In the name of GOD. Sharif University of Technology Stochastic Processes CE 695 Fall 2022 H.R. Rabiee

Homework 4 (Point Process and Gaussian Process)

- 1. Suppose X(t) is a Gaussian process with zero mean and kernel $k(t_1, t_2) = 2 \exp -\frac{|t_1-t_2|}{2}$. Let Y(t) be the result of the application of filter $H(\omega) = 1 + 0.5e^{-2\tilde{j}\omega}$ on x(t).
 - (a) Compute mean and auto-covariance of Y(t)
 - (b) Prove that Y(t) is a Gaussian process.
- 2. Assume that K_1 and K_2 kernels be represented as $K_i(x, y) = \phi_i(x)^T \phi_i(y)$ for i = 1, 2 where ϕ_i is a mapping that maps input onto a higher dimensional space. Note that ϕ_i can have infinite dimensions. We call such kernels as valid kernels.
 - (a) Prove that $K_1 + K_2$ is also a valid kernel.
 - (b) Prove that $K_1 \times K_2$ is also a valid kernel.
 - (c) Prove that e^{K_1} is also valid.
- 3. Suppose that N(t) is a Poisson process with parameter λ .
 - (a) Calculate auto-covariance function. Is N(t) W.S.S?
 - (b) Calculate p.d.f of $(N(t_1), N(t_2))$.
 - (c) For $t_0, t_1, t_2, ..., t_n$ find the p.d.f of $(N(t_0), ..., N(t_n)) = f(a_0, ..., a_n)$.
 - (d) From the previous question, for $t_i = t + in$ find

 $argmax_{a_1,...,a_{n-1}}f(a, a_1, ..., a_{n-1}, a+kn)$

- (e) Find the probability that N(4) < 3 and N(5) N(3) > 3.
- 4. Suppose X(t) is a Gaussian process, with X(t) = 0 with probability 1. Suppose that $X_t + X_s \sim \mathcal{N}(0, \sqrt{|t-s|})$
 - (a) Calculate the auto-covariance function.
 - (b) Calculate the distribution of $(X(t_1), X(t_2), ..., X(t_n))$
 - (c) Prove that such a process doesn't exists.
- 5. A machine needs frequent maintenance to stay on. The maintenance times occur as a Poisson process with rate μ . Once the machine receives no maintenance for a time interval of length h, it breaks down. It then needs to be repaired, which takes an Exponential(λ) time, after which it goes back on.

- (a) After the machine is started, find the probability that the machine will break down before receiving its first maintenance.
- (b) Find the expected time for the first breakdown.
- (c) Find the proportion of time the machine is on.
- 6. A car wash has two stations, 1 and 2, with Exponential (λ_1) and Exponential (λ_2) service times. A car enters at station 1. Upon completing the service at station 1, the car then proceeds to station 2, provided station 2 is free; otherwise, the car has to wait at station 1, blocking the entrance of other cars. The car exits the wash after service at station 2 is completed. When you arrive at the wash there is a single car at station 1. Compute your expected time before you exit.
- 7. Let (N_t) a Poisson process with intensity λ . We define

$$G_t = t - T_{N_t} \quad , \quad D_t = T_{N_t+1} - t$$

- (a) For a given t and $0 < x \le t, y \ge 0$, show that $(G_t < x, D_t \le y) = (N_{tx} < N_t < N_{t+y})$. Find $\mathbb{P}(G_t < x, D_t \le y)$.
- (b) For a given t and y > 0, show that $(G_t = t, D_t \le y) = (N_t = 0, N_{t+y} > 0)$. Find $\mathbb{P}(G_t = t, D_t \le y)$.
- (c) For a given t and y > 0, calculate $(D_t \le y)$ and find the distribution of D_t .
- (d) Calculate the cumulative distribution function of G_t .
- (e) Calculate $\mathbb{P}(\min(T_1, t) > x)$ for all $x \in \mathbb{R}$. Deduce that G_t has the same distribution as $\min(T_1, t)$.
- (f) Show that G_t and D_t are independent.
- (g) Calculate $\mathbb{E}[G_t]$. Deduce $\mathbb{E}[G_t + D_t]$. What do you think about this result?