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(b) The same as above, yes. We need to calculate all powers of transition matrix from 2 to
2(n — 1) + n — 2. The last one, ensures us that the longest possible path from a state to
another state, looping over all the states other than the mentioned two, and returning to
initial state has been considered (it might be even less than that but the question does not
ask for the most efficient algorithm)! Then, period(i) = GCD([V¢, T%, > 0]). If all periods
are 1, then the chain is apreiodic.

The statement is False. In a Markov chain with countably infinite states,
even if every state has a positive probability of reaching any other state in
a finite number of steps, the chain may still be transient rather than
recurrent. Transient states have a non-zero probability of never returning
to the initial state. The key distinction lies in whether, on average, the

chain will eventually return or not.
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For a random process X(t), the Fourier transform of the autocorrelation function
Rx(t ), denoted by Sx(f), is called the power spectral density of process X(t).

A— o] —j2x
Thus Sx(f) = [, Rx(r) exp 7 dr
Some Properties of Power spectral Density:
-> Sx(f) is a real-valued even function, and Sx(f) = 0 for all f.

->The integral over the frequency range - m to 1 is proportional to the variance of a
zero-mean random process and 2Tt is the proportionality coefficient.

> Rx(0) = [7, Sx(f)df

Rx(0) represents the average power in a WSS process.
A random process is said to be strictly stationary if, for each n, and each choice of
t1.tg, . . . .1, the joint CDF of X(tq), X(t2), . .., X(t,) is the same as the joint CDF of

X(tg #), X(t2 + 1), ..., X(tn +t), for any t. That is, the statistics of the random
process are invariant to time shifts.

Strict sense stationarity is a very strong condition to require on a random process. In
practice, it is enough if only first and second-order conditions are satisfied.

# Important Points
Wide Sense Stationarity:

A random process X(t) is said to be wide sense stationary (WSS) if its mean does not
change with time and its autocorrelation function depends on only the time
difference between the samples.

mX(t) =mX and Rx(t + T1,t) = Rx(T)

£ Additional Information

Some Properties of the Autocorrelation Function:

1) Rx(t ) is an even function of T.

2) Rx(0) = 0. (Since the second moment of X(t) is = 0.)

3) Ry archives its maximum absolute value at 0, i.e., |Rx(t )| < Rx(0) (by the
Cauchy-Schwarz inequality).
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Concept:

If a WSS random process X(t) passing through an LTI system with Y(t) output random
process provided impulse response h(t).

Then
Ryy(T) = Rxx(T) ® h(t) & h(-T)
Where,
Ryy(t) = autocorrelation function of the output random process Y (t)
Ry« (T) = autocorrelation function of random process X(t)
Calculation:
Given;
h(t) =6(t+a) - 6(t—a)
Ryy(T) = Ru(T) @ h(1) @ h(-T)
= Ryy(T) = Ru(1) @ [h(t) & h(-1)]
= Ry (1) =Ru(1) ® [{6(t +a) - 6(t - a)} ® {6(-t+a) - 6(-1-a)}]

S Ry(T) =Rx(1) @ [{6(t +a)-b6(t-a)}® {6(t-a)-6(t+a)}] [6(at+b)=
(11a1)é (t + bfa)]

= Ry, (T) = Ry(T) ® [26(t) - 8(t + 2a)} - 8(t - a) — &(t - 2a)]
5 Ryy(T) = 2 R(1) = Ru(T + 2a) = Ry (T = 2a) [ f(x) @ O (t + a) = f(t+ a)]

Option 4 is not a property of a Gaussian random process.

Gaussian random process:

In probability theory and statistics, a Gaussian process is a stochastic process, such
that every finite collection of those random variables has a multivariate normal
distribution, i.e. every finite linear combination of them is normally distributed.

The distribution of a Gaussian process is the joint distribution of all those (infinitely
many) random variables, and as such, it is a distribution over functions with a
continuous domain, e.g. time or space.

Properties of a Gaussian random process:

1. A Gaussian process is completely characterized by its mean and autocorrelation
function.
2. If a Gaussian process is a wide-sense stationery, then it is stationary in the strict

sense too.
3. If a Gaussian process is given as input to an LTI system, the output process is

also Gaussian.
4. If two processes which are jointly Gaussian are uncorrelated, then they are

not statistically dependent.
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a.
L6 _ 1 1 2
1 o i
= (2m0?)""/2exp (_ 292 > (yi -2y + ﬁlzf))
2 2
=) 2\—n/2 B 2 T sl 2, B I
=1 i2%at)™=n exp( 20; x)exp( 597 Xi:yi+o_2 zi:z.y, :
By Theorem 6.1.2, (3, Y2, 3, z:;Y:) is a sufficient statistic for (3, 0?).
b.

n n 1 ) 32
logL(B,0°ly) = —3 log(2r) — 5 loga® — 5 > " + Zr.y, ~ors Z 3.
For a fixed value of o2,

Tl - Zz,y,_%zxggo - = ZuY

>z}
Also,
T = <
so it is a maximum. Because 3 does not depend on o2, it is the MLE. And 3 is unbiased

because
Zi .’.E"E Y., = Z:’ T Igl'g
>z} i L7

c: B = ¥, a;Y;, where a; = z;/ Ej zf are constants. By Corollary 4.6.10, B is normally dis-
tributed with mean 3, and

Varf=3 afVarY; =" (Zx.xzz) i (g‘i;)z s Ea- z;
% i J

i

EB= =4.

pi¥i 1 1
Earl - Eizi ZEY’ = mz.ﬁfﬂi = f.

i

2. Y 3ot no? o?
Vi Vary, = =L — = e
. (Ea z) (T Ix)z Z . (Xizi)?  n?232  nz?
Because 3,27 —n#? =3 ,(z: —%)? 2 0, 3, z7 > nz®. Hence,

2 2 ;
Var 8 = d ga—_Var Z————"Y‘ !
Xz} T nZ? 2T
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Nz if y=a+1

N
P(z,y) =4 %, ify=o2-1
0, otherwise.

] %j N&LAJ:A‘)[:L}binomialcg‘}j:&Sgdﬁb&aﬁjw\é\ﬁ@&%\@jﬁ&%ﬁbow
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Solution. Notice that any of two states in the chain communicates each other. Indeed, if i, j€ S = {0,--- N}
are distinct states, then

_Pi+ )P+ 1,i+2)--P(j—1,j) >0, ifi<j,
ij 2
P Pli,i—DP(i—1,i—2)---P(j+1,j) >0, ifi>j.

So the chain is finite and irreducible, and there exists a unique stationary distribution. Then by this uniqueness,
it suffices to show that a binomial distribution with parameters N and 1/2 is a stationary distribution.

e 1% Solution. Let 7(x) = () 5. We check that 7 solves 7 = 7P. Indeed, for 0 < x <N,

(P)y = m(x— 1)P(x— L, x)+m(x+ 1)P(x+ 1,x)

NN 4 N_xbh PN N i
=) TN T+ JF N
N—1\ (N—1\] 1
iy x—1 x 2N
M 1
= (1)2_" = 1(x).

Similar computation shows that this equality is also true when x = 0 and N. Therefore 7 is a stationary
distribution.

o 2™ Splution. We attempt to find a stationary distribution out of P. By the way the chain is constructed.
it is not unreasonable to seek for a distribution & that satisfies the detailed balanced condition. Since
P(x,y) > 0 only when |x — y| = 1, this boils down to solving the equation

N—x+1

vre(l, N} mr—1)—
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Trivial. .}
that: such chosen is ¢ where A = [t, +00) Set .Y
P,(x >1) <e

as: A on ¢ define and ¢(A°) = €’ that such A° on ¢ of values set We

q(x) = kp(z)

1—¢ 1—¢€

b= [y p(x)d = €
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in all are they if So . A€ in are z; the of none that (1 — €)™ least at of probability a is there Now
have: we (A

fol ZM € _ 16

/
z' — €

firps = Zf x@

easily is which solved. is problem we M= < p— 7 and (1 — ¢)¥ > 1 — § have we if So

achievable.
variance. For

setc we if Again

P, (X >1t)
. and
p(z) = 5al)

large. arbitrarily set can Which

@) have: We .¥
. o 2in (x-)i(x;
BNIPS = =
Zz 1 q )
we numbers large of law strong the by (B = £ 3™ | Z(‘T g dA =257 f(x) qg ; set we if
have:

have: we So

have. we variance. the For

variance. its on bound proposed the have we So .[m, M] in bounded is fi;ps So
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have. We .¥
Eliipy] — 1= Eliipa] — Elfirps] = Elfipar — firps]
2p(x;
E:f af;q __E:f% i]

TR 2p(2;) p(x:)

B nE _; f:) (p(%) + q(z;) q(xﬂ)]

1 [ p(z;) p(zi)

- nE Zzlf( Z)p(ffi) ‘f‘Q(xZ) (CJ(‘TZ) 1)]

Y = gg set we if

Elipy] —pn=E [@} =E {xf:—j:ll)|x< 1] Plx <1)+E {%]m> 1] P(x > 1)

>——+El%|x>1] P(x>1)2—i El%|x>a} P(xz > a)

1 ala—1) 1
- 4 a+l 1+«

have. we so ‘Oz(ao‘;l)) > % «a > 6 for have We
1 1 1
E > 4=
lfipar) — p > 1 + 5= 1

have. we variance. For

V(ipa) = V (1 Zf@)ﬂ) =2 (10020 ) = 1la(x)

n < p(x) + q(x;)
V(g(X)) < (M —m)? have we So .2m < g(X) < 2M have: we but

be can bias the samples. of number fixed a for but unbiased. is estimator IPS seen. have we As .0
the as decays which high. arbitrarily be can it and variance high a has also It large. arbitrarily
know we or samples of number large very a have we when So increases. samples of number
estimator. appropriate an be can IPS distribution:. target the to close is distribution proposal the
large a with means which unbiased. asymptotically is it but unbiased: notis estimator NIPS The
of number small a in Even value. target the to closer and closer becomes it samples. of number
as disadvantage. a necessarily not is NIPS in bias so values. target from far be may IPS samples.
has it that is NIPS of feature Another increases. samples of number the as diminishes it as long
of variance the «g and p of choice the of independent So variance. its on bound upper fixed a
we but large is samples of number the when So property. favorable a is which smallc is NIPS
estimator NIPS the (g and p of closeness the about information or assumptions any know don’t
choice. good a be can
with difterent are ¢ and p when bias on bound lower positive fixed a has estimator PM The
cor- be not can estimator PM the in bias the IPS: and NIPS to contrast in So ratio. big some
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can it other. each to close not are ¢ and p if So have. we samples many how matter no rected
variance its on bound a has estimator PM the But accurately. value target the estimate never
variance the decrease arbitrarily can we So increases. samples of number the as vanishes which
«q and p of choice the of independent samples. of number the increasing by estimator the of
small a with estimator stable a for So have. estimators NIPS and IPS the of none property a
its of composition a is estimator an of MSE the that Note choice. good a be can PM variance.
variance. and bias

vari- and bias small both has NIPS bias. on focused fully is estimator IPS the that see we Here
finding merely is estimation the of goal the When variance. on more focused is PM and ance.
sometimes But estimators. proposed the between chosen be can NIPS target. the of value the
of value loss the is value target the e.g. value. target a maximizing or minimizing is goal the
so important. less is estimator the in bias situation. this In model. a training for objective the
choice. better a be can estimator PM the

worst the be can sometimes estimator unbiased the choosing that see can we conclusion. In
bias. just than important more is variance and bias of composition the and do to thing
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