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Outline of Week 04 Lectures

•Poisson Process

•Point Process

2
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Bionomial Distribution: 𝑋 ∼ 𝐵 𝑛, 𝑝
probability of exactly k success in n trials:

𝑃 𝑋 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

𝐵 𝑛, 𝑝        𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛𝑝) 
𝑛 → ∞

𝑛𝑝 remains constant

Recall:  Binomial Distribution

and its relation to Poisson 

Distribution
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• Recall: Binomial and Poisson distributions:

     Both distributions can be used to model the number of 

     occurrences of some event.

• Recall: Poisson arrivals are the limiting behavior

     of Binomial random variables. (Refer to Poisson approximation of 

     Binomial random variables in your text book):

     Where:
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Poisson Processes
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• Poisson arrivals over an interval form a Poisson random 

variable whose parameter depends on the duration of 

that interval. 

• Moreover because of the Bernoulli nature of the 

underlying basic random arrivals, events over 

nonoverlapping intervals are independent. 

• We shall use these two key observations to define a 

Poisson process formally.

Poisson Processes

 



7

Definition:   X(t) = n(0, t) represents a Poisson process if:

(i) the number of arrivals n(t1, t2) in an interval (t1, t2) of length 

     t = t2 – t1  is a Poisson random variable with parameter       

     Thus:

𝑃 𝑛 𝑡1, 𝑡2 = 𝑘 = 𝑒−𝜆𝑡
𝜆𝑡 𝑘

𝑘!
 𝑘 = 0,1, 2, … , 𝑡 = 𝑡2 − 𝑡1 

And:

Poisson Processes

 

.t
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(ii) If the intervals (t1, t2) and (t3, t4) are nonoverlapping, then the 

random variables n(t1, t2) and n(t3, t4) are independent. 

Since n(0, t) ~ 𝑃(𝜆𝑡) we have:

𝐸 𝑋 𝑡 = 𝐸 𝑛 0, 𝑡 = 𝜆𝑡

And:

𝐸 𝑋2 𝑡 = 𝐸 𝑛2 0, 𝑡 = 𝜆𝑡 + 𝜆2𝑡2

Poisson Processes
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To determine the autocorrelation function 𝑅𝑥𝑥(𝑡1, 𝑡2)  let  t2 > t1 

then from (ii) above n(0, t1) and n(t1, t2) are independent Poisson 

random variables with parameters 𝜆𝑡1 and 𝜆 𝑡2 − 𝑡1  

respectively. 

Thus: 

𝐸 𝑛 0, 𝑡1 𝑛 𝑡1, 𝑡2 = 𝐸 𝑛 0, 𝑡1 𝐸 𝑛 𝑡1, 𝑡2 = 𝜆2𝑡1(𝑡2 − 𝑡1)

Poisson Processes
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But:

𝑛 𝑡1, 𝑡2 = 𝑛 0, 𝑡2 − 𝑛 0, 𝑡1 = 𝑋 𝑡2 − 𝑋 𝑡1

And:

𝐸 𝑋 𝑡1 𝑋 𝑡2 − 𝑋 𝑡1 = 𝑅𝑥𝑥 𝑡1, 𝑡2 − 𝐸[𝑋2 𝑡1 ]

We obtain:

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝜆2𝑡1 𝑡2 − 𝑡1 + 𝐸 𝑋2 𝑡1 = 𝜆𝑡1 + 𝜆2𝑡1𝑡2

𝑡2 ≥ 𝑡1

Similarly:

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝜆𝑡2 + 𝜆2𝑡1𝑡2

Thus:

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝜆2𝑡1𝑡2 + 𝜆 min(𝑡1, 𝑡2)
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Then:

And: 

And: 
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Notice that: 

• The Poisson process X(t) does not represent a wide 

sense stationary process.

• Although X(t) does not represent a wide sense stationary process,

its derivative           does represent a wide sense stationary process.

Poisson Processes

 

)(tX 
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Since           is a wide sense stationary process;

nonstationary inputs to linear systems can lead to 

wide sense stationary outputs, an interesting observation.

 

• Sum of Poisson Processes:

   If X1(t) and X2(t) represent two independent Poisson processes,

   then their sum  X1(t) + X2(t) is also a Poisson process with 

   parameter                   (Follows from the definition

   of the Poisson process in (i) and (ii)).

)(tX 

.)( 21 t +

Poisson Processes
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Random selection of Poisson Points:

   Let                        represent random arrival points associated with a 

   Poisson process X(t) with parameter 𝜆𝑡, and associated with

   each arrival point, define an independent Bernoulli random 

   variable Ni , where:

  , ,, , 21 ittt
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Define the processes: 

We claim that both Y(t) and Z(t) are independent Poisson processes

with parameters          and       , respectively, where q = 1- p.

When X(t) is a Poisson process  with parameter     .

pt qt
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Proof:

But given  X(t) = n, we have                                           so that:

And:
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More generally:
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Notice that Y(t) and Z(t) are generated as a result of random 

Bernoulli selections from the original Poisson process X(t), where 

each arrival gets tossed over to either Y(t) with probability p or to 

Z(t) with probability q. Each such sub-arrival stream is also 

a Poisson process. Thus random selection of Poisson points 

preserve the Poisson nature of the resulting  processes. However, 

deterministic selection from a Poisson process destroys the 

Poisson property for the resulting processes.

t

t

q

p p p

)(~)( tPtX 
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t

q
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Inter-arrival Distribution for Poisson Processes

Let     denote the time interval (delay) to the first arrival from any 

fixed point t0. To determine the probability distribution of the 

random variable      we argue as follows: Observe that the event 

        is the same as “n(t0, t0+t) = 0”, or the complement event  

        is the same as the event  “n(t0, t0+t) > 0” . 

1
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Hence the distribution function of      is given by:

Its derivative gives the probability density 

function for      to be:

i.e.      is an exponential random variable with parameter      

so that:
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Similarly, let tn represent the nth random arrival point for a Poisson

process. Then: 

and hence:
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Inter-arrival Distribution for Poisson Processes
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which represents a Gamma density function. i.e., the waiting time to 

the nth Poisson arrival has a Gamma distribution.

Moreover:


=

=
n

i
int

1



where     is the random inter-arrival duration between the (i – 1)th 

and  ith events. Notice that        are independent, identically distributed 

random variables. Hence using their characteristic functions, it follows 

that all inter-arrival durations of a Poisson process are independent 

exponential random variables with common parameter

i.e., 

i

.
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Inter-arrival Distribution for Poisson Processes
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Alternatively, we have     is an exponential random variable. 

By repeating that argument after shifting t0 to the 

new point t1, we conclude that       is an exponential random variable. 

Thus the sequence                          are independent exponential random 

variables with common p.d.f. 

Thus if we systematically tag every mth outcome of a Poisson process

 X(t) with parameter       to generate a new process e(t), then the 

inter-arrival time between any two events of e(t) is a Gamma random 

variable. 

1

2

 ,,,, 21 n

t

Inter-arrival Distribution for Poisson Processes
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Notice that:

The inter-arrival time of e(t) in that case represents an Erlang-m 

random variable, and e(t) is an Erlang-m process.

In summary, if Poisson arrivals are randomly redirected to form new 

queues, then each such queue generates a new Poisson process. 

./1)]([  then  ,  if and  ,/)]([  === teEmmteE

Inter-arrival Distribution for Poisson Processes
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Poisson Departures between Exponential Inter-arrivals

Let                        and                        represent two independent 

Poisson processes called arrival and departure processes.

)(~)( tPtX  )(~)( tPtY 

Let Z represent the random interval between any two successive 

arrivals of X(t). Z has an exponential distribution with 

parameter      Let N represent the number of “departures” of Y(t)

between any two successive arrivals of X(t). Then from the Poisson 

nature of the departures we have:
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The random variable N has a geometric distribution. Thus if 

customers come in and get out according to two independent 

Poisson processes at a counter, then the number of arrivals between 

any two departures has a geometric distribution. Similarly the

number of departures between any two arrivals also represents 

another geometric distribution.

Poisson Departures between Exponential Inter-arrivals
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Example

Suppose there are 2 Poisson processes with 𝜆1 = 1, 𝜆2 = 2.
Find the probability that 2nd arrival of first process occurs before 3rd arrival of the second process.

Solution:

Consider the superposition of these two Poisson processes. It is still a Poisson process with 𝜆 =

1 + 2 = 3. Also each event of the resulting process is from first process with probability 
𝜆1

𝜆1+𝜆2
=

1

3
 

and otherwise with probability 
2

3
. So for the 2nd arrival of first process to occur before 3rd arrival of 

the second process, we need the first 4 occurrences to cover at least 2 occurrences of the first 

process:



𝑘=2

4
4

𝑘

1

3

𝑘
2

3

4−𝑘
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Example: Coupon Collecting

 Suppose a cereal manufacturer inserts a sample of one type 

of coupon randomly into each cereal box. Suppose there are n such 

distinct types of coupons. One interesting question is that how many 

boxes of cereal should one buy on the average in order to collect 

at least one coupon of each kind?
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 We shall reformulate the above problem in terms of Poisson

processes. Let                                      represent n independent 

identically distributed Poisson processes with common parameter      

Let                represent the first, second,     random arrival instants 

of the process                                    They will correspond to the first, 

second,        appearance of the ith  type coupon in the above problem.

Let: 

so that the sum X(t) is also a Poisson process with parameter 
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31
t  1n

t

Nth

arrivalIst

stopping

  time T

/1 represents: The average inter-arrival duration between any 
two arrivals of                                      whereas:

represents the average inter-arrival time for the combined 
sum process X(t). 

, , 2, 1, ),( nitX i =

/1

Example: Coupon Collecting
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In an ordinary Poisson process X(t), only one event occurs at

any arrival instant. Instead suppose a random number 

of events Ci occur simultaneously as a cluster at every arrival instant

of a Poisson process. If X(t) represents the total number of

all occurrences in the interval (0, t), then X(t) represents a compound

Poisson process, or a bulk arrival process. 

Bulk Arrivals and Compound Poisson Processes
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Inventory orders, arrivals at an airport queue, tickets purchased 

for a show, etc. follow this process (when things happen, they happen 

in a bulk, or a bunch of items are involved.) 

t

1
t

2
t

n
t


t

1
t

2
t

n
t
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(a) Poisson Process (b) Compound Poisson Process

Let:

,2 ,1 ,0     },{ === kkCPp ik

Bulk Arrivals and Compound Poisson Processes
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represent the common probability mass function for the occurrence 

in any cluster Ci. Then the compound process X(t) satisfies:

where N(t) represents an ordinary Poisson process with parameter     

Let: 
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represent the moment generating function associated with the cluster 

Statistics. Then the moment generating function of the 

compound Poisson process X(t) is given by:
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If we let:

where            represents the k fold convolution of the sequence {pn} 

with itself, we obtain:
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The above, represents the probability that there are n arrivals 

in the interval (0, t) for a compound Poisson process X(t). 

We can rewrite            also as:

where                   which shows that the compound Poisson process

can be expressed as the sum of integer-scaled independent 

Poisson processes                            Thus:

)(z
X
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More generally, every linear combination of independent Poisson 

processes represents a compound Poisson process. 
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•Poisson Process

•Point Process

Outline of Week 04 Lectures



Many discrete events in continuous time

39

Qmee, 2013

Online actions

Disease dynamics

Financial trading Mobility dynamics



Variety of processes behind these events

40

Stock
trading

Events are (noisy) observations of a 
variety of complex dynamic processes…

…in a wide range of temporal scales.

Article creation 
in Wikipedia

Ride-sharing 
requests

News spread in 
Twitter

A user’s reputation 
in Quora

FAST SLOW

Flu 
spreading

Reviews and 
sales in Amazon



Example I: Information propagation

41

Friggeri et al., 2014

They can have an impact 
in the off-line world 

S D
means

D follows S
Christine

Bob

Beth

Joe

David

3.00pm

3.25pm

3.27pm

4.15pm



✗

Upvote

Addition
Refutation

Question
Answer

Example II: Knowledge creation
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Aren’t these event traces just time series?

Discrete and continuous 
times series

Discrete events in 
continuous time

What about aggregating 
events in epochs?

How long is each epoch?

How to aggregate events per epoch?

What if no event in one epoch?

What about time-related queries?

The framework of 
temporal point processes 

provides a native representation  

Epoch 1 Epoch 2 Epoch 3
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1. Intensity function
2. Basic building blocks

3. Superposition
4. Marks and SDEs with jumps

Temporal Point Processes (TPPs): 
Introduction
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Temporal point processes

time

Temporal point process: 
A random process whose realization consists of 
discrete events localized in time 

Discrete events

History, 

Formally: 

Dirac delta function
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Model time as a random variable

History, 

time

Prob. between [t, t+dt)

Prob. not before t

density

Likelihood of a timeline:
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Problems of density parametrization (I)

It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition function)

2. Difficult to combine timelines

time
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Intensity function

History, 

time

Intensity: 
Probability between [t, t+dt) but not before t  

Prob. between [t, t+dt)

Prob. not before t

Observation: 

density

It is a rate = # of events / unit of time 
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Advantages of intensity parametrization (I)

time

Suitable for model design and interpretable:

1. Intensities only need to be nonnegative

2. Easy to combine timelines
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Relation between f*, F*, S*, λ*
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1. Intensity function
2. Basic building blocks

3. Superposition
4. Marks and SDEs with jumps

Representation: 
Temporal Point Processes
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Poisson process

Intensity of a Poisson process

Observations:

time

1. Intensity independent of history

2. Uniformly random occurrence

3. Time interval follows exponential distribution
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Fitting & sampling from a Poisson

time

Fitting by maximum likelihood:

Sampling using inversion sampling:
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Inhomogeneous Poisson process

time

Intensity of an inhomogeneous Poisson process

Example:

(Independent of history)



Fitting & sampling from inhomogeneous Poisson

time

Fitting by maximum likelihood:
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Sampling using thinning (reject. sampling) + inverse sampling:

1. Sample     from Poisson process with intensity
using inverse sampling

3. Keep the sample if 

2. Generate Keep sample with 
prob. 
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Terminating (or survival) process

time

Intensity of a terminating (or survival) process

Observations:

1. Limited number of occurrences
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Self-exciting (or Hawkes) process

time

Intensity of self-exciting 
(or Hawkes) process:

Observations:

1. Clustered (or bursty) occurrence of events

2. Intensity is stochastic and history dependent

History, 
Triggering kernel



Fitting a Hawkes process from a recorded timeline

time

The max. likelihood 
is jointly convex

 in     and 

Fitting by maximum likelihood:

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity         changes 
over time
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Summary

Building blocks to represent different dynamic processes:

Poisson processes:

Terminating point processes:

Self-exciting point processes:

Inhomogeneous Poisson processes:

We know how to fit them 
and how to sample from them
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1. Intensity function
2. Basic building blocks

3. Superposition
4. Marks and SDEs with jumps

Representation: 
Temporal Point Processes
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Mutually exciting process

Clustered occurrence affected by neighbors

timeBob

Christine
time

History

History
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Mutually exciting terminating process

Clustered occurrence affected by neighbors

timeBob

Christine
time

History



63

1. Intensity function
2. Basic building blocks

3. Superposition
4. Marks and SDEs with jumps

Representation: 
Temporal Point Processes
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Marked temporal point processes

Marked temporal point process: 
A random process whose realization consists of discrete 
marked events localized in time 

History, 

time

time
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Independent identically distributed marks

time

Distribution for the marks:

Observations:

1. Marks independent of the temporal dynamics

2. Independent identically distributed (I.I.D.)
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Dependent marks: SDEs with jumps

Observations:

1. Marks dependent of the temporal dynamics

2. Defined for all values of t

Marks given by stochastic differential equation with jumps:

Drift Event influence

History, 

time
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Dependent marks: distribution + SDE with jumps

1. Marks dependent on the temporal dynamics

2. Distribution represents additional source of uncertainty

Distribution for the marks:

Event influenceDriftObservations:

History, 

time
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Mutually exciting + marks

Neighbor influenceDrift

Marks affected by neighbors

time

Christine

Bob
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Marked TPPs as stochastic dynamical systems

It gets 
infected

Example: Susceptible-Infected-Susceptible (SIS)

It recovers
Susceptible Infected Susceptible

SDE with jumps

If friends are infected, higher infection rate

Node is susceptible

Infection
rate

Recovery
rate

SDE with jumps

Self-recovery rate when 
node gets infected

If node recovers, 
rate to zero

Rate increases if 
node gets treated



Models & Inference

1. Modeling event sequences
2. Clustering event sequences

3. Capturing complex dynamics
4. Causal reasoning on event sequences



Event sequences as cascades

S D
means

D follows S
Christine

Bob

Beth

Joe

David

3.00pm

3.25pm

3.27pm

4.15pm

Event:

Time User

Information Diffusion

[Leskovec et al., 2009]

Disease Diffusion

[Rizoiu et al., 2018]



An example: idea adoption

Friggeri et al., 2014

They can have an impact 
in the off-line world 

S D
means

D follows S
Christine

Bob

Beth

Joe

David

3.00pm

3.25pm

3.27pm

4.15pm



Infection cascade representation

Infection event:

TimeUser
Cascade

N1(t)

N2(t)

N3(t)

We represent an infection cascade using 
terminating temporal point processes:

N4(t)

N5(t)



Infection intensity 

N1(t)

N2(t)

N3(t)

N4(t)

N5(t)

Source
(given, not modeled)

Users get 
infected only 

once
Influence from 

user v on user u

Previous 
infections of user v

Memory

Follow-ups
(modeled)

[Gomez-Rodriguez et al., ICML 2011]



Model inference from multiple cascades

Conditional 
intensities

Diffusion log-likelihood

Maximum likelihood 
approach to find 

model parameters!

Theorem. For any choice of parametric memory, 
the maximum likelihood problem is convex.

Sum up log-likelihoods 
of multiple cascades!

[Gomez-Rodriguez et al., ICML 2011]



Propagation over networks
with variable influence

#greece
retweets

T0

Dynamic influence

In some cases, influence change over time:

[Gomez-Rodriguez et al., WSDM 2013]



Recurrent events: beyond cascades

In general, users perform recurrent 
events over time. E.g., people repeatedly 
express their opinion online:

Up to this point, each users is only 
infected once, and event sequences 
can be seen as cascades.

Christine

Bob

Beth

Joe

David



Recurrent events representation

[Farajtabar et al., NIPS 2014]

We represent messages using nonterminating 
temporal point processes:

Recurrent event:

TimeUser

N1(t)

N2(t)

N3(t)

N4(t)

N5(t)



Recurrent events intensity

User’s
intensity

Events on her 
own initiative

[De et al., NIPS 2016]

H
aw

ke
s p

ro
ce

ss

N1(t)

N2(t)

N3(t)

N4(t)

N5(t)

Cascade sources!

Influence from 
user v on user u

Previous 
messages by user v

Memory



Models & Inference

1. Modeling event sequences
2. Clustering event sequences

3. Capturing complex dynamics
4. Causal reasoning on event sequences



Event sequences

Often, the cluster (topic, meme, etc.) that each event in a 
sequence belongs to is not known:  

So far, we have assumed 
the cascade (topic, meme, 
etc.) that each event 
belongs to was known. 

Politics

Music



tt

Clustering event sequences

Assume the event cluster to be hidden and aim to automatically
learn the cluster assigments from the data: 

[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017] 

Bayesian methods to cluster event sequences in the context of:

Learning

Online News
Health care



Hierarchical Dirichlet Hawkes process

[Mavroforakis et al., WWW 2017]

Introduction to programming 
Discrete math
Project presentation

t

For/do-while
 loops

If … else

How to write
 switch Private

functions

Define
 functions

Class
 inheritance

Class
 destructor

Plot
library

Logic

Set theory Geometry

Graph TheoryPowerpoint
vs. Keynote

Export
pptx to pdf

PP
templates

1st year computer science student
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Events representation

We represent the events using marked temporal 
point processes:

Task Task

Event:

Cluster
(hidden)

Time Content

[Mavroforakis et al., WWW 2017]



H
aw

ke
s p

ro
ce

ss
Cluster intensity

Task Task

Own 
initiative

Follow-up

Cluster
popularity

New cascade
rate

Memory

Intensity 
or rate 

(events / hour)
[Mavroforakis et al., WWW 2017]



User events intensity

Users adopt more than one cluster:

A user’s learning events as a multidimensional Hawkes:

clusterTime

Content

[Mavroforakis et al., WWW 2017]

tt



People share same clusters

Different users adopt same clusters

- Infinite # of clusters. 
- Shared parameters across users.

Cluster distribution from a Dirichlet process:

tt

[Mavroforakis et al., WWW 2017]

Efficient model inference using 
Sequential Montecarlo!



In
te

n
si

ty

Learning cluster (I): Version Control

Version control tasks tend to be specific, 
quickly solved after performing few questions

IntensitiesContent

[Mavroforakis et al., WWW 2017]



Learning cluster (II): Machine learning

Machine learning tasks tend to be more 
complex and require asking more questions

IntensitiesContent

[Mavroforakis et al., WWW 2017]



Models & Inference

1. Modeling event sequences
2. Clustering event sequences

3. Capturing complex dynamics
4. Causal reasoning on event sequences



Up to now, we have focused on simple temporal 
dynamics (and intensity functions): 

Towards real-world temporal dynamics

Recent works make use of RNNs to capture more
complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017; 
Trivedi et al., 2017; Xiao et al., 2017a; 2018] 



Neural Hawkes process

[Mei & Eisner, NIPS 2017]

1) History effect does not need to be additive

2) Allows for complex memory effects 
    (such as delays)



Memory

Neural Hawkes process

[Mei & Eisner, NIPS 2017]

Excitation & inhibition

Parameter learning using 
stochastic gradient descent



Applications (I): Predictive Models

Know-Evolve, Trivedi et al. (2017)

Neural Survival Recommender, Jing & Smola (2017)

Coevolutionary Embedding,

   Dai et al. (2017)



Wasserstein-Distance for
Temporal Point Processes

GAN architecture

Applications (II): Generative Models

[Xiao et al., 2017 & 2018]

Key idea: Intensity- and likelihood-free models



Models & Inference

1. Modeling event sequences
2. Clustering event sequences

3. Capturing complex dynamics
4. Causal reasoning on event sequences



Temporal point processes beyond prediction

So far, we have focused on models that improve preditions:

Recent works have focused on performing causal inference
using event sequences: 

Recommendations

Link 
prediction

Community 
detection

[Trivedi et al., 2017] [Dai et al., 2017][Xiao et al., 2017]

[Xu et al., 2016; Achab et al., 2017; Kuśmierczyk & Gomez-Rodriguez, 2018] 

Granger
causality graph

Treatment effect



Uncovering Causality from Hawkes Processes

[Achab et al., ICML 2017] 

Multivariate Hawkes process:

Effect of v‘s past events on u

Granger causality:

“X causes Y in the sense of Granger causality if forecasting
future values of Y is more successful while taking X past

values into account" [Granger, 1969] 



Uncovering Causality from Hawkes Processes

[Achab et al., ICML 2017] 

Multivariate Hawkes process:

Effect of v‘s past events on u

Granger causality on multivariate Hawkes processes:

“            does not Ganger-cause w.r.t.           if and only if
for "

[Eichler et al., 2016] 



Uncovering Causality from Hawkes Processes

[Achab et al., ICML 2017] 

Goal is to estimate                   , where: 

Average total # of events of node u whose
direct ancestor is an event by node v

Then,                    quantifies the direct causal relationship 
between nodes. 



Uncovering Causality from Hawkes Processes

[Achab et al., ICML 2017] 

Goal is to estimate                   , where: 

Average total # of events of node u whose
direct ancestor is an event by node v

Then,                    quantifies the direct causal relationship 
between nodes. 

Key idea: Estimate G using the cumulants dN(t) of the
Hawkes process. 



Uncovering Causality from Hawkes Processes

[Achab et al., ICML 2017] 

Goal is to estimate                   , where: 

Average total # of events of node u whose
direct ancestor is an event by node v

Then,                    quantifies the direct causal relationship 
between nodes. 

Key idea: Estimate G using the cumulants the dN(t) of
the Hawkes process. 

Non parametric Hawkes 
cumulant estimation method
(with TensorFlow implementation)



Next Week:

Gaussian Process

Have a good day!


	Slide 1: Stochastic Processes
	Slide 2: Outline of Week 04 Lectures
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Many discrete events in continuous time
	Slide 40: Variety of processes behind these events
	Slide 41: Example I: Information propagation
	Slide 42
	Slide 43: Aren’t these event traces just time series?
	Slide 44
	Slide 45: Temporal point processes
	Slide 46: Model time as a random variable
	Slide 47: Problems of density parametrization (I)
	Slide 48: Intensity function
	Slide 49: Advantages of intensity parametrization (I)
	Slide 50: Relation between f*, F*, S*, λ*
	Slide 51
	Slide 52: Poisson process
	Slide 53: Fitting & sampling from a Poisson
	Slide 54: Inhomogeneous Poisson process
	Slide 55: Fitting & sampling from inhomogeneous Poisson
	Slide 56: Terminating (or survival) process
	Slide 57: Self-exciting (or Hawkes) process
	Slide 58: Fitting a Hawkes process from a recorded timeline
	Slide 59: Summary
	Slide 60
	Slide 61: Mutually exciting process
	Slide 62: Mutually exciting terminating process
	Slide 63
	Slide 64: Marked temporal point processes
	Slide 65: Independent identically distributed marks
	Slide 66: Dependent marks: SDEs with jumps
	Slide 67: Dependent marks: distribution + SDE with jumps
	Slide 68: Mutually exciting + marks
	Slide 69: Marked TPPs as stochastic dynamical systems
	Slide 70
	Slide 71: Event sequences as cascades
	Slide 72: An example: idea adoption
	Slide 73: Infection cascade representation
	Slide 74: Infection intensity 
	Slide 75: Model inference from multiple cascades
	Slide 76
	Slide 77: Recurrent events: beyond cascades
	Slide 78: Recurrent events representation
	Slide 79: Recurrent events intensity
	Slide 80
	Slide 81: Event sequences
	Slide 82
	Slide 83: Hierarchical Dirichlet Hawkes process
	Slide 84: Events representation
	Slide 85: Cluster intensity
	Slide 86: User events intensity
	Slide 87: People share same clusters
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: Neural Hawkes process
	Slide 93: Neural Hawkes process
	Slide 94: Applications (I): Predictive Models
	Slide 95
	Slide 96
	Slide 97: Temporal point processes beyond prediction
	Slide 98: Uncovering Causality from Hawkes Processes
	Slide 99: Uncovering Causality from Hawkes Processes
	Slide 100: Uncovering Causality from Hawkes Processes
	Slide 101: Uncovering Causality from Hawkes Processes
	Slide 102: Uncovering Causality from Hawkes Processes
	Slide 103

