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Introduction to Estimation Theory

 Estimation Theory: Is a branch of statistics that
deals with estimating the values of parameters based
on observed data that has a random component.

* In this course we focus on point estimation:
Given X = {X;, X5, ... X} Where x;s are independent

and identically distributed (i.1.d) observations with
f (x0), we want to find an statistics T(X) = 6 that
IS a good estimator for ©.



Introduction to Estimation Theory

 Three basic Questions:
1) Do we need all the i.1.d observations to estimate 6?
2) What do we mean by “good estimator’?
3) Do we need prior information on 0 (i.e. f(8)) to
estimate It?
e ANSwers:

1) Not necessarily! We may use Sufficient Statistic (SS); a
function or statistic of observations, instead.

2) The goodness of an estimator is measured by three
properties: unbiasedness, efficiency (minimum
variance) and consistency.



Introduction to Estimation Theory

» Unbiasedness:

An estimator 0 is f,aid to be unbiased if its expected value is
Identical to 0; E (6) = 0.

« Efficiency:

If two competing estimators are both unbiased, the one with
the smaller variance is said to be relatively more efficient.

» Consistency:

If an estimator 8 approaches the parameter 6 closer and closer
as the sample size n increases, @ is said to be a consistent
estimator of 0 (not a rigorous definition).



Introduction to Estimation Theory

3) The frequentist believe we do not need prior
Information on O (i.e. f(0)) to estimate It.

However, the Bayesian believe we do need prior
Information on ©.

In the following we focus on Sufficient Statistic.
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Sufficient Statistic (SS)

Assume the statistic T partitions the sample space into sets.

©AE{XT(X) =t}

Goal of SS: Data reduction without discarding information about
6. Examples of statistics:

T(X) =2

T(X)=X .



Sufficient Statistic

A statistic T(X) Is a sufficient statistic for 0 iIf the
conditional density of X given the value of T(X)
does not depend on 6.

In other words, If T(X) Is a sufficient statistic for 6
then any inference about 6 should depend on the
sample X only through T(X); meaning 6 is a
function of T(X).

How to find sufficient statistics for 07?



Sufficient Statistic

Factorization Theorem:

Let f(x|8) be the pdf of X.

T (X) is a sufficient stat for 8 iff 3 functions g and h such that:
fx|6) =g(T(x)|6) h(x) Vxeyx, 6H€0O

proof: (discrete case)

=: Assume T is a sufficient statistic:
f(x|0) = Pg(X = x,T(X) = T(x))

— fe(T(X) = T(as)\)Pg(X = x|T(X) = Tj(x))

g(T(x)|6) h(x) 10



Sufficient Statistic

&: Assume factorization holds, let g(¢|@) be the pmf of T(X)
Let A, = {y:T(y) = t}

atlo) = Po(TC0 =) = ) f(x|0) = > g(T(IIOIR)

.X'EAt XEAt

Po(X=x,T(X)=T(x)) _ Pg(X=x)
Po(T(X)=T(x))  q(t|0)

Po(X =x|T(X) =T(x)) =

 e(TOh@  hw
— 9(T(X)|0) Srea, h@)  Zixea, M)

does not depend on 6.

11



Sufficient Statistic

Example: x4, ..., x,, be i.i.d Bernouli(8), 0<6 <1.

Then T'(x) = ¥, x; is a sufficient statistic for 6.
n

f(x]0) = 1_[ 0%i(1 — Q)i = g2 Xi (1— Q)n—z X
i=1

g(tle) =6t(1-e)r
h(x) =1

12



Sufficient Statistic

Example: x4, ..., x,, be i.i.d U(0, 8).

1 .
f(xlr ;xnle) — ﬁ all Xin [0, 9]
0 0.W.

Recall: I,(x) = {1 ifxeA
0 0.W.
Let: T(x) = max x;
l

Define: g(t|0) := in[(_oo’g](t) h(x) = Ijg +o) ( min x;
6 [

1 |
= 9T = g Ien) (Max ) - o,y (min ;) = fx, -., 2.]0)

= T(X) is sufficient statistic. 13



Sufficient Statistic

Example: x4, ..., x,, be i.i.d Normal(y, 62).

n n . — )2 ¥ — 11)2
f(xl,u;52) _ (27_[52)—7 exp (_ l=1(xl X;52+ TL(X ,Ll) >

We show that following t; and t, together is a sufficient statistic.

n
t1:Z(xi_f)2; tzzf
=1

9(t10) = g(ts, b1, 6?) = (2182) 2 exp (‘ o Zgl - m)

h(x) =1
= T(X) is sufficient statistic.

need: g(t;,t,|60)

14



Sufficient Statistic

Exponential Family:

Family of pdfs or pmfs is called a k-parameter exponential family if:

k
F(x168) = h(x) c(8) exp (Z wi(0) ti(x>>
i=1

Example: x4, ..., x, be i.i.d Bernouli(8), 0<6 <1.

f(x|0) = 2% (1 —)""2% = exp <1n92xi +In(1 - 0) (n — le))

i=1

n n
6 0
= exp (ln z x; +nin(1l — 9)) = exp(nIn(1 — 0)) - exp (ln z xi>
1—06¢ 1—6¢«
=1 =1
k=1 h(x) =1 6) = (nIn(1 —0)) t—zn: @) =1 o
=1, x)=1, c(8) = exp(nin , 1= ) X, wi(0) =InT—p

i=1

15



Sufficient Statistic

Example: x4, ..., x,, be i.i.d Normal(y, 62).

1 — )2 2 2
Felin 62) = ——exp (= EBT) o LI (Y ep (= 4
V2r§? 262 N 252 262 52

Exponential family:

k
£(x16) = h(x) c(0) exp (2 w:(0) tl-(x))
i=1

=

k=2 h(x) = 1 (1 62) = — 1 K
— 4, X) = ) C lul - [—2n6exp 252 4
x? 1
t1(x) = wy (i, %) =52
— 52 — H
t,(x) = x, wy (1, )—ﬁ

16



Sufficient Statistic

Sufficient statistic for exponential family:
Let x4, ..., x,, be i.i.d observations from a pdf or pmf f(x|0). Suppose f(x|0)

belongs to the exponential family:

k
F(x168) = h(x) c(8) exp (Z wi(0) ti(x>>
i=1

Then
TX) = Qlit1(x), X ta(xi), .., X1 t(x;)) is a sufficient statistic for 6.

Example: x4, ..., x,, be i.i.d Normal(u, §2).
2

NOEEES t,(x) = x

17



Sufficient Statistic

=>TX) = (—% noxf Y, xi) is sufficient statistic for (u, §%)
T'(X) = (Xiz1(x; — %)%, %)

rX)=1X) iff T'X)=T'(Y)

Results:

1) T(X) = Xis a sufficient statistic.
Proof:

fx18) = fF(T(x)|6)h(x)

T(x) = x, h(x) =1

2) Any one-to-one function of a sufficient statistic is also a sufficient statistic.

18



Sufficient Statistic

Proof: Suppose T is a sufficient statistic.

Define T*(x) = r(T(x)) where r is one-to-one and has inverse 1

f(x18) = g(T(@)|O)h(x) = g(r™(T*(x))16)h(x)
Define g*(¢|0) = g(r~1(t)|8)h(x)
= f(x|0) = g*(T*"(x)|8) h(x) so T* is a sufficient static for 6.

Example: x4, ..., x,, be i.i.d Bernouli(8), 0<6 <1.

All of the following are sufficient statics for 68

n

Tl(X) = Ex,:, TZ (X) = (X(l),X(z), ...,X(n)), T3 (X) = (xl, X2,

=1

19
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Minimal Sufficient Statistic

Minimal sufficient statistic:

A sufficient statistic T(X) is called minimal sufficient statistic, if for any other
sufficient statistic T'(X), T(X) is a function of T'(X).

It achieve maximum possible data reduction without losing info about 6.

T partitions y into sets; A, = {X : T(X) = ¢}

T'partitions y into sets; B, = {X : T'(X) = t'}

Each set B,» ¢ some set 4,

21
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Minimal Sufficient Statistic

Theorem:

Let f(x|0) be pdf or pmf. Suppose that for any 2 sample points X and Y the ratio:

f(X19)
f(xle)

IS constant as a function of 8 iff T(X) = T(Y),

then T'(X) is a minimal sufficient statistic for 6.
Proof: assume f(x|8) >0

Let I ={t:t =T(x) for some x € y}
A={X:T(X)=1t)

22



Minimal Sufficient Statistic

for each A;, choose a fix element X, € A;. For any X, let X7 be the fixed

element that is in the same A; as X, Hence:

T(X) = T(Xrx)

f(X]9)
fX1(x)|0)

IS constant as a function of 4.

g(t16) = f(Xr)|0)

f(Xrw|0) f(x16)
) = = g(T(x)|0) h
f(x|6) Freal®) g(T(x)|8) h(x)

= T(x) is sufficient.

23



Minimal Sufficient Statistic

& Let T’ be an arbitrary sufficient statistic. Then from factorization theorem:

3 functions g, h" s.t. f(x]|0) = g (T'(x)|0) h'(x)
For any 2 sample points like x, y with T"(x) = T'(y):

sy _ (TN W' _ e
o) g(T'W|0) ey W)

So by the assumption about T (x) we have: T(x) = T(y).

Therefore, T is a function of T"'.

Hence T is minimal.

which is a constant as a function of 4.

24



Minimal Sufficient Statistic

Example: x4, ..., x, be 1.1.d Bernoulli(8), 0 <8 <1

Fixlo) = [ |01 — oy = g5 (1 — g2
=1

f(x]6)
f(yl0)

= = QLXi"LYi(] — §)LYi~L%i

need: ), x; — ), y; =0
So T(X) = Y- x; is minimal sufficient for 6.

25



Minimal Sufficient Statistic

Example: xq, ..., x, bei.i.d Normal(y, 62).

flx|u, 62) = (27152)_% exp <_ i=1(x; — %)% +n(x — H)Z)

2672

flxlw, 6%) —n(x? —y*) +2nu(x —y) - (n— DL — 0% =X (i — %)
fFOlms? ~ °F 252

Need:

X=Yy
Z(xi — %) = Z()’i —¥)?
i=1 =1

So (x, Y., (x; — %)?) is a minimal sufficient statistic for 6.
=1

But it is not unique. E.g. (%, s?) is also a minimal sufficient statistic for 6.
26



Minimal Sufficient Statistic

Any 1-1 function of a minimal sufficient statistic is a minimal sufficient statistic.

Example: xq,..,x,be 1.i.d U(0,0+1)

£(x|0) = 1 allx;in(6,60 +1) _]1 max(x;) —1 <6 < min(x;)
0 0.W. 0 0.W.

f(x]9)

is constant as a function of 9 iff max(x;) = max(y;)
F(y10)

min(x;) = min(y;)

Hence, T(X) = (x(1), x(ny) is @ minimal sufficient statistic for 6.

X(1)tX(n)

Note: T'(x) = (x(n) — X(1) >

) Is also minimal sufficient statistic.

27
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Complete Sufficient Statistic

Def: let f(t|0) be family of pdfs (pmfs) for a statistic T(x), the

family of probability distributions is called complete if:
EQ g(T) =0 VO

= pe(g(T) =0)=1 V6

or T(x)is a complete statistic.

Note: completeness Is a property of the family of distributions

not a particular distribution.

29



Complete Sufficient Statistic

Example: Let X be a random sample of size n such that
each X; has the same Bernoulli distribution with parameter p.
Let T be the number of 1s observed in the sample, I.e.

T=>%"1X

T is a statistic of X which has a binomial distribution with
parameters (n,p). If the parameter space for p is (0,1),
then T is a complete statistic:

s S (o S ()

t=0

neither p nor 1 — p can be 0. 30



Complete Sufficient Statistic

Hence: E,(g(T")) = 0 Iff:

S0 () (5) -0

Replacing p/(1 —p) by r:

g g(t) (";’) rt =0

The range of r is the positive reals. Also, E(g(T)) Is
a polynomial in r and, therefore, can only be identical to O if
all coefficients are 0, that is, g(t) = O for all t.

31



Complete Sufficient Statistic

* It is important to notice that the result that all coefficients must
be 0 was obtained because of the range of r.

* For example, for a single observation and a single parameter
value; iIf n = 1 and the parameter space is {0.5}, T is not
complete: g(t) = 2 (t — 0.5) and then, E(g(T)) = 0 although g(t)
Isnot O fort=0nor fort=1.

Theorem: (exponential family)
Let xq,..,x, iid F(x|0) f(x]|0) = h(x) c(@) exp(Q, w;(0)t;(x))
Suppose that the range of (w;(6),...,w,(8)) contains an n dimensional

rectangle.
Then: T(x) = (X7oq ta(x)), ) Xy tr(x;)) is complete.

32
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The Likelithood Principle

The likelihood principle:

Def: X ~ f(x]6)
Then given X = x observed, then the function of 6 defined by:
L(6]X) = f(X]6)
Is called the likelihood function.
Interpretation:
1) X discrete
L(O|X) = pg(X = x)
L1(60:1X) > L, (6:|X)
Sample had a higher likelihood of occurring if 8 = 6, then 8 = 6,.

34



The Likelithood Principle

2) X continuous (real valued pdf)
for small €:

2eL(B|X) =2ef(X]|0) Epg(X —e< X< X +¢)

L(91|X)_p91(X—£<X<X+€)>1 ,
L(6olX) po,(X —e<X<X+e) '

approx. the same interpretation as discrete.

Example: xq,..,x, iid Bernoulli(0)

LO|x)=f(x|0)=0Z%i(1— g)rIx
Letn = 2

35



The Likelihood Principle

(aA)Zx; = 2= L(O | x) = 62
(b)Ex;=1=>LO1x)=6(1-6
)Zx;=0=>LOIx)=(1-06)

a) b) c)

0 J— T
consider L G | x) /L G | x)

f

9 when)x; =2

(2) 2(3/4|x) < 1 whan}x; =1
(1/41x) 1

— whenYx; =0
9

36



The Likelithood Principle

Example: xq,..,x, iid N(u, 6%).Assume 62 is fixed.

L | 2) = (@ | b) = (2nd?) ™ 2e730 = (o]
= k(z)e "EH’/2

1

increase n

X (max at X )

37



The Likelithood Principle

Likelihood principle:

If X and Y are two sample points s.t. L(6|X) is proportional to L(8|Y):
L(6|X)=C(X,Y)L(O|Y) V6

Then the conclusions drown from X and Y should be identical.

Idea: use the likelihood function to compare the “probability” of various

parameter values.

If L(6,|X) =2L(0.|X) 6, istwice as likely as 6, and:
LO|X)=CX,Y)L(Oly) VO

Then: L(6,|y) = 2L(0|y) 0, istwice as likely as 6,

38
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Frequentist’s Estimators

Def: A point estimator is any statistic T'(x).
Estimator: function of sample.

Estimate: actual value of the estimator.

Methods of finding estimators for this course:

(1) Maximum Likelihood Estimator (MLE) ~ (frequentist)
(2) Method of Moments (MM) ~ (frequentist)

(3) UMVUE ~ (frequentist)

(4) Maximum APosteriori (MAP) ~ (Bayes)

(5) Bayes Minimum Risk ~ (Bayes)

40



Maximum Likelihood Estimator: MLE

Maximum likelihood estimator (MLE):

LOIX) = L(Oy, o, O X, o, Xn) =TTy £(X:16)

Def:
for each X, let 6(X) be the value which maximizes L(6|X)
then, (X) is the maximum likelihood estimator (MLE) of 6.

Log likelihood:
use log L(0|X).

41



Maximum Likelihood Estimator: MLE

How to find MLE”’s:
(1) Differentiation

if L(6|X) isdifferentiable in 8;, possible 8;’s are solutions to:

d .
S L@l =0, i=1.k

a) 1-dimension

solve %L(BIX) =0 ford

2 A
check %L(BIX) <0 for0=260

(check boundaries)

42



Maximum Likelihood Estimator: MLE
Example: xq,..,x, iid Bern(0)

L(6 | x) = 6 2%i(1 — )"~ 2%

logL(6 | x) = Yx;logd + (n — Y.x;)log(1 — 6)

dlogL(@ 1 x) Xx; n—Xx;

39 6 1-g 07Y=F
d%logL Yx; n—Yx; )
67 =gz (g <0@=0

check bounderies; Yx; = 0,Yx; =n
nlog(1—-0) if Yx; =0

nlog(@) if Yx; =n

logL(0 | x) =

43



Maximum Likelihood Estimator: MLE

b) 2-dimensions

iL(Hl, Hle) =0 fOT 91, 92
26,

check that

50 L(Ql, 02|X) <0 for 91 — éll 922 éz
1

or. 92|X) <0 for 61 — él’ 62= éz

and:

= L(61, 621%) 505 L(61,6,1) — [5557

_ 91 L(6,, 92|X)] >0

for 61 - 61, 62= éz.
44



Maximum Likelihood Estimator: MLE
Example: xq,..,x, iid N(u, &%)
n n 1
log L(p, 6% | ) = —Elog 27 — E]Dg s — o z (zi — p)?

0 1 .
—logLZEZ(:ci—u):0:>p,::T:

op

9 logL no, 1 Y (mi—p)’ 0= 34" Y (zi—z)°
— = — — —_— i = = mi_w
952 ° 255 | 261 H

. 0? n

(1) 8—”210gL:—§

.. 82 n 1 9

(ii) 8(32)2lOgL = o5t 5—62(% — 1)

. 0? 1

(ii) 5108 logL:—y D (i — ) .



i

n?
2

Maximum Likelihood Estimator: MLE

S - (N -w) ]

2 =35

46



Maximum Likelihood Estimator: MLE

How to find MLE’s:
(2) Direct maximization
- find global upper bound on likelihood function

- show bound is attained

Example: xq,..,x, iid N(u,1)

1 \? _1 e yy)?
L(ulw):(?) e 22(2 P')

Recall for any number a: Z (z; — z)* < Z (z; — a)*
=Lplz)<LE|z)=>p=72

a7



Maximum Likelihood Estimator: MLE

(3) Numerically (by computer)
With or without (1) and (2)

Example: xq,..,x, iid truncated poisson:

—_m.,,,7r

e m

plx; =71] = Aoy ™ <01,..
e~ m*i e™™ \' 1
L = It = inn?l_ S
(m | x) 1=1 (1 _ e_m)xl' (l . e_m> m i=1 xll

loghL=—mn—nlog(l—e™™) +inlgm—210g(xi!)

dlogL N ne- ™ +2xi_0:> -,
om ST T 1—em T T m =

dloglL
om '’

Define: ¢p(m) = needm s/t ¢(m) =0



Maximum Likelihood Estimator: MLE

Let m, be an initial estimate for m.
0~ ¢ (m) ~ ¢p(mgy) + (m - mo) @' (mg)

— ¢ (my)
° ¢'(my)

~

(1) Choose an initial estimate m,

(2) Define a sequence {m, } of estimates by:

¢ (my)

Mpyr1 = My — ,k = 0,1,2,
¥ ¢'(my)
(3) Stop when [Mypq —my| < e o problo
Let M =My T —



Maximum Likelihood Estimator: MLE

Note: maximization takes place only over the range of parameter values.

Example: xq,..,x, iid N(u,1) but u=0

fi = xwhatif x < 0?

A=0ifx<0 =19 *=0

50



Maximum Likelihood Estimator: MLE

Note: maximization can occur on boundaries.

Example: xi,..,x, iid U(0,0)

1 .

LX) =1{gn if 0 > max(x;)
0 else

o Omie = max(x;)

Max(xi)

Note: maximum likelihood estimate may not be unique.

51



Maximum Likelihood Estimator: MLE

Note: maximum likelihood estimate may not be unique.

Example: x4,..,x, iid U(8,8+1)

1 maxx; — 1 <60 < minx;
o1 =y TS ST

~ 0

any value in the interval
(max(xi) — 1,min(xl-))

max(xi) -1 min(xi) 6 >2



Maximum Likelihood Estimator: MLE

Note: MLE’s can be numerically unstable.

Example: xq,..,x, iid Bin(k,p) ; k,p unknowns

Can show:

if x = (16,18,22,25,27) = k = 99
if x = (16,18,22,25,28) = k = 190

53



Maximum Likelihood Estimator: MLE

Theorem: (invariance property)

If § is the MLE of 6, then for any function (), r(8) is the MLE of r(6).

Example: x4,..,x, iid N(u1)

— —2
X is the MLE of u , then X is the MLE of u?.

54



Method of Moments

Method of moments:
X1y ey Xy Bld f(x]|04, ..., 0)
Equate the first k sample moments to the k first population moments.

1

Let —my =-2X H = E(X)
_1 2 _ 2
mz—;ZXi Uy = E(X*)
1
m = =YX we = E(X%)

m] = ,Ll](el, ...,Hk)
Let mq = [11(81, . Qk)

my, = U (64, ..., 0%) solve for 64, ..., 0y



Method of moments

Example: xq,..,x, iid N(u, 6%)

1
m1=52xl Uy =
1 2 ~ 2 4,2
mz=E2xl flo =0°+pu
_ 1 2 240 2 o n o f2_ Lim =2
x=,u,gz:xi=s +u-=>h=x+06 :EZ'i:l(xi—x)

Example: x4,..,x, iid binomial(k,p) both unknown

Z=kp
%me = kp(1 — p) + ¥’p’

. T2
Solving to get: k=
[m——z(mz—w) ]

3>
|
= | 8

56



Method of moments

Note: this method can also be used for moment matching.

-match moments of distributions of statistics to obtain approximation to

distributions.

Example: xq,..,x, iid p(A)

1
=3
(V) E(x) =4 S
(2)E(xf)=/1+/12 m2=%2x112

24 i-lyato0osi=—ti[tily,e]”
@2 +1-25x2=0=A=-2+ [t +15x]

A is not unique, using method of moments. -



Next Week:

Point Estimation:
UMVE & Bayes

Have a good day!
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