Stochastic Processes

Week 01 (version 1.1)
Review of Probability

Introduction to Stochastic Processes

Hamid R. Rabiee
Fall 2023



Outline of Week 01 Lectures

 History/Philosophy

« Random Variables

* Density/Distribution Functions
 Joint/Conditional Distributions

» Correlation

* Important Theorems

* Introduction to Stochastic Processes

2/55



History & Philosophy

« Started by gamblers’ dispute!

Probability as a game analyzer
Formulated by B. Pascal and P. Fermet

First Problem (1654) :
*“Double Six” during 24 throws!

First Book (1657):

 Christian Huygens, “De Ratiociniis in Ludo
Aleae’”, In German, 1657.
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History & Philosophy (Cont’d)

« Rapid development during 18" Century

* Major Contributions:
» J. Bernoulli (1654-1705)
*A. De Moivre (1667-1754)

* Arenaissance: Generalizing the concepts from
mathematical analysis of games to analyzing
scientific and practical problems: P. Laplace
(1749-1827)

* New approach first book:

*P. Laplace, “Théorie Analytique des
Probabilites”, In France, 1812.
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History & Philosophy (Cont’d)

« 19t century’s developments:
* Theory of errors
* Actuarial mathematics
 Statistical mechanics

« Modern theory of probability (20" Century):
* A. Kolmogorov : Axiomatic approach

 First modern book:

* A. Kolmogorov, “Foundations of Probability
Theory”, Chelsea, New York, 1950.

» Other giants in the field:
* Chebyshev and Markov
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History & Philosophy (Cont’d)

« Two major philosophies:
* Frequentist Philosophy
* Observation is enough!
« Bayesian Philosophy:
* Observation is NOT enough
* Prior knowledge is essential
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History & Philosophy (Cont’d)

Frequentist philosophy

* There exist fixed
parameters like mean,0.

* There is an underlying
distribution from which
samples are drawn

* Likelihood functions(L(0))
maximize parameter/data

« For Gaussian distribution
the L(0) for the mean
happens to be 1/NX2x;, or
the average.

Bayesian philosophy
 Parameters are variable

* Variation of the parameter
defined by the prior
probability

 This is combined with
sample data p(X/0) to
update the posterior
distribution p(6/X).

* Mean of the posterior,
p(6/X),can be considered
a point estimate of 6.
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History & Philosophy (Cont’d)

* An Example:

* A coin is tossed 1000 times, yielding 800 heads and
200 tails. Let p = P(heads) be the bias of the coin.
What is p?

» Bayesian Analysis
- Our prior knowledge (believe): 7(p)=1 (Uniform(0,1))
» Our posterior knowledge: 7(p|Observation)= p*®(1- p
* Frequentist Analysis
« Answer is an estimator 7 such that
* Mean: E[p]=038
» Confidence Interval: P(0.774 < 5 <0.826)>0.95
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History & Philosophy (Cont’d)

Nowadays, Probability Theory is considered to be
a part of Measure Theory!

* Further reading:

* http://www.leidenuniv.nl/fsw/verduin/stathist/st
athist.ntm

* http://www.mrs.umn.edu/~sungurea/introstat/n
istory/indexhistory.shtml

« www.cs.ucl.ac.uk/staff/D.Wischik/Talks/histpro
b.pdf

9/55


http://www.leidenuniv.nl/fsw/verduin/stathist/stathist.htm
http://www.mrs.umn.edu/~sungurea/introstat/history/indexhistory.shtml
http://www.cs.ucl.ac.uk/staff/D.Wischik/Talks/histprob.pdf

Outline

History/Philosophy
Random Variables

Density/Distribution Functions

« Joint/Conditional Distributions
e Correlation
* Important Theorems

 Introduction to Stochastic Processes

10/55



Random Variables

* Probability Space
» Atriple of (Q,F,P)
* Q) represents a nonempty set, whose

elements are sometimes known as
outcomes or states of nature (Sample Space).

* ' represents a set, whose elements are
called events. The events are subsets of
Q. F'should be a “Borel Field”.

» Prepresents the probability measure.

* Fact: P(Q)zl

11/55



Random Variables (Cont’d)

 Random Variable (RV) is a “function”
(“mapping”) from a set of possible outcomes of
the experiment to an interval of real (complex)
numbers.

 |n other words :
{FgP(Q). {X:F—)]

Outcomes ]gR
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Random Variables (Cont’d)

* Example I
* Mapping faces of a dice to the first six natural
numbers.
« Example Il
* Mapping height of a man to the real interval
(0,3] (meter or something else).
« Example llI:

* Mapping success in an exam to the discrete
interval [0,20] by quantum 0.1.
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Random Variables (Cont’d)

« Random Variables
* Discrete
* Dice, Coin, Grade of a course, etc.
* Continuous
» Temperature, Humidity, Length, etc.

e Random Variables
* Real
* Complex
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Outline

* History/Philosophy
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Density/Distribution Functions

* Probability Mass Function (PMF)
* Discrete random variables
« Summation of impulses

* The magnitude of each impulse represents the
probability of occurrence of the outcome

* Example I Px)
* Rolling a fair dice
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Density/Distribution Functions (Cont’d)

« Cumulative Distribution Function (CDF)
* Both Continuous and Discrete
* Could be defined as the integration of PDF

CDF( )=Fy(x)=P(X <x)

X
)= | fx(x)
—o0

/v\
CDF(x /

PDF(X)
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Density/Distribution Functions (Cont’d)

 Some CDF properties
* Non-decreasing
* Right Continuous
* F(-infinity) = 0
* F(infinity) = 1
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Density/Distribution Functions (Cont’d)

* Probability Density Function (PDF)
e Continuous random variables

* The probability of occurrence of x, (x—%»“%j
will be P(x).dx

PLX)
I\
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Density/Distribution Functions (Cont’d)

« Some famous masses and densities:
« Uniform Density

F0)= L (Ulend)-Ulpegin) 7| i

a

* Gaussian (Normal) Density a




Density/Distribution Functions (Cont’d)

e Binomial Density .
A
f(n)=[nN}(1—p)".pN‘ I ‘
o T T L Y S
* Poisson Density |
4 A f‘m ,
M= e K
Note: x e N :>F(x+1)=x! é
1 - X

 Important Fact:

. N N-n _n
For Sufficient ly large N .(l—p) p ore T —t
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Density/Distribution Functions (Cont’d)

* Exponential Density

Ae ™ x>0

flx)=2e™U(x)= {O 0

Probab ility Dens ity
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Density/Distribution Functions (Cont’d)

* Expected Value
* The most likelihood value:
E[X]= [x./y (x)ds
* Linear Operator: B
Ela.X +b|=a.E[X]|+b

* Function of a random variable:
* Expectation

E[g(X)]=_Ofg(X)-fX(X)dx
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Density/Distribution Functions (Cont’d)

 PDF of a function of random variables:
- Assume RV “Y” such that ¥ =g(x)

* The inverse equation x=g"'(v) may have
more than one solution called x,,x,.... x

 PDF of “Y” can be obtained from PDF of “X”
as follows:
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Outline

* History/Philosophy
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 Density/Distribution Functions
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* Important Theorems

* Introduction to Stochastic Processes
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Joint/Conditional Distributions

 Joint Probability Functions
* DenSity FX,Y(x,y):P(XSx and YSy)

* Distribution x oy
= | [ Sy (o, )y

—00 —00

* Example I

*In a rolling fair dice experiment represent the
outcome as a 3-bit digital number “xyz”.

xXyz

Ve x=0y=0 15001

% x=0;y=1 2—>010

3011

fery)=1lp x=ty=0
o x=Ly=1 5101

0 ow. 6110
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Joint/Conditional Distributions (Cont’d)

 Example II:
 Two normal random variables

_[2(11 [(x—ux)2+(y—ﬂy)z 2r(x—ux)(y—uy)n

2 2 2
—-r ) G)C O-y Gx'o-y

fX,Y(xay): 1 e
2r.0,.0,N1- r’
What is “r’ ?

 Independent Events (Strong Axiom)

fX,Y(an’): fX(x)-fY(y)
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Joint/Conditional Distributions (Cont’d)

» Obtaining one variable density functions:

fX(x): _TfX,Y(xay)dy

()= [ oy (e

* Distribution functions can be obtained just from
the density functions. (How?)
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Joint/Conditional Distributions (Cont’d)

 Conditional Density Function:

* Probability of occurrence of an event if
another event is observed (we know what
“Y” iS)_

): fX,Y(x:y)

fX‘Y(Xb/ Jy (J’)

- Bayes’ Rule:

fX|Y(x|J’)= - fY|X(y|x)fX(x)
ijlX(y|x)fX (x)dx

—0o0
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Joint/Conditional Distributions (Cont’d)

* Example I
* Rolling a fair dice:
e X : the outcome is an even number
*Y : the outcome is a prime number

p(x]r)= Plx.y) Y 1

Py) A 3
 Example II:

* Joint normal (Gaussian) random variables:

fX‘Y(x|y):\/2—O_ 2
r.o,Nl-

30/55



Joint/Conditional Distributions (Cont’d)

* Conditional Distribution Function:

FX|Y(x|y)=P(X£x while Y = y)
= IfX|Y(x|y)dx

_[fX,Y(tay)dt

IfX,Y(tay)dt
* Note that "y” is a constant during the
integration.
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Joint/Conditional Distributions (Cont’d)

* Independent Random Variables:

« Remember! Independency is NOT heuristic.
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Joint/Conditional Distributions (Cont’d)

* PDF of a functions of joint random variables
« Assume that (U,V)=g(X.,Y)

* The inverse equation set (x.,v)=¢'(U,”) has a
set of solutions (x,,v,),(X,,%,)...(X,.Y,)

* Define Jacobean matrix as follows:

0 0
J_la’
0 0
oo
* The joint PDF will be:

fuplur) =3 fus o)

‘-1 absolute determinanth |()C )

:(xw}G))
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Outline

* History/Philosophy

« Random Variables
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 Joint/Conditional Distributions
 Correlation

* Important Theorems

* Introduction to Stochastic Processes
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Correlation

* Knowing about a random variable “X”, how
much information will we gain about the other
random variable “Y" ?

* Shows linear similarity

*More formal:  Crr(X,Y)=E|X Y]

e Covariance is normalized correlation

Cov(X,Y) = E[(X = s WY — iy )| = E[X.Y |- 11y pay
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Correlation (cont’d)

e\ariance
e Covariance of a random variable with itself

Var(X)= o = E|(X —uy ]

Relation between correlation and covariance

E[Xz]: O'X2 +,uX2

«Standard Deviation
» Square root of variance
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Correlation (cont’d)

* Moments

* Nt order moment of a rapdom variable “X” is
the expected value of “X™

o, £
* Normalized form
M, :E((X_ﬂ)()n)

 Mean is the first moment

 Variance is second moment added by the
square of the mean
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Outline

* History/Philosophy

« Random Variables
 Density/Distribution Functions
 Joint/Conditional Distributions

« Correlation

* Important Theorems

* Introduction to Stochastic Processes
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Important Theorems
* Central limit theorem (CLT)

* Consider i.i.d. (Independent Identically
Distributed) RVs “Xy” with finite variances

elet 5, = ian.Xn
i=1

* Then PDF of “S,” converges to a normal
distribution as n increases, regardless of the
initial density of RVs.

« Exception: Cauchy Distribution (Why?)
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Important Theorems (cont’d)

- Law of Large Numbers (Weak)

e Fori.i.d. RVs “X”

Il
S

lim

PI'< 121 _lLlX >g>

&>0 —>00
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Important Theorems (cont’d)

 Law of Large Numbers (Strong)

*For i.i.d. RVs "Xy

Pr:lim =l =y t=1

* Why this definition is stronger than the weak law
of large numbers?
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Important Theorems (cont’d)
* Chebyshev’s Inequality

 Let “X” be a nonnegative RV

* Let “c” be a positive number, then: Pr{X >c}< lE[X]
C

* The term ChebyshevV's inequality .ma%/ also refer
to Markov’s inequality, especially in the context of
analysis. They are Closel}{ related, and some authors
refer to Markov’s inequality as "Chebyshev's First
Inequality,”

* Another form:

Pr{|X—,uX| > 5}£ Gg—)gz

* This could also be rewritten for negative RVs.
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Important Theorems (cont’d)

*Schwarz Inequality

For two RVs “X” and “Y” with finite second
moments:

ELx.yP <Elx?] Er?]

« Equality holds in case of linear dependency.

43/55



Outline

* History/Philosophy
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 Density/Distribution Functions
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* Important Theorems
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Introduction to Stochastic Processes

Let £ denote the random outcome of an

experiment.

To every such outcome suppose a function

X(t,¢) Is assigned. b X(1,8)

The collection of such :

functions form a X“’fﬂ/\/\\ﬁ\/
stochastic process.  *“&7 ~_}~
The set of {¢£,} and the X(l,@/\\i/%

time index t can be X(t,gl)/\_JX
continuous or discrete 0 t t

(countably infinite or finite).
For fixed ¢ €S (the set of all experimental
outcomes), X(1,¢) is a specific time function.
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Introduction to Stochastic Processes

* Forfixedt, x,=x(,&) IS arandom variable.
 The ensemble of all such realizations X (z,&) over
time represents the stochastic process X(i).

YX(.$6)
xe) /NN T~
X(r,gk)/\\:/\/
X(1,€,) :
X(t,gl)/\_J/\
0 t t &

46/55



Introduction to Stochastic Processes

« Examples:
* Let X(¢¥)=acos(wt+ @),
where ¢ is a uniformly distributed random
variable in (0,2r), represents a stochastic process.
« Stochastic processes are everywhere:
« stock market fluctuations
e various gqueuing systems
« Earthquake Signals
* 1-D Audios
« 2-D Images
« 3-D Videos
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Introduction to Stochastic Processes

 Example 1:

The Random Process (RP) X(t) is defined as:
X(t) = At + b, b is a constant, Ais a Gaussianrv, t > 0

Find fy(x,t) :
1 a’
fala) = —exp <— 7) =N(0,1)

V21T
_fA(a)
fX(x,t)— ‘d_x
dA
A_X(t)—b |dX _ . _x—b
ot dAl T

1 1 a® 1 (x — b)?
fx(x»t)—zfA(a)—\/Z—meXp<—7>— Zﬂtexp<_ 312 )
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Introduction to Stochastic Processes

 Example 1:

The Random Process (RP) X(t) is defined as:
X(t) = At + b, b is a constant, Ais a Gaussianrv, t > 0

What is mean and variance of X(t)?
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Introduction to Stochastic Processes

 Example 1 continued:

Mean of X (t):

X(t)=At+ b, AisN(0,1)
E[X(t)] = E[At + b] = E[A]t + E[b] =0xt+b =0b

Variance of X (t) );
X(t)2 = A%t> * b? + 2Abt

E[X(t)2] = E[A%t? © b% + 24bt] = E[A%]¢? + E[b?]
+ E[A]2bt = 1*t*> 4+ b? + 0= 2bt

E[X(£)?2] = t2 * b2 )
Var(X[t]) = E[X(£)2] - E[X(©)]2 = t2 " b2 — b2 ~ 2

Note: The mean of X(t) is constant but its variance is a function of
time time t.
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Introduction to Stochastic Processes

Example 2:
X():RP

X(t) = Acos(wyt + 6)

ConStarN \

constant index  RV: Uniform(0, 2m)
(time)
— 1
a) PDF =? £2(6) = {% 0 € (0,2m]
b) E[X(6)] =2 cle :

c) Var[X(t)] =?
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Introduction to Stochastic Processes

Example 2 continued:
X(t) = Acos(wyt + 60) =X(0)

N fe(6) 1 1[0 < 6; < 2]
fX(x; t) — . dXt _27_[ dXt
T |dg, a0,

Acos(wot + 6;) =x — has exactly 2 answers in (0, 2]

dX
") | — Asin(wgt + 6;)] =\/A2 — X?
do;
2 1 1
- fx(x,t) = Xl < A

2T\AZ —x2 VA2 — X2
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Introduction to Stochastic Processes

Example 2 continued:
X(t) = Acos(wyt + 60) =X.(0)

2T

E[X(t)] = E|Acos(wot + 0)] = A] cos(wyt + 6) % do =0

0

VIX(®)] = E[X(©)*] — E[X(©)]* = E[(A cos(wot + 6))?]

2T 1
= AZJ cos?(wyt + 0) — dO
0 2T

‘/12 2T 1 ‘/12 2T 1 ‘[12

=—| -q@ 2 2 =—| —do==—
2 ), 2( + cos(2wyt + 260)) d6 2 ), 2d9 >

Note: The mean and variance of X(t) are constants in this example.
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Introduction to Stochastic Processes
Stationary Processes

Wide Sense
Stationary

Stationary

Process Strict Sense

Stationary
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Next Week:

Stochastic Processes
Stationary Stochastic Processes

Have a good day!
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