
Stochastic Processes

Week 09 (Version 2.0)

Markov Chains & HMMs

Hamid R. Rabiee

Fall 2022

Overview

Markov Property

Markov Chains Definition

Markov Chains Stationary Property

Markov Chains Paths

Markov Chains Classification of States

Markov Chains Steady States

Hidden Markov Models

2

Markov Property

3

• A discrete process has the Markov property if

given its value at time t, the value at time t+1 is

independent of values at times before t.

That is:

𝑃𝑟 𝑋𝑡+1 = 𝑥𝑡+1 𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋1 = 𝑥1
= 𝑃𝑟 𝑋𝑡+1 = 𝑥𝑡+1 𝑋𝑡 = 𝑥𝑡

For all t, xt+1, xt, 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1.

Stationary Property

• A Markov Process is called stationary if:

Pr 𝑋𝑡+1 = 𝑢|𝑋𝑡 = 𝑣 = Pr 𝑋1 = 𝑢|𝑋0 = 𝑣 for all t.

• The evolution of stationary processes don’t change over

time.

• For defining the complete joint distribution of a

stationary Markov Process it is sufficient to define

Pr 𝑋1 = 𝑢|𝑋0 = 𝑣 and Pr 𝑋0 = 𝑣 for all u and v.

• We will mainly consider stationary Markov processes

here.

4

Markov Process Types

5

• There exist two types of Markov processes based

on domain of 𝑋𝑡 values:

• Discrete

• Continuous

• Discrete Markov processes are called “Markov

Chains” (MC).

Markov Process Types

6

Type of Parameter

State Space Discrete Continuous

Discrete-Time Continuous-Time

Discrete Markov Chain Markov Chain

Continuous Discrete-Time Continuous-Time

Markov Process Markov Process

• In this course we will focus on stationary MCs.

Example (Coin Tossing Game)

• Consider a single player game in which at every

step a biased coin is tossed and according to the

result, the score will be increased or decreased by

one point.

• The game ends if either the score reaches 100

(winning) or -100 (losing).

• Score of the player at each step 𝑡 ≥ 0 is a random

variable and the sequence of scores as the game

progresses forms a random process 𝑋0, 𝑋1, … , 𝑋𝑡.

7

Example (Coin Tossing Game)

• It is easy to verify that X is a stationary Markov chain: At

the end of each step the score solely depends on the current

score 𝑠𝑐 and the result of tossing the coin (which is

independent of time and previous tosses).

• Stating this mathematically (for 𝑠𝑐 ∉ {−100,100}):
𝑃𝑟 𝑋𝑡+1 = 𝑠 𝑋𝑡 = 𝑠𝑐 , 𝑋𝑡−1 = 𝑠𝑡−1, … , 𝑋0 = 0

= ቐ
𝑝 ; 𝑠 = 𝑠𝑐 + 1
1 − 𝑝 ; 𝑠 = 𝑠𝑐 − 1
0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝑃𝑟 𝑋𝑡+1 = 𝑠 𝑋𝑡 = 𝑠𝑐 = 𝑃𝑟 𝑋1 = 𝑠 𝑋0 = 𝑠𝑐

• If value of p was subject to change in time, the process would

not be stationary (in the formulation we would have 𝑝𝑡
instead of p).

8

Independent of t

and 𝑠0, … , 𝑠𝑡−1

Transition matrix

• According to the Markov property and stationary

property, at each time step the process moves

according to a fixed transition matrix:

𝑃 𝑋𝑡+1 = 𝑗 𝑋𝑡 = 𝑖 = 𝑝𝑖𝑗

• Stochastic matrix: Rows sum up to 1.

Double stochastic matrix: Rows and columns sum

up to 1.

9

State Graph

• It is convenient to visualize a stationary Markov Chain

with a transition diagram:

• A node represents a possible value of 𝑋𝑡 (state). At
each time t, we say the process is in state 𝑠 if 𝑋𝑡=s.

• Each edge represents the probability of going from one

state to another (we omit edges with zero weight).

• We should also specify the vector of initial

probabilities 𝜋 = 𝜋1, … , 𝜋𝑛 where 𝜋𝑖 = Pr(𝑋0 = 𝑖).

• A stationary discrete process could be described as a person

walking randomly on a graph (considering each step to

depend only on the state he/she is currently in). The

resulted path is called a “Random Walk”.

10

Example

• The transition diagram of the coin tossing game is:

• We modeled winning and losing by states which when we get

into, we never get out.

• Note that if the process was not stationary we were not able to

visualize it in this way: For example consider the case that p is

changing in time.

11

-100 -99 -98 99 100

p p p p

1-p 1-p 1-p 1-p

11

Example (Modeling Weather)

• Example: Assume each day is sunny or rainy. If a day is

rainy, the next day is rainy with probability 𝛼 (and sunny

with probability 1 − 𝛼). If the day is sunny, the next day is

rainy with probability 𝛽 (and sunny with probability 1
− 𝛽).

S = {rainy, sunny}, 𝑃 =
𝛼 1 − 𝛼
𝛽 1 − 𝛽

12

R S

𝛼 1 − 𝛼

𝛽

1 − 𝛽

Example (Modeling Weather)

t-1 t t+1 (p(R))

𝑆0 R R 0.7

𝑆1 S R 0.5

𝑆2 R S 0.4

𝑆3 S S 0.2

13/26

𝑃𝑖𝑗 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑖𝑛 1 𝑠𝑡𝑒𝑝

𝑃𝑖𝑗
𝑛 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑖𝑛 𝑛 𝑠𝑡𝑒𝑝

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

𝑆0
𝑆1
𝑆2
𝑆3

𝑆0 𝑆1 𝑆2 𝑆3

14/26

𝑃𝑖𝑗
𝑛+𝑚 = 𝑃 𝑋𝑛+𝑚 = 𝑗 𝑋0 = 𝑖

= ෍

𝑘=1

𝑣

𝑃 𝑋𝑛+𝑚 = 𝑗, 𝑋𝑛 = 𝑘 𝑋0 = 𝑖

= ෍

𝑘=1

𝑣

𝑃 𝑋𝑛+𝑚 = 𝑗 𝑋𝑛 = 𝑘 𝑃 𝑋𝑛 = 𝑘 𝑋0 = 𝑖

= ෍

𝑘=1

𝑣

𝑃𝑖𝑘
𝑛𝑃𝑘𝑗

𝑚 = (𝑃𝑚𝑃𝑛) 𝑖𝑗

Ergodic States

• If state i is recurrent, then it is said to be positive

recurrent if, starting in i, the expected time until the

process returns to state i is finite.

• In a finite-state MC, all recurrent states are positive

recurrent.

• State i is said to have period d(i) if 𝑝𝑛 𝑖𝑖=0

whenever n is not divisible by d, and d is the largest

integer with this property: d(i) = gcd {n: (pn)ii > 0}

• Equivalently: 𝑑 = gcd 𝑛: Pr 𝑋𝑛 = 𝑖 𝑋0 = 𝑖 > 0}

• A state with period 1 is said to be aperiodic.

• We call an MC aperiodic if all its states are

aperiodic.
15

The Chapman-Kolmogorov Equation

• Define the n-step transition 𝑝𝑖𝑗
(𝑛)

as the probability that

starting from state i, the process stops at state j after n time

steps:

𝑝𝑖𝑗
(𝑛)

= P{Xn+m= j | Xm= i}

• Then the Chapman-Kolomogorov equation is given by:

𝑝𝑖𝑗
(𝑛+𝑚)

= σ𝑘=0
∞ 𝑝𝑖𝑘

(𝑛)
𝑝𝑘𝑗
(𝑚)

• Corollary 1: 𝑃(𝑛) can be calculated by: 𝑃(𝑛) = 𝑃𝑛

• Corollary 2: If the process starts at time 0 with

distribution 𝜋 on the states then after n steps the

distribution is 𝜋𝑃𝑛.

16

17/26

𝑃(2) = 𝑃(1+1) = 𝑃 1 𝑃(1) = 𝑃 ⋅ 𝑃 = 𝑃2

𝑃(𝑛) = 𝑃(𝑛 −1+1) = 𝑃 𝑛−1 𝑃(1) = 𝑃𝑛−1𝑃 = 𝑃𝑛

𝑃(1) =
0.7 0.3
0.4 0.6

𝑃(2) = 𝑃2 =
0.61 0.39
0.52 0.48

𝑃(4) = 𝑃2𝑃2 =
0.57 0.43
0.57 0.43

Example (Modeling Weather)

18/26

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

𝑆0
𝑆1
𝑆2
𝑆3

𝑆0 𝑆1 𝑆2 𝑆3
• If Monday and Tuesday

are raining, what is the

probability of raining on

Thursday?

𝑃2 = 𝑃2 =

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

2

=

0.49 0.12 0.21 0.18
0.35 0.2 0.15 0.3
0.2 0.12 0.2 0.48
0.1 0.16 0.1 0.64

Absorbing Markov Chain

• An absorbing state is one in which the probability that the

process remains in that state once it enters the state is 1

(i.e., 𝑝𝑖𝑖 = 1).

• A Markov chain is absorbing if it has at least one absorbing

state, and if from every state it is possible to go to an

absorbing state (not necessarily in one step).

• An absorbing Markov chain will eventually enter one of the

absorbing states and never leave it.

• Example: The 100 and -100 states in coin tossing game

(Note: After playing long enough, the player will either win

or lose with probability 1.

19

-100 -99 -98 99 100

p p p p

1-p 1-p 1-p 1-p

11

Absorption Theorem

• In an absorbing Markov chain the probability that the

process will be absorbed is 1.

• Proof: From each non-absorbing state 𝑠𝑗 it is possible to

reach an absorbing state starting from 𝑠𝑗. Therefore there

exists p and m, such that the probability of not absorbing

after m steps is at most p, in 2m steps at most 𝑝2, etc.

• Since the probability of not being absorbed is

monotonically decreasing, we have:

lim
𝑛→∞

P(not absorbed after n steps) = 0

20

Classification of States

• Accessibility: State j is said to be accessible from state i if

starting in i it is possible that the process will ever enter

state j: (𝑃𝑛)𝑖𝑗> 0.

• Communication: Two states i and j that are accessible to

each other are said to communicate.

• Every node communicates with itself:

p𝑖𝑖
0
= P 𝑋0 = 𝑖 𝑋0 = 𝑖 = 1

• Communication is an equivalence relation: It divides

the state space up into a number of separate classes in

which every pair of states communicate.

• The Markov chain is said to be irreducible if it has only

one class.

21

Transient and Recurrent states

• For any state i we let 𝑓𝑖 denote the probability that, starting in

state i, the process will ever reenter state i:

𝑓𝑖 = Pr ∃𝑛: 𝑋𝑛 = 𝑖 𝑋0 = 𝑖)

• State i is said to be recurrent if f𝑖 = 1 and transient if f𝑖 < 1.

• Theorem 1: State i is recurrent if and only if, starting in state i,

the expected number of time periods that the process is in state i

is infinite:

• Corollary 1: A transient state will only be visited a finite number

of times.

Proof: 𝐸 𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 𝑋0 = 𝑖

= ෍

𝑘=1

∞

𝑘 × 𝑃𝑟(𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 = 𝑘|𝑋0 = 𝑖)

= …+∞× 𝑝𝑟𝑜𝑏 𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 = ∞|𝑋0 = 𝑖 < ∞

⇒ 𝑝𝑟𝑜𝑏 𝑠𝑖𝑧𝑒 𝑛: 𝑋𝑛 = 𝑖 = ∞|𝑋0 = 𝑖 = 0
22

Transient and Recurrent states

• Theorem 2: State i is recurrent iff σ𝑛=1
∞ (𝑃𝑛)

𝑖𝑖

= ∞.

(Look at the reference book for proof).

• Corollary 2: A finite state Markov chain has at

least one recurrent state.

If all states are transient there will be a finite

number of steps that after that the process should

not be in any state (which is a contradiction).

23

Ergodic States

• If state i is recurrent, then it is said to be positive

recurrent if, starting in i, the expected time until the

process returns to state i is finite.

• In a finite-state MC, all recurrent states are positive

recurrent.

• State i is said to have period d(i) if 𝑝𝑛 𝑖𝑖=0

whenever n is not divisible by d, and d is the largest

integer with this property.

• Equivalently: 𝑑 = gcd 𝑛: Pr 𝑋𝑛 = 𝑖 𝑋0 = 𝑖 > 0}

• A state with period 1 is said to be aperiodic.

• We call an MC aperiodic if all its states are

aperiodic.
24

Ergodic States

• A state i is said to be ergodic if it is aperiodic and

positive recurrent.

• Period, recurrence and positive recurrence are all

class properties. They are shared between states of

a class.

25

Example

26

1

0.25

2

0.75

3

0.25

5

6

0.75

0.75

0.25

0.25

7 8

1

1

1

0.25
4

0.25

0.5

0.75

1

𝐶𝑙𝑎𝑠𝑠𝑒𝑠: 1 , 2,3 , 4,5 , 6 , 7,8
𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒𝑠: 6,7,8

𝐴𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒𝑠: 6
𝐸𝑟𝑔𝑜𝑑𝑖𝑐 𝑠𝑡𝑎𝑡𝑒𝑠: 6
𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑠𝑡𝑎𝑡𝑒𝑠: 2, 3, 7, 8: 𝑃𝑒𝑟𝑖𝑜𝑑 2

Example

27

As time goes to infinity, what is the probability of

being in each class?

Answer:

• The process will be in transient classes

{1},{2,3},{4,5} with probability 0.

• Problem is symmetric for entering classes {6} and

{7,8} as their only input edge is one from 5 with

equal probabilities 0.25, and once it enters them,

there is no way out.

• Therefore, at infinity probability of being in each

of these two classes is 0.5.

Example

28

If the process is absorbed in {7,8} (which could be

considered as an absorbing super state) what will

happen after that?

Answer:

• It will alternate between 7 and 8 to the end.

Therefore, at time 𝑡 → ∞ probability of being in 7

(or 8) will depend on the parity of t. In general

finding the exact behavior of non-ergodic states as

𝑡 → ∞ is not easy.

Steady State

29

Theorem: For an irreducible ergodic Markov chain lim
𝑛→∞

𝑃𝑛 𝑖𝑗

exists and is independent of 𝑖. Furthermore, letting:

𝜋𝑗
∗ = lim

𝑛→∞
𝑃𝑛 𝑖𝑗

Then 𝜋∗ = 𝜋1
∗, … 𝜋𝑑

∗ 𝑡 is unique nonnegative solution of:

𝜋∗ = 𝜋∗𝑃

෍

𝑗=1

𝑑

𝜋𝑗 = 1

• If the ergodicity condition is removed, lim
𝑛→∞

𝑃𝑛 𝑖𝑗 does not

exist in general, but the given equations yet have a unique

solution 𝜋∗ = 𝜋1
∗, … 𝜋𝑑

∗ 𝑡 in which 𝜋𝑗
∗ will be equal to the long

run proportion of time that the Markov chain is in state j.

Example

30

• Consider the weather model example discussed before. We

want to see how will the weather be when time goes to

infinity:

𝑃 =
𝛼 1 − 𝛼
𝛽 1 − 𝛽

൞

𝜋0
∗ = 𝛼𝜋0

∗ + 𝛽𝜋1
∗

𝜋1
∗ = 1 − 𝛼 𝜋0

∗ + 1 − 𝛽 𝜋1
∗

𝜋0
∗ + 𝜋1

∗ = 1

• Which yields that 𝜋0
∗ =

𝛽

1+𝛽−𝛼
and 𝜋1

∗ =
1−𝛼

1+𝛽−𝛼
.

• Exercise: In each of the following cases investigate the

existence of solution and its meaning:

• 1) 𝛼=0 and 𝛽 = 1
• 2) 𝛼=1 and 𝛽 = 0

One of these equations

is redundant. (why?)

Introduction to Hidden

Markov Models

• Set of states:

• Process moves from one state to another generating a

sequence of states :

• Markov chain property: probability of each subsequent state

depends only on what was the previous state:

• To define a Markov model, the following probabilities have to be

specified: transition probabilities and initial

probabilities

Markov Models

},,,{ 21 Nsss 

 ,,,, 21 ikii sss

)|(),,,|(1121   ikikikiiik ssPssssP 

)|(jiij ssPa 
)(ii sP

32

Rainy Sunny

0.70.3

0.2 0.8

• Two states : ‘Rainy’ and ‘Sunny’.

• Transition probabilities: P(‘Rainy’|‘Rainy’)=0.3 ,

P(‘Sunny’|‘Rainy’)=0.7 , P(‘Rainy’|‘Sunny’)=0.2,

P(‘Sunny’|‘Sunny’)=0.8

• Initial probabilities: say P(‘Rainy’)=0.4 , P(‘Sunny’)=0.6 .

Example of Markov Model

33

Hidden Markov models.
• Set of states:

•Process moves from one state to another generating a

sequence of states :

• Markov chain property: probability of each subsequent state

depends only on what was the previous state:

• States are not visible, but each state randomly generates one of M

observations (or visible states)

• To define hidden Markov model, the following probabilities

have to be specified: matrix of transition probabilities A=(aij),

aij= P(si | sj) , matrix of observation probabilities B=(bi (vm)),

bi(vm)= P(vm | si) and a vector of initial probabilities =(i),

i = P(si) . Model is represented by M=(A, B, ).

},,,{ 21 Nsss 

 ,,,, 21 ikii sss

)|(),,,|(1121   ikikikiiik ssPssssP 

},,,{ 21 Mvvv 

34

Low High

0.70.3

0.2 0.8

SunnyRainy

0.6 0.6
0.4 0.4

Example of Hidden Markov Model

35

• Two states : ‘Low’ and ‘High’ atmospheric pressure.

• Two observations : ‘Rainy’ and ‘Sunny’.

• Transition probabilities: P(‘Low’|‘Low’)=0.3 ,

P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2,

P(‘High’|‘High’)=0.8

• Observation probabilities : P(‘Rainy’|‘Low’)=0.6 ,

P(‘Sunny’|‘Low’)=0.4 , P(‘Rainy’|‘High’)=0.4 ,

P(‘Sunny’|‘High’)=0.3 .

• Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .

Example of Hidden Markov Model

36

• Suppose we want to calculate a probability of a sequence

of observations in our example, {‘Sunny’,’Rainy’}.

• Consider all possible hidden state sequences:

P({‘Sunny’,’Rainy’}) = P({‘Sunny’,’Rainy’} ,

{‘Low’,’Low’}) + P({‘Sunny’,’Rainy’} , {‘Low’,’High’}) +

P({‘Sunny’,’Rainy’} , {‘High’,’Low’}) +

P({‘Sunny’,’Rainy’} , {‘High’,’High’})

where first term is :

P({‘Sunny’,’Rainy’} , {‘Low’,’Low’})=

P({‘Sunny’,’Rainy’} | {‘Low’,’Low’}) P({‘Low’,’Low’}) =

P(‘Sunny’|’Low’)P(‘Rainy’|’Low’) P(‘Low’)P(‘Low’|’Low)

= 0.4*0.4*0.6*0.4*0.3

Calculation of observation sequence probability

37

Evaluation problem. Given the HMM M=(A, B, ) and the

observation sequence O=o1 o2 ... oK , calculate the probability that

model M has generated sequence O .

• Decoding problem. Given the HMM M=(A, B, ) and the

observation sequence O=o1 o2 ... oK , calculate the most likely

sequence of hidden states si that produced this observation sequence

O.

• Learning problem. Given some training observation sequences

O=o1 o2 ... oK and general structure of HMM (numbers of hidden

and visible states), determine HMM parameters M=(A, B, )
that best fit training data.

O=o1...oK denotes a sequence of observations ok{v1,…,vM}.

Main issues using HMMs :

38

• Typed word recognition, assume all characters are separated.

• Character recognizer outputs probability of the image being

particular character, P(image|character).

0.5

0.03

0.005

0.31z

c

b

a

Word recognition example(1).

Hidden state Observation
39

• Hidden states of HMM = characters.

• Observations = typed images of characters segmented from the

image . Note that there is an infinite number of

observations

• Observation probabilities = character recognizer scores.

•Transition probabilities will be defined differently in two

subsequent models.

Word recognition example(2).

   )|()(ii svPvbB  

v

40

• If lexicon is given, we can construct separate HMM models

for each lexicon word.

Amherst a m h e r s t

Buffalo b u f f a l o

0.5 0.03

• Here recognition of word image is equivalent to the problem

of evaluating few HMM models.

•This is an application of Evaluation problem.

Word recognition example(3).

0.4 0.6

41

• We can construct a single HMM for all words.

• Hidden states = all characters in the alphabet.

• Transition probabilities and initial probabilities are calculated

from language model.

• Observations and observation probabilities are as before.

a m

h e

r

s

t

b v

f

o

• Here we have to determine the best sequence of hidden states,

the one that most likely produced word image.

• This is an application of Decoding problem.

Word recognition example(4).

42

• The structure of hidden states is chosen.

• Observations are feature vectors extracted from vertical slices.

• Probabilistic mapping from hidden state to feature vectors:

1. use mixture of Gaussian models

2. Quantize feature vector space.

Character recognition with HMM example.

43

•Evaluation problem. Given the HMM M=(A, B, ) and the

observation sequence O=o1 o2 ... oK , calculate the probability that

model M has generated sequence O.

• Trying to find probability of observations O=o1 o2 ... oK by

means of considering all hidden state sequences (as was done in

example) is impractical:

NK hidden state sequences - exponential complexity.

• Use Forward-Backward HMM algorithms for efficient

calculations.

• Define the forward variable k(i) as the joint probability of the

partial observation sequence o1 o2 ... ok and that the hidden state at

time k is si : k(i)= P(o1 o2 ... ok , qk= si)

Evaluation Problem.

44

s1

s2

si

sN

s1

s2

si

sN

s1

s2

sj

sN

s1

s2

si

sN

a1j

a2j

aij

aNj

Time= 1 k k+1 K

o1 ok ok+1 oK = Observations

Trellis representation of an HMM

45

• Initialization:

1(i)= P(o1 , q1= si) = i bi (o1) , 1<=i<=N.

• Forward recursion:

k+1(i)= P(o1 o2 ... ok+1 , qk+1= sj) =

i P(o1 o2 ... ok+1 , qk= si , qk+1= sj) =

i P(o1 o2 ... ok , qk= si) aij bj (ok+1) =

[i k(i) aij] bj (ok+1) , 1<=j<=N, 1<=k<=K-1.

• Termination:

P(o1 o2 ... oK) = i P(o1 o2 ... oK , qK= si) = i K(i)

• Complexity :

N2K operations.

Forward recursion for HMM

46

• Define the backward variable k(i) as the joint probability of the

partial observation sequence ok+1 ok+2 ... oK given that the hidden

state at time k is si : k(i)= P(ok+1 ok+2 ... oK |qk= si)
• Initialization:

K(i)= 1 , 1<=i<=N.

• Backward recursion:

k(j)= P(ok+1 ok+2 ... oK | qk= sj) =

i P(ok+1 ok+2 ... oK , qk+1= si | qk= sj) =

i P(ok+2 ok+3 ... oK | qk+1= si) aji bi (ok+1) =

i k+1(i) aji bi (ok+1) , 1<=j<=N, 1<=k<=K-1.

• Termination:

P(o1 o2 ... oK) = i P(o1 o2 ... oK , q1= si) =

i P(o1 o2 ... oK |q1= si) P(q1= si) = i 1(i) bi (o1) i

Backward recursion for HMM

47

•Decoding problem. Given the HMM M=(A, B, ) and the

observation sequence O=o1 o2 ... oK , calculate the most likely

sequence of hidden states si that produced this observation sequence.

• We want to find the state sequence Q= q1…qK which maximizes

P(Q | o1 o2 ... oK) , or equivalently P(Q , o1 o2 ... oK) .

• Brute force consideration of all paths takes exponential time. Use

efficient Viterbi algorithm instead.

• Define variable k(i) as the maximum probability of producing

observation sequence o1 o2 ... ok when moving along any hidden

state sequence q1… qk-1 and getting into qk= si .

k(i) = max P(q1… qk-1 , qk= si , o1 o2 ... ok)

where max is taken over all possible paths q1… qk-1 .

Decoding problem

48

• General idea:

if best path ending in qk= sj goes through qk-1= si then it

should coincide with best path ending in qk-1= si .

s1

si

sN

sjaij

aNj

a1j

qk-1 qk

• k(i) = max P(q1… qk-1 , qk= sj , o1 o2 ... ok) =

maxi [aij bj (ok) max P(q1… qk-1= si , o1 o2 ... ok-1)]

• To backtrack best path keep info that predecessor of sj was si.

Viterbi algorithm (1)

49

• Initialization:

1(i) = max P(q1= si , o1) = i bi (o1) , 1<=i<=N.

•Forward recursion:

k(j) = max P(q1… qk-1 , qk= sj , o1 o2 ... ok) =

maxi [aij bj (ok) max P(q1… qk-1= si , o1 o2 ... ok-1)] =

maxi [aij bj (ok) k-1(i)] , 1<=j<=N, 2<=k<=K.

•Termination: choose best path ending at time K

maxi [K(i)]

• Backtrack best path.

This algorithm is similar to the forward recursion of evaluation

problem, with  replaced by max and additional backtracking.

Viterbi algorithm (2)

50

•Learning problem. Given some training observation sequences

O=o1 o2 ... oK and general structure of HMM (numbers of

hidden and visible states), determine HMM parameters M=(A,

B, ) that best fit training data, that is maximizes P(O |M) .

• There is no algorithm producing optimal parameter values.

• Use iterative expectation-maximization algorithm to find local

maximum of P(O |M) (Baum-Welch algorithm).

Learning problem (1)

51

52/26

Expectation Maximization (EM)

Iteratively finding maximum likelihood using partial

observation.

X: observed data

Z: unobserved data: (latent)

𝜃: Model parameters

𝑃 𝑋 𝜃 = න𝑃 𝑋, 𝑍 𝜃 𝑑𝑧 = න𝑃 𝑋 𝑍, 𝜃 𝑃 𝑍 𝜃 𝑑𝑧

53/26

Expectation Maximization (EM)

E-Step (Expectation)

𝑄 𝜃 𝜃(𝑡) =Expected latent log likelihood of 𝜃

𝑄 𝜃 𝜃(𝑡) = 𝐸[𝐿(𝜃; 𝑋; 𝑍)]

M-Step (Maximization)

𝜃(𝑡+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄 𝜃 𝜃(𝑡)

• If training data has information about sequence of hidden states

(as in word recognition example), then use maximum likelihood

estimation of parameters:

aij= P(si | sj) =
Number of transitions from state sj to state si

Number of transitions out of state sj

bi(vm)= P(vm | si)=
Number of times observation vm occurs in state si

Number of times in state si

Learning problem (2)

54

General idea:

aij= P(si | sj) =
Expected number of transitions from state sj to state si

Expected number of transitions out of state sj

bi(vm)= P(vm | si)=
Expected number of times observation vm occurs in state si

Expected number of times in state si

i = P(si) = Expected frequency in state si at time k=1.

Baum-Welch algorithm

55

• Define variable k(i,j) as the probability of being in state si at

time k and in state sj at time k+1, given the observation

sequence o1 o2 ... oK .

k(i,j)= P(qk= si ,qk+1= sj |o1 o2 ... oK)

k(i,j)=
P(qk= si , qk+1= sj , o1 o2 ... ok)

P(o1 o2 ... ok)
=

P(qk= si , o1 o2 ... ok) aij bj (ok+1) P(ok+2 ... oK | qk+1= sj)

P(o1 o2 ... ok)
=

k(i) aij bj (ok+1) k+1(j)

i j k(i) aij bj (ok+1) k+1(j)

Baum-Welch algorithm: expectation step(1)

56

• Define variable k(i) as the probability of being in state si at

time k, given the observation sequence o1 o2 ... oK .

k(i)= P(qk= si |o1 o2 ... oK)

k(i)=
P(qk= si , o1 o2 ... ok)

P(o1 o2 ... ok)
=

k(i) k(i)

i k(i) k(i)

Baum-Welch algorithm: expectation step(2)

57

•We calculated k(i,j) = P(qk= si ,qk+1= sj |o1 o2 ... oK)

and k(i)= P(qk= si |o1 o2 ... oK)

• Expected number of transitions from state si to state sj =

= k k(i,j)

• Expected number of transitions out of state si = k k(i)

• Expected number of times observation vm occurs in state si =

= k k(i) , k is such that ok= vm

• Expected frequency in state si at time k=1 : 1(i) .

Baum-Welch algorithm: expectation step(3)

58

aij =
Expected number of transitions from state sj to state si

Expected number of transitions out of state sj

bi(vm) =
Expected number of times observation vm occurs in state si

Expected number of times in state si

i = (Expected frequency in state si at time k=1) = 1(i).

=
k k(i,j)

k k(i)

=
k k(i,j)

k,ok= vmk(i)

Baum-Welch algorithm: maximization step

59

Next Week:

Sampling

Have a good day!

