 − 𝑥 log(1 − 𝜃)

𝜕

𝜕𝜃
log 𝑓 𝑋 𝜃 =

𝑥

𝜃
−

1 − 𝑥

1 − 𝜃
 →  

𝜕2

𝜕𝜃2
log 𝑓 𝑋 𝜃 =

−𝑥

𝜃2
+

1 − 𝑥

(1 − 𝜃)2

𝐸𝜃

𝜕2

𝜕𝜃2
log 𝑓 𝑋 𝜃 = −

1

𝜃
 −

1

1 − 𝜃
= −

1

𝜃(1 − 𝜃)

𝜋 𝜃 ∝
1

𝜃 1 − 𝜃

1
2

 𝑖. 𝑒. 𝛽𝑒𝑡𝑎(
1

2
,
1

2
)
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Consistency

Why do frequentists use MLE’s?

• MLE’s have nice asymptotic properties

Def:  a sequence of estimators:

𝑤𝑛 = 𝑤𝑛 𝑥1, … , 𝑥𝑛  is a consistent sequence of estimators of the parameter 𝜃 if 

for any 𝜖 > 0, 𝜃 ∈ 𝛩:

lim
𝑛→∞

𝑃𝜃 𝑤𝑛 − 𝜃 < 𝜖 = 1

                     or:                  𝑙𝑖𝑚
𝑛→∞

𝑃𝜃 𝑤𝑛 − 𝜃 ≥ 𝜖 = 0

(it means 𝑤𝑛 converges to 𝜃 in probability)
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Consistency

Theorem: 

If  𝑤𝑛 is a sequence of estimators of a parameter 𝜃 with:

(a) 𝑙𝑖𝑚
𝑛→∞

𝑉𝑎𝑟𝜃(𝑤𝑛) = 0 and

(b) 𝑤𝑛 unbiased estimator of 𝜃

Then 𝑤𝑛 is a consistent sequence of estimators of 𝜃.

Proof:

𝐶ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑣 ⟹  𝑃𝜃 𝑤𝑛 − 𝜃 ≥ 𝜀 ≤
𝐸𝜃 𝑤𝑛 − 𝜃 2

𝜀2

𝐸𝜃 𝑤𝑛 − 𝜃 2 = 𝐸𝜃 𝑤𝑛 + 𝐸𝑤𝑛 − 𝐸𝑤𝑛 − 𝜃 2

= 𝑉𝑎𝑟𝜃𝑤𝑛 + 𝐵𝑖𝑎𝑠𝜃𝑤𝑛
2
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Consistency

▪ MLE’s are consistent

▪ MLE’s are asymptotically unbiased

Theorem:

Let  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑓(𝑋|𝜃).

Let 𝐿 𝜃 𝑋 = ς 𝑓 𝑋𝑖|𝜃

መ𝜃 = MLE of 𝜃  

Then with some regularity conditions on 𝑓(𝑋|𝜃) we have:

መ𝜃𝑛 is a consistent estimator of 𝜃.

Condition: support of pdf does not depend on parameters and rules out 𝑈(0, 𝜃)



50

Outline of Week 7 Lectures

• Introduction to Optimal Frequentist Estimator

• Score and Fisher Information

• Cramer-Rao Lower Bound

• Rao-Blackwell Theorem

• UMVUE

• Bayesian Estimation

• Conjugate Prior

• Consistency

• Efficiency

• Estimator Comparison

• Summary
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Efficiency

▪ Let  𝐼 𝜃 = 𝐸𝜃
𝜕

𝜕𝜃
log 𝑓 𝑋|𝜃

2
   and X is not a vector.

Def:

Let 𝑤 be an unbiased estimator of 𝜃. The efficiency of 𝑤 is:

𝑒𝑓𝑓 𝑤 =
ൗ1

𝑛 𝐼 𝜃  

𝑣𝑎𝑟 𝑤
 

                                                                                                       

 
CRB lower bound
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Efficiency

Definition:

A sequence of estimators 𝑤 is said to be asymptotically efficient if:

lim
𝑛→∞

𝑒𝑓𝑓(𝑤𝑛) → 1

As 𝑛 → ∞, 𝑣𝑎𝑟 𝑤𝑛 attains CR lower bound.

▪ MLE’s are asymptotically efficient.

▪ MLE’s are asymptotically normal.

i.e. 𝑛 መ𝜃𝑛 − 𝜃  
 𝐷 

𝑁 0,
1

𝐼 𝜃

❖MLE’s are:

(1) Consistent    (2) asymptotically unbiased   (3) asymptotically efficient   

(4) asymptotically normal
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• Rao-Blackwell Theorem

• UMVUE

• Bayesian Estimation
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• Efficiency
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Asymptotic variance of MLE

Asymptotic variance of MLE

𝑒𝑓𝑓 መ𝜃𝑛 =
ൗ1

𝑛 𝐼 𝜃

𝑣𝑎𝑟 መ𝜃𝑛

 
 

1

Approximate  𝑣𝑎𝑟 መ𝜃𝑛   by  n𝐼 𝜃   ⟷ expected information

𝑛𝐼 𝜃 |𝜃=𝜃  ⟵  observed info.

Better approximation for finite sample sizes.
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Asymptotic variance of MLE

Expected information:

𝑛𝐼 𝜃 = 𝑛𝐸𝜃

𝜕

𝜕𝜃
log 𝑓 𝑋|𝜃

2

= 𝐸𝜃

𝜕

𝜕𝜃
log ෑ 𝑓 𝑋𝑖|𝜃

2

= 𝐸𝜃

𝜕

𝜕𝜃
log 𝐿 𝜃|𝑋

2

Approximation:  if  𝑥1, … , 𝑥𝑛 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑓 𝑋 𝜃 ,  መ𝜃 is the MLE of 𝜃.

𝑣𝑎𝑟𝜃
መ𝜃 ≃

1

𝐸𝜃
𝜕

𝜕𝜃
log 𝐿 𝜃|𝑋

2 ≃
1

−
𝜕2

𝜕𝜃2 log 𝐿 𝜃|𝑋 |𝜃=𝜃

 (∗)
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Asymptotic variance of MLE

Example: 𝑥1, … , 𝑥𝑛 𝑎𝑟𝑒 𝑖𝑖𝑑 𝑓𝑟𝑜𝑚 𝐵𝑒𝑟𝑛 𝜃

𝑀𝐿𝐸 𝑖𝑠 Ƹ𝑝 = ത𝑋

 Var Ƹ𝑝 =
𝑝 1−𝑝

𝑛

𝑉𝑎𝑟 Ƹ𝑝 =
Ƹ𝑝 1 − Ƹ𝑝

n
 an approximated variance

𝑈𝑠𝑒 ∗ → 𝑉𝑎𝑟 Ƹ𝑝 ≈
1

−
𝜕2

𝜕𝜃2 𝑙𝑜𝑔𝐿(𝑝|𝑥)|𝑝= ො𝑝

𝑙𝑜𝑔𝐿 =   𝑥𝑖𝑙𝑜𝑔𝑝 + 𝑛 −  𝑥𝑖 log 1 − 𝑝  

𝜕2

𝜕𝜃2
𝑙𝑜𝑔𝐿 = −

𝑛 ത𝑋

𝑝2
−

𝑛 1 − ത𝑋

1 − 𝑝 2
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Asymptotic variance of MLE

⟹
𝜕2

𝜕𝜃2
𝑙𝑜𝑔𝐿|𝑝= ො𝑝 = −

𝑛 ത𝑋

ത𝑋2
−

𝑛 1 − ത𝑋

1 − ത𝑋 2
= −

𝑛

ത𝑋 1 − ത𝑋

∗  𝑎𝑙𝑠𝑜 𝑔𝑖𝑣𝑒𝑠: 𝑉𝑎𝑟 Ƹ𝑝 =
ത𝑋 1 − ത𝑋

n
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Estimator Comparison

• Frequentists:   𝑚𝑖𝑛 𝐸𝜃
መ𝜃 − 𝜃

2

Example:  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2),  want to estimate 𝛿2 

MLE   𝛿1
2

=
𝑠

𝑛
 𝑤ℎ𝑒𝑛 𝑠 =  σ 𝑥𝑖 − ҧ𝑥 2                    

Bayes(Jeffery’s prior) 𝜋 𝛿2 ∝
1

𝑠2  𝛿2
2 =

𝑠

𝑛−2

UMVUE       𝛿3
2 =

𝑠

𝑛−1
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Estimator Comparison
𝐸 𝑎𝑆 − 𝛿2 2 = 𝑎2𝐸 𝑠2 − 2𝑎𝛿2𝐸𝑆 + 𝛿4

= 𝑎2𝑉𝑎𝑟 𝑠 + 𝑎2 𝐸(𝑠) 2 − 2𝑎𝛿2𝐸𝑆 + 𝛿4

𝑠

𝛿2
~𝑋𝑛−1

2 ⟹ 𝐸 𝑆 = (𝑛 − 1)𝛿2

𝑉𝑎𝑟 𝑆 = 2 𝑛 − 1 𝛿4

𝐸 𝑎𝑠 − 𝛿2 2 = 𝛿4 𝑎2 𝑛 − 1 𝑛 + 1 − 2𝑎 𝑛 − 1 + 1

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑 𝑏𝑦:  𝑎 =
1

𝑛 + 1
,  𝛿4 =

𝑠

𝑛 + 1
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Estimator Comparison

𝜹𝟒
𝜹𝟏

𝟐 𝜹𝟑
𝟐 𝜹𝟐

𝟐

estimator 𝑆

𝑛 + 1

𝑆

𝑛

𝑆

𝑛 − 1

𝑆

𝑛 − 2

MSE
𝛿4

2

𝑛 + 1
𝛿4

2𝑛 − 1

𝑛2
𝛿4

2

𝑛 − 1
𝛿4

2𝑛 − 1

(𝑛 − 2)2
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Estimator Comparison

Example:   let R= #of tosses needed to reach 𝑘 heads,  𝜃 = 𝑝(ℎ𝑒𝑎𝑑)

𝑃 𝑅 = 𝑟 =  𝑟−1 𝐶𝑘−1𝜃𝑘 1 − 𝜃 𝑟−𝑘 𝑟 = 𝑘, 𝑘 + 1, …

R has negative binomial distribution.

(𝟏) MLE       𝜃1 =
𝑘

𝑟

𝟐  Bayes      𝜋 𝜃 ∝ 𝜃 1 − 𝜃 −
1

2

⟹ 𝜋 𝜃 𝑅 ∝ 𝜃𝑘−
1
2 1 − 𝜃 𝑟−𝑘−

1
2

⟹ 𝜃2 = 𝐸 𝜃 𝑅 =  
𝑘 +

1
2

𝑟 + 1
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Estimator Comparison

(𝟑) UMVUE:  𝑟 is complete and sufficient for 𝜃:

𝐸
1

𝑟 − 1
=

𝜃

𝑘 − 1

⟹ 𝜃3 =
𝑘 − 1

𝑟 − 1
 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑈𝑀𝑉𝑈𝐸 𝑜𝑓 𝜃
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Outline of Week 7 Lectures
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• Estimator Comparison

• Summary
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Summary

𝟏 𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅: 

Estimate 𝜃 by the value መ𝜃 which maximizes the likelihood

𝟐 𝑩𝒂𝒚𝒆𝒔: 

Let 𝜋 𝜃  be a prior distribution for 𝜃 leading to a posterior 𝜋 𝜃|𝑋

Let 𝐿(𝜃, መ𝜃) be a loss function. Choose መ𝜃 to minimize:    𝛩
𝐿(𝜃, መ𝜃) 𝜋 𝜃|𝑋 𝑑𝜃 

𝐿 𝜃, መ𝜃 = (𝜃 − መ𝜃)2  ⟹  መ𝜃 = 𝐸 𝜃|𝑋

𝐿 𝜃, መ𝜃 = 𝜃 − መ𝜃     ⟹  መ𝜃 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓𝜋 𝜃|𝑋
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Summary

𝟑 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒔𝒕: 

(a) If possible, find the UMVUE of 𝜃

(b) If (a) hard, use the MLE መ𝜃 which is asymptotically unbiased and whose 

efficiency ⟶ 1  as  𝑛 ⟶ ∞ 

(1), (2) and (3) may not exist!

Example:

𝑈𝑀𝑉𝑈𝐸:   𝐵𝑒𝑟𝑛(𝑝). Then  𝜃 =
𝑝

1−𝑝
⟹ 𝑈𝑀𝑉𝑈𝐸 𝑜𝑓𝜃 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡    



66

Summary

▪ 𝑀𝐿𝐸 and 𝐵𝑎𝑦𝑒𝑠 may not be unique, but 𝑈𝑀𝑉𝑈𝐸 is unique.

▪ 𝑀𝐿𝐸 has invariance property, 𝑈𝑀𝑉𝑈𝐸 and 𝐵𝑎𝑦𝑒𝑠 do not.

▪ 𝐵𝑎𝑦𝑒𝑠: incorporate prior information, but 𝑀𝐿𝐸 and 𝑈𝑀𝑉𝑈𝐸 don’t.
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