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Outline of Week 06 Lectures

• Introduction to Estimation Theory

• Sufficient Statistic

• Minimal Sufficient Statistic

• Complete Sufficient Statistic

• Likelihood Principle

• Frequentist’s Estimators: MLE, MM
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Introduction to Estimation Theory

• Estimation Theory: is a branch of statistics that 

deals with estimating the values of parameters based 

on observed data that has a random component.

•  In this course we focus on point estimation:

   Given X = {x1, x2, … xn} where xis are independent

   and identically distributed (i.i.d) observations with

   f (xi|), we want to find an statistics T(X) = መ𝜃 that 

   is a good estimator for .
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Introduction to Estimation Theory

• Three basic Questions:

1) Do we need all the i.i.d observations to estimate ?

2) What do we mean by “good estimator”?

3) Do we need prior information on  (i.e. f()) to 

estimate it?

• Answers:

1) Not necessarily! We may use Sufficient Statistic (SS); a 

function or statistic of observations, instead.

2) The goodness of an estimator is measured by three 

properties: unbiasedness, efficiency (minimum 

variance) and consistency.
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Introduction to Estimation Theory

• Unbiasedness:

An estimator ෠𝜃 is said to be unbiased if its expected value is 

identical to θ; E ( ෠𝜃) = θ.

• Efficiency:

If two competing estimators are both unbiased, the one with 

the smaller variance is said to be relatively more efficient.

• Consistency:

If an estimator ෠𝜃 approaches the parameter θ closer and closer 

as the sample size n increases, ෠𝜃 is said to be a consistent 

estimator of θ (not a rigorous definition).
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Introduction to Estimation Theory

3) The frequentist believe we do not need prior 

information on  (i.e. f()) to estimate it. 

However, the Bayesian believe we do need prior 

information on 

In the following we focus on Sufficient Statistic.
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Sufficient Statistic (SS)

Assume the statistic T partitions the sample space into sets.

Goal of SS: Data reduction without discarding information about 

𝜃. Examples of statistics:

𝑇 𝑋 = 2
𝑇 𝑋 = 𝑋

A1

A2

T

t1

t2

Ai={x : T(x) = ti}

𝑋

f (𝑋| 𝜃)
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Sufficient Statistic

• A statistic T(X) is a sufficient statistic for θ if the 

conditional density of X given the value of T(X) 

does not depend on θ.

• In other words, if T(X) is a sufficient statistic for θ 

then any inference about θ should depend on the 

sample X only through T(X); meaning መ𝜃 is a 

function of T(X).

• How to find sufficient statistics for θ?

9
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Sufficient Statistic

Factorization Theorem:

Let  𝑓(𝑥|𝜃) be the pdf of X.

𝑇(𝑋) is a sufficient stat for 𝜃 iff  ∃ functions g and h such that:

𝑓 𝑥 𝜃 = 𝑔 𝑇 𝑥 𝜃  ℎ 𝑥  ∀𝑥 ∈ 𝜒, 𝜃 ∈ Θ

 

proof: 

⇒:      Assume 𝑇(𝑋) is a sufficient statistic for 𝜃:

𝑓 𝑥 𝜃 = 𝑃𝜃 𝑋 = 𝑥, 𝑇 𝑋 = 𝑇 𝑥

= 𝑃𝜃 𝑇 𝑋 = 𝑇 𝑥 𝑃𝜃 𝑋 = 𝑥 𝑇 𝑋 = 𝑇 𝑥

𝑔 𝑇 𝑥 𝜃 ℎ(𝑥)
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Sufficient Statistic

⇐∶ Assume factorization holds, let                 be the pmf of T(X)

Let 𝐴𝑡 = {𝑦: 𝑇 𝑦 = 𝑡}

𝑞 𝑡 𝜃 = 𝑃𝜃 𝑇 𝑋 = 𝑡 = ෍

𝑥∈𝐴𝑡

𝑓(𝑥|𝜃) = ෍

𝑥∈𝐴𝑡

𝑔 𝑇 𝑥 𝜃 ℎ(𝑥)

𝑃𝜃 𝑋 = 𝑥 𝑇 𝑋 = 𝑇 𝑥 =
𝑃𝜃 𝑋=𝑥, 𝑇 𝑋 =𝑇 𝑥

𝑃𝜃 𝑇 𝑋 =𝑇 𝑥
=

𝑃𝜃 𝑋=𝑥

𝑞 𝑡 𝜃

=
𝑔 𝑇 𝑥 𝜃 ℎ 𝑥

𝑔 𝑇 𝑥 𝜃 σ𝑥∈𝐴𝑡
ℎ(𝑥)

=
ℎ 𝑥

σ𝑥∈𝐴𝑡
ℎ(𝑥)

 

𝑞 𝑡 𝜃

does not depend on 𝜃.  
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernouli 𝜃 ,  0 < 𝜃 < 1. 

Then 𝑇 𝑥 = σ𝑖=1
𝑛 𝑥𝑖 is a sufficient statistic for 𝜃.

𝑓 𝑥 𝜃 = ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖 = 𝜃σ 𝑥𝑖 1 − 𝜃 𝑛−σ 𝑥𝑖

𝑔 𝑡 𝜃 ≔ 𝜃𝑡 1 − 𝜃 𝑛−𝑡

ℎ 𝑥 ≔ 1
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d U 0, 𝜃 . 

𝑓 𝑥1, … , 𝑥𝑛 𝜃 = ቐ
1

𝜃𝑛
 𝑎𝑙𝑙 𝑥𝑖  𝑖𝑛 [0, 𝜃]

0 𝑜. 𝑤.

Recall: 𝐼𝐴 𝑥 = ቊ
1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑜. 𝑤.

 

Let: 𝑇 𝑥 = max
𝑖

𝑥𝑖

Define: 𝑔 𝑡 𝜃 ≔
1

𝜃𝑛 𝐼 −∞,𝜃 𝑡  ℎ 𝑥 = 𝐼 0,+∞ min
𝑖

𝑥𝑖

⇒ 𝑔 𝑇 𝑥 𝜃 ℎ 𝑥 =
1

𝜃𝑛 𝐼 −∞,𝜃 max
𝑖

𝑥𝑖 ⋅ 𝐼 0,+∞ min
𝑖

𝑥𝑖 = 𝑓(𝑥1, … , 𝑥_𝑛|𝜃)

⇒ 𝑇 𝑋  is sufficient statistic.
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Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑓 𝑥 𝜇, 𝛿2 = 2𝜋𝛿2 −
𝑛
2 exp −

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 + 𝑛 ҧ𝑥 − 𝜇 2

2𝛿2

We show that following 𝑡1 and 𝑡2 together is a sufficient statistic.

𝑡1 = ෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2 , 𝑡2 = ҧ𝑥

need: 𝑔 𝑡1, 𝑡2 𝜃

𝑔 𝑡 𝜃 = 𝑔 𝑡1, 𝑡2 𝜇, 𝛿2 = 2𝜋𝛿2 −
𝑛
2 exp −

𝑡2 + 𝑛 𝑡1 − 𝜇

2𝛿2

ℎ 𝑥 = 1

⇒ 𝑇 𝑋  is sufficient statistic.
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Sufficient Statistic

Exponential Family:

Family of pdfs or pmfs is called a k-parameter exponential family if:

𝑓 𝑥 𝜃 = ℎ 𝑥  𝑐 𝜃 exp ෍

𝑖=1

𝑘

𝑤𝑖 𝜃  𝑡𝑖 𝑥

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernouli 𝜃 ,  0 < 𝜃 < 1. 

𝑓 𝑥 𝜃 = 𝜃σ 𝑥𝑖 1 − 𝜃 𝑛−σ 𝑥𝑖 = exp ln 𝜃 ෍

𝑖=1

𝑛

𝑥𝑖 + ln 1 − 𝜃 𝑛 − ෍

𝑖=1

𝑛

𝑥𝑖

= exp ln
𝜃

1 − 𝜃
෍

𝑖=1

𝑛

𝑥𝑖 + 𝑛 ln 1 − 𝜃 = exp 𝑛 ln 1 − 𝜃 ⋅ exp ln
𝜃

1 − 𝜃
෍

𝑖=1

𝑛

𝑥𝑖

𝑘 = 1,  ℎ 𝑥 = 1 ,  𝑐 𝜃 = exp 𝑛 ln 1 − 𝜃 , 𝑡1 = ෍

𝑖=1

𝑛

𝑥𝑖 ,  𝑤1 𝜃 = ln
𝜃

1 − 𝜃



16

Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑓 𝑥 𝜇, 𝛿2 =
1

2𝜋𝛿2
exp −

𝑥 − ҧ𝜇 2

2𝛿2
=

1

2𝜋

1

𝛿
exp −

𝜇2

2𝛿2
exp −

𝑥2

2𝛿2
+

𝜇𝑥

𝛿2

Exponential family:

𝑓 𝑥 𝜃 = ℎ 𝑥  𝑐 𝜃 exp ෍

𝑖=1

𝑘

𝑤𝑖 𝜃  𝑡𝑖 𝑥

⇒

𝑘 = 2,  ℎ 𝑥 = 1 ,  𝑐 𝜇, 𝛿2 =
1

2𝜋

1

𝛿
exp −

𝜇2

2𝛿2
 , 

 𝑡1(𝑥) =
𝑥2

2
,  𝑤1 𝜇, 𝛿2 =

1

𝛿2

𝑡2(𝑥) = 𝑥,  𝑤2 𝜇, 𝛿2 =
𝜇

𝛿2
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Sufficient Statistic

Sufficient statistic for exponential family:

Let 𝑥1, … , 𝑥𝑛 be i.i.d observations from a pdf or pmf 𝑓 𝑥 𝜃 . Suppose 𝑓 𝑥 𝜃  

belongs to the exponential family:

𝑓 𝑥 𝜃 = ℎ 𝑥  𝑐 𝜃 exp ෍

𝑖=1

𝑘

𝑤𝑖 𝜃  𝑡𝑖 𝑥

Then

𝑇 𝑋 = σ𝑖=1
𝑛 𝑡1 𝑥𝑖 , σ𝑖=1

𝑛 𝑡2 𝑥𝑖 , … , σ𝑖=1
𝑛 𝑡𝑘 𝑥𝑖  is a sufficient statistic for 𝜃.

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑡1 𝑥 = −
𝑥2

2
 𝑡2 𝑥 = 𝑥
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Sufficient Statistic

⇒ 𝑇 𝑋 = −
1

2
σ𝑖=1

𝑛 𝑥𝑖
2 , σ𝑖=1

𝑛 𝑥𝑖  is sufficient statistic for 𝜇, 𝛿2

𝑇′ 𝑋 = σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 , ҧ𝑥  

𝑇 𝑋 = 𝑇 𝑌  𝑖𝑓𝑓 𝑇′ 𝑋 = 𝑇′ 𝑌

Results:

1) T(X) = X is a sufficient statistic.

Proof:

𝑓 𝑥 𝜃 = 𝑓 𝑇 𝑥 𝜃 ℎ(𝑥)

𝑇 𝑥 = 𝑥,  ℎ 𝑥 = 1
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Sufficient Statistic

2)   Any one-to-one function of a sufficient statistic is also a sufficient statistic.

Proof: Suppose 𝑇(𝑥) is a sufficient statistics for 𝜃,

Define 𝑇∗ 𝑥 = 𝑟(𝑇(𝑥)) where r is one-to-one and has inverse 𝑟−1

𝑓 𝑥 𝜃 = 𝑔 𝑇 𝑥 𝜃 ℎ 𝑥 = 𝑔 𝑟−1 𝑇∗ 𝑥 |𝜃 ℎ(𝑥)

Define 𝑔∗ 𝑡 𝜃 = 𝑔 𝑟−1 𝑡 𝜃 ℎ 𝑥

⇒ 𝑓 𝑥 𝜃 = 𝑔∗ 𝑇∗ 𝑥 𝜃  ℎ(𝑥)  so 𝑇∗ is a sufficient static for 𝜃.

Example: 𝑥1, … , 𝑥𝑛 be i.i.d Bernouli 𝜃 ,  0 < 𝜃 < 1. 

All of the following are sufficient statics for 𝜃:

𝑇1 𝑋 = ෍

𝑖=1

𝑛

𝑥𝑖 ,  𝑇2 𝑋 = 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ,  𝑇3 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛
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Outline of Week 06 Lectures
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Minimal Sufficient Statistic

Minimal sufficient statistic:  

A sufficient statistic 𝑇(𝑋) is called minimal sufficient statistic, if for any other 

sufficient statistic 𝑇′(𝑋), 𝑇(𝑋) is a function of 𝑇′(𝑋).

It achieve maximum possible data reduction without losing info about 𝜃.

𝑇 partitions 𝜒  into sets; 𝐴𝑡 = {𝑋 ∶  𝑇 𝑋 = 𝑡}

𝑇′partitions  𝜒  into sets; 𝐵𝑡′ = {𝑋 ∶  𝑇′ 𝑋 = 𝑡′}

Each set 𝐵𝑡′  ⊂  some set 𝐴𝑡

T’ T

X X
Ai

Bi
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Minimal Sufficient Statistic

Theorem:  

Let 𝑓(𝑥|𝜃) be pdf or pmf. Suppose that for any 2 sample points 𝑋 and 𝑌 the ratio: 

𝑓( 𝑋|𝜃 )

𝑓( 𝑌|𝜃 )

is constant as a function of 𝜃 iff  𝑇 𝑋 = 𝑇 𝑌 :

𝑻(𝑿) is a minimal sufficient statistic for 𝜽, iff the above holds.

Proof:   assume 𝑓 𝑥 𝜃 > 0  

Let  𝐼 = 𝑡: 𝑡 = 𝑇 𝑥  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝜒

𝐴𝑡 = {𝑋 ∶  𝑇 𝑋 = 𝑡}
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Minimal Sufficient Statistic

for each 𝐴𝑡, choose a fix element 𝑋𝑡 ∈ 𝐴𝑡. For any 𝑋, let 𝑋𝑇(𝑥) be the fixed 

element that is in the same 𝐴𝑡 as 𝑋, Hence: 

𝑇 𝑋 = 𝑇(𝑋𝑇 𝑋 )

⇒
𝑓(𝑋|𝜃)

𝑓(𝑋𝑇 𝑥 |𝜃)
   is constant as a function of 𝜃.

𝑔 𝑡 𝜃 ≔ 𝑓 𝑋𝑇 𝑥 𝜃

𝑓 𝑥 𝜃 =
𝑓 𝑋𝑇 𝑥 𝜃  𝑓(𝑥|𝜃)

𝑓 𝑋𝑇 𝑥 𝜃
= 𝑔 𝑇 𝑥 𝜃  ℎ(𝑥)

⇒ 𝑇(𝑥) is sufficient.
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Minimal Sufficient Statistic

⇐ Let 𝑇′ be an arbitrary sufficient statistic. Then from factorization theorem:

∃ functions 𝑔′, ℎ′ 𝑠. 𝑡.  𝑓 𝑥 𝜃 = 𝑔′ 𝑇′ 𝑥 𝜃  ℎ′(𝑥) 

For any 2 sample points like 𝑥, 𝑦 with 𝑇′ 𝑥 = 𝑇′(𝑦):

𝑓(𝑥|𝜃)

𝑓(𝑦|𝜃)
=

𝑔′ 𝑇′ 𝑥 𝜃  ℎ′(𝑥)

𝑔′ 𝑇′ 𝑦 𝜃  ℎ′(𝑦)
=

ℎ′(𝑥)

ℎ′(𝑦)
  which is a constant as a function of 𝜃.             

So by the assumption about 𝑇(𝑥) we have: 𝑇 𝑥 = 𝑇(𝑦).

Therefore, 𝑇 is a function of 𝑇′.

Hence 𝑇 is minimal.
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Minimal Sufficient Statistic

Example: 𝑥1, … , 𝑥𝑛 be  i.i.d  Bernoulli(𝜃),   0 < 𝜃 < 1

𝑓 𝑥 𝜃 = ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖 = 𝜃σ 𝑥𝑖 1 − 𝜃 𝑛−σ 𝑥𝑖

⇒
𝑓 𝑥 𝜃

𝑓 𝑦 𝜃
= 𝜃σ 𝑥𝑖−σ 𝑦𝑖 1 − 𝜃 σ 𝑦𝑖−σ 𝑥𝑖

need: σ 𝑥𝑖 − σ 𝑦𝑖 = 0

So 𝑇 𝑋 = σ𝑖=1
𝑛 𝑥𝑖 is minimal sufficient for 𝜃.
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Minimal Sufficient Statistic

Example:   𝑥1, … , 𝑥𝑛 be i.i.d Normal 𝜇, 𝛿2 . 

𝑓 𝑥 𝜇, 𝛿2 = 2𝜋𝛿2 −
𝑛
2 exp −

σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 + 𝑛 ҧ𝑥 − 𝜇 2

2𝛿2

𝑓 𝑥 𝜇, 𝛿2

𝑓 𝑦 𝜇, 𝛿2
= exp

−𝑛 ҧ𝑥2 − ത𝑦2 + 2𝑛𝜇 ҧ𝑥 − ത𝑦 − 𝑛 − 1 σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2 − σ𝑖=1

𝑛 𝑦𝑖 − ത𝑦 2

2𝛿2

Need:

ҧ𝑥 = ത𝑦

෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2 = ෍

𝑖=1

𝑛

𝑦𝑖 − ത𝑦 2

So ҧ𝑥, σ𝑖=1
𝑛 𝑥𝑖 − ҧ𝑥 2  is a minimal sufficient statistic for 𝜃.

But it is not unique. E.g. ҧ𝑥, 𝑠2  is also a minimal sufficient statistic for 𝜃. But it is 

unique up to a one-to-one transformation.
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Minimal Sufficient Statistic

Any 1-1 function of a minimal sufficient statistic is a minimal sufficient statistic. 

Example:    𝑥1, … , 𝑥𝑛 be  i.i.d 𝑈(𝜃, 𝜃 + 1)

𝑓 𝑥 𝜃 = ቊ
1 𝑎𝑙𝑙 𝑥𝑖  𝑖𝑛 (𝜃, 𝜃 + 1)
0 𝑜. 𝑤.

= ቊ
1 max 𝑥𝑖 − 1 < 𝜃 < min 𝑥𝑖

0 𝑜. 𝑤.

𝑓 𝑥 𝜃
𝑓 𝑦 𝜃  is constant as a function of 𝜃 iff   ቊ

max 𝑥𝑖 = max(𝑦𝑖)

min 𝑥𝑖 = min(𝑦𝑖)

Hence, 𝑇 𝑋 = 𝑥 1 , 𝑥 𝑛  is a minimal sufficient statistic for 𝜃.

 

Note:  𝑇′ 𝑥 = 𝑥 𝑛 − 𝑥 1 ,
𝑥 1 +𝑥 𝑛

2
 is also minimal sufficient statistic.
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Outline of Week 06 Lectures
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Complete Sufficient Statistic

29

Def: let 𝑓(𝑡|𝜃) be family of pdfs (pmfs) for a statistic T(𝑥), the 

family of probability distributions is called complete if:

𝐸𝜃  𝑔 𝑇 = 0 ∀𝜃

⇒ 𝑝𝜃 𝑔 𝑇 = 0 = 1 ∀𝜃

or T 𝑥 is a complete statistic.

Note: completeness is a property of the family of distributions 

not a particular distribution.



Complete Sufficient Statistic

30

A complete sufficient statistic is a concept in statistics 

that combines two properties: sufficiency and 

completeness.

• Sufficiency means that the statistic captures all the 

information about a parameter from the data.

• Completeness ensures that the statistic is the only 

unbiased estimator of zero, meaning no other function 

of the data provides additional information about the 

parameter.



Complete Sufficient Statistic

Example: Let X be a random sample of size n such that 

each Xi has the same Bernoulli distribution with parameter p. 

Let T be the number of 1s observed in the sample, i.e.

T is a statistic of X which has a binomial distribution with 

parameters (n, p). If the parameter space for p is (0,1), 

then T is a complete statistic:

neither p nor 1 − p can be 0. 31



Complete Sufficient Statistic

Hence:                            iff:

Replacing p/(1 − p) by r:

The range of r is the positive reals. Also, E(g(T)) is 

a polynomial in r and, therefore, can only be identical to 0 if 

all coefficients are 0, that is, g(t) = 0 for all t.
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Complete Sufficient Statistic

• It is important to notice that the result that all coefficients must 

be 0 was obtained because of the range of r.

• For example, for a single observation and a single parameter 

value; if n = 1 and the parameter space is {0.5}, T is not 

complete: g(t) = 2 (t – 0.5) and then, E(g(T)) = 0 although g(t) 

is not 0 for t = 0 nor for t = 1.

Theorem: (exponential family)

Let  𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐹(𝑥|𝜃)            𝑓 𝑥 𝜃 = ℎ 𝑥  𝑐 𝜃  exp(σ 𝑤𝑖(𝜃)𝑡𝑖(𝑥))

Suppose that the range of 𝑤1(𝜃), … , 𝑤𝑘(𝜃)   contains an 𝑛 dimensional 

rectangle.

Then:  𝑇 𝑥 = σ𝑗=1
𝑛 𝑡1 𝑥𝑗 , … , σ𝑗=1

𝑛 𝑡𝑘(𝑥𝑗)    is complete.

33



34

Outline of Week 06 Lectures

• Introduction to Estimation Theory

• Sufficient Statistic

• Minimal Sufficient Statistic

• Complete Sufficient Statistic

• Likelihood Principle

• Frequentist’s Estimators

34



The Likelihood Principle

The likelihood principle:

Def: 𝑋 ~ 𝑓(𝑥|𝜃)

Then given 𝑋 = 𝑥 observed, the function of 𝜃 defined by:

𝐿 𝜃 𝑋 = 𝑓(𝑋|𝜃) 

Is called the likelihood function.

Interpretation:

1) 𝑋 discrete 

    𝐿 𝜃 𝑋 = 𝑝𝜃(𝑋 = 𝑥)

    𝐿1(𝜃1|𝑋) > 𝐿2(𝜃2|𝑋)

    Sample had a higher likelihood of occurring if 𝜃 = 𝜃1 then 𝜃 = 𝜃2.
35



The Likelihood Principle

2) 𝑋 continuous (real valued pdf) 

    for small 𝜀:

    2𝜀𝐿 𝜃 𝑋 = 2𝜀𝑓(𝑋|𝜃) ෥= 𝑝𝜃(𝑋 − 𝜀 < 𝑋 < 𝑋 + 𝜀)

𝐿(𝜃1|𝑋)

𝐿(𝜃0|𝑋)
=

𝑝𝜃1
(𝑋 − 𝜀 < 𝑋 < 𝑋 + 𝜀)

𝑝𝜃0
(𝑋 − 𝜀 < 𝑋 < 𝑋 + 𝜀)

> 1 ?

    approx. the same interpretation as discrete.

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)

𝐿(𝜃 ∣ 𝑥) = 𝑓(𝑥 ∣ 𝜃) = 𝜃σ𝑥𝑖(1 − 𝜃)𝑛−σ𝑥𝑖

Let 𝑛 = 2

36



The Likelihood Principle

  

                                                                                                       

                                                          

(a) Σ𝑥𝑖 = 2 ⇒ 𝐿(𝜃 ∣ 𝑥) = 𝜃2

(b) Σ𝑥𝑖 = 1 ⇒ 𝐿(𝜃 ∣ 𝑥) = 𝜃(1 − 𝜃)
(c) Σ𝑥𝑖 = 0 ⇒ 𝐿(𝜃 ∣ 𝑥) = (1 − 𝜃)2

consider 𝐿
3

4
∣ 𝑥 /𝐿

1

4
∣ 𝑥

=

9  when σ𝑥𝑖 = 2

1  whan σ𝑥𝑖 = 1
1

9
 when σ𝑥𝑖 = 0

(a) 
𝐿(3/4|𝑥)

𝐿(1/4∣𝑥)
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The Likelihood Principle

  

                                                                                                       

                                                          

38

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2) . Assume 𝛿2 is fixed.

 

  

                                                                                                       



The Likelihood Principle

Likelihood principle:

If 𝑋 and 𝑌 are two sample points (with the same parameter 𝜃) s.t. 𝐿(𝜃|𝑋) is 

proportional to 𝐿(𝜃|𝑌):

𝐿 𝜃 𝑋 = 𝐶 𝑋, 𝑌  𝐿 𝜃 𝑌  ∀𝜃

Then the conclusions drown from 𝑋 and 𝑌 about 𝜃 should be identical.

Idea: use the likelihood function to compare the “probability” of various 

parameter values.

if 𝐿 𝜃2 𝑋 = 2𝐿(𝜃1|𝑋)      𝜃2 is twice as likely as 𝜃1 and:

39
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Outline of Week 06 Lectures

• Introduction to Estimation Theory

• Sufficient Statistic

• Minimal Sufficient Statistic

• Complete Sufficient Statistic

• Likelihood Principle

• Frequentist’s Estimators: MLE, MM

40



Frequentist’s Estimators

Def: A point estimator is any statistic 𝑇 𝑥 .

Estimator: function of samples (function of SS).

Estimate: actual value of the estimator.

Methods of finding estimators for this course:

(1) Maximum Likelihood Estimator (MLE) ~ (frequentist)

(2) Method of Moments (MM) ~ (frequentist)

(3) UMVUE ~ (frequentist)

(4) Maximum APosteriori (MAP) ~ (Bayes)

(5) Bayes Minimum Risk ~ (Bayes) 41



Maximum Likelihood Estimator: MLE

Maximum likelihood estimator (MLE):

 𝐿 𝜃 𝑋 = 𝐿 𝜃1, … , 𝜃𝑘 𝑋1, … , 𝑋𝑛 =  ς𝑖=1
𝑛 𝑓(𝑋𝑖|𝜃)

                                                          

Def: 

for each 𝑋, let  ෠𝜃(𝑋)  be the value which maximizes  𝐿 𝜃 𝑋   

then, ෠𝜃(𝑋)  is the maximum likelihood estimator (MLE) of 𝜃.

෠𝜃𝑀𝐿 𝑋 = 𝐴𝑟𝑔 𝑀𝑎𝑥 (𝐿 𝜃 𝑋 )

Log likelihood:   

use log 𝐿 𝜃 𝑋 .

42



Maximum Likelihood Estimator: MLE

How to find MLE’s:

(1) Differentiation

        if   𝐿 𝜃 𝑋   is differentiable in 𝜃𝑖,  possible 𝜃𝑖’s  are solutions to:

𝜕

𝜕𝜃𝑖
𝐿 𝜃 𝑋 = 0 , i = 1, … , k

      

        a) 1-dimension

        solve  
𝜕

𝜕𝜃
𝐿 𝜃 𝑋 = 0 for መ𝜃

        check  
𝜕2

𝜕𝜃2 𝐿 𝜃 𝑋 < 0 for 𝜃 = መ𝜃

 (check boundaries)
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Maximum Likelihood Estimator: MLE

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑒𝑟𝑛(𝜃)

 
L 𝜃 ∣ 𝑥 = 𝜃෌𝑥𝑖( )1 − 𝜃 𝑛−෌𝑥𝑖

log 𝐿(𝜃 ∣ 𝑥) = σ𝑥𝑖log 𝜃 + 𝑛 − σ𝑥𝑖 log(1 − 𝜃)

𝜕log 𝐿(𝜃 ∣ 𝑥)

𝜕𝜃
=

σ𝑥𝑖

𝜃
−

𝑛 − σ𝑥𝑖

1 − 𝜃
= 0 ⇒ ƶ𝜃 = ᪄𝑥

log 𝐿(𝜃 ∣ 𝑥) =
𝑛 log 1 − 𝜃  𝑖𝑓 σ𝑥𝑖 = 0

𝑛 log 𝜃  𝑖𝑓 σ𝑥𝑖 = n

check bounderies; σ𝑥𝑖 = 0, σ𝑥𝑖 = 𝑛

𝜕2lo g 𝐿

𝜕𝜃2
= −

σ 𝑥𝑖

𝜃2
−

𝑛 − σ 𝑥𝑖

1 − 𝜃 2
< 0 @𝜃 = 𝜃

ƶ

44



Maximum Likelihood Estimator: MLE

b) 2-dimensions

        solve    
𝜕

𝜕𝜃1
𝐿 𝜃1, 𝜃2 𝑋 = 0 

                  , 
𝜕

𝜕𝜃2
𝐿 𝜃1, 𝜃2 𝑋 = 0 𝑓𝑜𝑟 𝜃1, 𝜃2

        check that   

𝜕2

𝜕𝜃1
2 𝐿 𝜃1, 𝜃2 𝑋 < 0 for 𝜃1 = መ𝜃1,  𝜃2 = መ𝜃2

 
𝜕2

𝜕𝜃2
2 𝐿 𝜃1, 𝜃2 𝑋 < 0 for 𝜃1 = መ𝜃1,  𝜃2 = መ𝜃2
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Maximum Likelihood Estimator: MLE

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2) 

 

46



Maximum Likelihood Estimator: MLE
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Maximum Likelihood Estimator: MLE

How to find MLE’s:

(2) Direct maximization

        - find global upper bound on likelihood function

        - show bound is attained     

        

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 1) 

Recall for any number a:

48



Maximum Likelihood Estimator: MLE

(3) Numerically (by computer)

With or without (1) and (2)

Example:    𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑠𝑠𝑜𝑛: 

𝑝 𝑥𝑖 = 𝑟 =
𝑒−𝑚𝑚𝑟

1 − 𝑒−𝑚 𝑟!
, 𝑚 ≤ 0,1, …

𝐿 𝑚 ∣ 𝑥 = 𝛱𝑖=1
𝑛 𝑒−𝑚𝑚𝑥𝑖

1 − 𝑒−𝑚 𝑥𝑖!
=

𝑒−𝑚

𝑖 − 𝑒−𝑚

𝑟

𝑚෌𝑥𝑖 𝛱𝑖=1
𝑛 1

𝑥𝑖!

lo g 𝐿 = −𝑚𝑛 − 𝑛lo g 1 − 𝑒−𝑚 + ෍ 𝑥𝑖 l g 𝑚 − ෍ l o g 𝑥𝑖!

𝜕lo g 𝐿

𝜕𝑚
𝑠 + 𝑛 −

𝑛𝑒−𝑚

1 − 𝑒−𝑚
+

Σ𝑥𝑖

𝑚
= 0 ⇒ 𝑚

ƶ
=?

Define: 𝜙 𝑚 =
𝜕 log 𝐿

𝜕𝑚
,𝑛 eed ƶ𝑚  𝑠/𝑡 𝜙( ƶ𝑚) = 0 49



Maximum Likelihood Estimator: MLE

Let 𝑚0 be an initial estimate for ෝ𝑚.

(1) Choose an initial estimate 𝑚0

(2) Define a sequence 𝑚𝑘  of estimates by:

(3) Stop when                              

Let 

50/24

0 ≈ 𝜙 𝑚
ƶ

≈ 𝜙 𝑚0 + 𝑚
ƶ

− 𝑚0 𝜙′ 𝑚0

𝑚
ƶ

≈ 𝑚0 −
𝜙 𝑚0

𝜙′ 𝑚0

𝑚𝑘+1 = 𝑚𝑘 −
𝜙 𝑚𝑘

𝜙′ 𝑚𝑘
, 𝑘 =  0,1,2, …

𝑚𝑘+1 − 𝑚𝑘 < 𝜀

𝑚
ƶ

= 𝑚𝑘
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Maximum Likelihood Estimator: MLE

Note:   maximization takes place only over the range of parameter values.

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁 𝜇, 1  𝑏𝑢𝑡 𝜇 ≥ 0

ƶ𝜇 = 0 if 𝑥
᪄

< 0 ⇒ 𝜇
ƶ

= ቐ
𝑥
᪄
, 𝑥

᪄
⩾ 0

0 , 𝑥
᪄

< 0

ƶ𝜇 = ᪄𝑥 what if ᪄𝑥 < 0?
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Maximum Likelihood Estimator: MLE

Note:  maximization can occur on boundaries.

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑈(0, 𝜃) 

                                                                       

Note: maximum likelihood estimate may not be unique.

𝐿(𝜃 ∣ X)  =

1

𝜃𝑛
 if 𝜃 ⩾ max 𝑥𝑖

0  else
 

∴ ƶ𝜃𝑚L𝐸 = max 𝑥𝑖
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Maximum Likelihood Estimator: MLE

Note: maximum likelihood estimate may not be unique.

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑈(𝜃, 𝜃 + 1) 

                                                                       

𝐿 𝜃 ∣ 𝑥 = ቊ
1 max𝑥𝑖 − 1 < 𝜃 < min𝑥𝑖

0 0, 𝜔.

∴ ƶ𝜃 = any value in the interval 
max 𝑥𝑖 − 1,min 𝑥𝑖
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Maximum Likelihood Estimator: MLE

Note: MLE’s can be numerically unstable.

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝐵𝑖𝑛 𝑘, 𝑝  ;  𝑘, 𝑝 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠 

Can show:

                                                                       

if 𝑥 = (16,18,22,25,27) ⇒ ƶ𝑘 = 99
if 𝑥 = (16,18,22,25,28) ⟹ ƶ𝑘 = 190
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Maximum Likelihood Estimator: MLE

Theorem: (invariance property)

If መ𝜃 is the MLE of 𝜃, then for any function 𝑟(𝜃), 𝑟 መ𝜃  is the MLE of 𝑟 𝜃 .

  

Example:     𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 1)

𝑋 is the MLE of 𝜇 , then 𝑋
2
 is the MLE of 𝜇2.
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Method of Moments

Method of moments:

𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑓 𝑥 𝜃1, … , 𝜃𝑘

Equate the first k sample moments to the k first population moments.

Let        𝑚1 =
1

𝑛
σ 𝑋𝑖                 𝜇1 = 𝐸(𝑋)

             𝑚2 =
1

𝑛
σ 𝑋𝑖

2  𝜇2 = 𝐸(𝑋2)

                    ⁞                                          ⁞

             𝑚𝑘 =
1

𝑛
σ 𝑋𝑖

𝑘                𝜇𝑘 = 𝐸(𝑋𝑘)

𝑚𝑗 = 𝜇𝑗(𝜃1, … , 𝜃𝑘)

Let    𝑚1 = 𝜇1(𝜃1, … , 𝜃𝑘)

                     ⁞

         𝑚𝑘 = 𝜇𝑘(𝜃1, … , 𝜃𝑘)        solve for  𝜃1, … , 𝜃𝑘
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Method of moments

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑁(𝜇, 𝛿2) 

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑘, 𝑝)   both unknown

  

Solving to get:

                                                                                                       

                                                          

ƶ𝜇2 = 𝛿2 + 𝜇2𝑚2 =
1

𝑛
෍ 𝑥𝑖

2

𝑥
᪄

= 𝜇,
1

𝑛
෍ 𝑥𝑖

2 = 𝑠2 + 𝜇2 ⇒ 𝜇
ƶ

= 𝑥
᪄

+ 𝛿
ƶ

2 =
1

𝑛
𝛴𝑖=1

𝑛 𝑥𝑖 − 𝑥
᪄ 2

𝜇1 = 𝜇𝑚1 =
1

𝑛
෍ 𝑥𝑖
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Method of moments

Note: this method can also be used for moment matching.

-match moments of distributions of statistics to obtain approximation to 

distributions.

Example:   𝑥1, … , 𝑥𝑛 𝑖𝑖𝑑 𝑝(𝜆)

  

መ𝜆 is not unique, using method of moments.

                                                                                                       

                                                          

𝑚1 =
1

𝑛
𝛴𝑥𝑖

𝑚2 =
1

𝑛
𝛴𝑥𝑖

2

(1) 𝐸 𝑥1 = 𝜆

 (2) 𝐸 𝑥1
2 = 𝜆 + 𝜆2

(1) ƶ𝜆 = ᪄𝑥

(2) ƶ𝜆2 + ƶ𝜆 −
1

𝑛
σ𝑥ƶ𝜆

2 = 0 ⇒ ƶ𝜆 = −
1

2
+

1

4
+

1

2
3𝑥𝑖

2
1/2
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Next Week:

Estimation Theory 02: 
UMVE & Bayes

Have a good day!


	Slide 1: Stochastic Processes
	Slide 2: Outline of Week 06 Lectures
	Slide 3: Introduction to Estimation Theory
	Slide 4: Introduction to Estimation Theory
	Slide 5: Introduction to Estimation Theory
	Slide 6: Introduction to Estimation Theory
	Slide 7: Outline of Week 06 Lectures
	Slide 8
	Slide 9: Sufficient Statistic
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Outline of Week 06 Lectures
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Outline of Week 06 Lectures
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Outline of Week 06 Lectures
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Outline of Week 06 Lectures
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

