Stochastic Processes

Week 01 (version 1.1) Review of Probability Introduction to Stochastic Processes Hamid R. Rabiee Fall 2023

Outline of Week 01 Lectures

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- •Introduction to Stochastic Processes

History & Philosophy

- Started by gamblers' dispute!
- Probability as a game analyzer
- Formulated by B. Pascal and P. Fermet
- First Problem (1654) :
	- "Double Six" during 24 throws!
- First Book (1657):
	- •*Christian Huygens*, "*De Ratiociniis in Ludo Aleae", In German, 1657.*

- Rapid development during 18th Century
- Major Contributions:
	- J. Bernoulli (1654-1705)
	- •A. De Moivre (1667-1754)
- A renaissance: Generalizing the concepts from mathematical analysis of games to analyzing scientific and practical problems: P. Laplace (1749-1827)
- New approach first book:
	- •P. Laplace, "*Théorie Analytique des Probabilités*", In France, 1812.

- 19th century's developments:
	- •Theory of errors
	- •Actuarial mathematics
	- •Statistical mechanics
- Modern theory of probability (20th Century):
	- A. Kolmogorov : Axiomatic approach
- First modern book:
	- A. Kolmogorov, "Foundations of Probability Theory", Chelsea, New York, 1950.
- Other giants in the field:
	- Chebyshev and Markov

- Two major philosophies:
	- Frequentist Philosophy
		- •Observation is enough!
	- Bayesian Philosophy:
		- Observation is NOT enough
		- Prior knowledge is essential

Frequentist philosophy

- There exist fixed parameters like mean, θ .
- There is an underlying distribution from which samples are drawn
- Likelihood functions($L(\theta)$) maximize parameter/data
- For Gaussian distribution the $L(\theta)$ for the mean happens to be 1/N $\sum_i\!\mathsf{x}_\mathsf{i}$ or the average.

Bayesian philosophy

- Parameters are variable
- Variation of the parameter defined by the prior probability
- This is combined with sample data $p(X/\theta)$ to update the posterior distribution $p(\theta/X)$.
- Mean of the posterior, $p(\theta/X)$, can be considered a point estimate of θ .

• An Example:

- A coin is tossed 1000 times, yielding 800 heads and 200 tails. Let $p = P$ (heads) be the bias of the coin. What is *p*?
- Bayesian Analysis
	- Our prior knowledge (believe): $\pi(p)$ =1 (Uniform(0,1))
	- Our posterior knowledge: $\pi(p|Observation) = p^{800}(1-p)^{200}$
- Frequentist Analysis
	- Answer is an estimator \hat{p} such that
		- Mean: $E[\hat{p}] = 0.8$
		- Confidence Interval: $P(0.774 \le \hat{p} \le 0.826) \ge 0.95$

Nowadays, Probability Theory is considered to [a part of Measure Theory!](http://www.cs.ucl.ac.uk/staff/D.Wischik/Talks/histprob.pdf)

- •Further reading:
	- http://www.leidenuniv.nl/fsw/verduin/stathi athist.htm
	- http://www.mrs.umn.edu/~sungurea/intros istory/indexhistory.shtml
	- www.cs.ucl.ac.uk/staff/D.Wischik/Talks/his b.pdf

Outline

- •History/Philosophy
- •Random Variables
- •Density/Distribution Functions
- Joint/Conditional Distributions
- •Correlation
- •Important Theorems
- •Introduction to Stochastic Processes

Random Variables

- •Probability Space
	- A triple of (Ω, F, P)
		- Ω represents a nonempty set, whose elements are sometimes known as outcomes or states of nature (Sample Space).
		- \cdot F represents a set, whose elements are called events. The events are subsets of Ω *. F* should be a "Borel Field".
		- \cdot *P* represents the probability measure.
- Fact: $P(\Omega) = 1$

Random Variables (Cont'd)

- Random Variable (RV) is a "function" ("mapping") from a set of possible outcomes of the experiment to an interval of real (complex) numbers.
- In other words:

Random Variables (Cont'd)

- •Example I:
	- •Mapping faces of a dice to the first six natural numbers.
- •Example II:
	- •Mapping height of a man to the real interval (0,3] (meter or something else).
- •Example III:
	- •Mapping success in an exam to the discrete interval [0,20] by quantum 0.1.

Random Variables (Cont'd)

- •Random Variables
	- •Discrete
		- •Dice, Coin, Grade of a course, etc.
	- •Continuous
		- •Temperature, Humidity, Length, etc.
- •Random Variables
	- •Real
	- •Complex

Outline

- •History/Philosophy
- •Random Variables
- •Density/Distribution Functions
- Joint/Conditional Distributions
- •Correlation
- •Important Theorems
- •Introduction to Stochastic Processes

Density/Distribution Functions

- Probability Mass Function (PMF)
	- Discrete random variables
	- Summation of impulses
	- The magnitude of each impulse represents the probability of occurrence of the outcome
- Example I:
	- Rolling a fair dice

- Cumulative Distribution Function (CDF)
	- Both Continuous and Discrete
	- Could be defined as the integration of PDF

$$
CDF(x) = F_X(x) = P(X \le x)
$$

$$
F_X(x) = \int_{-\infty}^{x} f_X(x) dx
$$

- •Some CDF properties
	- •Non-decreasing
	- •Right Continuous
	- $F(-infinity) = 0$
	- \cdot F(infinity) = 1

• Probability Density Function (PDF)

- Continuous random variables
- The probability of occurrence of $x_0 \in \left(x \frac{dx}{2}, x + \frac{dx}{2}\right)$ will be $P(x)dx$

 $P(X)$

- Some famous masses and densities:
	- Uniform Density

$$
f(x) = \frac{1}{a} (U(\text{end}) - U(\text{begin}))
$$

$$
\frac{1}{a} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0
$$

à.

• Gaussian (Normal) Density

• Binomial Density

$$
f(n) = {N \choose n} (1-p)^n \cdot p^{N-n}
$$

• Poisson Density

$$
f(x) = e^{-\lambda} \frac{\lambda^x}{\Gamma(x+1)}
$$

Note: $x \in \aleph \implies \Gamma(x+1) = x!$

• Important Fact:

For Sufficient ly large $N:$ $\binom{N}{n}$ $(1-p)^{N-n}$ $\cdot p^n \approx e^{-N} \cdot p \frac{(N \cdot p)^n}{n!}$

• Exponential Density

- **. Expected Value**
	- . The most likelihood value:

$$
E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx
$$

• Linear Operator:

$$
E[a.X+b] = a.E[X]+b
$$

- Function of a random variable:
	- Expectation

$$
E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx
$$

•PDF of a function of random variables:

- Assume RV "Y" such that $Y = g(X)$
- The inverse equation $X = g^{-1}(Y)$ may have more than one solution called $X_1, X_2, ..., X_n$
- •PDF of "Y" can be obtained from PDF of "X" as follows:

$$
f_Y(y) = \sum_{i=1}^n \frac{f_X(x_i)}{dx} g(x) \Big|_{x=x_i}
$$

Outline

- •History/Philosophy
- •Random Variables
- •Density/Distribution Functions
- Joint/Conditional Distributions
- •Correlation
- •Important Theorems
- •Introduction to Stochastic Processes

Joint/Conditional Distributions

- Joint Probability Functions
	- Density $F_{X,Y}(x,y) = P(X \le x \text{ and } Y \le y)$
	- Distribution

$$
=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x,y)dydx
$$

• Example I:

• In a rolling fair dice experiment represent the outcome as a 3-bit digital number "xyz".

$$
f_{X,Y}(x, y) = \begin{cases} 1/6 & x = 0; y = 0 & 1 \rightarrow 001 \\ 1/3 & x = 0; y = 1 & 2 \rightarrow 010 \\ 1/3 & x = 1; y = 0 & 3 \rightarrow 011 \\ 1/6 & x = 1; y = 1 & 5 \rightarrow 101 \\ 0 & O.W. & 6 \rightarrow 110 \end{cases}
$$

- •Example II:
	- •Two normal random variables

$$
f_{X,Y}(x,y) = \frac{1}{2\pi \sigma_x \sigma_y \sqrt{1-r^2}} e^{-\left(\frac{1}{2(1-r^2)} \left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2r(x-\mu_x)(y-\mu_y)}{\sigma_x \sigma_y}\right)\right)}
$$

•What is "r" ?

• Independent Events (Strong Axiom)

$$
f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)
$$

• Obtaining one variable density functions:

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy
$$

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx
$$

• Distribution functions can be obtained just from the density functions. (How?)

- Conditional Density Function:
	- Probability of occurrence of an event if another event is observed (we know what " Y " is).

$$
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}
$$

• Bayes' Rule:

$$
f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{\int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx}
$$

- •Example I:
	- •Rolling a fair dice:
		- •X : the outcome is an even number
		- •Y : the outcome is a prime number

$$
P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}
$$

- •Example II:
	- Joint normal (Gaussian) random variables:

$$
f_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi} \cdot \sigma_x \cdot \sqrt{1-r^2}} e^{-\left(\frac{1}{2(1-r^2)}\left(\frac{x-\mu_x}{\sigma_x} - r \times \frac{y-\mu_y}{\sigma_y}\right)^2\right)}
$$

• Conditional Distribution Function:

$$
F_{X|Y}(x|y) = P(X \le x \text{ while } Y = y)
$$

=
$$
\int_{-\infty}^{x} f_{X|Y}(x|y) dx
$$

=
$$
\frac{\int_{-\infty}^{x} f_{X,Y}(t, y) dt}{\int_{-\infty}^{x} f_{X,Y}(t, y) dt}
$$

• Note that "y" is a constant during the integration.

• Independent Random Variables:

$$
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}
$$

$$
= \frac{f_X(x).f_Y(y)}{f_Y(y)}
$$

$$
= f_X(x)
$$

• Remember! Independency is NOT heuristic.

• PDF of a functions of joint random variables

- Assume that $(U,V) = g(X,Y)$
- The inverse equation set $(X,Y) = g^{-1}(U,V)$ has a set of solutions $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$
- Define Jacobean matrix as follows:

$$
\boldsymbol{J} = \begin{bmatrix} \frac{\partial}{\partial X} U & \frac{\partial}{\partial X} V \\ \frac{\partial}{\partial X} U & \frac{\partial}{\partial Y} V \end{bmatrix}
$$

• The joint PDF will be:

$$
f_{U,V}(u,v) = \sum_{i=1}^{n} \frac{f_{X,Y}(x_i, y_i)}{absolute determinant(J|_{(x,y)=(x_i,y_i)})}
$$

Outline

- •History/Philosophy
- •Random Variables
- •Density/Distribution Functions
- Joint/Conditional Distributions
- •Correlation
- •Important Theorems
- •Introduction to Stochastic Processes

Correlation

- •Knowing about a random variable "X", how much information will we gain about the other random variable "Y" ?
- Shows linear similarity
- •More formal: $Crr(X, Y) = E[X, Y]$

•Covariance is normalized correlation $[Cov(X, Y) = E[(X - \mu_Y)](Y - \mu_Y)] = E[X,Y] - \mu_Y \mu_Y$

Correlation (cont'd)

•Variance

• Covariance of a random variable with itself

$$
Var(X) = \sigma_X^2 = E[(X - \mu_X)^2]
$$

•Relation between correlation and covariance

$$
E[X^2] = \sigma_X^2 + \mu_X^2
$$

•Standard Deviation

•Square root of variance

Correlation (cont'd)

• Moments

 \cdot nth order moment of a random variable "X" is the expected value of " X^{n} "

$$
\boldsymbol{M}_n = E\Bigl(X^n\Bigr)
$$

• Normalized form

$$
M_n = E\Big((X - \mu_X)^n\Big)
$$

- Mean is the first moment
- Variance is second moment added by the square of the mean

Outline

- •History/Philosophy
- •Random Variables
- •Density/Distribution Functions
- Joint/Conditional Distributions
- •Correlation
- •Important Theorems
- •Introduction to Stochastic Processes

Important Theorems

- **Central limit theorem (CLT)**
	- Consider i.i.d. (Independent Identically Distributed) RVs " X_k " with finite variances

• Let
$$
S_n = \sum_{i=1}^n a_n \cdot X_n
$$

- Then PDF of " S_n " converges to a normal distribution as *n* increases, regardless of the initial density of RVs.
- Exception: Cauchy Distribution (Why?)

- Law of Large Numbers (Weak)
	- \bullet For i.i.d. RVs " X_k "

$$
\forall_{\varepsilon>0} \quad \lim_{n\to\infty} \quad \Pr\left\{ \left| \frac{\sum_{i=1}^{n} X_i}{n} - \mu_X \right| > \varepsilon \right\} = 0
$$

- **. Law of Large Numbers (Strong)**
	- \bullet For i.i.d. RVs " X_k "

$$
\Pr\left\{\lim_{n\to\infty}\frac{\sum_{i=1}^{n}X_i}{n}=\mu_X\right\}=1
$$

• Why this definition is stronger than the weak law of large numbers?

- **Chebyshev's Inequality**
	- Let "X" be a nonnegative RV
	- Let "c" be a positive number, then: $Pr{X > c} \le -E[X]$ *c* $Pr{X > c} \leq \frac{1}{2}$
	- The term Chebyshev's inequality may also refer
to Markov's inequality, especially in the context of
analysis. They are closely related, and some authors refer to Markov's inequality as "Chebyshev's First
Inequality,"
- Another form:

$$
\Pr\left\{|X - \mu_X| > \varepsilon\right\} \le \frac{\sigma_X^2}{\varepsilon^2}
$$

• This could also be rewritten for negative RVs.

- **. Schwarz Inequality**
	- For two RVs "X" and "Y" with finite second moments:

$$
\mathbf{E}[X.Y]^2 \le \mathbf{E}[X^2].\mathbf{E}[Y^2]
$$

• Equality holds in case of linear dependency.

Outline

- •History/Philosophy
- •Random Variables
- •Density/Distribution Functions
- Joint/Conditional Distributions
- •Correlation
- •Important Theorems
- •Introduction to Stochastic Processes

- Let ξ denote the random outcome of an experiment.
- To every such outcome suppose a function $X(t,\xi)$ is assigned. $X(t,\xi)$
- The collection of such functions form a stochastic process.
- The set of $\{\xi_k\}$ and the $x(t,\xi_2)$ time index *t* can be continuous or discrete (countably infinite or finite).
- For fixed $\xi_i \in S$ (the set of all experimental outcomes), $X(t,\xi)$ is a specific time function.

- For fixed *t*, $X_1 = X(t_1, \xi)$ is a random variable.
- The ensemble of all such realizations $X(t,\xi)$ over time represents the stochastic process *X*(*t*).

• Examples:

- Let $X(t) = a \cos(\omega_0 t + \varphi),$ where φ is a uniformly distributed random variable in $(0, 2\pi)$, represents a stochastic process.
- Stochastic processes are everywhere:
	- stock market fluctuations
	- various queuing systems
	- Earthquake Signals
	- 1-D Audios
	- 2-D Images
	- 3-D Videos

• Example 1:

The Random Process (RP) $X(t)$ is defined as: $X(t) = At + b$, b is a constant, A is a Gaussian rv, $t > 0$ Find $f_X(x,t)$:

$$
f_A(a) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{a^2}{2}\right) = N(0, 1)
$$

$$
f_X(x, t) = \frac{f_A(a)}{\left|\frac{dx}{dA}\right|}
$$

$$
A = \frac{X(t) - b}{t} \qquad \left|\frac{dX}{dA}\right| = t, \qquad a = \frac{x - b}{t}
$$

$$
f_X(x, t) = \frac{1}{t} f_A(a) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{a^2}{2}\right) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(x - b)^2}{2t^2}\right)
$$

• Example 1:

The Random Process (RP) $X(t)$ is defined as: $X(t) = At + b$, b is a constant, A is a Gaussian rv, $t > 0$ What is mean and variance of $X(t)$?

• Example 1 continued:

Mean of $X(t)$: $X(t) = At + b$, A is $N(0,1)$ $E[X(t)] = E[At + b] = E[A]t + E[b] = 0 \times t + b = b$

Variance of
$$
X(t)
$$
:
\n $X(t)2 = A^2t^2 + b^2 + 2Abt$
\n $E[X(t)2] = E[A^2t^2 + b^2 + 2Abt] = E[A^2]t^2 + E[b^2]$
\n $+ E[A] 2bt = 1 * t^2 + b^2 + 0 * 2bt$

$$
E[X(t)^{2}] = t^{2} + b^{2}
$$

$$
Var(X[t]) = E[X(t)2] - E[X(t)]2 = t^{2} + b^{2} - b^{2} = t^{2}
$$

Note: The mean of X(t) is constant but its variance is a function of time time t.

c) $Var[X(t)] = ?$

Example 2 continued: $X(t) = A \cos(w_0 t + \theta) = X_t(\theta)$

$$
f_X(x,t) = \sum_i \frac{f_\theta(\theta_i)}{\left|\frac{dX_t}{d\theta_i}\right|} = \frac{1}{2\pi} \frac{1[0 < \theta_i \le 2\pi]}{\left|\frac{dX_t}{d\theta_i}\right|}
$$

 $A\cos(w_0 t + \theta_i) = x \rightarrow$ has exactly 2 answers in (0, 2 π)

$$
\left| \frac{dX_t}{d\theta_i} \right| = |-A \sin(w_0 t + \theta_i)| = \sqrt{A^2 - X_t^2}
$$

\n
$$
\rightarrow f_X(x, t) = \frac{2}{2\pi} \frac{1}{\sqrt{A^2 - x^2}} = \frac{1}{\pi \sqrt{A^2 - x^2}}
$$
 |X| \le A

Example 2 continued:

 $X(t) = A \cos(w_0 t + \theta) = X_t(\theta)$

$$
E[X(t)] = E[A\cos(w_0 t + \theta)] = A \int_0^{2\pi} \cos(w_0 t + \theta) \frac{1}{2\pi} d\theta = 0
$$

 $V[X(t)] = E[X(t)^{2}] - E[X(t)]^{2} = E[(A \cos(w_{0}t + \theta))^{2}]$

$$
= A^2 \int_0^{2\pi} \cos^2(w_0 t + \theta) \frac{1}{2\pi} d\theta
$$

$$
= \frac{A^2}{2\pi} \int_0^{2\pi} \frac{1}{2} (1 + \cos(2w_0 t + 2\theta)) d\theta = \frac{A^2}{2\pi} \int_0^{2\pi} \frac{1}{2} d\theta = \frac{A^2}{2}
$$

Note: The mean and variance of X(t) are constants in this example.

Introduction to Stochastic Processes Stationary Processes

Next Week:

Stochastic Processes Stationary Stochastic Processes

Have a good day!