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Introduction to Estimation Theory

« Estimation Theory: Is a branch of statistics that
deals with estimating the values of parameters based
on observed data that has a random component.

* In this course we focus on point estimation:
Given X = {X;, X,, ... X} Where x;s are independent

and identically distributed (i.1.d) observations with
f (x0), we want to find an statistics T(X) = 6 that
IS a good estimator for ©.



Introduction to Estimation Theory

 Three basic Questions:
1) Do we need all the i.1.d observations to estimate 6?
2) What do we mean by “good estimator’?
3) Do we need prior information on 0 (i.e. f(8)) to
estimate it?
* ANSWers:

1) Not necessarily! We may use Sufficient Statistic (SS); a
function or statistic of observations, instead.

2) The goodness of an estimator is measured by three
properties: unbiasedness, efficiency (minimum
variance) and consistency.



Introduction to Estimation Theory

» Unbiasedness:

An estimator 6 is Asaid to be unbiased if its expected value is
Identical to 0; E (6) = 0.

« Efficiency:

If two competing estimators are both unbiased, the one with
the smaller variance is said to be relatively more efficient.

» Consistency:

If an estimator 8 approaches the parameter 6 closer and closer
as the sample size n increases, @ is said to be a consistent
estimator of 6 (not a rigorous definition).



Introduction to Estimation Theory

3) The frequentist believe we do not need prior
Information on 0 (i.e. f(0)) to estimate It.

However, the Bayesian believe we do need prior
Information on 6.

In the following we focus on Sufficient Statistic.
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Sufficient Statistic (SS)

Assume the statistic T partitions the sample space into sets.

tAE{XT(X) =t}

Goal of SS: Data reduction without discarding information about
6. Examples of statistics:

T(X) =2

T(X)=X .



Sufficient Statistic

A statistic T(X) 1s a sufficient statistic for 0 If the
conditional density of X given the value of T(X)
does not depend on 6.

In other words, If T(X) Is a sufficient statistic for 6
then any inference about 6 should depend on the
sample X only through T(X); meaning 6 is a
function of T(X).

How to find sufficient statistics for 07?



Sufficient Statistic

Factorization Theorem:

Let f(x|8) be the pdf of X.

T (X) is a sufficient stat for 8 iff 3 functions g and h such that:
fx|6) =g(T(x)|6) h(x) Vxey,  6€0O

proof:

=: Assume T (X) is a sufficient statistic for 6.
f(x|0) = Pg(X = x,T(X) = T(x))

— fe(mg = T(Jg)\)Pg(X = x|T(X) = T/(x))

g(T(x)|6) h(x) 10



Sufficient Statistic

&: Assume factorization holds, let g(¢|@) be the pmf of T(X)
Let A, = {y:T(y) = t}

atlo) = Po(TC0 = ) = ) f(x|0) = D g(T(IIOIR)

XEAt XEAt

Po(X=x,T(X)=T(x)) _ Pg(X=x)
Po(T(X)=T(x))  q(t|0)

Po(X =x|T(X) =T(x)) =

 d(T@Oh@  hw
~ 9(T()]0) Syea, hx) ~ Zxea, h()

does not depend on 6.

11



Sufficient Statistic

Example: x4, ..., x,, be i.i.d Bernouli(8), 0<6 < 1.

Then T(x) = X, x; is a sufficient statistic for 6.
n

f(x]0) = l_[ 0%i(1 — Q)i = g2 Xi (1-— Q)n—z X
i=1

gtle) =6*(1-6)""
h(x) =1

12



Sufficient Statistic

Example: x4, ..., x,, be i.i.d U(0, 8).

1 .
f(xlr ;xnle) — ﬁ all Xin [0, 9]
0 0.W.

Recall: I,(x) = {1 ifxeA
0 0.W.
Let: T(x) = max x;
l

. 1 .
Define: g(t]0) = 51(_00,9](1“) h(x) = I{p +oo) (ml_m Xi)

1
= g(T(x)|0)h(x) = ﬁl(_m,g] (miax xl-> 110,400 (ml_in xi) = f (x4, ...,x_n|0)

= T(X) is sufficient statistic. 13



Sufficient Statistic

Example: x;, ..., x, be i.i.d Normal(y, §2).

n N )2 = N2
f(xlﬂr 52) — (27.[52)_7 exp (_ l:l(xl X;52+ n(x ‘ll) >

We show that following t; and t, together is a sufficient statistic.

n
t1=z(xl'_f)2, t2=f
=1

PR R

need: g(tq,t,16)

g(tl8) = g(ty, t,

h(x) =1
= T(X) is sufficient statistic.

262

14



Sufficient Statistic

Exponential Family:

Family of pdfs or pmfs is called a k-parameter exponential family if:

k
F(x168) = h(x) c(8) exp (Z wi(0) ti(x>>
i=1

Example: x4, ..., x, be i.i.d Bernouli(8), 0<6 <1.

f(x]10) = 2% (1 — @) 2% = exp <1n92xi +In(1 - 0) (n - le>>

i=1 i

n n
6 6
= exp (ln T 5 2 x; +nin(l — 0)) = exp(nIn(1 — 0)) - exp <ln 1— 5 xl-)
i=1 i=1

0
k=1, h(x) =1, c(0) =exp(nin(1-0)), t;= le w1(0) = InT—>

15

n
=1



Sufficient Statistic

Example: x;, ..., x, be i.i.d Normal(y, §2).

(x| 67) = 1 (x—m*\ 11 u? x? N
S 0%) = s\ =057 ) T yzma P\ T 262 )P T202 T a2

Exponential family:

k
£(x16) = h(x) c(0) exp (2 w;(0) tl-(x))
i=1

=
1 1 u?
— — 2y — -
k=2, h(x) =1, c(u,&)—maexp< 252),
x? 1
t1(x) =50 W1(.U,52) =52
— 52 — H
t(x) = %, wa(p,6%) = 53

16



Sufficient Statistic

Sufficient statistic for exponential family:
Let x4, ..., x,, be i.i.d observations from a pdf or pmf f(x|8). Suppose f(x|0)

belongs to the exponential family:

k
F(x18) = h(x) c(6) exp (Z w;(0) ti(x>>
i=1

Then
TX) = Qlit1(x), Xl ta(xi), oo, Xl q e (x;)) is a sufficient statistic for 6.

Example: x4, ..., x,, be i.i.d Normal(u, 52).
2

NOEEE t(x) = x

17



Sufficient Statistic

=>TX) = (— %Z?zl xZ, Y, x,;) is sufficient statistic for (u, §2)
T'(X) = (X1 (i — 0%, %)

TX)=T{) iff T'X)=T'(Y)

Results:

1) T(X) = Xis a sufficient statistic.
Proof:

f(x10) = f(T(x)|6)h(x)

T(x) = x, h(x) =1

18



Sufficient Statistic

2) Any one-to-one function of a sufficient statistic is also a sufficient statistic.

Proof: Suppose T (x) is a sufficient statistics for 6,

Define T*(x) = r(T(x)) where r is one-to-one and has inverse r 1

f(x16) = g(T(x)16)h(x) = g(r~(T*(x))|6)h(x)
Define g*(t]0) = g(r~1(t)|6)h(x)
= f(x]0) = g*(T*(x)|0) h(x) so T* is a sufficient static for 6.

Example: x4, ..., x,, be i.i.d Bernouli(8), 0<6 <1.

All of the following are sufficient statics for 6:

n

Tl(X) = Exl', Tz (X) = (X(l),X(z), ...,X(n)), T3 (X) = (xl,xZ,

i=1
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Minimal Sufficient Statistic

Minimal sufficient statistic:

A sufficient statistic T(X) is called minimal sufficient statistic, if for any other
sufficient statistic T'(X), T(X) is a function of T'(X).

It achieve maximum possible data reduction without losing info about 6.

T partitions y intosets; A, = {X : T(X) = ¢}

T'partitions y into sets; B, = {X : T'(X) = t'}

Each set B,» ¢ some set A,

B\

21



Minimal Sufficient Statistic

Theorem:

Let f(x|0) be pdf or pmf. Suppose that for any 2 sample points X and Y the ratio:
f(X]6)
fCY|e)

is constant as a function of 6 iff T(X) = T(Y):

T (X) is a minimal sufficient statistic for 8, iff the above holds.
Proof: assume f(x|68) >0

Let I ={t:t =T(x) for some x € y}
Ar={X:T(X)=1t)

22



Minimal Sufficient Statistic

for each A, choose a fix element X, € A.. For any X, let X1, be the fixed

element that is in the same A; as X, Hence:

T(X) = TXr0)

f(X]9)
fXT(x)|0)

IS constant as a function of 4.

g(tl8) = f(Xr)|0)

f(Xrw|0) f(x16)
) = = g(T(x)|0) h
f(x|6) real®) g(T(x)]6) h(x)

= T(x) is sufficient.

23



Minimal Sufficient Statistic

& Let T’ be an arbitrary sufficient statistic. Then from factorization theorem:

3 functions g, h" s.t. f(x]|0) = g'(T'(x)|0) h'(x)
For any 2 sample points like x, y with T"(x) = T'(y):

rixgey _ 9 (TGO
o) g(T'W|0) ey W)

So by the assumption about T (x) we have: T(x) = T(y).

Therefore, T is a function of T".

Hence T is minimal.

which is a constant as a function of 8.

24



Minimal Sufficient Statistic

Example: x4, ..., x, be 1.i.d Bernoulli(8), 0 <8 <1

Fixlo) = [ |01 — oy = g5 (1 — gyn-2

f(x]6)
fyl0)

= = QLXi"LYi(] — §)LYi~L%i

need: ), x; — ), y; =0
So T(X) = Y-, x; is minimal sufficient for 6.

25



Minimal Sufficient Statistic

Example: xj, ..., x, be i.i.d Normal(y, 62).

o N )2 _ 2
f (x|, 8%) = (2m6%) 2 exp (— Liza (i = 0"+ n(x — ) )

262

fHwd®) o (—n(fz —7%) + 2np(x = y) — (= DL, (6 = D° = B0 = 9)°)
7 (. 62) 252
Need:

X=Yy

zn:(xi - %)% = zn:()’i —-¥)?
i=1 i=1

So (%, X, (x; — x)?) is a minimal sufficient statistic for 6.
But it is not unique. E.g. (¥, s2) is also a minimal sufficient statistic for 6. But it is

unique up to a one-to-one transformation. 26



Minimal Sufficient Statistic

Any 1-1 function of a minimal sufficient statistic is a minimal sufficient statistic.

Example: xq,..,x,be 1i.d U(0,0+1)

£(x|0) = 1 allx;in(6,60 +1) _]1 max(x;) —1 <6 < min(x;)
0 0.W. 0 0.W.

max(x;) = max(y;)
min(x;) = min(y;)

£(x19) Is constant as a function of 0 iff
F(v19)

Hence, T(X) = (x(1), x(ny) is @ minimal sufficient statistic for 6.

X(1)tX(n)

Note: T'(x) = (x(n) — X1y,

) is also minimal sufficient statistic.

27
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Complete Sufficient Statistic

Def: let f(t|0) be family of pdfs (pmfs) for a statistic T(x), the

family of probability distributions is called complete if:
Eg g(T) =0 V6

= pe(g(T) =0)=1 V6

or T(x)is a complete statistic.

Note: completeness Is a property of the family of distributions

not a particular distribution.

29



Complete Sufficient Statistic

A complete sufficient statistic is a concept in statistics
that combines two properties: sufficiency and
completeness.

» Sufficiency means that the statistic captures all the
Information about a parameter from the data.

« Completeness ensures that the statistic is the only
unbiased estimator of zero, meaning no other function

of the data provides additional information about the
parameter.

30



Complete Sufficient Statistic

Example: Let X be a random sample of size n such that
each X; has the same Bernoulli distribution with parameter p.
Let T be the number of 1s observed in the sample, I.e.

T = Z?:l Xi

T is a statistic of X which has a binomial distribution with
parameters (n, p). If the parameter space for p is (0,1),
then T is a complete statistic:

S L e S

neither p nor 1 — p can be 0. 31



Complete Sufficient Statistic

Hence: E,(g(T")) = 0 Iff:

30 () (5) -0

Replacing p/(1 —p) by r:

g g(t) (’;) rt =0

The range of r is the positive reals. Also, E(g(T)) Is
a polynomial in r and, therefore, can only be identical to O if
all coefficients are 0, that is, g(t) = O for all t.

32



Complete Sufficient Statistic

* It is important to notice that the result that all coefficients must
be 0 was obtained because of the range of r.

* For example, for a single observation and a single parameter
value; If n = 1 and the parameter space is {0.5}, T iIs not
complete: g(t) = 2 (t — 0.5) and then, E(g(T)) = 0 although g(t)
Isnot O fort=0nor fort=1.

Theorem: (exponential family)
Let xq,..,x, iid F(x|0) f(x|0) = h(x) c(@) exp(X w;(0)t;(x))
Suppose that the range of (w;(6),...,w,(8)) contains an n dimensional

rectangle.
Then: T(x) = (X7=q ta(x)), -, X7y tr(x;)) is complete.

33



Outline of Week 06 Lectures

e Introduction to Estimation Theory
o Sufficient Statistic

* Minimal Sufficient Statistic

« Complete Sufficient Statistic

» Likelihood Principle

* Frequentist’s Estimators

34



The Likelithood Principle

The likelihood principle:

Def: X ~ f(x]6)
Then given X = x observed, the function of 8 defined by:
L(6]X) = f(X]6)

Is called the likelihood function.
Interpretation:
1) X discrete

L(0|X) = pg(X = x)

L1(611X) > L2(621X)

Sample had a higher likelihood of occurring if 8 = 6, then 8 = 6,.

35



The Likelithood Principle

2) X continuous (real valued pdf)
for small €:

2eL(O|X) = 2ef(X|0) Epg(X —e <X <X +¢)

L(91|X)_p91(X—£<X<X+€)>1 ,
L(6olX) po,(X —e<X<X+e) '

approx. the same interpretation as discrete.

Example: xq,..,x, iid Bernoulli(0)

LA | x)=f(x|0)=0Z%i(1— g)rIx
Letn = 2

36



The Likelihood Principle

(aA)Zx; = 2= L(O | x) = 62
(b)Ix;=1=>LO1x)=6(1-6
()Zx;=0=>LOIx)=(1-0)

a) b) c)

.0 | SSNST. 7
considerLGIx) /L Glx)

f

9 when)x; =2
L(3/4|x) 1 whan}x; =1
@) Taan =1
— whenYx; =0
9

37



The Likelihood Principle

Example: xq,..,x, iid N(u, 6§%).Assume 62 is fixed.

L | 2) = (@ | b) = (2nd?) ™ 2e73 (2 (o]
= k(z)e "EH’/2%

increase n

X(max at X )

38



The Likelithood Principle

Likelihood principle:
If X and Y are two sample points (with the same parameter ) s.t. L(8|X) is
proportional to L(8|Y):

LO|X)=C(X,Y)L(O|Y) V6

Then the conclusions drown from X and Y about @ should be identical.

Idea: use the likelihood function to compare the “probability” of various
parameter values.
if L(6,|X) =2L(0.|X) 6, istwice as likely as 6, and:

39
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Frequentist’s Estimators

Def: A point estimator is any statistic T (x).
Estimator: function of samples (function of SS).

Estimate: actual value of the estimator.

Methods of finding estimators for this course:

(1) Maximum Likelihood Estimator (MLE) ~ (frequentist)

(2) Method of Moments (MM) ~ (frequentist)

(3) UMVUE ~ (frequentist)

(4) Maximum APosteriori (MAP) ~ (Bayes)

(5) Bayes Minimum Risk ~ (Bayes) i



Maximum Likelihood Estimator: MLE

Maximum likelihood estimator (MLE):

LOIX) = L(By, o, Opcl Xy, ) X)) =TIy F(Xi16)

Def:

for each X, let 6(X) be the value which maximizes L(68|X)

then, (X) is the maximum likelihood estimator (MLE) of 6.
6,,(X) = Arg Max (L(8|X))

Log likelihood:

use log L(0|X).

42



Maximum Likelihood Estimator: MLE

How to find MLE”’s:
(1) Differentiation

If L(6|X) isdifferentiable in 8;, possible 8;’s are solutions to:

? .
S L@l =0, i=1..k

a) 1-dimension

solve %L(BIX) =0 ford

2 A
check %L(BIX) <0 for6=260

(check boundaries)

43



Maximum Likelihood Estimator: MLE
Example: x,..,x, iid Bern(0)

L(6 | x) = 6 2%i(1 — )"~ L%

logL(6 | x) = Yx;logd + (n — Y.x;)log(1 — 8)

dlogL(@ |1 x) X»x; n—Xx;

39 6 1-g 07Y=F
d%logL Yx; n—Yx; ‘
67 =gz (<@ =0

check bounderies; Yx; = 0,Yx; =n
nlog(1—-0) if Yx; =0

nlog(@) if Yx; =n

logL(0 | x) =

44



Maximum Likelihood Estimator: MLE

b) 2-dimensions

solve = L(6,6,]X) =0
90,

-L(61,6,1X) =0 for 6,6,
)
check that
0?2 A A
mL(Ql, 02|X) < 0 fOI‘ 61 - 91, 92: 62
1

82
962

L(Ql, 82|X) <0 fOI‘ 61 — éll 92= éz

45



Maximum Likelihood Estimator: MLE
Example: xq,..,x, iid N(u, &%)

1
log L(p, 0% | z) = —glog 27 — ;]Dg s — o5 Z (zi — p)?

a%logz,—i? (- 1) =0= =2

%m - %&Z(mz—u)zzo:f:z:(xz—z)z
Q) 83_;10g,;__£2

i 8(22)2log1:= Y
e DI )



Maximum Likelihood Estimator: MLE

A - (D)1

2=24

2

47



Maximum Likelihood Estimator: MLE

How to find MLE’s:
(2) Direct maximization
- find global upper bound on likelihood function

- show bound is attained

Example: xq,..,x, iid N(u,1)

1 \* _1 e yy)?
L(ulw):(?) e Zz(z P')

Recall for any number a: Z (z; — ) < Z (z; — a)?
= Lp|z)<L(@|z)=>p=1=

48



Maximum Likelihood Estimator: MLE

(3) Numerically (by computer)
With or without (1) and (2)

Example: xq,..,x, iid truncated poisson:

—_m.,,,7r

e m

p[xi — r] — (1 _ e_m)r! )m S 0’1’ nnn
e~ MmXi e~m \' 1
L = [ = inn?’l_ —
(m 1 %) =11 — e m)y;! (i — e‘m> m =1y,

logL=—mn—nlog(l—e™™) +inlgm—210g(xi!)

dlogL N ne™ ™ +2xi_0:> -,
om ST T 1—em T T m =

dloglL
om '’

Define: ¢p(m) = needm s/t ¢(m) =0



Maximum Likelihood Estimator: MLE

Let m, be an initial estimate for m.
0 = gb(m) ~ ¢p(mgy) + (m - mo) ¢’ (my)

N B ¢(m0) r’_,--"'_““-‘,_______,-. j“:‘"i-al.j-,. .iﬁ w#—ujl J‘F‘ ‘JLLJ_;u{.

0 ;. -

(1) Choose an initial estimate m,

(2) Define a sequence {m,; } of estimates by:

¢ (my)

m =m, —
k+1 k ¢’(mk)

k=012, ..

(3) Stop when Mgy — My | < €

let M =My

50
50/24



Maximum Likelihood Estimator: MLE

Note: maximization takes place only over the range of parameter values.

Example: xq,..,x, iid N(u,1) but u=0

fi = xwhatif x < 0?

A=0ifx<0 =% *=0

51



Maximum Likelihood Estimator: MLE

Note: maximization can occur on boundaries.

Example: xq,..,x, iid U(0,0)

(1
om if 0 > max(x;)
LOO1X) =
0 else
\
 OmLE = max(x;)

Max(xi)

Note: maximum likelihood estimate may not be unique. -



Maximum Likelihood Estimator: MLE

Note: maximum likelihood estimate may not be unique.

Example: x4,..,x, iid U(8,86+1)

1 maxx; — 1 <60 < minx;
o1 =y TS

~ 0

any value in the interval
(max(xi) — 1,min(xl-))

max(xi) — 1 min(xi) e

53



Maximum Likelihood Estimator: MLE

Note: MLE’s can be numerically unstable.

Example: xq,..,x, iid Bin(k,p) ; k,p unknowns

Can show:

(16,18,22,25,27) = k = 99

if x =
if x = (16,18,22,25,28) = k = 190

| 1=

54



Maximum Likelihood Estimator: MLE

Theorem: (invariance property)

If § is the MLE of 6, then for any function (), r(8) is the MLE of r(6).

Example: x4,..,x, iid N(u1)

— —2
X is the MLE of u , then X is the MLE of u?.

55



Method of Moments

Method of moments:
X1y ey Xp 1ld f(x]|04, ..., 0)
Equate the first k sample moments to the k first population moments.

1

Let —my =-2X H = E(X)
_1 2 _ 2
mz—;ZXi Uy = E(X*)
1
m = =YX we = E(X%)

m] = ,u](91, ...,Hk)
Let mq = [11(81, . Qk)

my, = U (64, ..., 0%) solve for 64, ..., 0y



Method of moments

Example: xq,..,x, iid N(u, 6%)

1
mlzgzxi Hy = U

Example: xq,..,x, iid binomial(k,p) both unknown

ZT=kp
%me = kp(1 —p) + K*p®

. 72

Solving to get: k=
[m——Z(az,—w) ]

3>
|
= | 8

57



Method of moments

Note: this method can also be used for moment matching.

-match moments of distributions of statistics to obtain approximation to

distributions.

Example: xq,..,x, iid p(1)

1
=—X
(1) ECxy) = 2 = e
(2) E(x?) = A+ A2 m, :%inz

(WWAl=x

LI SRS S S SRS S SRS PO e
@2 +1-25x2 =0 1=—2+[2+13x7]

A is not unique, using method of moments. cq



Next Week:

Estimation Theory 02:
UMVE & Bayes

Have a good day!

59



	Slide 1: Stochastic Processes
	Slide 2: Outline of Week 06 Lectures
	Slide 3: Introduction to Estimation Theory
	Slide 4: Introduction to Estimation Theory
	Slide 5: Introduction to Estimation Theory
	Slide 6: Introduction to Estimation Theory
	Slide 7: Outline of Week 06 Lectures
	Slide 8
	Slide 9: Sufficient Statistic
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Outline of Week 06 Lectures
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Outline of Week 06 Lectures
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Outline of Week 06 Lectures
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Outline of Week 06 Lectures
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

