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Stochastic Processes (recall)

Let £ denote the random outcome of an experiment.

To every such outcome suppose a waveform X(t,&) is assigned.
The collection of such waveforms or sample paths (ensemble),
form a stochastic process.

The set of {& } and the time 1 X(t,£)
Index t can be continuous or discrete :
(countably infinite or finite) X(t,én)/\\/\\/\\/
X(t,ék)/\\://\/
[N
X(t,¢,) \//\/\/’\_/
X (t,¢,) /\_//\
0 t t
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Stochastic Processes

« For fixed & €S (the set of all experimental outcomes), X (t,&)
Is a specific time function. For fixed t, X, = X (t,,£) 1sa
random variable (RV).

« The ensemble of all such realizations X (t,&) over time
represents the stochastic process X(t).

T X (1, %)
xwey/ T N T~
X(t,gk)/\\://_\\_/
/N :
X (8,,) :
\/%\/
X(t,él)/\_//\
0 t t !
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Stochastic Processes (15t Order CDF & PDF)

o IT X(t) Is a stochastic process, then for fixed t, X(t) represents
a random variable. Its distribution function is given by:

F, (x,t)=P{X(t) <x}

* Notice that F_(X,t) depends on t, since for a different t, we
obtain a different random variable. Further:
dF, (x,t)

f (X1)= ix

represents the first-order probability density function (pdf) of the
process X(t).
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Stochastic Processes (2" Order CDF & PDF)

« Fort=t andt=t,, X(t)representstwo different random
variables X; = X(t1) and X, = X(t2) respectively. Their joint
distribution is given by

|:x (Xl’XZ’tl’tZ) — P{x (tl) < Xl’ x(tZ) < XZ}

O°F, (X, % y)
OX; OX,

fx (Xl’XZ’tl’tZ):

represents the second-order density function of the process X(t).
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Stochastic Processes (n™ Order PDF)

e Similarly f (x,X,,---X., t,,t,---,t ) represents the n"
order density function of the process X(t).

« Complete specification of the stochastic process X(t) requires
the knowledge of f (X, X,,---X,, t,t,---,1.)
forall t, 1=12,---,n and for all n.
(an almost impossible task in reality).
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Stochastic Processes (Mean and Autocorrelation)

Mean (Expected Value) of a Stochastic Process:

u(t) 2 EEX(OF=[ " xf, (x,)dx

represents the mean value of a process X(t). In general, the mean of
a process can depend on the time index t.

Autocorrelation function of a process X(t) is defined as:

R, (t.1,) = E{X ()X (t,)} = [ [ %, T, (%, %,,t,,t,)dx,dx,

and it represents the interrelationship between the random variables
X1 = X(t1) and X, = X(t2) generated from the process X(t).
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Stochastic Processes (Properties of Autocorrelation)

LR, (t,t,) =R (t,,t,) =[E{X (t,) X" (t)}

o R, (t,t) = E{| X(t) °}> 0. (Average instantaneous power)

3. R, (t,t,) represents a nonnegative definite function, i.e., for
any set of constants {a.}" ,

> aaR, (t.1,)20.

=1l j=1

E(Y 320 for Y =YaX(,).
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Stochastic Processes (Autocovariance)

Autocovariance:

C.t,.L)=R (t.,t,)— 1, (tl)ﬂ: (t;)

represents the autocovariance function of the process X(t).
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Stochastic Process (Correlation Coefficient)

Correlation Coefficient:

X(t):RP ti,t; ER

Cxx (t1: tz)

:012 — Stl 51—2

Or = Cyx (t' t)
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Example 1

Let z=]" X(t)dt X(t) — f 7

E[|Z|2] — E < JTX(t)dt><fTX(s)ds>

=T -T

T
E

|

j X)X () deydt,

-T

T

E[X(t)X(t)]dt dt, = j j Ryx(t1, t2)dt dt,

ﬂ'\wﬂ'lﬂRﬂ
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Example 2
X(t)=acos(w,t+¢), ¢@~U(0,2x).

u(X) = E[X(©)] = 0,Var[X(t)] = E[X(t)?] — p(X)* =

| ],

Rix(ty, 1) = E[X(t1)X(t;)]
= Ela cos(wyt; + @) acos(wyt, + @)]

2
= %E[Cos(a)o(tl—tz)) + COS(on(t1+t2) + Z‘Q)]

Y

.

0

2

a
Ryx(t1, t) = > cos(wo(t;—t3))
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Example 3

X(t) = At + b, A~ N(0,1)
u@®) =E[X®]=>b  Var[X(t)] = t*
Ry (t1,t) = E[X(t1)X(t,)] = E[(Aty + b)(At, + b)]
= E[A%t t, + At b + bAt, + b?] = t;t, + 0 + 0 + b*
Rxx(tl; tz) = t1t, + b*
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Stationary Stochastic Processes

» Stationary processes exhibit statistical properties that are
Invariant to shift in the time index.

» For example, second-order stationarity implies that the statistical
properties of the pairs
{X(t1) , X(t2) } and {X(t;+c) , X(t>+c)} are the same for any c.

« Similarly first-order stationarity implies that the statistical
properties of X(tj) and X(t;+c) are the same for any c.
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Strict-Sense Stationary (S.S.S)

 In strict terms, the statistical properties are governed by the
joint probability density function. Hence a process is nt"-order
Strict-Sense Stationary (S.S.S) if, for any c:

f (X, XX, et )=1 (X, X%, %, t,+ct,+C---,t +C)

where the left side represents the joint density function of the
random variables X; = X(t,), X, = X(t,), .-, X, =X(t,) and the
right side corresponds to the joint density function of the random
variables X/ = X(t, +c), X, =X(t, +c), ---, X! =X(t +c).

« A process X(t) is said to be strict-sense stationary if the equation
1S true for all t, i=12,---,n, n=12,--- and any c.
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Strict-Sense Stationary (S.S.S)

For a first-order strict sense stationary process,
from the equation we have

f(x,t)=f. (x,t+c)

for any c. In particular c = —t gives
f (x,t)="F (x)
1.e., the first-order density of X(t) is independent of t. In that case

E[X ()] =] xf(x)dx=u, a constant.
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Strict-Sense Stationary (S.S.S)

Similarly, for a second-order strict-sense stationary process
we have from the equation

f (XX, t,t) = T,(%, %, {+C,t, +C)

for any c. For ¢ = —t, we get

f (X, X%, t,t,)="1 (X, X,, {,—-1,)
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Strict-Sense Stationary (S.S.S)

« The second order density function of a strict sense stationary
process depends only on the difference of the time indicest, —t, = 7.
In that case the autocorrelation function is given by

Rxx (tl’tZ) é E{X (tl)x*(tZ)}
= [[x%; £, (%, %, 7 =t —t,)dx,dx,
= Rxx (tl _tZ) A: Rxx (T) — R:x (_T)1

« The autocorrelation function of a second order strict-sense
stationary process depends only on the difference of the time
indices 7 =1 —1,.
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Strict-Sense Stationary (S.S.S)

* Notice that the above equations are consequences of the
stochastic process being first and second-order strict sense

stationary.
On the other hand, the basic conditions for the nt" order

stationarity are usually difficult to verify.

 In that case, we often resort to a looser definition of stationarity,
known as Wide-Sense Stationarity (W.S.S).
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Wide-Sense Stationary (W.S.S)

A process X(t) is said to be Wide-Sense Stationary if:
() E{XX()}=x

and
(i) E{X ()X (t,)}=R, (t, - 1,),

« For wide-sense stationary processes, the mean is a constant and
the autocorrelation function depends only on the difference between
the time indices.

* Notice that above equations does not say anything about the

nature of the probability density functions, and instead deal with
the average behavior of the process.
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Wide-Sense Stationary (W.S.S)

« Strict-sense stationarity always implies wide-sense stationarity.

« The converse Is not true in general, the only exception being the
Gaussian process.

This follows, since if X(t) is a Gaussian process, then by definition
X, =X(), X, =X(t,), ---, X, =X(t,)are jointly Gaussian
random variables for any t,,t,---,t whose joint characteristic
function is given by:

jZﬂ(tk)wk —ZZCXX (4 b ) wjoo 12
¢x(a)l,a)2’...’a)n):e k=1 Ik
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Characteristic Function

¢y Is the characteristic function of random variable X if:
¢X+= F(fx)
px(w) = f fx(x)e TW¥dx
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WSS, Gaussian Process, Cont.

If X(t) is wide-sense stationary, we get

and hence if the set of time indices are shifted by a constant c to
generate a new set of jointly Gaussian random variables

X[ =X(t,+¢c), X, = X(t, +c),---, X = X(t, +c) then their
joint characteristic function is identical to above.
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WSS, Gaussian Process, Cont.

* Thus the set of random variables {X;}._; and {X'}', have the same
joint probability distribution for all n and all c, establishing the strict
sense stationarity of Gaussian processes from its wide-sense
stationarity.

To summarize if X(t) is a Gaussian process, then
wide-sense stationarity (w.s.s) — strict-sense stationarity (s.s.S)

 Notice that since the joint p.d.f of Gaussian random variables
depends only on their second order statistics, which is also the
basis, for wide sense stationarity, we obtain strict sense stationarity
as well. a1/a4



the process
X (t) =acos(w,t + @), is wide-sense stationary, but

not strict-sense stationary. te,
Similarly if X(t) is a zero mean wide r=t -t
sense stationary process, S T / ot
then o, reduces to: ‘ T/ I

T T ’ 2T — 7
0-22 =Kz |2} - J-—T J‘—T R (tl a tZ)dtldtZ' “““““
As t, t, varies from —T to +T, r =t —t, varies !

from —2T to + 2T. Moreover R _(7) Is a constant
over the shaded region in this Fig, whose area is given by (z > 0)

%(ZT ~7)° —%(ZT —7—-d7)* =(2T - r)dr

and hence the above integral reduces to
2T 2T r
ol =" R (D)@T—|z)dr=5%[" R, (r)1-3)dz. s



Properties of autocorrelation function
for WSS processes
If X(t) Is WSS and real
1)

Rxx (1) = Rxx(t1 — t3) = Rxx(t1,t2) = Rxx(t,, t1)
= Rxx(t; — t1) = Rxx(—7) — Rxx is even

2)
Rxx(0) = E[X(t)*]
85x = E[X(t)?] — E[X(t)]* = Rxx(0) — n%
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Properties of autocorrelation function
for WSS processes

3)
Rxx(0) = |Rxx ()|

Rxx(0) = y/Rxx(0) X Rxx(0)

- J(fX(t)zdt)(fX(t — )dt) > \/(fX(t)X(t - )’

= [ XX = jdt]| = |Rxx ()] \

Cauchy-Schwarz inequality
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Cross-Correlation and Marginal
Distributions

cross-correlation & cross-covariance  x(t) —  T(-) — Y(t)

Ryy(t1,t3) = E[X(t)Y (t2)] } !
Cxy(t1,t2) = Rxy(t1,t2) —nxy  R.P. R.P.

marginal distributions

+ oo
f(x;t) = f f(xq, %55 tq,t3)dxy
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XLy: f(x,y)=f0)fQW)

X(),Y(t) : uncorrelated
E[X(t1)Y(t2)] = E[X(t)]E[Y (¢2)]

\ J
|

Ryy (t1,t3)

Cxy (t1,t2) = Ryy(tq, t2) — nx(t)ny(t2)
= E[X(tD]E[Y (t2)] — nx(E)ny (t2)
= nx(tny(t2) — nx(t)ny (t2)=0
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Example 1

X(t) ~ R.P.
nx(t) = E[X(t)] =3
Ryx(t;,ty) = 9 + 4e~02lt1—12] ~ W.S.S
Z=X5) | E[Z] = E[X(5)] =3

W=X(8) | E[w]=E[X®)]=3

—

E[Z2] = E[X(5) - X(5)] = Ryx(5,5) = 13
E[W?] = E[X(8) - X(8)] = Ryx(8,8) = 13
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Example 1

E[ZW] = E[X(5)X(8)] = Rxx(5,8)
=9 + 4021581 = 9 4 406
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Example 2

Suppose a Poisson process with parameter A. Let n(t4,t,) be
the number of points between t; and t, forany t; < t,.
We have:

e M2t (A (t,—ty))K
k!

Pln(t,,t;) = k] =

‘ > Poisson(At)

t t’

I I | |

I | | |
J

I
L. Independent —] 39/44




Example 2

Define X(t) = n(0,t) <« R.P.

E[X()] = E[n(0,t)] = At
E[X(t)?] = E[n(0,t)?] = At + 2%t? 40144



Example 2

Ryx(t1,t;) =7

Suppose t; < ty:

Ryx(t1,t5) = E[n(0,t)n(0,t,)]

= E[n(0,t)(n(0,t1) +n(ty, t3))]

= E[n(0,t)?] + E[n(0, t)n(ty, t,)]

= Aty + A%t + E[n(0, t)]E[n(ty, t5)]

= Aty + 22t2 + At A(t, — t1) = At (1 + Aty)
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Stochastic Process (Autocorrelation)

Example (Waiting Time):

Taxis are waiting in a queue for passengers to come.

Passengers for those taxis arrive according to a Poisson process
with an average of 60 passengers per hour. A taxi departs as soon
as two passengers have been collected or 3 minutes have expired
since the first passenger has got in the taxi.

Suppose you get in the taxi as first passenger.

What iIs your average waiting time for the departure?

Hint: Condition on the first arrival after you get in the taxi.
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Stochastic Process (Autocorrelation)

Example (Waiting Time):

If we consider minute as the unit of time, the customer arrival is
a Poisson process with parameter 1.

S1: Arrival time of the passenger after you

X: Your waiting time

E[X] = E|E[X|S,]]
= E[X|S; = 3]P(S; = 3) + E[X]|S; < 3]P(5; < 3)
=3 X P(S>3)+E[S;|S; < 3] xP(5; <3)

3

3
=3 X P[n(0,3) = 0] + f sfs,(s)ds = 3 X e 3 + f se>ds
0

0
3

+je‘5ds =1—e7?
0

3
=3e 3 4+ —se~S
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Next Week:

Ergodic Stochastic Processes
Stochastic Analysis of LTI Systems

Have a good day!
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