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Recall: Binomial Distribution
and Its relation to Poisson
Distribution

Bionomial Distribution: X ~ B(n,p)
probability of exactly k success in n trials:

P =1 =(,)pk(1—p)n
B(n,p) no > Poisson(np)

np remains constant



Poisson Processes

Recall: Binomial and Poisson distributions:

Both distributions can be used to model the number of
occurrences of some event.

Recall: Poisson arrivals are the limiting behavior

of Binomial random variables. (Refer to Poisson approximation of

Binomial random variables in your text book):

"k arrivals occur in an
Interval of duration A"

Where:

k arrivals
%K_J
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k arrivals
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Poisson Processes

It follows that:

] k:O’ 1’ 21...1

"k arrivals occur in an o, (22)"
P =€
Interval of duration 2A" k!

since In that case:

np, = ul -2_|_—A:2,uA:2£.



Poisson Processes

Poisson arrivals over an interval form a Poisson random
variable whose parameter depends on the duration of

that interval.
Moreover because of th

e Bernoulli nature of the

underlying basic random arrivals, events over

nonoverlapping interva
We shall use these two
Poisson process formal

S are independent.
Key observations to define a

Y.



Poisson Processes

Definition: X(t) = n(0, t) represents a Poisson process if:

(1) the number of arrivals n(ty, t2) In an interval (t, t2) of length
t =t,—t; 1S a Poisson random variable with parameter At.
Thus:

(At)"

P{n(t,, t;) =k} =e™ rl

k=012, .., t=t,—t

And:



Poisson Processes

(i1) If the intervals (11, t2) and (ts, t4) are nonoverlapping, then the
random variables n(ty, t2) and n(ts, t4) are independent.

Since n(0, t) ~ P(At) we have:
E[X(t)] = E[n(0,t)] = At
And:

E[X?(t)] = E[n?(0,t)] = At + A°t?



Poisson Processes

To determine the autocorrelation function R, (t{,t,) let t,>1;

then from (i1) above n(0, t;) and n(ty, t2) are independent Poisson
random variables with parameters At; and A(t, — t;)
respectively.

Thus:

E[n(0, tyn(ty, t2)] = E[n(0, t))]E[n(ty, t2)] = A%t1(t, — 1)



But:
n(ty, t;) =n(0,t;) —n(0,t) = X(t2) — X (£1)

And:
E[X(t){X(t;) — X(t1)}] = Ryx (ty, t2) — E[X?*(t1)]

We obtain:
Ryx(ty, t2) = 2°t;(t; — t1) + E[X?(t)] = Aty + A%t; ¢,
t, >t

Similarly:
Ryx(t1,t) = Aty + Aty t,

Thus:
Rxx(tl, tz) — Aztltz + A min(tl, tz)

10



Example:

XO — X0

(Derivative as a LTI system)

Then:
He (1) = G (1) _ K — A, aconstant

dt dt

And: IR (Lt 22t ‘<t

R (b 1) = At 2)—{ 21 1= 2
% At+4 4>t
=t + AUt -t)
And:

a RXX’ (t]_1 t2)

=X +A6(t - t,).
ot (t,— )

RXX' (t11 t2) —

11



Poisson Processes

Notice that:

» The Poisson process X(t) does not represent a wide
sense stationary process.

 Although X(t) does not represent a wide sense stationary process,
its derivative X '(t) does represent a wide sense stationary process.

12



Poisson Processes

Since X'(t) Is a wide sense stationary process;
nonstationary inputs to linear systems can lead to
wide sense stationary outputs, an interesting observation.

 Sum of Poisson Processes:

If X1(t) and Xx(t) represent two independent Poisson processes,
then their sum Xq(t) + Xy(t) is also a Poisson process with
parameter (4, + 4,)t. (Follows from the definition

of the Poisson process in (i) and (it)).

13



Poisson Processes

Random selection of Poisson Points:

Let t,,t,,---, t,--- represent random arrival points associated with a

Poisson process X(t) with parameter At, and associated with
each arrival point, define an independent Bernoulli random

variable N;, where:

P(N;=L)=p, P(N;=0)=qg=1-p.

14



Poisson Processes

Define the processes:

X (t) X (t)

YO=2N, ;i ZO=20-N)=XO-Y®

We claim that both Y(t) and Z(t) are independent Poisson processes
with parameters Apt and Aqt, respectively, where q = 1- p.
When X(t) is a Poisson process with parameter At.

15



Poisson Processes

Proof:
Y (t)= iP{Y () =k | X (t) =n}P{X(t) =n)}.
But given X(t) =n, we have \((t):iNi ~ B(n, p) so that:

PLY (t) =k [ X (1) =n}=(;)p*q™, O0<k<n,

And: n
) PIX () = mh = e~ A

nl

16



o0 k ~—At o0
. . _pe
P{Y¥(t)=k}=e “ng(n L PR A = " (At)" Z(qn”)k).

~(1-q)at K
_ k e _ A—Apt (ﬂ‘ pt)
= (Apt) " =g -—jzr—w

~  P(Apt).

More generally:

PLY (t) =k, Z(t) = m} = P{Y (t) =k, X (t) =Y (t) = m}
= P{Y (t) =k, X(t) =k +m}
= P{Y (t) =k | X (t) =k + m}P{X (t) =k + m}

k

k=012, --

(k) pran et AT gan (ARDT g (0L
(k+m)! k! m!

P(Y (t)=k) P(Z(t)=m)

= P{Y (t) = KIP{Z () = m},

17



Notice that Y(t) and Z(t) are generated as a result of random
Bernoulli selections from the original Poisson process X(t), where
each arrival gets tossed over to either Y(t) with probability p or to
Z(t) with probability g. Each such sub-arrival stream is also

a Poisson process. Thus random selection of Poisson points
preserve the Poisson nature of the resulting processes. However,
deterministic selection from a Poisson process destroys the
Poisson property for the resulting processes.

Y (t) ~ P(4pt)

B MV
b b
— % V)V WY




Inter-arrival Distribution for Poisson Processes

Let 7, denote the time interval (delay) to the first arrival from any
fixed point tp. To determine the probability distribution of the
random variable 7;, we argue as follows: Observe that the event
"7, >t" Is the same as “n(to, to+t) = 07, or the complement event
"7, <t" Is the same as the event “n(to, to+t) > 0.

1St . .

arrival arrival
t N A
> t t

tn'

T

A

1 1 2
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Inter-arrival Distribution for Poisson Processes

Hence the distribution function of z, Is given by:
F. (t) 2 P{z, <t}=P{X(t) > 0} = P{n(t,.t, +1) > O}
=1-P{n(t,,t, +t)=0}=1-¢*

Its derivative gives the probability density
function for 7, to be:
dF, (1) i

f (t)= Ae™",  t>0
ﬁ() dt

l.e. 71 1s an exponential random variable with parameter A
so that: E(z,) =1/




Inter-arrival Distribution for Poisson Processes

Similarly, let t, represent the nt" random arrival point for a Poisson
process. Then:

F_(t) = Pft, <t}=P{X(t) > n}
—1-P{X(t) <n}=1-Y

and hence:

dF. (x n-1 k-1 n-1 k
()~ L () ©A(Ax) o AN
dx k=1 (k —1)| k=0 k!

n,n-1
A7X —AX

" (n-1)!

x>0




Inter-arrival Distribution for Poisson Processes

which represents a Gamma density function. i.e., the waiting time to
the n Poisson arrival has a Gamma distribution.
Moreover:

where 7; is the random inter-arrival duration between the (i — 1)t

and it events. Notice that 7, s are independent, identically distributed
random variables. Hence using their characteristic functions, it follows
that all inter-arrival durations of a Poisson process are independent
exponential random variables with common parameter A.

l.e.,

f()=4e", t20.

22



Inter-arrival Distribution for Poisson Processes

Alternatively, we have 7, Is an exponential random variable.
By repeating that argument after shifting to to the
new point t;, we conclude that 7, Is an exponential random variable.

Thus the sequence z,,7,,--,7,,--- are independent exponential random
variables with common p.d.f.

Thus if we systematically tag every m outcome of a Poisson process
X(t) with parameter At to generate a new process e(t), then the

Inter-arrival time between any two events of e(t) is a Gamma random
variable.



Inter-arrival Distribution for Poisson Processes

Notice that:

E[e(t)]=m/A, andif A=mg, then E[e(t)]=1/ .

The inter-arrival time of e(t) in that case represents an Erlang-m
random variable, and e(t) is an Erlang-m process.

In summary, if Poisson arrivals are randomly redirected to form new
queues, then each such queue generates a new Poisson process.



Poisson Departures between Exponential Inter-arrivals

Let X(t)~P(At) and Y (t) ~ P(ut) represent two independent
Poisson processes called arrival and departure processes.

X() = \ \ \ AN
T \, \,
e

et Z represent the random interval between any two successive
arrivals of X(t). Z has an exponential distribution with

parameter 4. Let N represent the number of “departures” of Y(t)
between any two successive arrivals of X(t). Then from the Poisson
nature of the departures we have:

k
P{N =k|Z =t}=¢" (ﬁ’(tl) .



Poisson Departures between Exponential Inter-arrivals

P{N =k}=[_ P{N =k |Z =}, (t)dt
- j gt U oAt

=/ j C(ut) et

Kk
A )z, 1 %° kX
_/1+ﬂ(;t+uj Wone dx

/
Vo

k!

Kk
:(ﬂ) (/‘j k=012 .-
A+ A+u




Poisson Departures between Exponential Inter-arrivals

The random variable N has a geometric distribution. Thus if
customers come In and get out according to two independent
Poisson processes at a counter, then the number of arrivals between
any two departures has a geometric distribution. Similarly the
number of departures between any two arrivals also represents
another geometric distribution.



Example

Suppose there are 2 Poisson processes with 4, = 1,1, = 2.
Find the probability that 2" arrival of first process occurs before 3 arrival of the second process.

Solution:

Consider the superposition of these two Poisson processes. It is still a Poisson process with A =

1 4+ 2 = 3. Also each event of the resulting process is from first process with probability 7 ’11/1 = %
1 2

and otherwise with probability % So for the 2" arrival of first process to occur before 37 arrival of
the second process, we need the first 4 occurrences to cover at least 2 occurrences of the first

>OE R



Example: Coupon Collecting

Suppose a cereal manufacturer inserts a sample of one type
of coupon randomly into each cereal box. Suppose there are n such
distinct types of coupons. One interesting question is that how many
boxes of cereal should one buy on the average in order to collect
at least one coupon of each kind?



Example: Coupon Collecting

We shall reformulate the above problem in terms of Poisson
processes. Let X, (t), X,(t),---, X, (t) represent n independent
Identically distributed Poisson processes with common parameter At.
Let t,,t,,--- represent the first, second, ... random arrival instants
of the process X, (t), 1=1,2,---,n. They will correspond to the first,
second, --- appearance of the i" type coupon in the above problem.

Let: n
X(t) = Z;,Xi(t),

so that the sum X(t) is also a Poisson process with parameter ut, where

u=nAi.



Example: Coupon Collecting

1/ A represents: The average inter-arrival duration between any
two arrivals of X.(t),1=1,2,---,n, whereas:

1/ it represents the average inter-arrival time for the combined
sum process X(t).

Nth . stopping
arrival / ime T

R v
—

trt

nl



Bulk Arrivals and Compound Poisson Processes

In an ordinary Poisson process X(t), only one event occurs at

any arrival instant. Instead suppose a random number

of events C; occur simultaneously as a cluster at every arrival instant
of a Poisson process. If X(t) represents the total number of

all occurrences in the interval (0, t), then X(t) represents a compound
Poisson process, or a bulk arrival process.



Bulk Arrivals and Compound Poisson Processes

Inventory orders, arrivals at an airport queue, tickets purchased
for a show, etc. follow this process (when things happen, they happen
In a bulk, or a bunch of items are involved.)

C,=3  C,=2 C =4
—— — ——

DR N O )
t, t, t t, t, t
(a) Poisson Process (b) Compound Poisson Process

Let:
p. =P{C. =k}, k=0,1,2,--



represent the common probability mass function for the occurrence
In any cluster C;. Then the compound process X(t) satisfies:

N (t)

X(t): Zci,

where N(t) represents an ordinary Poisson process with parameter A.
Let:

P(2) = E{zCi}:épsz



represent the moment generating function associated with the cluster
Statistics. Then the moment generating function of the
compound Poisson process X(t) is given by:

$.(2) = 3 2"P{X () = n} = E{z* ¥}

= E{E[2*Y [N(t) =k} = E[E{z"* ' |N(t) = k}]
- g(E{z"i HPIN (1) = k}

© k
_ Z pk (Z)e—;tt (ﬂ,t!) _ pA(-P(2)
k=0



If we let:

k
Pk(z)é[Z pnzkj - > plz"
n=0 n=0

where {py"} represents the k fold convolution of the sequence {pn}
with itself, we obtain:

POX () =np= Yo G p
k=0



The above, represents the probability that there are n arrivals
In the interval (0, t) for a compound Poisson process X(t).

We can rewrite @ (2) also as:
6 (2) = e At-2)g=At(1-2") | a-Atl-7)

where A, = p, 4, which shows that the compound Poisson process
can be expressed as the sum of integer-scaled independent
Poisson processes m, (t), m,(t),---. Thus:

X (t) =S km, (t).

More generally, every linear combination of independent Poisson
processes represents a compound Poisson process.



Outline of Week 04 Lectures

ePoisson Process
ePoint Process
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Many discrete events in continuous time

Google | spotify
(1 Tube] Guatemala

Financial trading Mobility dynamics

39



Variety of processes behind these events

Events are (noisy) observations of a
variety of complex dynamic processes...

Article creation

\ Stock ™
- £, Flu in Wikipedia

¢ trading =9 chreading
, News spread in @ Reviews and

Twitter sales in Amazon
Ride-sharing A user’s reputation
requests in Quora

FAST
L >

...in @ wide range of temporal scales.



Example I: Information propagation

Smeans D Christine

D follows S
3.00pm

3.25pm
Beth
3.27pm
David
4.15pm

? 99 ?

R
~ \

They can have an impact theguardian
in the off-line world Click and elect: how fake news helped

Donald Trump win a real election



L % Barack Obama _ 03:21, 20 September 2016 =

@ Q “Barack” and “Obama"” redirect here. For his father, see Barack Obama Sr. For other uses of “Barack”, see Barack (disambiguation).
(cisambiguation). . wge
5 —— . . . is a|Kenyan|politician
o e Barack Obama: Revision history yanp -
208 ::::f:::::;:’;":;ﬂ::’d 03:41, 28 November 2016 Ranze (talk | contribs) . . (301,105 bytes) (+18) . . (E X . .
WIKIPEDIA rorosentna ne 13n Dvs03:32, 28 November 2016 Xin Deui (talk | contribs) . . (301,087 bytes) (-68) . . \L pﬂss.fbfe Vanda‘ffsm by M L MEG f 6
States House of Representat

Die freie Enzyklopadie 00:57, 28 November 2016 SporkBot (talk | contribs) m . . (301,155 bytes) (-37)

07:03, 27 November 2016 Saiph121 (talk | contribs) . . (301,192 bytes) (+25) .

is an American politician
P @ Addition

e A~ N [ Refutation
) S

? 7P T :

nea e | Upvote | 150
Moving to Australia Working in Australia  Study abroad in Australia +4 /' pe o you

However,
Australl

What are the pros and cons of living in Australia? gl

Hope it helpst )

Vv

dlenges and

Possible Challenges

M Sharma, Lived in Australia as Migrant, Student, Worker,
ness Owner & Family Man

# Answer Request v | Follow 108 Comment Share 8 Downvote

O Question

ﬁ o [ Answer |
77 T -
|

—0

i
;L
@ Upvote,

ik B B

[y )



Aren’t these event traces just time series?

trrerrerrTYY: ottt T 1.

t

g/\/\:: :: . ? 'QE

The framework of

temporal point processes
provides a native representation |,

T : What about time-related queries?

TTT :

Epoch 1'Epoch 2 Epoch 3 ' t




Temporal Point Processes (TPPs):
Introduction

1. Intensity function

44



Temporal point processes

Temporal point process:

A random process whose realization consists of
discrete events localized in time H = {¢;}

Discrete events

/N

N 5
Py I : time
t to ts t t="1T
\ J
|
History, 7 (¢) dN(t) €{0,1}  Dirac delta function
V V

Formally: N(t) = ft s) B dN (t Z o(t —t;)



Model time as a random variable

density
Prob. between [t t+dt) f* f(tH(2))
| |
| |
o IR T T T/(\ : time
- _ it
t t+ dt =T
\ J S*(t)
|

Prob. not before t

History, 7 (¢)




Problems of density parametrization ()

f( o (t2) f7( S*ET)
: T T T T :
| I
' I
™ time
t="1T
exp(w, l/J (t1)) / exp{w, P*(t3)) f exp(w, " (T))
exp(w, 1/) (t,)) Z exp(w, * (t)) t Z
YA

It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition function)

2. Difficult to combine timelines

47



Intensity function

density
Prob. between [t t+dt) f*( ) f(tl'H(t))

» :
oY : T T V(-\ : , time
t t+ dt t="T
\ ' J b s*(th
History, H(t) Prob. not before t
Intensity:
Probability between [t, t+dt) but not before t
* F*(t)dt
AT (1)dt = 50 >0 ®m M\*(t)dt=E[dN(t)|H(t)]

Observation: \* (t) It is a rate = # of events / unit of time .



Advantages of intensity parametrization (l)

f

| “(t1) f
D 1
1

) |

“(t2) f7(ts) ()
T T T i ‘ time
to t3 t
T
A (t1) A% (t2) A* (f3) A*(t) exp (/0 N (7) d'r)
e
(w, " (1)) w q.j(tg)) S

(w, (}5*(t2)) (w, d*(£)) exp (_ jo (w, ¢*(T))dT)

Suitable for model design and interpretable:

1. Intensities only need to be nonnegative

2. Easy to combine timelines
49



Relation between f*, F*, S*, A*




Representation:
Temporal Point Processes

2. Basic building blocks

51



Poisson process

Intensity of a Poisson process

N(t) = W
Observations:

1. Intensity independent of history
2. Uniformly random occurrence
3. Time interval follows exponential distribution



Fitting & sampling from a Poisson

Fitting by maximum likelihood:

p*=argmax 3logy — puT = El
Iy T
Sampling using inversion sampling: Uniform(0,1)
!
1
t ~ pexp(—pu(t —t3)) mp t=—— log(1 — u) + t3

L

() F(u)

t 53




Inhomogeneous Poisson process

5 Paee 70

to t3 e t—T

Intensity of an inhomogeneous Poisson process

\*(t) = g(t) > 0 (Independent of history)

Example:
LA NP )
A™(2)

7’ ~_/ IN
P ——— P \
— Zajk(t_tj) L Y
j MV.NVANILNI.Y V. Na\,
b1 to e tj ......
o’ (0TI af ......



Fitting & sampling from inhomogeneous Poisson

1T TTT

t1 tots e t=T

time

Fitting by maximum likelihood: male?lze Z log g(t / g(r)dr
glt

Sampling using thinning (reject. sampling) + inverse sampling:

1. Sample¢ from Poisson process with intensity ©
using inverse sampling

2. Generate wug ~ Uniform(0,1) }

Keep sample with

3. Keep the sample if u; < g(?) /u prob. g(t)/ 1



Terminating (or survival) process

| |
| |
~ | |
(¥ : |, time

t t=1T

Intensity of a terminating (or survival) process
A*(t)=g" () (1 - N(t)) =0

Observations:

1. Limited number of occurrences



Self-exciting (or Hawkes) process

, time
l1 tat3 ;ﬁ t=T

I

History, 7 (t) I Ne

Triggering kernel

Intensity of self-exciting

(or Hawkes) process: (1) =p+a Zt.e?{(t) ;{JW (= ti)‘
= U+ aky(t) *dN (1)

Observations:

1. Clustered (or bursty) occurrence of events
2. Intensity is stochastic and history dependent



Fitting a Hawkes process from a recorded timeline

|, time
l1 tats t="T

Fitting by maximum likelihood:

T The max. likelihood
maximize Z log A\*(t;) — / A* (1) dr is jointly convex
0

B, in 1 and

Sampling using thinning (reject. sampling) + inverse sampling:

Key idea: the maximum of the intensity )\ changes
over time



Summary

Building blocks to represent different dynamic processes:

Poisson processes: ! 0 |
A (t) = A ' | '

We know how to fit them
and how to sample from them

Ter




Representation:
Temporal Point Processes

3. Superposition

60



Mutually exciting process

I |
| |
I |
| @& ® |
Bob (™ ! \l I time
@ I t t 1
" 'l f2ls |t |
T : History ?—{b(t) :
I I
Christine 0 : ? %t L
. - =, time
I t1 tots I
\ J

!
History H.(t)

Clustered occurrence affected by neighbors
A(t)=p+«a Ztie?{b(t) K (t — 1)
YR, t — t%'
+ 5 Ztt’ S Hc(t) ( )



Mutually exciting terminating process

M

| |
| [
I |
| |
Bob /™ ! ! time
P | 4 |
| |
T | |
[ [
| |
Christine n : ? % L
. - =, time
| t1 tots I
\

!
History H.(t)

Clustered occurrence affected by neighbors

() =(1-NO) (9O +BY, ., Fult—t) )



Representation:
Temporal Point Processes

4. Marks and SDEs with jumps

63



Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete
marked events localized in time

. o o) -~ N@t)e{0}U ZT i
- | .,
t1 ta (3 t t=T
:I:(t) 1 tl ? Q t
l ‘ 2 3 time
u(®)| o - ,
1 i & 6 ¢ time

64



Independent identically distributed marks

| |
o 0 o) Nt e{o}U Z* !
- _ —
:I:(t) t1 t2 13 ¢ t=T
b ? o L
‘ " s ; » time

Distribution for the marks:
z*(t;) ~ p(z)
Observations:

1. Marks independent of the temporal dynamics
2. Independent identically distributed (1.1.D.)



Dependent marks: SDEs with jumps

| |
o 0 o) Nt e{o}U Z* !
(¥ | L,
11 15 t ! _T
z(t) 4 3 f
-tl (P Q » time
‘ O to t ,t
Histor'y, H(t) <

Marks given by stochastic differential equation with jumps: l

z(t + dt) — z(t) = dz(t) :‘f(:;c(t), t)dt,—i-‘h(a:(t),t)dN(t),
Y Y

Observations: Drift Event influence
1. Marks dependent of the temporal dynamics

2. Defined for all values of t



Dependent marks: distribution + SDE with jumps

p. i 0 0 - N(t)e{0}U Z™T i
T (t) (3] to t3 t t="1T
|~ i ? Q » time
‘ o) ty  t3 it
Histor'y, H(t) <
Distribution for the marks: l
*(t;) ~p(x*| z(t) & dz(t) :‘f(:r(t), t)dt,—k‘h(m(t),,t)dN(t),
Observations: Drift Event influence

1. Marks dependent on the temporal dynamics
2. Distribution represents additional source of uncertainty



Mutually exciting + marks

gE—

| |
9 0 = N(t)e{0}UZ* !
Bob | ,
~ — ﬁf(t) tl t2 t3 t t="1T
-
‘ b )
S ta  t3 t
Christine : :
o ! Q0 M@ e{0YU ZT !
| R
I 11 to 3 / t:I T

Marks affected by neighbors

dx(t) = f(x(t), t)dth+‘g(a:(t), t)dM (t)’

| |
Drift Neighbor influence

» time

68



Marked TPPs as stochastic dynamical systems

Example: Susceptible-Infected-Susceptible (SIS)

e SDE with jumps
o0 0 0. o0 |
Xi(t)=0 X;(t) =1 X;(t)=0 dXi(t) - in(t) - dWi(t)
Susceptible Infected Susceptible It glets It reclovers
infected
°0 < - Node is susceptible
O o—> s
Infection l_l_\
rate A, (t)dt = (1 - Xi(t))ﬁlzjej\/(i) X (t)'dt
EldYi(t)] = Av;(t)dt If friends are infect‘ed, higher infection rate
SDE with jumps
1 .\ o0 | A \
vy @ d\w, (t) = §dY;(t) — Aw, (£)dW; (t) + pdN;(t)
Recovery \_'_H Y l\_'_l

rate Self-recovery rate when If node recovers, Rate increases if

E [dW;(t)] = Aw, (t)dt node gets infected rate to zero node gets tréated



Models & Inference

1. Modeling event sequences



Event sequences as cascades

S —
means

D

Christine

Information Diffusion

D follows S

Bob 3.00pm

3.25pm

Beth
3.27pm

David
4.15pm

T

lipstick on a pig

| will reach out my hand to anyone to help me

get this country moving again
i guess a smali-lown mayor is sort of like a community
organizer axcept that you have actual responsibilitios

we have been blessed with five wonderful children who
we love with all cur heart and mean everything 1o us

all the parts of the intemet are qn the Iiphone

no way no how no mccain, barack
obama is my candidate

answering that question with
specificity is above my pay grade
\

he doesn't look like all those other
presidents on the dollar bills

i think V'll have my
staff get to you

russian aggression must
not go unanswered
l: L

8n 8/8

8/15 8/22 8/29 9/5

Disease Diffusion

Time User

A\
~

Population
state

effort to protect the amencan

AR of
ki iy

our entire aconomy
Is in dange\r

decent person and a person 800
that you do not have o be
scared of as president of
the united states 700

economy must not fajl

the mos! serious
financial crisis since

this is something that all of us will
the great depression

swallow hard and go forward with
600

| think when you spread

fundamentals of

our economy are who is the real the wealth around it's

strong barack obama good for everybody 500
president's

job to deal

he's palling around i i‘;" not :
i with terrorists presiden
than one™ bush 400
thing at hey can she is a diva she
once | call you takes no advice
i joe from anyone 300
\ \ 200
A

912 9/19 9/26 1073 10/10 10117 10/24 10/31

[Leskovec et al., 2009]
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R
i A

AR Kﬁg

K%%

-

Events

t t

t3 ty ttime

[Rizoiu et al., 2018]



An example: idea adoption

Smeans D Christine

D follows S
3.00pm

3.25pm
Beth
3.27pm
David
4.15pm

-t — -

They can have an impact

in the off-line world

Vv

theguardian

Click and elect: how fake news helped
Donald Trump win a real election



Infection cascade representation

We represent an infection cascade using
terminating temporal point processes:

e R . Infection event:
: NZ(t)T (uia m@atz)

¥ N
0 N3(t)T I User Cas!,ade Time
? N4(t)/]\
0 Ns(t)T

7 1 |

|
t =



Infection intensity

Source N,(t)
(given, not modeled) O I O
~ Nz(t)T |
N;(t)
Follow-ups | ? 1 |
(modeled) : N4(t)T
T Ns(t)/]\ I
>
* —
Aut) = (1 = Nu(t)) bow Y ()
\ = [mV (€1 €My (2) ’
' 1EJ S(:rsdge'tl fl f Pre!lious
infected only Influence from . :
once USer v on user u infections of user v

[Gomez-Rodriguez et al., ICML 2011]



Model inference from multiple cascades

Conditional Diffusion log-likelihood
intensities

n T
A (£) 2= log Ni(ts) f \5(7) dr
u=1 0
" Maximum likelihood
approach to find
. model parameters! ) Sum up log-likelihoods

of multiple cascades!

Theorem. For any choice of parametric memory,
the maximum likelihood problem is convex.

1
I
1
1
I
1
___________________________________________________________

[Gomez-Rodriguez et al., ICML 2011]



In some cases, influence change over time:

| Hgreece
retweets
Propagation over networkso T
° ° ° Pr————————————————————————————
with variable influence

[

[Gomez-Rodriguez et al., WSDM 2013]



Recurrent events: beyond cascades

Christine

Up to this point, each users is only Bob 0
infected once, and event sequences "
can be seen as cascades. \‘\:\ Beth

Joe n
In general, users perform recurrent i J
events over time. E.g., people repeatedly \ David
express their opinion online: <

Ehe New JJork Times

Social Media Are Giving a Voice to Taste Buds

How social media is revolutionizing

debates
T

The New ork Times Twitter Unveils A New Set Of Brand-Centric Analytics

Campaigns Use Social Media to Lure Younger Voters



Recurrent events represe ntation

We represent messages using nonterminating
temporal point processes:

O N s ’ . Recurrent event:
) Nalt)} (ui, t;)
@ (01 _ ; T
Na(t) 2
Ns(t)

t

77 7 T OTTIEROTELRT o

t=20 t=1T

[Farajtabar et al., NIPS 2014]



Recurrent events intensity

0 N, (t) - o

~ Nz(t) \

o N1

N,(t)

N5(t)
=
Memory Q)
Cascade sources! S
w
. Z o
User’s Events on her Previous 8
intensity  own initiative Influence from messages by user v \

user v on user u

[De et al_, NIPS 2016]



Models & Inference

2. Clustering event sequences



Event sequences

lipstick on a pig ntire economy
s d nger
| will al\ lmyh nd to y’ e to hlpm \
get this country moving 2 g \ effort to protect heamer\:an 800
oA fail
| guess a smal-1os of like a community \
O 1ar, we nave assume ool et o
’ we have been blessed ar‘w children ho\ \\ this is something that all o i
we love with all cur he: erything to 1K 1 depressio \ mll(‘/ hard and go forwar dwlh ‘,‘
\ /
[] all the parts of the intemnet are gn the Iphol \ I ,.’ 600
fundamentals of /| think when you spread
I 0 way no how.no mecain, barack our economy are | whoisthereal [ the wealth around it's
’ ’ ubana /caxd e strong | ] barack obama I good for everybody 500
/ |
answ that question with / sidents e's
spec is above my pay grade /
\
etc.) that each event s sty s e e
proeider s on the qcu r bills p
\ \ ithin ||r- my
\ Laﬂg et 1o |y
elongs to was Known i \
[ \ \ \
\

8/8 8/15 8/22 8/29 9/5 912 9/19 9/26 1073 10/10 1017 10/24 10/31

Often, the cluster (topic, meme etc.) that each event in a
sequence belongs to is not known:

@ BBC News (World) @ @BBCWorld - 4m / Politics

NEWS Turkey election: Erdogan win ushers in new presidential era

BBC News (World) & @BBCWorld - 46m .
Dublin church: Seven injured as car hits pedestrians Music

Nigerian music star D'banj's son 'drowns at home'

BBC News (World) & @BBCWorld - 2h
Turkey election: Country's heart split over Erdogan victory

BBC News (World) & @BBCWorld - 2h



Assume the event cluster to be hidden and aim to automatically

learn the cluster assigments from the data:

v

Bayesian methods to cluster event sequences in the context of:

mercurial

Mar  Sep

Mar  Ser Mar

SEP @ I
tortoisesvn k

verS|on Control
glthub' t \ M \ \

L

S\E\P\\\\MA\R\\\\S\E\P\\\\MA\R\\\\S\E\P\\\

Learning

\,\/\IA\R\\\\S\E\P\\\\MA\R\\

Online News

programy i seres,

endeaéour

COST S paG
Jaun@h

= MISSION SEW.,

rocketorgu 1

10

Health care

Method | DMHP

ICU Patient | 0.3778
IPTV User | 0.2004

100.0 100.5 101.0 101.5 102_0

time

[Du et al., 2015; Mavroforakis et al., 2017; Xu & Zha, 2017]



Hierarchical Dirichlet Hawkes process

~
b

| Introduction to programming

For/do-while

1st year computer science student

Discrete math
Project presentation

loops

inheritanct

Powerpoint
vs. Keynote

Set the@

- |te
Loglc

Private
functions

PP
templates

Plot
library

Class
destructor

[Mavroforakis et al., WWW 2017]



Events representation

We represent the events using marked temporal
point processes:

Nu,e(t) IJ-I_’_|7
-

I Task Task |
® HHE—
| | t
t=0 t=T
Nu,g(T) =9
Event: (tn,Dn,qn)
e N
Time Content

Cluster 84
(hidden) [Mavroforakis et al., WWW 2017]



Cluster intensity

Nu.o(2)

| Task Task |
| —— |
e - HHF——,
t=0 =T )
t Memory 9:.):
New cascade Cluster T k S
rate popularity > =
\ / / ®
(V)
* L — O
w,l (t) = pume + ko, (t — t]) a
i 215 w.e(t (@)
Intensity \_'_I JtiEH . )' J g
or rate o) n
(events / hour) wn FO"OW-UP

initiative

[Mavroforakis et aI.,-VVWW 2017]



User events intensity

Users adopt more than one cluster:

0

- HHH

v

A user’s learning events as a multidimensional Hawkes:

Time\l L}Iuster w1(t)
(tn,pn) ~ Hawkes
Ay.ool(l)

Content - ¢, = W w; ~ Multinomial(8,)
[Mavroforakis et al., WWW 2017]



People share same clusters

Different users adopt same clusters

Efficient model inference using

| Sequential Montecarlo! . e
Clus '

- Shared parameters across users.

[Mavroforakis et al., WWW 2017]



R\ '
4 \ \.\\
g

Content Intensities tacko"e"flow
mercurial
versmgv:rc])ntrol km k k
github®-g z——— I S O
SS E, SEP Mar  SEep Mar  SEep Mar  SEep MAR

tortoisesvn

Version control tasks tend to be specific,
quickly solved after performing few questions

[Mavroforakis et al., WWW 2017]



Content Intensities =/ Stackoverf,
OWw

SEP MAR SEP MAaR SEP MAR SEP MaR

artificial-intelligence

SEP MAR SEP MAaR SEP MAR SEP MaR

Machine learning tasks tend to be more
complex and require asking more questions

[Mavroforakis et al., WWW 2017]



Models & Inference

3. Capturing complex dynamics



Up to now, we have focused on simple temporal
dynamics (and intensity functions):

Yosu A TN
()= D o k(t—t) 0 =
. ; N(t)=p+a ZtiE'H(t) fo(t — 1)

o » [

Recent works make use of RNNs to capture more
complex dynamics

[Du et al., 2016; Dai et al., 2016; Mei & Eisner, 2017; Jing & Smola, 2017,
Trivedi et al., 2017; Xiao et al., 2017a; 2018]



Neural Hawkes process

1) History effect does not need to be additive

2) Allows for complex memory effects
(such as delays)

Intensity-1  —— Intensity-2
BaseRate-1 BaseRate-2 K/I/j\\‘
' —
(O LSTM-Unit /—/ i 2 ﬁ)
.............. () -
Type-1 . Type-2 ’i %

[Mei & Eisner, NIPS 2017]




Neural Hawkes process

Au(t) = fu(w, h(t)) Memory

[Mei & Eisner, NIPS 2017]



Applications (l): Predictive Models

Know-Evolve, Trivedi et al. (2017) Coevolutionary Embedding,

InitiaDaiitet akat{2017)
./f51 (to) = (V- iﬂ)*—'ltem profile

Vi - 4; (t7) )\—OEvolution
Wy - uy () f—

+V3-q4 ——e Context
(ul, ilﬁll ql) +V4_ . (t]_ - t(}) Drift

(visit, 01-01-2014)

() =0

Initialize user feature
uy, (to) = a(W; - u31)-—¢U5er profile

@ Wy - uy, (8) ~)\—~Evolution

Alice _ | we i
s (tl) -7 +?/V3 "4 ——a Context
+We-(t1 — to Drift
Neural Survival Recommender, Jing & Smola (2017) |
8- 83 84 |
User Activity bl - b 5 ?

9 time

@@ @ 89 o008

-



Key idea: Intensity- and likelihood-free models

count

II'II}

T T — — — — —

GAN architecture

Wasserstein-Distance for
Temporal Point Processes

CNN
Discriminator f,

seq2seq
Generator gg

Real sequences

—————————————————————————————————

[Xiao et al., 2017 & 2018]



Models & Inference

4. Causal reasoning on event sequences



Temporal point processes beyond prediction

So far, we have focused on models that improve preditions:

React ciBporan . Recommendations
Community
;‘9 2 - Acute @reamls d ete ction j§ ’ ,_>_<, . . N, .
§$~’ 5 Xide 2014, Crbl art o's w infr e . . . :
p red |Ct ion Qx”f@ eloab"w\h\ < g;\’ Honruet ‘-BUW Sophie 9:45a ml 10:15am 1:30pn;1 2:45pm
\w“q}\. = \12.0%"’\'10\ 5*5 col l J.‘ l l
« 5 events
. Y0 0O Ye
. . Gastrointe l"morr NOS .
[Trivedi et al., 2017] [Xiao et al., 2017] [Dai et al., 2017]

Recent works have focused on performing causal inference
using event sequences: . /70

Treatment effect mx

e o0 Granger

=)
'y > o causality graph | J
~N )

[Xu et al., 2016; Achab et al., 2017; Kusmierczyk & Gome/z-R\odriguez, 2018]



Uncovering Causality from Hawkes Processes

Multivariate Hawkes process:

Granger causality:

“X causes Y in the sense of Granger causality if forecasting
future values of Y is more successful while taking X past
. 11 i
values into account [Granger, 1969

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Multivariate Hawkes process:

‘Granger causality on multivariate Hawkes processes:

“ N,(t) does not Ganger-cause N, (t)w.r.t. N (¢) if and only if
| kuo(T) =0for 7€ RT"

[Eichler et al., 2016]5

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:
+ 00
gw:/ Koo (T )d7>0f0ralluv62/1\\;n
0
\ Average total # of events of node u whose i \ '\‘/

direct ancestor is an event by node v

Then, G = |g,,| quantifies the
between nodes.

[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:

H/n
guvz/+ookuv( ydr > 0 for all u,v e U \\n
0

\ Average total # of events of node u whose i \ \/
direct ancestor is an event by node v

Then, G = |g,,| quantifies the
between nodes.

Estimate G using the cumulants dN(t) of the

Hawkes process.
[Achab et al., ICML 2017]



Uncovering Causality from Hawkes Processes

Goal is to estimate G = |g,,|, Where:

—+ 00

Non parametric Hawkes

cumulant estimation method

(with TensorFlow implementation)

The
petails!

bet

Estimate G using the cumulants the dN(t) of

the Hawkes process.
[Achab et al., ICML 2017]



Next Week:
Gaussian Process

Have a good day!
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