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Outline of Week 06 Lectures

• Introduction to Estimation Theory

• Sufficient Statistic

• Minimal Sufficient Statistic

• Complete Sufficient Statistic

• Likelihood Principle

• Frequentist’s Estimators: MLE, MM
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Introduction to Estimation Theory

• Estimation Theory: is a branch of statistics that 

deals with estimating the values of parameters based 

on observed data that has a random component.

• In this course we focus on point estimation:

Given X = {x1, x2, … xn} where xis are independent

and identically distributed (i.i.d) observations with

f (xi|q), we want to find an statistics T(X) = መ𝜃 that 

is a good estimator for q.
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Introduction to Estimation Theory

• Three basic Questions:

1) Do we need all the i.i.d observations to estimate q?

2) What do we mean by “good estimator”?

3) Do we need prior information on q (i.e. f(q)) to 

estimate it?

• Answers:

1) Not necessarily! We may use Sufficient Statistic (SS); a 

function or statistic of observations, instead.

2) The goodness of an estimator is measured by three 

properties: unbiasedness, efficiency (minimum 

variance) and consistency.
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Introduction to Estimation Theory

• Unbiasedness:

An estimator ෠𝜃 is said to be unbiased if its expected value is 

identical to θ; E ( ෠𝜃) = θ.

• Efficiency:

If two competing estimators are both unbiased, the one with 

the smaller variance is said to be relatively more efficient.

• Consistency:

If an estimator ෠𝜃 approaches the parameter θ closer and closer 

as the sample size n increases, ෠𝜃 is said to be a consistent 

estimator of θ (not a rigorous definition).
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Introduction to Estimation Theory

3) The frequentist believe we do not need prior 

information on q (i.e. f(q)) to estimate it. 

However, the Bayesian believe we do need prior 

information on q.

In the following we focus on Sufficient Statistic.
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Sufficient Statistic (SS)

Assume the statistic T partitions the sample space into sets.

Goal of SS: Data reduction without discarding information about

𝜃. Examples of statistics:

𝑇 𝑋 = 2
𝑇 𝑋 = 𝑋

A1

A2

T

t1

t2

Ai={x : T(x) = ti}

𝑋
f (𝑋| 𝜃)
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Sufficient Statistic

• A statistic T(X) is a sufficient statistic for θ if the 

conditional density of X given the value of T(X) 

does not depend on θ.

• In other words, if T(X) is a sufficient statistic for θ 

then any inference about θ should depend on the 

sample X only through T(X); meaning መ𝜃 is a 

function of T(X).

• How to find sufficient statistics for θ?
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Sufficient Statistic

Factorization Theorem:

Let 𝑓(𝑥|𝜃) be the pdf of X.

𝑇(𝑋) is a sufficient stat for 𝜃 iff ∃ functions g and h such that:

𝑓 𝑥 𝜃 = 𝑔 𝑇 𝑥 𝜃 ℎ 𝑥 ∀𝑥 ∈ 𝜒, 𝜃 ∈ Θ

proof: (discrete case)

⇒: Assume T is a sufficient statistic:

𝑓 𝑥 𝜃 = 𝑃𝜃 𝑋 = 𝑥, 𝑇 𝑋 = 𝑇 𝑥

= 𝑃𝜃 𝑇 𝑋 = 𝑇 𝑥 𝑃𝜃 𝑋 = 𝑥 𝑇 𝑋 = 𝑇 𝑥

𝑔 𝑇 𝑥 𝜃 ℎ(𝑥)
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Sufficient Statistic

⇐∶ Assume factorization holds, let be the pmf of T(X)

Let 𝐴𝑡 = {𝑦: 𝑇 𝑦 = 𝑡}

𝑞 𝑡 𝜃 = 𝑃𝜃 𝑇 𝑋 = 𝑡 = ෍

𝑥∈𝐴𝑡

𝑓(𝑥|𝜃) = ෍

𝑥∈𝐴𝑡

𝑔 𝑇 𝑥 𝜃 ℎ(𝑥)

𝑃𝜃 𝑋 = 𝑥 𝑇 𝑋 = 𝑇 𝑥 =
𝑃𝜃 𝑋=𝑥, 𝑇 𝑋 =𝑇 𝑥

𝑃𝜃 𝑇 𝑋 =𝑇 𝑥
=

𝑃𝜃 𝑋=𝑥

𝑞 𝑡 𝜃

=
𝑔 𝑇 𝑥 𝜃 ℎ 𝑥

𝑔 𝑇 𝑥 𝜃 σ𝑥∈𝐴𝑡
ℎ(𝑥)

=
ℎ 𝑥

σ𝑥∈𝐴𝑡
ℎ(𝑥)

𝑞 𝑡 𝜃

does not depend on 𝜃.  
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernouli 𝜃 , 0 < 𝜃 < 1. 

Then 𝑇 𝑥 = σ𝑖=1
𝑛 𝑥𝑖 is a sufficient statistic for 𝜃.

𝑓 𝑥 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖 = 𝜃σ 𝑥𝑖 1 − 𝜃 𝑛−σ 𝑥𝑖

𝑔 𝑡 𝜃 ≔ 𝜃𝑡 1 − 𝜃 𝑛−𝑡

ℎ 𝑥 ≔ 1
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d U 0, 𝜃 . 

𝑓 𝑥1, … , 𝑥𝑛 𝜃 = ቐ
1

𝜃𝑛
𝑎𝑙𝑙 𝑥𝑖 𝑖𝑛 [0, 𝜃]

0 𝑜. 𝑤.

Recall: 𝐼𝐴 𝑥 = ቊ
1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑜. 𝑤.

Let: 𝑇 𝑥 = max
𝑖

𝑥𝑖

Define: 𝑔 𝑡 𝜃 ≔
1

𝜃𝑛
𝐼 −∞,𝜃 𝑡 ℎ 𝑥 = 𝐼 0,+∞ min

𝑖
𝑥𝑖

⇒ 𝑔 𝑇 𝑥 𝜃 ℎ 𝑥 =
1

𝜃𝑛
𝐼 −∞,𝜃 max

𝑖
𝑥𝑖 ⋅ 𝐼 0,+∞ min

𝑖
𝑥𝑖 = 𝑓(𝑥1, … , 𝑥_𝑛|𝜃)

⇒ 𝑇 𝑋 is sufficient statistic.
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑓 𝑥 𝜇, 𝛿2 = 2𝜋𝛿2 −
𝑛
2 exp −

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 + 𝑛 ҧ𝑥 − 𝜇 2

2𝛿2

We show that following 𝑡1 and 𝑡2 together is a sufficient statistic.

𝑡1 =෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2 , 𝑡2 = ҧ𝑥

need: 𝑔 𝑡1, 𝑡2 𝜃

𝑔 𝑡 𝜃 = 𝑔 𝑡1, 𝑡2 𝜇, 𝛿
2 = 2𝜋𝛿2 −

𝑛
2 exp −

𝑡2 + 𝑛 𝑡1 − 𝜇

2𝛿2

ℎ 𝑥 = 1

⇒ 𝑇 𝑋 is sufficient statistic.
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Sufficient Statistic

Exponential Family:

Family of pdfs or pmfs is called a k-parameter exponential family if:

𝑓 𝑥 𝜃 = ℎ 𝑥 𝑐 𝜃 exp ෍

𝑖=1

𝑘

𝑤𝑖 𝜃 𝑡𝑖 𝑥

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernouli 𝜃 , 0 < 𝜃 < 1. 

𝑓 𝑥 𝜃 = 𝜃σ 𝑥𝑖 1 − 𝜃 𝑛−σ 𝑥𝑖 = exp ln 𝜃෍

𝑖=1

𝑛

𝑥𝑖 + ln 1 − 𝜃 𝑛 −෍

𝑖=1

𝑛

𝑥𝑖

= exp ln
𝜃

1 − 𝜃
෍

𝑖=1

𝑛

𝑥𝑖 + 𝑛 ln 1 − 𝜃 = exp 𝑛 ln 1 − 𝜃 ⋅ exp ln
𝜃

1 − 𝜃
෍

𝑖=1

𝑛

𝑥𝑖

𝑘 = 1, ℎ 𝑥 = 1 , 𝑐 𝜃 = exp 𝑛 ln 1 − 𝜃 , 𝑡1 =෍

𝑖=1

𝑛

𝑥𝑖 , 𝑤1 𝜃 = ln
𝜃

1 − 𝜃
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑓 𝑥 𝜇, 𝛿2 =
1

2𝜋𝛿2
exp −

𝑥 − ҧ𝜇 2

2𝛿2
=

1

2𝜋

1

𝛿
exp −

𝜇2

2𝛿2
exp −

𝑥2

2𝛿2
+
𝜇𝑥

𝛿2

Exponential family:

𝑓 𝑥 𝜃 = ℎ 𝑥 𝑐 𝜃 exp ෍

𝑖=1

𝑘

𝑤𝑖 𝜃 𝑡𝑖 𝑥

⇒

𝑘 = 2, ℎ 𝑥 = 1 , 𝑐 𝜇, 𝛿2 =
1

2𝜋

1

𝛿
exp −

𝜇2

2𝛿2
,

𝑡1(𝑥) =
𝑥2

2
, 𝑤1 𝜇, 𝛿2 =

1

𝛿2

𝑡2(𝑥) = 𝑥, 𝑤2 𝜇, 𝛿2 =
𝜇

𝛿2
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Sufficient Statistic

Sufficient statistic for exponential family:

Let 𝑥1, … , 𝑥𝑛 be i.i.d observations from a pdf or pmf 𝑓 𝑥 𝜃 . Suppose 𝑓 𝑥 𝜃

belongs to the exponential family:

𝑓 𝑥 𝜃 = ℎ 𝑥 𝑐 𝜃 exp ෍

𝑖=1

𝑘

𝑤𝑖 𝜃 𝑡𝑖 𝑥

Then

𝑇 𝑋 = σ𝑖=1
𝑛 𝑡1 𝑥𝑖 , σ𝑖=1

𝑛 𝑡2 𝑥𝑖 , … , σ𝑖=1
𝑛 𝑡𝑘 𝑥𝑖 is a sufficient statistic for 𝜃.

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑡1 𝑥 = −
𝑥2

2
𝑡2 𝑥 = 𝑥



18

Sufficient Statistic

⇒ 𝑇 𝑋 = −
1

2
σ𝑖=1
𝑛 𝑥𝑖

2 , σ𝑖=1
𝑛 𝑥𝑖 is sufficient statistic for 𝜇, 𝛿2

𝑇′ 𝑋 = σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 , ҧ𝑥

𝑇 𝑋 = 𝑇 𝑌 𝑖𝑓𝑓 𝑇′ 𝑋 = 𝑇′ 𝑌

Results:

1) T(X) = X is a sufficient statistic.

Proof:

𝑓 𝑥 𝜃 = 𝑓 𝑇 𝑥 𝜃 ℎ(𝑥)

𝑇 𝑥 = 𝑥, ℎ 𝑥 = 1

2)   Any one-to-one function of a sufficient statistic is also a sufficient statistic.
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Sufficient Statistic

Proof: Suppose T is a sufficient statistic.

Define 𝑇∗ 𝑥 = 𝑟(𝑇(𝑥)) where r is one-to-one and has inverse 𝑟−1

𝑓 𝑥 𝜃 = 𝑔 𝑇 𝑥 𝜃 ℎ 𝑥 = 𝑔 𝑟−1 𝑇∗ 𝑥 |𝜃 ℎ(𝑥)

Define 𝑔∗ 𝑡 𝜃 = 𝑔 𝑟−1 𝑡 𝜃 ℎ 𝑥

⇒ 𝑓 𝑥 𝜃 = 𝑔∗ 𝑇∗ 𝑥 𝜃 ℎ(𝑥) so 𝑇∗ is a sufficient static for 𝜃.

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernouli 𝜃 , 0 < 𝜃 < 1. 

All of the following are sufficient statics for 𝜃

𝑇1 𝑋 =෍

𝑖=1

𝑛

𝑥𝑖 , 𝑇2 𝑋 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 , 𝑇3 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛
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Minimal Sufficient Statistic

Minimal sufficient statistic:  

A sufficient statistic 𝑇(𝑋) is called minimal sufficient statistic, if for any other 

sufficient statistic 𝑇′(𝑋), 𝑇(𝑋) is a function of 𝑇′(𝑋).

It achieve maximum possible data reduction without losing info about 𝜃.

𝑇 partitions 𝜒 into sets; 𝐴𝑡 = {𝑋 ∶ 𝑇 𝑋 = 𝑡}

𝑇′partitions  𝜒 into sets; 𝐵𝑡′ = {𝑋 ∶ 𝑇′ 𝑋 = 𝑡′}

Each set 𝐵𝑡′ ⊂ some set 𝐴𝑡

T’ T

X X
Ai

Bi



22

Minimal Sufficient Statistic

Theorem:  

Let 𝑓(𝑥|𝜃) be pdf or pmf. Suppose that for any 2 sample points 𝑋 and 𝑌 the ratio: 

𝑓( 𝑋|𝜃 )

𝑓( 𝑌|𝜃 )

is constant as a function of 𝜃 iff  𝑇 𝑋 = 𝑇(𝑌), 

then 𝑇(𝑋) is a minimal sufficient statistic for 𝜃.

Proof:   assume 𝑓 𝑥 𝜃 > 0

Let  𝐼 = 𝑡: 𝑡 = 𝑇 𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝜒

𝐴𝑡 = {𝑋 ∶ 𝑇 𝑋 = 𝑡}
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Minimal Sufficient Statistic

for each 𝐴𝑡, choose a fix element 𝑋𝑡 ∈ 𝐴𝑡. For any 𝑋, let 𝑋𝑇(𝑥) be the fixed 

element that is in the same 𝐴𝑡 as 𝑋, Hence: 

𝑇 𝑋 = 𝑇(𝑋𝑇 𝑋 )

⇒
𝑓(𝑋|𝜃)

𝑓(𝑋𝑇 𝑥 |𝜃)
is constant as a function of 𝜃.

𝑔 𝑡 𝜃 ≔ 𝑓 𝑋𝑇 𝑥 𝜃

𝑓 𝑥 𝜃 =
𝑓 𝑋𝑇 𝑥 𝜃 𝑓(𝑥|𝜃)

𝑓 𝑋𝑇 𝑥 𝜃
= 𝑔 𝑇 𝑥 𝜃 ℎ(𝑥)

⇒ 𝑇(𝑥) is sufficient.
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Minimal Sufficient Statistic

⇐ Let 𝑇′ be an arbitrary sufficient statistic. Then from factorization theorem:

∃ functions 𝑔′, ℎ′ 𝑠. 𝑡. 𝑓 𝑥 𝜃 = 𝑔′ 𝑇′ 𝑥 𝜃 ℎ′(𝑥)

For any 2 sample points like 𝑥, 𝑦 with 𝑇′ 𝑥 = 𝑇′(𝑦):

𝑓(𝑥|𝜃)

𝑓(𝑦|𝜃)
=

𝑔′ 𝑇′ 𝑥 𝜃 ℎ′(𝑥)

𝑔′ 𝑇′ 𝑦 𝜃 ℎ′(𝑦)
=

ℎ′(𝑥)

ℎ′(𝑦)
which is a constant as a function of 𝜃.             

So by the assumption about 𝑇(𝑥) we have: 𝑇 𝑥 = 𝑇(𝑦).

Therefore, 𝑇 is a function of 𝑇′.

Hence 𝑇 is minimal.
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Minimal Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernoulli(𝜃), 0 < 𝜃 < 1

𝑓 𝑥 𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖 = 𝜃σ 𝑥𝑖 1 − 𝜃 𝑛−σ 𝑥𝑖

⇒
𝑓 𝑥 𝜃

𝑓 𝑦 𝜃
= 𝜃σ 𝑥𝑖−σ 𝑦𝑖 1 − 𝜃 σ 𝑦𝑖−σ 𝑥𝑖

need: σ𝑥𝑖 − σ𝑦𝑖 = 0

So 𝑇 𝑋 = σ𝑖=1
𝑛 𝑥𝑖 is minimal sufficient for 𝜃.
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Minimal Sufficient Statistic

Example:   𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑓 𝑥 𝜇, 𝛿2 = 2𝜋𝛿2 −
𝑛
2 exp −

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 + 𝑛 ҧ𝑥 − 𝜇 2

2𝛿2

𝑓 𝑥 𝜇, 𝛿2

𝑓 𝑦 𝜇, 𝛿2
= exp

−𝑛 ҧ𝑥2 − ത𝑦2 + 2𝑛𝜇 ҧ𝑥 − ത𝑦 − 𝑛 − 1 σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 − σ𝑖=1

𝑛 𝑦𝑖 − ത𝑦 2

2𝛿2

Need:

ҧ𝑥 = ത𝑦

෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2 =෍

𝑖=1

𝑛

𝑦𝑖 − ത𝑦 2

So ҧ𝑥, σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 is a minimal sufficient statistic for 𝜃.

But it is not unique. E.g. ҧ𝑥, 𝑠2 is also a minimal sufficient statistic for 𝜃.
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Minimal Sufficient Statistic

Any 1-1 function of a minimal sufficient statistic is a minimal sufficient statistic.

Example: 𝑥1, … , 𝑥𝑛 be i.i.d 𝑈(𝜃, 𝜃 + 1)

𝑓 𝑥 𝜃 = ቊ
1 𝑎𝑙𝑙 𝑥𝑖 𝑖𝑛 (𝜃, 𝜃 + 1)
0 𝑜. 𝑤.

= ቊ
1 max 𝑥𝑖 − 1 < 𝜃 < min 𝑥𝑖
0 𝑜. 𝑤.

𝑓 𝑥 𝜃
𝑓 𝑦 𝜃 is constant as a function of 𝜃 iff ቊ

max 𝑥𝑖 = max(𝑦𝑖)

min 𝑥𝑖 = min(𝑦𝑖)

Hence, 𝑇 𝑋 = 𝑥 1 , 𝑥 𝑛 is a minimal sufficient statistic for 𝜃.

Note: 𝑇′ 𝑥 = 𝑥 𝑛 − 𝑥 1 ,
𝑥 1 +𝑥 𝑛

2
is also minimal sufficient statistic.
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Complete Sufficient Statistic

Def: let 𝑓(𝑡|𝜃) be family of pdfs (pmfs) for a statistic T(𝑥), the

family of probability distributions is called complete if:

𝐸𝜃 𝑔 𝑇 = 0 ∀𝜃

⇒ 𝑝𝜃 𝑔 𝑇 = 0 = 1 ∀𝜃

or T 𝑥 is a complete statistic.

Note: completeness is a property of the family of distributions

not a particular distribution.

29



Complete Sufficient Statistic

Example: Let X be a random sample of size n such that 

each Xi has the same Bernoulli distribution with parameter p. 

Let T be the number of 1s observed in the sample, i.e.

T is a statistic of X which has a binomial distribution with 

parameters (n,p). If the parameter space for p is (0,1), 

then T is a complete statistic:

neither p nor 1 − p can be 0. 30



Complete Sufficient Statistic

Hence:                            iff:

Replacing p/(1 − p) by r:

The range of r is the positive reals. Also, E(g(T)) is 

a polynomial in r and, therefore, can only be identical to 0 if 

all coefficients are 0, that is, g(t) = 0 for all t.

31



Complete Sufficient Statistic

• It is important to notice that the result that all coefficients must 

be 0 was obtained because of the range of r.

• For example, for a single observation and a single parameter

value; if n = 1 and the parameter space is {0.5}, T is not

complete: g(t) = 2 (t – 0.5) and then, E(g(T)) = 0 although g(t)

is not 0 for t = 0 nor for t = 1.

Theorem: (exponential family)

Let 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐹(𝑥|𝜃) 𝑓 𝑥 𝜃 = ℎ 𝑥 𝑐 𝜃 exp(σ𝑤𝑖(𝜃)𝑡𝑖(𝑥))

Suppose that the range of 𝑤1(𝜃), … , 𝑤𝑘(𝜃) contains an 𝑛 dimensional

rectangle.

Then: 𝑇 𝑥 = σ𝑗=1
𝑛 𝑡1 𝑥𝑗 , … , σ𝑗=1

𝑛 𝑡𝑘(𝑥𝑗) is complete.
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Outline of Week 06 Lectures

• Introduction to Estimation Theory

• Sufficient Statistic

• Minimal Sufficient Statistic

• Complete Sufficient Statistic

• Likelihood Principle

• Frequentist’s Estimators
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The Likelihood Principle

The likelihood principle:

Def: 𝑋 ~ 𝑓(𝑥|𝜃)

Then given 𝑋 = 𝑥 observed, then the function of 𝜃 defined by:

𝐿 𝜃 𝑋 = 𝑓(𝑋|𝜃)

Is called the likelihood function.

Interpretation:

1) 𝑋 discrete 

𝐿 𝜃 𝑋 = 𝑝𝜃(𝑋 = 𝑥)

𝐿1(𝜃2|𝑋) > 𝐿2(𝜃2|𝑋)

Sample had a higher likelihood of occurring if 𝜃 = 𝜃1 then 𝜃 = 𝜃2.
34



The Likelihood Principle

2) 𝑋 continuous (real valued pdf)

for small 𝜀:

2𝜀𝐿 𝜃 𝑋 = 2𝜀𝑓(𝑋|𝜃) ෥= 𝑝𝜃(𝑋 − 𝜀 < 𝑋 < 𝑋 + 𝜀)

𝐿(𝜃1|𝑋)

𝐿(𝜃0|𝑋)
=
𝑝𝜃1(𝑋 − 𝜀 < 𝑋 < 𝑋 + 𝜀)

𝑝𝜃0(𝑋 − 𝜀 < 𝑋 < 𝑋 + 𝜀)
> 1 ?

approx. the same interpretation as discrete.

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)

𝐿(𝜃 ∣ 𝑥) = 𝑓(𝑥 ∣ 𝜃) = 𝜃σ𝑥𝑖(1 − 𝜃)𝑛−σ𝑥𝑖

Let 𝑛 = 2
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The Likelihood Principle

(a) Σ𝑥𝑖 = 2 ⇒ 𝐿(𝜃 ∣ 𝑥) = 𝜃2

(b) Σ𝑥𝑖 = 1 ⇒ 𝐿(𝜃 ∣ 𝑥) = 𝜃(1 − 𝜃)
(c) Σ𝑥𝑖 = 0 ⇒ 𝐿(𝜃 ∣ 𝑥) = (1 − 𝜃)2

consider 𝐿
3

4
∣ 𝑥 /𝐿

1

4
∣ 𝑥

=

9 when σ𝑥𝑖 = 2

1 whan σ𝑥𝑖 = 1
1

9
when σ𝑥𝑖 = 0

(a) 
𝐿(3/4|𝑥)

𝐿(1/4∣𝑥)
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The Likelihood Principle

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2) . Assume 𝛿2 is fixed.
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The Likelihood Principle

Likelihood principle:

If 𝑋 and 𝑌 are two sample points s.t. 𝐿(𝜃|𝑋) is proportional to 𝐿(𝜃|𝑌):

𝐿 𝜃 𝑋 = 𝐶 𝑋, 𝑌 𝐿 𝜃 𝑌 ∀𝜃

Then the conclusions drown from 𝑋 and 𝑌 should be identical.

Idea: use the likelihood function to compare the “probability” of various 

parameter values.

if 𝐿 𝜃2 𝑋 = 2𝐿(𝜃1|𝑋) 𝜃2 is twice as likely as 𝜃1 and:

𝐿 𝜃 𝑋 = 𝐶 𝑋, 𝑌 𝐿 𝜃 𝑦 ∀𝜃

Then: 𝐿 𝜃2 𝑦 = 2𝐿(𝜃1|𝑦) 𝜃2 is twice as likely as 𝜃1
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Outline of Week 06 Lectures

• Introduction to Estimation Theory

• Sufficient Statistic

• Minimal Sufficient Statistic

• Complete Sufficient Statistic

• Likelihood Principle

• Frequentist’s Estimators: MLE, MM
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Frequentist’s Estimators

Def: A point estimator is any statistic 𝑇 𝑥 .

Estimator: function of sample.

Estimate: actual value of the estimator.

Methods of finding estimators for this course:

(1) Maximum Likelihood Estimator (MLE) ~ (frequentist)

(2) Method of Moments (MM) ~ (frequentist)

(3) UMVUE ~ (frequentist)

(4) Maximum APosteriori (MAP) ~ (Bayes)

(5) Bayes Minimum Risk ~ (Bayes) 40



Maximum Likelihood Estimator: MLE

Maximum likelihood estimator (MLE):

𝐿 𝜃 𝑋 = 𝐿 𝜃1, … , 𝜃𝑘 𝑋1, … , 𝑋𝑛 = ς𝑖=1
𝑛 𝑓(𝑋𝑖|𝜃)

Def:

for each 𝑋, let ෠𝜃(𝑋) be the value which maximizes 𝐿 𝜃 𝑋

then, ෠𝜃(𝑋) is the maximum likelihood estimator (MLE) of 𝜃.

Log likelihood:

use log 𝐿 𝜃 𝑋 .

41



Maximum Likelihood Estimator: MLE

How to find MLE’s:

(1) Differentiation

if   𝐿 𝜃 𝑋 is differentiable in 𝜃𝑖,  possible 𝜃𝑖’s  are solutions to:

𝜕

𝜕𝜃𝑖
𝐿 𝜃 𝑋 = 0 , i = 1,… , k

a) 1-dimension

solve  
𝜕

𝜕𝜃
𝐿 𝜃 𝑋 = 0 for መ𝜃

check  
𝜕2

𝜕𝜃2
𝐿 𝜃 𝑋 < 0 for 𝜃 = መ𝜃

(check boundaries)
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Maximum Likelihood Estimator: MLE

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛(𝜃)

L 𝜃 ∣ 𝑥 = 𝜃෌𝑥𝑖( )1 − 𝜃 𝑛−෌𝑥𝑖

log 𝐿(𝜃 ∣ 𝑥) = σ𝑥𝑖log 𝜃 + 𝑛 − σ𝑥𝑖 log(1 − 𝜃)

𝜕log 𝐿(𝜃 ∣ 𝑥)

𝜕𝜃
=
σ𝑥𝑖
𝜃

−
𝑛 − σ𝑥𝑖
1 − 𝜃

= 0 ⇒ ƶ𝜃 = ᪄𝑥

log 𝐿(𝜃 ∣ 𝑥) =
𝑛 log 1 − 𝜃 𝑖𝑓 σ𝑥𝑖 = 0

𝑛 log 𝜃 𝑖𝑓 σ𝑥𝑖 = n

check bounderies; σ𝑥𝑖 = 0,σ𝑥𝑖 = 𝑛

𝜕2lo g 𝐿

𝜕𝜃2
= −

σ𝑥𝑖
𝜃2

−
𝑛 − σ𝑥𝑖
1 − 𝜃 2

< 0@𝜃 = 𝜃
ƶ
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Maximum Likelihood Estimator: MLE

b) 2-dimensions

solve    
𝜕

𝜕𝜃1
𝐿 𝜃1, 𝜃2 𝑋 = 0

, 
𝜕

𝜕𝜃2
𝐿 𝜃1, 𝜃2 𝑋 = 0 𝑓𝑜𝑟 𝜃1, 𝜃2

check that    
𝜕2

𝜕𝜃1
2 𝐿 𝜃1, 𝜃2 𝑋 < 0 for 𝜃1 = መ𝜃1, 𝜃2= መ𝜃2

or:                
𝜕2

𝜕𝜃2
2 𝐿 𝜃1, 𝜃2 𝑋 < 0 for 𝜃1 = መ𝜃1, 𝜃2= መ𝜃2

and:
𝜕2

𝜕𝜃1
2 𝐿 𝜃1, 𝜃2 𝑋

𝜕2

𝜕𝜃2
2 𝐿 𝜃1, 𝜃2 𝑋 −

𝜕2

𝜕𝜃1𝜕𝜃2
𝐿 𝜃1, 𝜃2 𝑋

2

> 0

for 𝜃1 = መ𝜃1, 𝜃2= መ𝜃2.
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Maximum Likelihood Estimator: MLE

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2)

45



Maximum Likelihood Estimator: MLE
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Maximum Likelihood Estimator: MLE

How to find MLE’s:

(2) Direct maximization

- find global upper bound on likelihood function

- show bound is attained     

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 1)

Recall for any number a:
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Maximum Likelihood Estimator: MLE

(3) Numerically (by computer)

With or without (1) and (2)

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑠𝑠𝑜𝑛:

𝑝 𝑥𝑖 = 𝑟 =
𝑒−𝑚𝑚𝑟

1 − 𝑒−𝑚 𝑟!
,𝑚 ≤ 0,1, …

𝐿 𝑚 ∣ 𝑥 = 𝛱𝑖=1
𝑛 𝑒−𝑚𝑚𝑥𝑖

1 − 𝑒−𝑚 𝑥𝑖!
=

𝑒−𝑚

𝑖 − 𝑒−𝑚

𝑟

𝑚෌𝑥𝑖𝛱𝑖=1
𝑛 1

𝑥𝑖!

lo g 𝐿 = −𝑚𝑛 − 𝑛lo g 1 − 𝑒−𝑚 +෍𝑥𝑖 l g𝑚 −෍lo g 𝑥𝑖!

𝜕lo g 𝐿

𝜕𝑚
𝑠 + 𝑛 −

𝑛𝑒−𝑚

1 − 𝑒−𝑚
+
Σ𝑥𝑖
𝑚

= 0 ⇒ 𝑚
ƶ
=?

Define: 𝜙 𝑚 =
𝜕 log 𝐿

𝜕𝑚
,𝑛 eed ƶ𝑚 𝑠/𝑡 𝜙( ƶ𝑚) = 0 48



Maximum Likelihood Estimator: MLE

Let 𝑚0 be an initial estimate for ෝ𝑚.

(1) Choose an initial estimate 𝑚0

(2) Define a sequence 𝑚𝑘 of estimates by:

(3) Stop when

Let

49/24

0 ≈ 𝜙 𝑚
ƶ

≈ 𝜙 𝑚0 + 𝑚
ƶ
−𝑚0 𝜙′ 𝑚0

𝑚
ƶ
≈ 𝑚0 −

𝜙 𝑚0

𝜙′ 𝑚0

𝑚𝑘+1 = 𝑚𝑘 −
𝜙 𝑚𝑘

𝜙′ 𝑚𝑘
, 𝑘 = 0,1,2, …

𝑚𝑘+1 −𝑚𝑘 < 𝜀

𝑚
ƶ
= 𝑚𝑘
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Maximum Likelihood Estimator: MLE

Note:   maximization takes place only over the range of parameter values.

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 1 𝑏𝑢𝑡 𝜇 ≥ 0

ƶ𝜇 = 0 if 𝑥
᪄
< 0 ⇒ 𝜇

ƶ
= ቐ

𝑥
᪄
, 𝑥

᪄
⩾ 0

0 , 𝑥
᪄
< 0

ƶ𝜇 = ᪄𝑥 what if ᪄𝑥 < 0?
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Maximum Likelihood Estimator: MLE

Note:  maximization can occur on boundaries.

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑈(0, 𝜃)

Note: maximum likelihood estimate may not be unique.

𝐿(𝜃 ∣ X) = ቐ
1

𝜃𝑛
if 𝜃 ⩾ max 𝑥𝑖

0 else

∴ ƶ𝜃𝑚L𝐸 = max 𝑥𝑖
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Maximum Likelihood Estimator: MLE

Note: maximum likelihood estimate may not be unique.

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑈(𝜃, 𝜃 + 1)

𝐿 𝜃 ∣ 𝑥 = ቊ
1 max𝑥𝑖 − 1 < 𝜃 < min𝑥𝑖
0 0, 𝜔.

∴ ƶ𝜃 = any value in the interval 
max 𝑥𝑖 − 1,min 𝑥𝑖
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Maximum Likelihood Estimator: MLE

Note: MLE’s can be numerically unstable.

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑖𝑛 𝑘, 𝑝 ; 𝑘, 𝑝 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠

Can show:

if 𝑥 = (16,18,22,25,27) ⇒ ƶ𝑘 = 99
if 𝑥 = (16,18,22,25,28) ⟹ ƶ𝑘 = 190
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Maximum Likelihood Estimator: MLE

Theorem: (invariance property)

If መ𝜃 is the MLE of 𝜃, then for any function 𝑟(𝜃), 𝑟 መ𝜃 is the MLE of 𝑟 𝜃 .

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 1)

𝑋 is the MLE of 𝜇 , then 𝑋
2

is the MLE of 𝜇2.
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Method of Moments

Method of moments:

𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑓 𝑥 𝜃1, … , 𝜃𝑘

Equate the first k sample moments to the k first population moments.

Let        𝑚1 =
1

𝑛
σ𝑋𝑖 𝜇1 = 𝐸(𝑋)

𝑚2 =
1

𝑛
σ𝑋𝑖

2 𝜇2 = 𝐸(𝑋2)

⁞                                          ⁞

𝑚𝑘 =
1

𝑛
σ𝑋𝑖

𝑘 𝜇𝑘 = 𝐸(𝑋𝑘)

𝑚𝑗 = 𝜇𝑗(𝜃1, … , 𝜃𝑘)

Let    𝑚1 = 𝜇1(𝜃1, … , 𝜃𝑘)

⁞

𝑚𝑘 = 𝜇𝑘(𝜃1, … , 𝜃𝑘) solve for  𝜃1, … , 𝜃𝑘 55



Method of moments

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2)

Example: 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑘, 𝑝) both unknown

Solving to get:

ƶ𝜇2 = 𝛿2 + 𝜇2𝑚2 =
1

𝑛
෍𝑥𝑖

2

ҧ𝑥 = 𝜇,
1

𝑛
෍𝑥𝑖

2 = 𝑠2 + 𝜇2 ⇒ Ƹ𝜇 = ҧ𝑥 + መ𝛿2 =
1

𝑛
𝛴𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2

𝜇1 = 𝜇𝑚1 =
1

𝑛
෍𝑥𝑖
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Method of moments

Note: this method can also be used for moment matching.

-match moments of distributions of statistics to obtain approximation to 

distributions.

Example: 𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑝(𝜆)

መ𝜆 is not unique, using method of moments.

𝑚1 =
1

𝑛
𝛴𝑥𝑖

𝑚2 =
1

𝑛
𝛴𝑥𝑖

2

(1) 𝐸 𝑥1 = 𝜆

(2) 𝐸 𝑥1
2 = 𝜆 + 𝜆2

(1) ƶ𝜆 = ᪄𝑥

(2) ƶ𝜆2 + ƶ𝜆 −
1

𝑛
σ𝑥𝑖

2 = 0 ⇒ ƶ𝜆 = −
1

2
+

1

4
+

1

n
σ𝑥𝑖

2
1/2

57



58

Next Week:

Point Estimation: 
UMVE & Bayes

Have a good day!


