Stochastic Processes

Week 08 (Version 2.0)

Hypothesis Testing

Hamid R. Rabiee Fall 2022

Introduction to Hypothesis Testing

- •A statistical hypothesis test is a method of statistical inference used to determine a possible conclusion from two different, and likely conflicting, hypotheses.
- A hypothesis is an assumption about the population parameter:
 - A parameter is a population mean or proportion.
 - The parameter must be identified before analysis.
- •For example a hypothesis could be: The mean GPA of this class is 17.5.

The Null and Alternative Hypothesis

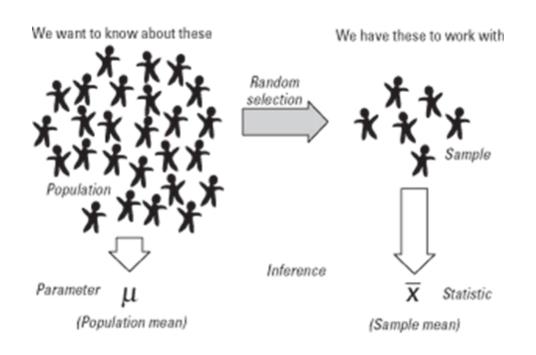
- The Null Hypothesis (H_0) states the assumption (numerical) to be tested.
- e.g. the average number of mobiles in Iranian homes is at least 3 (H_0 : $\mu \ge 3$).
- We begin with the assumption that the null hypothesis is TRUE (Similar to the notion of innocent until proven guilty).
- The Null Hypothesis may or may not be rejected.
- The Alternative Hypothesis (H₁) is the opposite of the null hypothesis.

The Null and Alternative Hypothesis

- e.g. the average number of mobiles in Iranian homes is less than 3 (H_1 : $\mu < 3$)
- The Alternative Hypothesis may or may not be accepted.
- Hypothesis testing steps:
 - 1. Define your hypotheses (null, alternative)
 - 2. Specify your null distribution
 - 3. Do an experiment by sampling
 - 4. Calculate the test statistics of what you observed
 - 5. Reject or Accept the null hypothesis

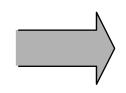
The Null and Alternative Hypothesis

• Recall: Sample data 'represents' the whole population:



Hypothesis Testing Process by Example

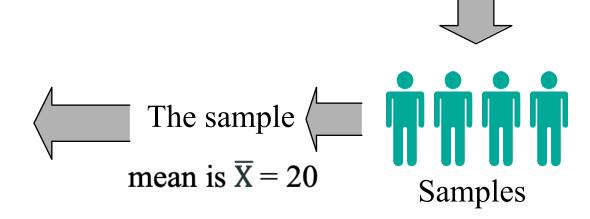
Assume the population mean age is $\mu = 50$ (Null Hypothesis)



Sample from Population

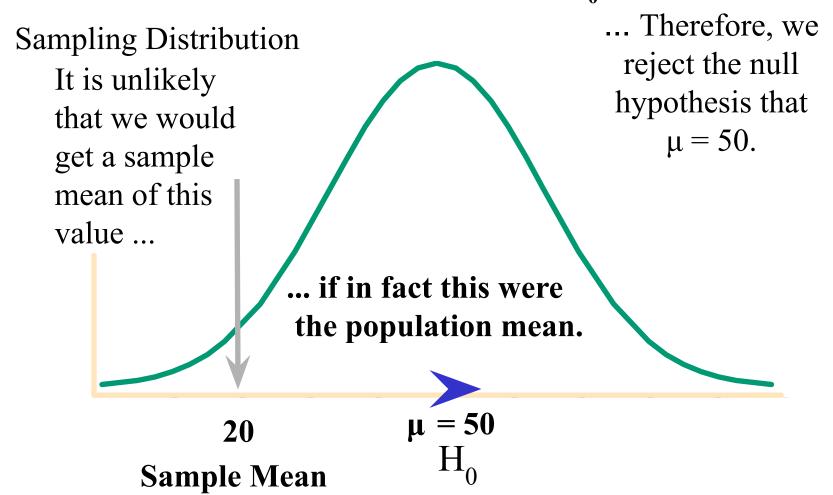
Is $\overline{X} = 20$ almost equal to $\mu = 50$ No, not likely!

Null Hypothesis



Hypothesis Testing Process

Reason for Rejecting H₀



Level of Significance: α

- Level of significance (α) defines unlikely values of sample statistic if Null Hypothesis is true.
 - It defines the Rejection Region of sampling distribution.
 - Typical values are 0.01, 0.05, 0.10.
 - It provides the Critical Value(s) of the test.

Level of Significance: α

$$H_0$$
: μ ≥ 3

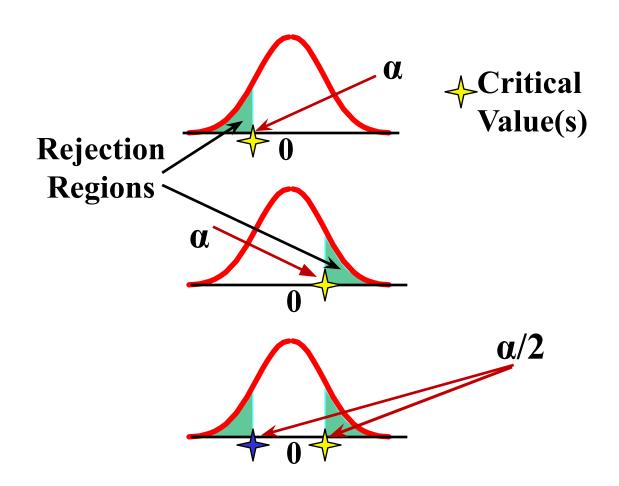
$$H_1: \mu < 3$$

$$H_0: \mu \le 3$$

$$H_1: \mu > 3$$

$$H_0$$
: $\mu = 3$

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$



Errors When Making Decisions

- Type I Error
 - Rejecting a true null hypothesis.
 - Has serious consequences.
 - Probability of Type I Error is α,
 (Called level of significance).
- Type II Error
 - Do not reject false null hypothesis.
 - Probability of Type II Error is β.

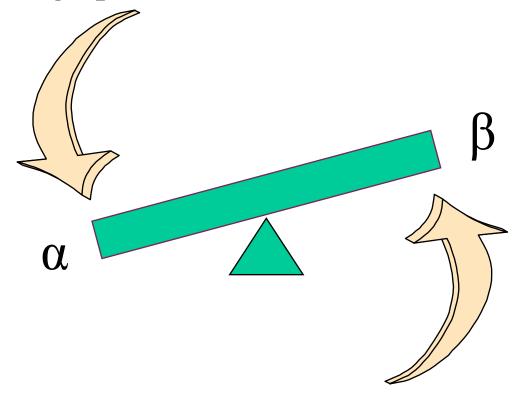
Decisions Possibilities: Court Example

H₀: Innocent

Jury Trial			Hypothesis Test		
	Actual Situation			Actual Situation	
Verdict	Innocent	Guilty	Decision	\mathbf{H}_{0}	H ₀ False
Innocent	Correct	Error	Do Not Reject H ₀	True 1 - α	Type II Error (β)
Guilty	Error	Correct	Reject H ₀	Type I Error (a)	Power (1 - β)

Errors When Making Decisions

- $\alpha \& \beta$ Have an inverse relationship.
- Reducing probability of one error causes the other one going up.



Z-Test Statistics (σ known)

• Convert sample statistic (e.g., \overline{X}) to standardized Z variable:

$$Z=rac{(ar{X}-\mu^-)}{s}$$

- If the observed data $X_1, ..., X_n$ are i.i.d. with mean μ , and variance σ^2 , then the sample average \overline{X} has mean μ and variance $s^2 = \frac{\sigma^2}{n}$.
- If Z test statistic falls in the critical (rejection) region, Reject H_0 ; Otherwise do not Reject H_0 .

The P-Value Test

- Probability of obtaining a test statistic more extreme (\leq or \geq) than actual sample value given H_0 is true.
- Used to make rejection decision:
 - If p-value ≥ α , do not Reject H₀
 - If p-value $< \alpha$, reject H₀
- A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

Hypothesis Testing: Example

Test the Assumption that the true mean # of mobiles in Iranian homes is at least 3.

1. State
$$H_0$$
: $\mu \ge 3$

- 2. State $H_1 = H_1 : \mu < 3$
- 3. Choose α $\alpha = .05$
- 4. Choose n = 100
- 5. Choose Test: Z Test (or p-value)

Hypothesis Testing: Example

Test the Assumption that the true mean # of mobiles in Iranian homes is at least 3.

6. Set Up Critical Value(s)

Z = -1.645

7. Collect Data

- 100 households surveyed
- 8. Compute Test Statistic Computed Test Stat.= -2
- 9. Make Statistical Decision Reject Null Hypothesis
- 10. Express Decision The true mean # mobiles is less than 3 in the Iranian households.

One-Tail Z Test for Mean (σ Known)

- Assumptions:
 - Population is normally distributed
 - If not normal, use large samples (CLT)
 - Null Hypothesis Has ≤ or ≥ Sign Only
- Z Test Statistic:

$$Z=rac{(ar{X}-\mu^-)}{s}$$

Rejection Region

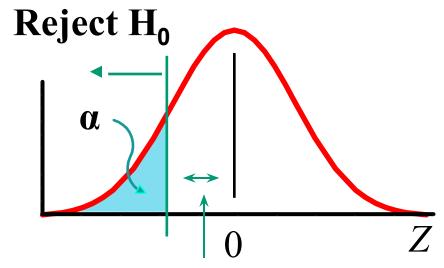
$$H_0: \mu \ge 0$$

 $H_1: \mu < 0$

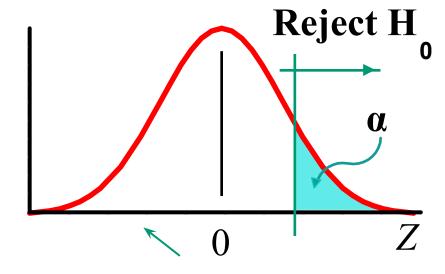
$$H_1: \mu < 0$$

$$H_0: \mu \le 0$$

 $H_1: \mu > 0$



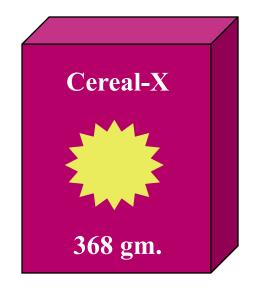
Must Be Significantly Below $\mu = 0$



Small values don't contradict H₀ Don't Reject H₀

Example: One Tail Test

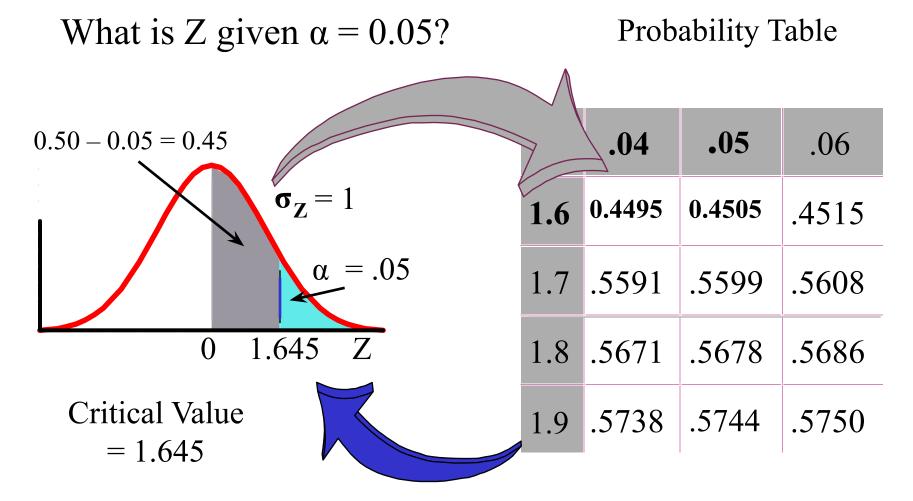
- Does an average box of cereal contain more than 368 grams of cereal?
- A random sample of 25 boxes showed $\overline{X} = 372.5$ grams.
- The company has specified σ to be 15 grams. Test at the $\alpha = 0.05$ level.



 H_0 : $\mu \le 368$

 H_1 : $\mu > 368$

Finding Critical Values: One Tail



Example Solution: One Tail

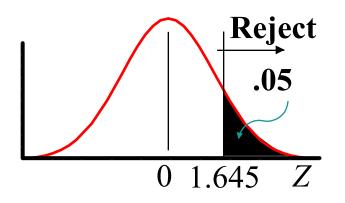
$$H_0: \mu \le 368$$

$$H_1$$
: $\mu > 368$

$$\alpha = 0.05$$

$$n = 25$$

Critical Value: 1.645



Test Statistic:

$$Z = \frac{(\bar{X} - \mu)}{s} = 1.5$$

$$(372.5-368)/(15/5)=1.5$$

Decision:

Do Not Reject at $\alpha = .05$

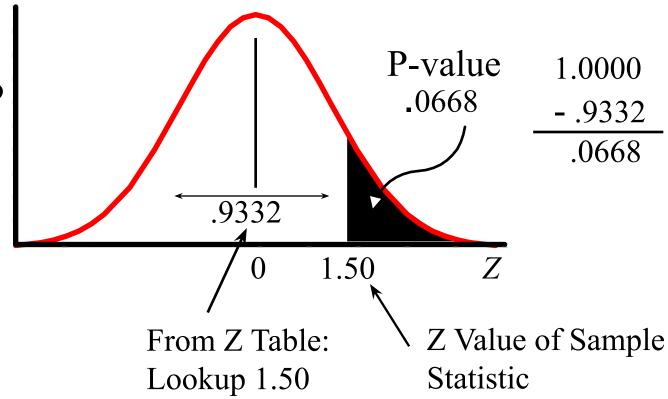
Conclusion:

No evidence true mean is more than 368.

P-Value Solution

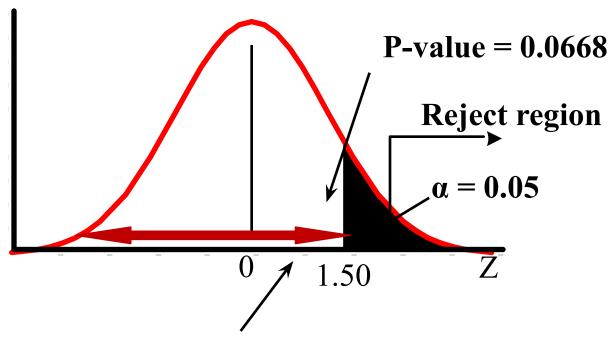
P-Value is $P(Z \ge 1.50) = 0.0668$

Use the alternative hypothesis to find the direction of the test.



P-Value Solution

(P-value = 0.0668) $\geq (\alpha = 0.05)$. Do Not Reject.



Test statistic is in the Do Not Reject region

Example: Two Tail Test

- Does an average box of cereal contain 368 grams of cereal?
- A random sample of 25 boxes showed X = 372.5 grams.
- The company has specified σ to be 15 grams. Test at the $\alpha = 0.05$ level.

 H_0 : $\mu = 368$

 H_1 : $\mu \neq 368$

Example Solution: Two Tail

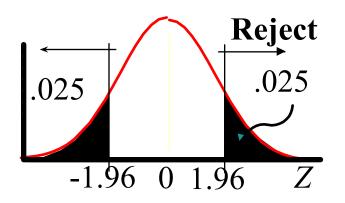
$$H_0$$
: $\mu = 386$

$$H_1$$
: $\mu \neq 386$

$$\alpha = 0.05$$

$$n = 25$$

Critical Value: ± 1.96



Test Statistic:

$$Z = \frac{(\bar{X} - \mu)}{s} = 1.5$$

$$(372.5-368)/(15/5)=1.5$$

Decision:

Do Not Reject at $\alpha = .05$

Conclusion:

No evidence that true mean is not 368.

Connection to Confidence Intervals

For
$$\overline{X} = 372.5$$
, $\sigma = 15$ and $n = 25$,
The 95% Confidence Interval is:
 $372.5 - (1.96) (15)/(5)$ to $372.5 + (1.96) (15)/(5)$
Or
 $366.62 \le \mu \le 378.38$

If this interval contains the Hypothesized mean (368), we do not reject the null hypothesis. Since it does, do not reject.

t-Test: σ Unknown

- t-tests are used to compare two population means.
- Assumptions:
 - Population is normally distributed
 - If not normal, only slightly skewed & a large sample taken (CLT)
- Use parametric test procedure
- t-test statistic:

$$t=rac{Z}{s}=rac{ar{X}-\mu}{\widehat{\sigma}/\sqrt{n}}$$

Example: A Coin Toss

- You have a coin and you would like to check whether it is fair or not. Let θ be the probability of heads, $\theta = P(H)$
 - You have two hypotheses:
 - H_0 (the null hypothesis): The coin is fair i.e., $\theta=1/2$.
 - H_1 (the alternative hypothesis): The coin is not fair, $\theta \neq 1/2$.

Example: A Coin Toss

- We need to design a test to either accept H₀ or H₁
- We toss the coin 100 times and record the number of heads.
- Let X be the number of heads that we observe:

X~Binomial(100,θ)

- if H_0 is true, then $\theta = \theta_0 = \frac{1}{2}$
 - we expect the number of heads to be close to
 50
- We suggest the following criteria: If |X-50| is less than or equal to some threshold, we accept H_0 .
- On the other hand, if |X-50| is larger than the threshold we reject H_0 .
- Let's call that threshold t.

If |X-50|≤t, accept H₀.

If |X-50|>t, accept H₁

- We need to define more parameters, e.g. Error Probability.
- Type I Error: Wrongly reject H₀ when it is true.
- P(Type I Error) = P($|X-50| > t | H_0$) <= α α : level of significance
- Knowing that P is a binomial distribution we can now calculate t.

- $X \sim Binomial (n, \theta = \frac{1}{2})$
 - \circ Can be estimated by a normal distribution since n is large enough: $Y \sim N(0, 1)$

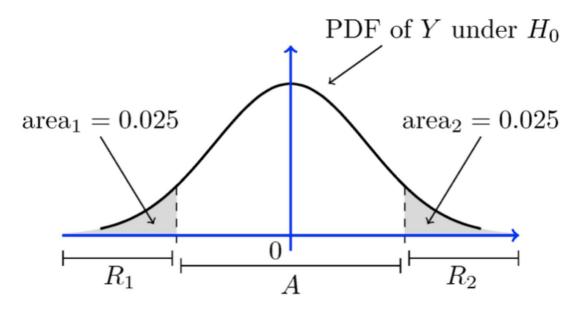
$$\bullet \quad \mathbf{Y} = \frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}}$$

- $P(|X-50| > t | H_0) = P(|Y| > t/5 | H_0)$
- if c = t/5:
 - \circ |Y| > c, accept H₀
 - o.w. accept H₁

- Since $Y = \frac{X 5}{50}$, the conclusion can be rewritten as:
 - \circ if $|X 50| \le 9.8$, accept H_0
 - o else if |X 50| > 9.8, accept H₁
- if X in $\{41, 42, ..., 59\}$, accept H_0

- $P(|Y| > c) = 1 P(-c \le Y \le c)$
 - \circ Assuming Y ~ Normal(0, 1)
- $P(|Y| > c) = 2 2\phi(c) = 0.05$
 - using the z-table: $c = \phi 1(0.975) = 1.96$
- $|Y| \le 1.96$, accept H_0 , o.w. accept H_1
 - \circ Acceptance Region = [-1/96, 1.96]
 - Rejection Region = ?

Visualization: A Coin Toss



A = Acceptance Region

 $R = R_1 \cup R_2 = \text{Rejection Region}$

 $\alpha = P(\text{type I error}) = \text{area}_1 + \text{area}_2 = 0.05$

Next Week:

Markov Chains

Have a good day!