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History & Philosophy

Started by gamblers’ dispute!
Probability as a game analyzer
~ormulated by B. Pascal and P. Fermet

~irst Problem (1654)
*“Double Six” during 24 throws!

First Book (1657):

 Christian Huygens, “De Ratiociniis in Ludo
Aleae”, In German, 1657.
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History & Philosophy (Cont’d)

« Rapid development during 18" Century

* Major Contributions:
J. Bernoulli (1654-1705)
*A. De Moivre (1667-1754)

* Arenaissance: Generalizing the concepts from
mathematical analysis of games to analyzing
scientific and practical problems: P. Laplace
(1749-1827)

* New approach first book:

P. Laplace, “Theorie Analytigue des
Probabilités”, In France, 1812.
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History & Philosophy (Cont’d)

« 19t century’s developments:
* Theory of errors
« Actuarial mathematics
e Statistical mechanics

« Modern theory of probability (20t Century):
« A. Kolmogorov : Axiomatic approach

* First modern book:

« A. Kolmogorov, “Foundations of Probability
Theory”, Chelsea, New York, 1950.

*Other giants in the field:
* Chebyshev, Markov and Kolmogorov
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History & Philosophy (Cont’d)

« Two major philosophies:
* Frequentist Philosophy
* Observation is enough!
« Bayesian Philosophy:
* Observation is NOT enough
* Prior knowledge is essential
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History & Philosophy (Cont’d)

Frequentist philosophy

* There exist fixed
parameters like mean,o.

* There Is an underlying
distribution from which
samples are drawn

» Likelihood functions(L(8))
maximize parameter/data

« For Gaussian distribution
the L(O) for the mean
happens to be 1/N2x; or
the average.

Bayesian philosophy
« Parameters are variable

« Variation of the parameter
defined by the prior
probability

* This is combined with
sample data p(X/0) to
update the posterior
distribution p(6/X).

« Mean of the posterior,
pP(6/X),can be considered
a point estimate of 6.
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History & Philosophy (Cont’d)

* An Example:

« A coin is tossed 1000 times, yielding 800 heads and
200 talls. Let p = P(heads) be the bias of the coin.
What is p?

« Bayesian Analysis
- Our prior knowledge (believe): z(p)=1 (Uniform(0,1))
» Our posterior knowledge: r(p|Observation)= p®(1— p)**
* Frequentist Analysis
« Answer is an estimator P such that
* Mean: E[p]=0.8
» Confidence Interval: P(0.774 < p <0.826)>0.95
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History & Philosophy (Cont’d)

Nowadays, Probability Theory Is considered to be
a part Measure Theory !

 Further reading:

e http://www.leidenuniv.nl/fsw/verduin/stathist/st
athist.htm

e http://www.mrs.umn.edu/~sungurea/introstat/h
Istory/indexhistory.shtml

* wWwWw.CS.ucl.ac.uk/staff/D.Wischik/Talks/histpro
b.pdf
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Random Variables

 Probability Space
* Atriple of (Q,F,P)
« Q) represents a nonempty set, whose

elements are sometimes known as
outcomes or states of nature (Sample Space).

* F represents a set, whose elements are
called events. The events are subsets of
Q. F should be a “Borel Field”.

« Prepresents the probability measure.

«Fact: P(Q)=1
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Random Variables (Cont’d)

« Random Variable (RV) Is a “function”
("mapping”) from a set of possible outcomes of
the experiment to an interval of real (complex)
numbers.

*|n other words :
FcP(Q) [X:F-l
{';R '{X(ﬂ)=r

Outcomes

>
Real Line
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Random Variables (Cont’d)

* Example I:
* Mapping faces of a dice to the first six natural
numbers.
* Example Il
* Mapping height of a man to the real interval
(0,3] (meter or something else).
« Example Il

* Mapping success in an exam to the discrete
Interval [0,20] by quantum 0.1.
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Random Variables (Cont’d)

« Random Variables
* Discrete
* Dice, Coin, Grade of a course, etc.
e Continuous
* Temperature, Humidity, Length, etc.

e Random Variables
* Real
« Complex
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Density/Distribution Functions

 Probability Mass Function (PMF)
* Discrete random variables
e Summation of impulses

* The magnitude of each impulse represents the
probability of occurrence of the outcome

« Example I: PIX]
* Rolling a fair dice
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Density/Distribution Functions (Cont’d)

« Cumulative Distribution Function (CDF)
* Both Continuous and Discrete
* Could be defined as the integration of PDF

CDF( )=Fy (x)=P(X <x)
fo (x)

PDF(X)

.
//;D;;//f\
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Density/Distribution Functions (Cont’d)

 Some CDF properties
* Non-decreasing

Right Continuous
~(-infinity) = 0

- (infinity) = 1
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Density/Distribution Functions (Cont’d)

 Probability Density Function (PDF)
e Continuous random variables

* The probability of occurrence of Xo E(X—djx’”d_zxj
will be P(x).dx

PIX)
I\
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Density/Distribution Functions (Cont’d)

« Some famous masses and densities:
» Uniform Density PIX)

f(x)=§.(u (end)-U(begin)) 2 T

e Gaussian (Normal) Density a

1 _(x=p)
fx)=—p=e 27 =N(uo) ¥

OAN2T
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Density/Distribution Functions (Cont’d)

* Binomial Density -
A

(0)-[ ) Jo-prpt I ‘

y | T T L S W

» Poisson Density | |

4 A A(X)
Note: xeN = T'(x+1)=x!
1 - X

* Important Fact:

n
For Sufficient ly large N : [Nj.(l— pN " p" e NP (N-p)

n n!
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Density/Distribution Functions (Cont’d)

* Exponential Density

e x>0
0 x<0

f(x)=4.e"U(x)= {

Probab lity Dens ity
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Density/Distribution Functions (Cont’d)

* Expected Value
* The most likelihood value:

E[X]= Tx.fx(x)dx
*Linear Operator: _
Ela.X +b]=a.E[X ]+b

 Function of a random variable:
* Expectation

Efg(X)]= [(x) fy (x)dx
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Density/Distribution Functions (Cont’d)

* PDF of a function of random variables:
e Assume RV “Y” such that Y =g(X)
*The inverse equation X =g*(y) may have
more than one solution called X, X,...., X,

 PDF of “Y” can be obtained from PDF of “X”
as follows:
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25/55



Joint/Conditional Distributions

« Joint Probability Functions
* Density Fyy(x,y)=P(X <x and Y <y)

 Distribution Xy
= J IfX,Y (x, y )dydx

* Example I:

*|In a rolling fair dice experiment represent the
outcome as a 3-bit digital number “xyz”.

XYz
L x=0y=0 15001

% x=0;y=1 2 —>010
3—011

fX'Y(x,y)=<% X=Ly=0 , o
W x=Ly=1 5101
0 OoWw. 6 — 110
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Joint/Conditional Distributions (Cont’d)

* Example Il
 Two normal random variables

( 1 {u-mz = zr(x—m(y-uy)]]

2 2 + 2
2(1—r ) Oy Gy O-x-o-y

fy v (X’ Y): = €
2r.0y.0y N1 re
What is “r’ ?

 Independent Events (Strong Axiom)

fx v (%, y)=fx (x)fy (y)
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Joint/Conditional Distributions (Cont’d)

« Obtaining one variable density functions:

i (x) = T Fx v (X, y)dy

fy(y)= O_f F v (X, y)dx

* Distribution functions can be obtained just from
the density functions. (How?)
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Joint/Conditional Distributions (Cont’d)

« Conditional Density Function:

* Probabillity of occurrence of an event if
another event is observed (we know what
“Y”IS).

_ fx v (x,y)
fy (Y)

fx\Y (X|y)

- Bayes’ Rule:

fy (x|y): fY|x(y|X)fx(X)

_{on|X (v} fx (x)olx
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Joint/Conditional Distributions (Cont’d)

* Example I:
*Rolling a fair dice:
« X : the outcome Is an even number
*Y : the outcome Is a prime number

P(X|Y )= P(X.Y)_ 76 _1

P(Y) % 3
* Example Il
 Joint normal (Gaussian) random variables:

Fxy (X|y):
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Joint/Conditional Distributions (Cont’d)
« Conditional Distribution Function:

Fyv (Xy)=P(X < x while Y =y)

X
= ij|Y (x|y)dx

X

j fxy (& y)dt
— T fxy (& y)dt

* Note that "y” Is a constant during the
integration.
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Joint/Conditional Distributions (Cont’d)

* Independent Random Variables:

fx .y (x,y)
fy (Y)

fx\Y (X‘y):

 Remember! Independency is NOT heuristic.
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Joint/Conditional Distributions (Cont’d)

* PDF of a functions of joint random variables
 Assume that (U,V)=g(X,Y)

* The inverse equation set (X,Y)=g¢g*(U,v) has a
set of solutions (x,,Y,)(X,,Y,)....(X,,.Y,)

* Define Jacobean matrix as follows:

—U —V
J _ oX oX
2y 2y
oX oY
* The joint PDF will be:

fU’V(u’V):Z Fxr (% i) )

n
' absolute determinant(J |(X )

\
(%, i ))

33/55



Outline

 History/Philosophy

 Random Variables
 Density/Distribution Functions
 Joint/Conditional Distributions

« Correlation

 Important Theorems

* Introduction to Stochastic Processes

34/55



Correlation

* Knowing about a random variable “X”, how
much information will we gain about the other
random variable “Y" ?

* Shows linear similarity

*More formal:  Crr(X,Y)=E[X Y]

e Covariance I1s normalized correlation

Cov(X,Y) = E[(X = sy )Y = gty )= E[XY | = o .pty
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Correlation (cont’d)

*Variance
e Covariance of a random variable with itself

Var(X )=oy* = E[(X — Hx )2]

Relation between correlation and covariance

EX2]= 02 + 12

«Standard Deviation
e Square root of variance
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Correlation (cont’d)

e Moments

* Nt order moment of a rapdom variable “X” Is
the expected value of “X™

M, =E(X")
 Normalized form
M, = E((X — Hx )n)

 Mean Is the first moment

 Variance Is second moment added by the
sqguare of the mean
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Important Theorems
* Central limit theorem (CLT)

* Consider I.1.d. (Independent Identically
Distributed) RVs “X,” with finite variances

n
*Let S,=> a,.X,
i—1

* Then PDF of “S,,” converges to a hormal
distribution as n increases, regardless of the
initial density of RVs.

* Exception: Cauchy Distribution (Why?)
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Important Theorems (cont’d)

 Law of Large Numbers (Weak)

e For I.1.d. RVs “X\”

lim

>0 Nn—c0
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Important Theorems (cont’d)

Law of Large Numbers (Strong)

e For i1.1.d. RVs “X\”

Pr4 lim = - =1

* Why this definition is stronger than the weak law
of large numbers?
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Important Theorems (cont’d)
* Chebyshev’s Inequality

 Let “X” be a nonnegative RV

» Let “c” be a positive number, then: Pr{X > c}s%E[x]

* The term Chebyshev's inequality may also refer
to Markov’s inequality, especially in the context of
analysis. They are closely related, and some authors
refer to Markov's inequality as "Chebyshev's First
Inequality,”

 Another form:

2
PrH|X — uy | > &< %

 This could also be rewritten for negative RVs. (How?)
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Important Theorems (cont’d)

Schwarz Inequality

* For two RVs “X” and “Y” with finite second
moments:

E[x Y P <E[x?|Ely?]

« Equality holds in case of linear dependency.

43/55



Outline

 History/Philosophy

« Random Variables
 Density/Distribution Functions
 Joint/Conditional Distributions

» Correlation

* Important Theorems

* Introduction to Stochastic Processes

44/55



Introduction to Stochastic Processes

Let &£ denote the random outcome of an

experiment.

To every such outcome suppose a function

X(t,$) 1s assigned. £ X (&)

The collection of such :

functions form a X“’fn)/\/\\/\/
stochastic process. %7 I~}
The set of {¢ }and the xu,gz)[\v%

time indextcanbe 1~ L——
continuous or discrete 0 t t

(countably infinite or finite).
For fixed & €S (the set of all experimental
outcomes), X(t,£) Is a specific time function.
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Introduction to Stochastic Processes

* Forfixedt, X, =X(,&) IS arandom variable.
 The ensemble of all such realizations X (t,&) over
time represents the stochastic process X(t).

TX(t¢)
X(t,én)/\\/\\/\\/
X(t,fk)/\\:/_\\_/

N .
X (t,€,) :
X(t,§1)/\_J/\
0 " " >
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Introduction to Stochastic Processes

« Examples:
* Let X(t)=acos(w,t+ ¢),
where ¢ is a uniformly distributed random
variable in (0,2x), represents a stochastic process.
« Stochastic processes are everywhere:
« stock market fluctuations
e various gueuing systems
« Earthquake Signals
« 1-D Audios
 2-D Images
« 3-D Videos
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Introduction to Stochastic Processes

« Example 1.

The Random Process (RP) X(t) is defined as:
X(t) = At + b, b is a constant, Ais a Gaussianrv, t > 0

Find fy(x,t) :
__1 (_a_2> = N(0,1)
fa(@) = =exp () = MO
(. t)—f“‘(‘)

X(t)— ‘ x—>b

1 (x — b)
(o) =+ fa(a) = mexp( 2)— 2m:exp(— — )



Introduction to Stochastic Processes
« Example 1.

The Random Process (RP) X(t) is defined as:
X(t) = At + b, b is a constant, Ais a Gaussianrv, t > 0
mean and variance of X (t).

Mean of X (t):

X(t)=At+b, AisN(0,1)
E[X(t)|=E[At+ b] = E[A|t + E[b]=0Xt+b=0b
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Introduction to Stochastic Processes

« Example 1 continued:

Mean of X (t):

X(t)=At+ b, AisN(0,1)
E[X(t)] =E[At+ b] = E[A]t+ E[b]=0Xt+b=0Db

Variance of X (t):
X(t)? = A’t? + b* + 2Abt

E[X(£)2] = E[A%? + b? + 24bt] = E[A2]t? + E[b?]
+ E[A]2bt = 1+t> + b? + 0= 2bt

E[X(t)*] = t> + b?
Var(X[t]) = E[X(t)?] - E[X(t)]? = t*? + b*? — b? = t?

Note: The mean of X(t) is constant but its variance is a function of
time t.
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Introduction to Stochastic Processes

Example 2:
X():RP

X(t) = Acos(wyt + 0)

l consltant\‘ \

constant index RV: Uniform(0, 2m)
(time)
— 1
a) PDF =? fe(9)={% 6 € (0,27]
b) E[X(t)] =? clse 0

c) Var|X(t)] =?
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Introduction to Stochastic Processes

Example 2 continued:
X(t) = Acos(wyt +60) =X(0)

_ fg(@l) _ 1 1[0 < Hi < 27'[]
fe) = ) Tt =5 =y
L |dg, o,

Acos(wyt +6;) =x — has exactly 2 answers in (0, 2]

dX
Yl = | — Asin(wyt + 6)))| =\/A2 — X7
do,
2 1 1
- fx(x,t) = 1X| < A

2T+ A2 — x2 B VA2 — x2
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Introduction to Stochastic Processes

Example 2 continued:
X(t) = Acos(wyt + 0) =X.(8)

2T

E[X(t)] = E|Acos(wot + 0)] = AJ cos(wot + 6) % do =0

0

VIX()] = E[X(®)*] — E[X(t)]* = E[(A cos(wpt + 0))*]
2T

= AZJO cos?(wyt + 0) % do

AZ 2T 1 A2 2T 1 AZ

=—| = 2 2 =—| Zdo==
2 ), 2(1+cos( wot + 20)) df 2 ), 2d9 >
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Introduction to Stochastic Processes

Wide Sense
Stationary

Stationary

Process Strict Sense

Stationary
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Next Week:

Stochastic Processes
Stationary Stochastic Processes

Have a good day!
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